
Adversarial Attack on Graph Neural Networks
as An Influence Maximization Problem

Jiaqi Ma ∗†
jiaqima@umich.edu

Junwei Deng ∗†
junweid@umich.edu

Qiaozhu Mei∗‡
qmei@umich.edu

Abstract

Graph neural networks (GNNs) have attracted increasing interests. With broad
deployments of GNNs in real-world applications, there is an urgent need for
understanding the robustness of GNNs under adversarial attacks, especially in
realistic setups. In this work, we study the problem of attacking GNNs in a
restricted and realistic setup, by perturbing the features of a small set of nodes, with
no access to model parameters and model predictions. Our formal analysis draws a
connection between this type of attacks and an influence maximization problem on
the graph. This connection not only enhances our understanding on the problem
of adversarial attack on GNNs, but also allows us to propose a group of effective
and practical attack strategies. Our experiments verify that the proposed attack
strategies significantly degrade the performance of three popular GNN models and
outperform baseline adversarial attack strategies.

1 Introduction

There has been a surge of research interest recently in graph neural networks (GNNs) [28], a family
of deep learning models on graphs, as they have achieved superior performance on various tasks such
as traffic forecasting [32], social network analysis [16], and recommender systems [31, 7]. Given
the successful applications of GNNs in online Web services, there are increasing concerns regarding
the robustness of GNNs under adversarial attacks, especially in realistic scenarios. In addition, the
research about adversarial attacks on GNNs in turns helps us better understand the intrinsic properties
of existing GNN models. Indeed, there have been a line of research investigating various adversarial
attack scenarios for GNNs [34, 33, 5, 1, 19], and many of them have been shown to be, unfortunately,
vulnerable in these scenarios. In particular, Ma et al. [19] examine an extremely restricted black-box
attack scenario where the attacker has access to neither model parameters nor model predictions, yet
they demonstrate that a greedy adversarial attack strategy can significantly degrade GNN performance
due to the natural inductive biases of GNN binding to the graph structure. This scenario is motivated
by real-world GNN applications on social networks, where attackers are only able to manipulate a
limited number of user accounts, and they have no access to the GNN model parameters or predictions
for the majority of users.

In this work, we study adversarial attacks on GNNs under the aforementioned restricted and realistic
setup. Specifically, an attack in this scenario is decomposed into two steps: 1) select a small set of
nodes to be perturbed; 2) alter the node features according to domain knowledge up to a per-node
budget. The focus of the study lies on the node selection step, so as in Ma et al. [19]. The existing
attack strategies, although empirically effective, are largely based on heuristics. We instead formulate
the adversarial attack as an optimization problem to maximize the mis-classification rate over the
selected set of nodes, and we carry out a formal analysis regarding this optimization problem. The
∗School of Information, University of Michigan, Ann Arbor, Michigan, USA
†Equal contribution.
‡Department of EECS, University of Michigan, Ann Arbor, Michigan, USA

Preprint. Under review.

ar
X

iv
:2

10
6.

10
78

5v
1

 [
cs

.L
G

]
 2

1
Ju

n
20

21

proposed optimization problem is combinatorial and seems hard to solve in its original form. In
addition, the mis-classification rate objective involves model parameters which are unknown in the
restricted attack setup. We mitigate these difficulties by rewriting the problem and connecting it
with influence maximization on a variant of linear threshold model4 [14] related to the original graph
structure. Inspired by this connection, we show that, under certain distributional assumptions about
the GNN, the expected mis-classification rate is submodular with respect to the selected set of nodes
to perturb. The expected mis-classification rate is independent of the model parameters and can be
efficiently optimized by a greedy algorithm thanks to its submodularity. Therefore, by specifying
concrete distributions, we are able to derive a group of practical attack strategies maximizing the
expected mis-classification rate. The connection with influence maximization also provides us nice
interpretations regarding the problem of adversarial attack on GNNs.

To empirically verify the effectiveness of the theory, we implement two adversarial attack strategies
and test them on three popular GNN models, Graph Convoluntioal Network (GCN) [15], Graph
Attention Network (GAT) [26], and Jumping Knowledge Network (JKNet) [30] with common
benchmark datasets. Both attack strategies significantly outperform baseline attack strategies in terms
of decreasing model accuracy. Finally, we summarize the contributions of our study as follows.

1. We formulate the problem of adversarial attack on GNNs as an optimization problem to
maximize the mis-classification rate.

2. We draw a novel connection between the problem of adversarial attacks on GNNs and
that of influence maximization on a general threshold model. This connection helps us
develop effective adversarial attack strategies under a restricted and realistic attack setup,
and provides interpretations regarding the adversarial attack problem.

3. We implement two variants of the proposed attack strategies and empirically demonstrate
their effectiveness on popular GNNs.

2 Related Work

There has been increasing research interest in adversarial attacks on GNNs recently. Detailed
expositions of existing literature are made available in a couple of survey papers [12, 23]. Given
the heterogeneous nature of diverse graph structured data, there are numerous adversarial attack
setups for GNN models. Following the taxonomy provided by Jin et al. [12], the adversarial attack
setup can be categorized based on (but not limited to) the machine learning task, the goal of the
attack, the phase of the attack, the form of the attack, and the model knowledge that attacker has
access to. First, there are two common types of tasks, node-level classification [34, 5, 27, 6] and
graph-level classification [25, 5]. The goal of the attack can be changing the predictions of a small and
specific set of nodes (targeted attack) [34, 5] or degrading the overall GNN performance (untargeted
attack) [33, 24]. The attack can happen at the model training phases (poisoning attack) [33, 24]
or after training completes (evasion attack) [5, 2]. The form of the attack could be perturbing the
node features [34, 19] or altering the graph topology [5, 24]. Finally, depending on the knowledge
(e.g. model parameters, model predictions, features, and labels, etc.) the attacker has access to,
the attacks can be roughly categorized into white-box attacks [29], grey-box attacks [34, 24], or
black-box attacks [5, 2, 19]. However, it is worth noting that the borders of these three categories are
blurry. In particular, the definition of a “black-box” attack varies much across literature.

Overall, the setup of interest in this paper can be categorized as node-level, untargeted, evasional,
and black-box attacks by perturbing the node features. While each setup configuration might find its
suitable application scenarios, we believe that the black-box setups are particularly important as they
are associated with many realistic scenarios. Among the existing studies on node-level black-box
attacks, most of them [1, 2, 5] still allow access to model predictions or some internal representations
such as node embeddings. In this paper, we follow the most strict black-box setup [19] to our
knowledge, which prohibits any probing of the model5. Compared to Ma et al. [19], we develop
attack strategies by directly analyzing the problem of maximizing mis-classification rate, rather than
relying on heuristics.

4Strictly speaking, the diffusion model we connect with is slightly different from the standard linear threshold
model, and should be called a general threshold model [8, 20]. But we view it as a (variant of) linear threshold
model to avoid redundant notations.

5A similar setting in the computer vision literature [3, 17] is sometimes referred as a “no-box” attack to
emphasize that neither model parameters nor model predictions can be accessed.

2

3 Preliminaries

3.1 Notations

We start by introducing notations that will be used across this paper. Suppose we have an attributed
graph G = (V,E,X, y), where V = {1, 2, · · · , N} is the set of N nodes, E ⊆ V × V is the set of
edges, X ∈ RN×D is the node feature matrix with D-dimensional features, and y ∈ {1, 2, · · · ,K}N
is the node label vector with K classes.

We denote a random walk transition matrix on the graph as M ∈ RN×N . For any 1 ≤ i, j ≤ N ,

Mij =

{
1
|Ni| , if (i, j) ∈ E or i = j,

0, otherwise,

where Ni = {j ∈ V | (i, j) ∈ E} ∪ {i} is the set of neighbors of node i, including itself.

To ease the notation, for any matrix A ∈ RD1×D2 in this paper, we refer Aj to the transpose of the
j-th row of the matrix, i.e., Aj ∈ RD2 .

We consider a GNN model f : RN×D → RN×K that maps from the node feature matrix X to the
output logits of all nodes (denoted as H , f(X) ∈ RN×K). We assume the GNN f has L layers,
with the l-th layer (0 < l < L) at node i taking the form

H
(l)
i = ReLU

∑
j∈Ni

αijW
(l)H

(l−1)
j

 ,

where W (l) is the learnable weight matrix, ReLU(·) is an element-wise ReLU activation function,
and different GNNs have different normalization terms αij . We also define H(0) = X and H =

H(L) =
∑
j∈Ni

αijW
(L)H

(L−1)
j . Later in Section 4, we carry out our analysis on a GCN model

with αij = 1/|Ni| [9].

3.2 The Adversarial Attack Setup

Next we briefly introduce the adversarial attack setup proposed by Ma et al. [19]. The goal of
the attack is to perturb the node features of a few carefully selected nodes such that the model
performance is maximally degraded. The attack is decomposed into two steps.

In the first step (node selection step), the attacker selects a set of nodes S ⊆ V to be perturbed, under
two constraints:

|S| ≤ r and |Ni| ≤ m,∀i ∈ S,
for some 0 < r � N and 0 < m � maxi |Ni|. These two constraints prevent the attacker from
manipulating a lot of nodes or very important nodes as measured by the node degree, which makes
the setup more realistic.

In the second step (feature perturbation step), the attacker is allowed to add a small constant
perturbation ε ∈ RD to the feature Xi of each node i ∈ S and obtain the perturbed feature X ′i , i.e.,

X ′i , Xi + ε.

The perturbation vector ε is constructed based on the domain knowledge about the task but without
access to the GNN model. For example, if the GNN model facilitates a recommender system for social
media, an attacker may hack a handful of carefully selected users and manipulate their demographic
features to get more other users exposed to certain political content the attacker desires. In practice,
the perturbation vector ε can be tailored for different nodes being manipulated, given personalized
knowledge about each node. But following Ma et al. [19], we consider the worst case where no
personalization is available and hence ε remains constant for each node i ∈ S.

3.3 Influence Maximization on A Linear Threshold Model

Given an information/influence diffusion model on a social network, influence maximization is the
problem of finding a small seed set of users such that they spread the maximum amount of influence

3

over the network. In a linear threshold model [14], the influence among nodes is characterized by
a weighted directed adjacency matrix I ∈ RN×N where Iij ≥ 0 for each (i, j) ∈ E and Iij = 0
for each (i, j) /∈ E. Given a seed set of nodes being activated at initial state, the influence passes
through the graph to activate other nodes. There is a threshold vector η ∈ RN associated with the
nodes, indicating the threshold of influence each node must have received from its active neighbors
before it becomes activated. In particular, when the influence propagation comes to a stationary point,
a node i outside the seed set will be activated if and only if∑

j∈Ni,j is activated

Iij ≥ ηi. (1)

4 Analysis of the Adversarial Attack Problem

In this section, we develop principled adversarial attack strategies under the setup stated in Section 3.2.

4.1 Node Selection for Mis-classification Rate Maximization

Suppose an attacker wants to attack a well-trained L-layer GCN model f . Following the two-step
attack procedure, the attacker first selects a valid node set S ∈ Cr,m , {T ⊆ V | |T | ≤ r, |Ni| ≤
m,∀i ∈ T} for some given constraints r and m. Then the constant perturbation ε is added to the
feature of each node in S, which leads to a perturbed feature matrix X(S, ε). Since our primary
interest is the design of the node selection step, we shall omit ε and just write the perturbed feature as
X(S) for simplicity. We denote the output logits of the model after perturbation asH(S) = f(X(S)).
Clearly, H(∅) equals to the matrix of output logits without attack.

In an untargeted attack, the attacker wants the model to make as many mistakes as possible, which is
best measured by the mis-classification rate. Therefore we formulate the problem of selecting the
node set as an optimization problem maximizing the mis-classification rate over S, with the two
constraints quantified by r,m:

max
S∈Cr,m

N∑
j=1

1

[
max

k=1,··· ,K
Hjk(S) 6= Hjyj (S)

]
, (2)

where 1 [·] is the indicator function. We drop normalizing constant 1/N in mis-classification rate.

At the first glance, the optimization problem (2) is a combinatorial optimization problem with a
complicated objective function involving neural networks. In the following section, we demonstrate
that, under a simplifying assumption, it can be connected to the influence maximization problem.

4.2 Connection to the Influence Maximization on A Linear Threshold Model

We first introduce a simplifying assumption of ReLU that has been widely used to ease the analysis
of neural networks [4, 13], including GCN [30].
Assumption 1 (Xu et al. [30]). All the ReLU activations activate independently with the same
probability, which implies that all paths in the computation graph of the GCN model are independently
activated with the same probability of success ρ.

Under Assumption 1, we are able to define H̄(S) , Epath [H(S)] for any S ⊆ V , where Epath [H(S)]
indicates the expectation of H(S) over the random activations of ReLU functions in the model. Then
we can rewrite problem (2) in a form that is similar to the influence maximization objective on a
linear threshold model. The influence weight matrix is defined by the L-step random walk transition
matrix B ,ML. And the threshold for each node is related to the original output logits H̄(∅), the
perturbation vector ε, and the product of the GCN weights W , ρ ·

∏1
l=LW

(l) ∈ RK×D. Formally,
we have the following Proposition 1, whose proof can be found in Appendix A.1.
Proposition 1. If we replace H(·) by H̄(·) in problem (2), then we can rewrite the optimization
problem as follows,

max
S∈Cr,m

N∑
j=1

1

[∑
i∈S

Bji > θj

]
, (3)

4

1

5

8

6

4

3

9

7

2

1 5 8643 972

1 5 8643 972

GNN on the Original
Undirected Graph in Data

Linear Threshold Model on the
Derived Directed Bipartite Graph

Thresholds:

Target Nodes

Seed Candidates

𝜃1 𝜃2 𝜃3 𝜃4 𝜃5 𝜃6 𝜃7 𝜃8 𝜃9

Figure 1: An illustrative example of the linear threshold model on the derived directed bipartite
graph. To simplify the visualization, the GNN is assumed to have 1 layer, and therefore the derived
directed bipartite graph have links from its zero-th (itself) and first order neighbors in the original
graph. For a GNN with k layers, the derived directed bipartite graph will have links from all its l-th
order neighbors in the original graph, for any 0 ≤ l ≤ k. Each target node i has its own threshold θi
to be influenced (mis-classified). The edge weight depends on the random walk transition from the
seed node to the target node.

where, for k̂j = argmaxk=1,··· ,K H̄jk(S),

θj ,
H̄jyj (∅)− H̄jk̂j

(∅)
(Wk̂j

−Wyj)T ε
. (4)

In particular, if k̂j = yj , we define θj =∞.

Interpretations of the new objective (3). The new optimization objective (3) has nice interpreta-
tions. The L-step random walk transition matrix measures the pairwise influence from input nodes to
target nodes in the GCN model and

∑
i∈S Bji can be viewed as measuring the influence of nodes

in S on a target nodes j. In each θj , the numerator H̄jyj (∅) − H̄jk̂j
(∅) can be viewed as the logit

margin between the correct class and those wrong classes, which measures the robustness of the
prediction on node j. The denominator (Wk̂j

−Wyj)T ε measures how effective the perturbation is.
In combination, θj measures how difficult it is to mis-classify the node j with perturbation ε. This
new objective nicely separates the influence between nodes and the node-specific robustness.

Note the form of each term inside the summation over N in Eq. (3), 1
[∑

i∈S Bji > θj
]
, is very

similar to that of Eq. (1). In fact, the objective (3) can be viewed as the influence maximization
objective on a directed bipartite graph derived from the original graph, as shown in Figure 1. The
derived bipartite graph has N nodes on both sides (assuming we call them the seed candidate side
S and target node side T), and there are edges pointing from side S to side T but not the converse
way. The edge weight from the node i on the side S to the node j on the side T (1 ≤ i, j ≤ N) is
defined as Bji. Then it is easy to see that the problem (3) is equivalent to the influence maximization
problem on the bipartite graph with the node-specific thresholds being θj , j = 1, · · · , N .

Two difficulties for solving the problem (3). While we now have got better interpretations of
the original mis-classification rate maximization problem in terms of influence maximization, we
still face two major difficulties before we can develop an algorithm to solve the problem. The first
difficulty is that we do not known the value of θ in a black-box attack setup as it involves the model
parameters. The second difficulty is that, even if θ is given, influence maximization on the seemingly
simple bipartite graph is still NP-hard, as we show in Lemma 1 (see Appendix A.2 for the proof).
Lemma 1. The influence maximization problem on a directed bipartite graph with linear threshold
model is NP-hard.

4.3 Assumptions on the Thresholds

Next, we mitigate the aforementioned two difficulties by making distribution assumptions on the
thresholds θ.

It is well-known that if the threshold θj of each node j is drawn uniformly at random from the
interval [0, 1], the expected objective of a general linear threshold model is submodular, which leads

5

to an efficient greedy algorithm that solves the expected influence maximization problem with a
performance guarantee [14]. In light of this fact regarding the general linear threshold model, we show
(in Proposition 2) that a mild assumption on the distribution of θ will guarantee the expectation of the
objective (3) to be submodular, thanks to the simple bipartite structure. The proof of Proposition 2
can be found in Appendix A.3.
Proposition 2. Suppose the individual thresholds are random variables drawn from some distri-
butions, and the marginal cumulative distribution function of the threshold θj for node j is Fj ,
j = 1, · · · , N . If F1, · · · , FN are individually concave in the domain [0,+∞), then the expectation
of the objective (3),

h(S) , Eθ1,··· ,θN
N∑
j=1

1

[∑
i∈S

Bji > θj

]
, (5)

is submodular.

Note that here we do not need the thresholds θ to be independent from each other, and we only require
the marginal probability density function of each θj to be non-increasing on the positive region.

Proposition 2 partially addresses the second difficulty. While we still do not have a solution to
the original problem (3), we now know that for a wide range of distributions of θ, the expected
mis-classification rate is submodular and can be approximated efficiently through a greedy algorithm.

For the first difficulty, we propose to explicitly specify a simple distribution for θ and optimize the
expected mis-classification rate h(S), which no longer involves any model parameters and gives us a
black-box attack strategy. While this seems to radically deviate from the original optimization objec-
tive (3), in the following Section 5, we empirically show that we only need a crude characterization
of the distribution of θ to obtain effective attack strategies.

The concrete black-box attack strategies. Below we derive two concrete black-box attack strate-
gies by specifying the distribution of θ to be uniform distributions and normal distributions respec-
tively.

Corollary 1. If a, b > 0 and θj
i.i.d.∼ uniform (−b, a), then

h(S) =
1

a+ b

N∑
j=1

(
min(

∑
i∈S

Bji, a) + b

)
, (6)

and h(S) is submodular.

Corollary 2. If σ > 0 and θj
i.i.d.∼N (0, σ2), then

h(S) =
1

2

N∑
j=1

(
1 + erf

(∑
i∈S Bji

σ
√

2

))
, (7)

where erf(·) is the Gauss error function. And h(S) is submodular.

Corollary 1 and 2 follow directly from Proposition 2 given the cumulative distribution functions of
the uniform distribution and the normal distribution as well as the fact that they are concave at the
positive region. In particular, Eq. (6) belongs to a well-known submodular function family named
the saturated coverage function [18, 11]. Under assumptions in Corollary 1, the adversarial attack
problem reduces to the classic influence maximization problem under the linear threshold model
where the thresholds follow uniform distributions.

We name the attack strategies obtained by greedily maximizing the objectives (6) and (7) as InfMax-
Unif and InfMax-Norm respectively. Specifically, each strategy iteratively selects nodes into the set
to be perturbed up to a given size. At each iteration, the node, combining with the existing set, that
maximizes Eq. (6) or Eq. (7) will be selected.

4.4 Discussions on the Approximations

From problem (3) to our final attack strategies, we have made two major approximations to address
the two difficulties that we raised at the end of Section 4.2.

6

Table 1: Summary of the attack performance in terms of test accuracy (%), the lower the better
attack. Bold denotes the best performing strategy in each setup. Underline indicates our strategy
outperforms all the baseline strategies. Asterisk (*) means the difference between our strategy and
the best baseline strategy is statistically significant by a pairwise t-test at significance level 0.05. The
error bar (±) denotes the standard error of the mean by 40 independent trials. We test on two setups
of the node degree threshold, m, by setting it equal to the lowest degree of the top 10% and 30%
nodes respectively.

Cora Citeseer Pubmed
Method JKNetMaxpool GCN GAT JKNetMaxpool GCN GAT JKNetMaxpool GCN GAT
None 85.9± 0.1 85.5± 0.2 87.7± 0.2 73.0± 0.2 75.0± 0.2 74.8± 0.2 85.7± 0.1 85.7± 0.1 85.2± 0.1

Threshold 10%
Random 70.5± 1.2 77.6± 0.4 71.5± 1.0 59.0± 0.9 69.7± 0.3 70.8± 0.4 74.7± 0.9 79.1± 0.3 72.8± 1.0
Degree 63.9± 1.3 73.4± 0.4 65.9± 1.2 51.1± 0.9 63.9± 0.3 65.6± 0.7 61.2± 1.5 73.2± 0.6 62.2± 1.5
Pagerank 71.6± 0.9 75.7± 0.3 72.7± 0.8 61.3± 0.8 69.5± 0.3 70.4± 0.4 73.7± 0.8 78.7± 0.2 73.3± 0.6
Betweenness 65.2± 1.6 72.4± 0.5 64.3± 1.2 50.8± 1.0 65.6± 0.3 67.1± 0.6 66.9± 1.4 74.6± 0.6 62.9± 1.6
RWCS 75.0± 0.6 75.7± 0.3 69.6± 0.9 61.4± 0.8 69.5± 0.3 70.3± 0.4 73.0± 0.8 78.1± 0.4 71.5± 0.8
GC-RWCS 57.6± 2.0 70.0± 0.6 57.5± 1.5 45.0± 0.8 60.5 ± 0.4 62.4± 1.0 56.7± 2.0 70.4± 0.8 55.4± 2.2
InfMax-Unif 56.5 ± 2.1∗ 68.8 ± 0.7∗ 55.9 ± 1.6∗ 44.4 ± 0.8∗ 60.7± 0.5 62.4± 1.0 55.6± 2.0∗ 69.5± 0.9∗ 53.7± 2.3∗
InfMax-Norm 56.9± 2.1∗ 69.1± 0.7∗ 57.1± 1.5∗ 45.0± 0.8 60.5 ± 0.5 62.3 ± 1.0 54.0 ± 2.0∗ 67.5 ± 1.0∗ 52.5 ± 2.4∗

Threshold 30%
Random 73.0± 0.9 78.9± 0.3 74.1± 0.9 61.2± 1.1 71.1± 0.4 71.9± 0.4 77.0± 0.6 80.0± 0.3 75.8± 0.8
Degree 68.8± 1.2 76.3± 0.4 69.2± 1.0 56.0± 1.0 68.4± 0.3 69.1± 0.5 70.9± 1.1 76.9± 0.5 69.8± 1.2
Pagerank 77.2± 0.5 80.5± 0.3 81.9± 0.4 68.2± 0.8 72.4± 0.3 73.0± 0.3 80.3± 0.3 81.5± 0.2 79.6± 0.3
Betweenness 68.9± 1.4 74.3± 0.5 66.5± 1.0 54.1± 1.1 67.9± 0.3 68.7± 0.6 75.5± 0.7 78.4± 0.4 72.5± 1.0
RWCS 77.1± 0.5 80.6± 0.3 81.9± 0.4 68.2± 0.8 72.4± 0.3 73.1± 0.3 78.5± 0.3 80.0± 0.2 77.8± 0.4
GC-RWCS 63.5± 1.8 72.1± 0.5 61.5± 1.3 48.2± 1.0 64.0± 0.4 65.1± 0.8 70.8± 1.0 75.9± 0.6 69.1± 1.3
InfMax-Unif 62.0 ± 2.0∗ 71.7 ± 0.6 59.1 ± 1.4∗ 47.2 ± 0.9∗ 62.8 ± 0.4∗ 64.6 ± 0.9∗ 66.3 ± 1.6∗ 75.2± 0.6∗ 64.1± 1.8∗
InfMax-Norm 62.3± 2.0∗ 72.1± 0.6 59.5± 1.4∗ 47.3± 0.9∗ 62.8 ± 0.4∗ 64.6 ± 0.8∗ 66.8± 1.5∗ 74.5 ± 0.7∗ 63.9 ± 1.8∗

The first approximation is we go from the original optimization problem to its expected version.
Note that θ depends on both the model parameters and the data, which we do not have full access
to. The first approximation treats them as random, and takes expectation over θ, which integrates
out the randomness in data and the model training process. And the resulted expected objective
function h(S) is submodular under the conditions in Proposition 2. A natural question regarding
this approximation is how does the mis-classification rate (3) concentrate around its expectation (5)?
If θ are independent, the indicator variables in (5) are also independent, and it is easy to show the
mis-classification rate is well-concentrated for a large graph size N through Hoeffding’s inequality.
However, the independence assumption is unrealistic in the case of GNN as the predictions of adjacent
nodes should be correlated. Further note that θ can be written in terms of linear combinations of
node features. With extra assumptions on the node features and the graph structure, one may be
able to carry out finer analysis on the covariance of θ, and thus how well the mis-classification rate
concentrates. We leave this analysis for future work.

The second approximation is that we further specify simple distributions of θ, which highly likely
deviate much from the real distribution. On one hand, our superior empirical results shown in
Section 5 suggest that these simple strategies are practical enough for some applications. On the other
hand, this leaves room for further improvement in real-world scenarios if we have more knowledge
regarding the distribution of θ. For example, if an attacker has a very limited number of API calls to
access the model predictions, these calls are likely insufficient to train a reinforcement-learning-based
attack strategies but they can be effectively used to better estimate the distribution of θ.

5 Experiments

In this section, we empirically evaluate the performance of the proposed attack strategies (InfMax-
Unif and InfMax-Norm) against several baseline attack strategies, closely following the experiment
setup of Ma et al. [19]. We also visualize the distributions of θ and have a case study of the selected
nodes to gain better qualitative understandings of the proposed methods. Some additional experiments
such as sensitivity analyses are provided in Appenix C.

5.1 Attack Strategies for Comparison

Implementation of InfMax-Unif and InfMax-Norm. For the proposed InfMax-Unif and InfMax-
Norm, there are two hyper-parameters respectively to be specified. Recall B = ML, the first
hyper-parameter for both method is L. We set L = 4 following RWCS and GC-RWCS. We note
that, for the attack strategies to be effective in practice, the hyper-parameter L does not have to be
the same as the number of layers of the GNN being attacked, as we will show in the experiments.

7

0.10 0.05 0.00 0.05 0.10 0.15
0

50

100

150

200

250

0.06 0.04 0.02 0.00 0.02 0.04
0

25

50

75

100

125

150

175

200

0.06 0.04 0.02 0.00 0.02 0.04 0.06
0

50

100

150

200

250

300

Figure 2: Each figure shows a histogram of θj for a fixed node j over 1000 independent trials of
GCN on Cora. The 3 nodes are randomly selected from the union of the validation set and test set.

For InfMax-Unif, there are two additional distribution hyper-parameters a, b. However, b does not
influence the selection of nodes so we only need to specify a. For InfMax-Norm, we need to specify
the distribution parameter σ. We fix a = 0.01 and σ = 0.01 across all the experiment setups.
Theoretically, the optimal choice of a or σ should depend on the perturbation vector ε as well as the
dataset. However, we find the proposed InfMax-Unif and InfMax-Norm strategies are fairly robust
with respect to the choice of a or σ (see the sensitivity analysis in Appendix C.2).

Baseline strategies. We compare with five baseline strategies, Degree, Betweenness, PageRank,
Random Walk Column Sum (RWCS), and Greedily-Corrected RWCS (GC-RWCS). We briefly
introduce the baselines below and leave more details of them in Appendix B.1.

The first three strategies, as suggested by their names, correspond to three node centrality scores.
These strategies select nodes with the highest node centrality scores subject to the constraint Cr,m.

RWCS and GC-RWCS are two black-box attack strategies proposed by Ma et al. [19]. RWCS
is derived by maximizing the cross-entropy classification loss but with certain approximations.
In practice, RWCS has a simple form: selects nodes with highest importance scores defined as
I(i) =

∑N
j=1[ML]ji (recall that M is the random walk transition matrix). We set the hyper-

parameter L = 4 following Ma et al. [19]. GC-RWCS further applies a few heuristics on top of
RWCS to achieve better mis-classification rate. Specifically, it dynamically updates the RWCS
importance score based on a heuristic. It also removes a local neighborhood of the selected node after
selecting each node. In the experiment, we set the hyper-parameters of GC-RWCS L = 4, l = 30,
and k = 1 as suggested in their original paper. Interestingly, RWCS can be viewed as a special case
of InfMax-Unif if we set a = ∞ (or large enough). And GC-RWCS without removing the local
neighborhood step can also be viewed a modified version of InfMax-Unif.

5.2 Attack Experiments on Benchmark Datasets

Experiment setup. We test attack strategies on 3 popular GNN models, GCN [15], GAT [26], and
JK-Net [30], with 3 public benchmark datasets, Cora, Citeseer, and Pubmed [22].

We follow the two-step procedure stated in Section 3.2 to apply the attack strategies. Note that both
the proposed strategies and the baseline strategies are designed for the node selection step, and the
feature perturbation step (as detailed below) is the same for all methods.

Construction of the perturbation vector. In a real-world scenario, the perturbation vector should
be designed according to domain knowledge about the task (e.g., age is an important feature that
influences the prediction of income). For the benchmark datasets, however, we do not know the
semantic meaning of the features. So we use proxy models to identify a handful of important features
to be perturbed. In particular, for each dataset, we first independently train 20 GCN models as the
proxy models of the task. Then we calculate the gradients of the classification loss with respect to the
node features, averaged over all the nodes. We treat the top 2% of features with the largest average
gradients as the most important features. And we construct the perturbation vector ε ∈ {−λ, 0, λ}D
(D is the feature dimension and λ > 0 is the perturbation strength) by setting the dimensions
corresponding to the (98%) non-important features as 0, and the dimensions corresponding to the
(2%) important features as +λ or −λ, depending on the sign of the average gradients. The same
constant perturbation vector ε is then used for attacking all victim models (GCN, GAT, and JK-Net)
in all trials on each dataset.

8

Figure 3: Visualization of the selected nodes by different strategies on a synthetic graph generated by
a stochastic blockmodel with 4 communities (A, B, C, and D). The red nodes are the selected nodes.

We note that the GCNs used as proxy models are trained independently of the victim models to be
attacked, using different data splits. The construction of ε is therefore completely agnostic of the
model information of the victim models. Due to page limit, we leave more details of the experiment
setup to Appendix B.2.

Experiment results. We provide the attack experiment results in Table 1. We show the model
accuracy after applying each attack strategy in each dataset and model combination, the lower the
better. We also include the model accuracy without attack (None) and with an attack under random
node selection (Random) for reference.

As can be seen in Table 1, both the proposed attack strategies achieve better attack performance
than all baselines on all but 3 setups, out of the 18 setups in total. And most of the differences
are statistically significant. We highlight that, compared to the strongest baseline, GC-RWCS, our
methods are simpler, and have fewer hyper-parameters and better interpretation. In addition, the
neighbor-removal heuristic also contributes to the performance of GC-RWCS method, while our
methods outperform GC-RWCS without such additional heuristics.

5.3 Visualizing the Distributions of θ

We also empirically investigate the distributions of θ to see how likely their PDFs are non-increasing
on the positive domain. In particular, given the parameters of a well-trained GCN, we are able to
approximately calculate θ with Eq. (4)6. We train a GCN on Cora and get one set of θ. We repeat this
process with 1000 independent model initializations and get 1000 sets of θ. Then we can visualize
a histogram over the 1000 values of θj for each node j. In Figure 2, we show the histograms of 3
randomly selected nodes. We show the histograms of more randomly selected nodes in Appendix C.3.
In most cases, the empirical probability density decreases when θj > 0, which is the assumption
required for the expected mis-classification rate to be submodular in Proposition 2.

5.4 Case Study of the Selected Nodes

To gain better qualitative understandings of the selected nodes returned by different strategies, we
generate a small graph using stochastic blockmodel [10] with 4 communities, so that we can visualize
the selected nodes. As can be seen in Figure 3, better performed strategies (GC-RWCS and ours) tend
to spread the selected nodes more evenly over the communities. This aligns well with the common
belief in the influence maximization literature [21] that a good solution of the selected nodes under
linear threshold models tend to have nodes far apart from each other on the graph.

6 Conclusion

We present a formal analysis of a restricted and realistic attack setup on Graph Neural Networks
(GNNs). By establishing a novel connection between the original attack problem and an influence
maximization problem on a linear threshold model, we develop a group of efficient and effective
black-box attack strategies with nice interpretations. Extensive empirical results demonstrate the
effectiveness of the proposed methods on multiple types of GNNs.

While the effectiveness of the proposed attack strategies reflects a systematic weakness of existing
popular GNN architectures, which could be mis-used for malicious purposes. On the other hand, we

6We can only do it approximately because we do not know ρ. For the visualization, we just set ρ = 1.

9

believe the interpretable connection between the adversarial attack and the well-known influence
maximization problem may motivate more robust GNN designs in future work.

References
[1] Aleksandar Bojchevski and Stephan Günnemann. Adversarial attacks on node embeddings via

graph poisoning. arXiv preprint arXiv:1809.01093, 2018.

[2] Heng Chang, Yu Rong, Tingyang Xu, Wenbing Huang, Honglei Zhang, Peng Cui, Wenwu Zhu,
and Junzhou Huang. A restricted black-box adversarial framework towards attacking graph
embedding models. In AAAI Conference on Artificial Intelligence, 2020.

[3] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Zeroth order
optimization based black-box attacks to deep neural networks without training substitute models.
In Proceedings of the 10th ACM workshop on artificial intelligence and security, pages 15–26,
2017.

[4] Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous, and Yann LeCun.
The loss surfaces of multilayer networks. In Artificial intelligence and statistics, pages 192–204,
2015.

[5] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. Adversarial
attack on graph structured data. arXiv preprint arXiv:1806.02371, 2018.

[6] Negin Entezari, Saba A Al-Sayouri, Amirali Darvishzadeh, and Evangelos E Papalexakis. All
you need is low (rank) defending against adversarial attacks on graphs. In Proceedings of the
13th International Conference on Web Search and Data Mining, pages 169–177, 2020.

[7] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural
networks for social recommendation. In The World Wide Web Conference, pages 417–426,
2019.

[8] Mark Granovetter. Threshold models of collective behavior. American journal of sociology, 83
(6):1420–1443, 1978.

[9] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Advances in neural information processing systems, pages 1024–1034, 2017.

[10] Paul W Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic blockmodels:
First steps. Social networks, 5(2):109–137, 1983.

[11] Rishabh Iyer and Jeffrey Bilmes. Submodular point processes with applications to machine
learning. In Artificial Intelligence and Statistics, pages 388–397, 2015.

[12] Wei Jin, Yaxin Li, Han Xu, Yiqi Wang, and Jiliang Tang. Adversarial attacks and defenses on
graphs: A review and empirical study. arXiv preprint arXiv:2003.00653, 2020.

[13] Kenji Kawaguchi. Deep learning without poor local minima. In Advances in neural information
processing systems, pages 586–594, 2016.

[14] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence through
a social network. In Proceedings of the ninth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 137–146, 2003.

[15] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[16] Cheng Li, Jiaqi Ma, Xiaoxiao Guo, and Qiaozhu Mei. Deepcas: An end-to-end predictor of
information cascades. In Proceedings of the 26th international conference on World Wide Web,
pages 577–586, 2017.

[17] Qizhang Li, Yiwen Guo, and Hao Chen. Practical no-box adversarial attacks against dnns.
Advances in Neural Information Processing Systems, 33, 2020.

10

[18] Hui Lin and Jeff Bilmes. A class of submodular functions for document summarization. In
Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies, pages 510–520, 2011.

[19] Jiaqi Ma, Shuangrui Ding, and Qiaozhu Mei. Towards more practical adversarial attacks on
graph neural networks. Advances in neural information processing systems, 2020.

[20] Elchanan Mossel and Sebastien Roch. On the submodularity of influence in social networks.
In Proceedings of the thirty-ninth annual ACM symposium on Theory of computing, pages
128–134, 2007.

[21] Grant Schoenebeck, Biaoshuai Tao, and Fang-Yi Yu. Think globally, act locally: On the
optimal seeding for nonsubmodular influence maximization. Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019), 145:
39, 2019.

[22] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-
Rad. Collective classification in network data. AI magazine, 29(3):93–93, 2008.

[23] Lichao Sun, Yingtong Dou, Carl Yang, Ji Wang, Philip S Yu, and Bo Li. Adversarial attack and
defense on graph data: A survey. arXiv preprint arXiv:1812.10528, 2018.

[24] Yiwei Sun, Suhang Wang, Xianfeng Tang, Tsung-Yu Hsieh, and Vasant Honavar. Node injection
attacks on graphs via reinforcement learning. arXiv preprint arXiv:1909.06543, 2019.

[25] Haoteng Tang, Guixiang Ma, Yurong Chen, Lei Guo, Wei Wang, Bo Zeng, and Liang Zhan. Ad-
versarial attack on hierarchical graph pooling neural networks. arXiv preprint arXiv:2005.11560,
2020.

[26] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

[27] Huijun Wu, Chen Wang, Yuriy Tyshetskiy, Andrew Docherty, Kai Lu, and Liming Zhu. Adver-
sarial examples for graph data: deep insights into attack and defense. In Proceedings of the 28th
International Joint Conference on Artificial Intelligence, pages 4816–4823. AAAI Press, 2019.

[28] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and
Learning Systems, 2020.

[29] Kaidi Xu, Hongge Chen, Sijia Liu, Pin-Yu Chen, Tsui-Wei Weng, Mingyi Hong, and Xue Lin.
Topology attack and defense for graph neural networks: An optimization perspective. arXiv
preprint arXiv:1906.04214, 2019.

[30] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and
Stefanie Jegelka. Representation learning on graphs with jumping knowledge networks. arXiv
preprint arXiv:1806.03536, 2018.

[31] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure
Leskovec. Graph convolutional neural networks for web-scale recommender systems. In
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pages 974–983, 2018.

[32] Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph convolutional networks: A
deep learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875, 2017.

[33] Daniel Zügner and Stephan Günnemann. Adversarial attacks on graph neural networks via meta
learning. In International Conference on Learning Representations (ICLR), 2019.

[34] Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. Adversarial attacks on neural
networks for graph data. In Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pages 2847–2856, 2018.

11

A Proofs

We first give a more precise and restated version (Assumption 2) of Assumption 1, and introduce
Lemma 2 about GCN, which is proved by Xu et al. [30].

Assumption 2 (Xu et al. [30] Restated.). Recall that a ReLU function can be written as

ReLU(x) = x · 1 [x > 0] .

Suppose there are R ReLU functions in the GCN model and we index them with i = 1, 2, · · · , R. This
assumption assumes that the i-th ReLU functions, for i = 1, 2, · · · , R, is replaced by the following
function,

ReLUi(x) = x · zi,

where z1, z2, · · · , zR
i.i.d.∼ Bernoulli(γ).

This assumption implies that all paths in the computation graph of an L-layer GCN model are
independently activated with the same probability ρ = γL.

Lemma 2 (Xu et al. [30].). Given an L-layer GCN, under Assumption 1, for any node i, j ∈ V ,

Epath

[
∂Hj

∂Xi

]
= ρ[ML]ji ·

(
1∏
l=L

W (l)

)
, (8)

where M ∈ RN×N is the random walk transition matrix, i.e., for any 1 ≤ i, j ≤ N , Mij = 1/|Ni|
if (i, j) ∈ E or i = j, and Mij = 0 otherwise.

A.1 Proof for Proposition 1

Proof. Recall that H̄(S) = Epath[H(S)] = Epath[f(X(S))]. We first show H̄(S) is a linear function
of X(S), which suffices to show that, for any i ∈ V and 1 ≤ l ≤ L, Epath[H

(l)
i (S)] is a linear

function of Epath[H(l−1)(S)]. When l = L,

Epath[H
(L)
i (S)] =

∑
j∈Ni

αijW
(L)Epath[H

(L−1)
j (S)],

so the statement holds. When 1 ≤ l < L, under Assumption 1, suppose each ReLU activates
independently with probability p.

EpathH
(l)
i = Epath

σ
∑
j∈Ni

αijW
(l)H

(l−1)
j


= p

∑
j∈Ni

αijW
(L)Epath[H

(l−1)
j (S)],

so the statement also holds. Therefore H̄(S) is a linear function of X(S). In particular, Epath[H] =
H̄(∅) is a linear function of X .

We know that Xi(S) = Xi + ε for i ∈ S and Xi(S) = Xi for i /∈ S. And by Lemma 2, we can
rewrite H̄(S) in terms of H̄(∅) and ε. For any j ∈ V ,

H̄j(S) = H̄j(∅) +
∑
i∈S

ρ[ML]ji ·

(
1∏
l=L

W (l)

)T
ε.

In Section 4.2, we have defined B = ML and W = ρ
∏1
l=LW

(l), so

H̄j(S) = H̄j(∅) +WT ε
∑
i∈S

Bji. (9)

12

Now we look at the objective (2). If we replace H(S) with H̄(S) in this objective and plug Eq. (9)
into it, then for each j ∈ V , we have

1

[
max

k∈{1,··· ,K}
H̄jk(S) 6= H̄jyj (S)

]
=1
[
H̄jk̂j

(S) > H̄jyj (S)
]

=1

[
H̄jk̂j

(∅) +WT
k̂j
ε ·
∑
i∈S

Bji > H̄jyj (∅) +WT
yj ε ·

∑
i∈S

Bji

]

=1

[∑
i∈S

Bji >
H̄jyj (∅)− H̄jk̂j

(∅)
(Wk̂j

−Wyj)T ε

]

=1

[∑
i∈S

Bji > θj

]
,

where we have defined k̂j = argmaxk=1,··· ,K H̄jk(S) and recall the definition of θj in Eq. (4).

Therefore we get the optimization problem (3)

max
S∈Cr,m

N∑
j=1

1

[∑
i∈S

Bji > θj

]
.

A.2 Proof for Lemma 1

The proof follows similarly as the proof of Theorem 2.4 in Kempe et al. [14].

Proof. We prove by reducing the NP-complete Set Cover problem to the influence maximization
problem on directed biparatite graph with a linear threshold model. The Set Cover problem is defined
as following. Suppose we have a ground set U = {u1, u2, · · · , un} and a group of m subsets of U ,
S1, S2, · · · , Sm. The goal is to determine whether there exists r (r < n and r < m) of the subsets
whose union equals to U .

For any instance of the Set Cover problem, we can construct a bipartite graph with the first side
having m nodes (each one corresponding to a given subset of U), and the second side having n
nodes (each one corresponding to an element of U). There are only links going from the the first
side to the second side. There will be a link with constant influence score α > 0 from a node on
the first side to the second side if and only if the corresponding subset contains that element in U .
Finally the node-specific thresholds of each node on the second side is set as α/2. And the influence
maximization problem asks to select r nodes on the graph to maximize the number of activated nodes.
The Set Cover problem is then solved by deciding if the maximized number of activated nodes on the
bipartite graph is greater than n+ r.

A.3 Proof for Proposition 2

Proof. We first show that the expected mis-classifcation rate h(S) can be written in terms of the
marginal CDFs of θ.

13

h(S) = Eθ1,··· ,θN
N∑
j=1

1

[∑
i∈S

Bji > θj

]

=

N∑
j=1

Eθ1,··· ,θN1

[∑
i∈S

Bji > θj

]

=

N∑
j=1

Eθj1

[∑
i∈S

Bji > θj

]

=

N∑
j=1

Pj

(∑
i∈S

Bji > θj

)

=

N∑
j=1

Fj

(∑
i∈S

Bji

)
,

where Pj is the marginal probability of θj .

Since Bji ≥ 0, so
∑
i∈S Bji is a non-decreasing submodular function of S with a lower bound 0.

Each CDF Fj is non-decreasing by definition, if it is also individually concave at the domain [0,+∞),
we know Fj

(∑
i∈S Bji

)
is submodular w.r.t. S and hence h(S) is submodular.

B More Experiment Details

B.1 Baseline Methods

Definitions of the node centralities. For each node i, the Degree centrality score is defined as
CD(i) , |Ni|

N ; the Betweenness centrality score is defined as CB(i) ,
∑
j 6=i,k 6=i,j<k

gjk(i)
gjk

, where
gjk is the number of shortest paths connecting node j and k and gjk(i) is the number of shortest
paths that node i is on; the PageRank centrality score is defined as the stationary scores achieved by
iteratively updating PR(i) = 1−α

N + α
∑
j∈Ni

PR(j)
|Nj | and we set the hyper-parameter α = 0.85.

Detailed descriptions of GC-RWCS. GC-RWCS further applies a few heuristics on top of RWCS
to achieve better mis-classification rate. Specifically, it iteratively selects nodes one by one up
to r nodes, based on a dynamic importance score, i.e., It(i) =

∑N
j=1[Qt]ji for the t-th iteration.

Qt ∈ {0, 1}N×N is a binary matrix that is dynamically updated over t. At the initial iteration, Q1

is obtained by binarizing ML, assigning 1 to the top l nonzero entries in each row of ML and 0 to
other entries. For t > 1, suppose the node i is selected at the t − 1 iteration, then Qt is obtained
from Qt−1 by setting to zero for all the rows where the elements of the i-th column is 1 in Qt−1.
GC-RWCS also applies another heuristic that, after each iteration, remove the k-hop neighbors of
the selected node from the candidate set in the subsequent iterations. In the experiment, we set the
hyper-parameters of GC-RWCS L = 4, l = 30, and k = 1 as suggested in their original paper. The
iterative-selection process in GC-RWCS (without removing the k-hop neighbors) gives equivalent
results as InfMax-Unif if we replace the matrix B in InfMax-Unif by Q1 and set a = 1.

B.2 More Details for the Experiment Setup

We closely follow the experiment setup by Ma et al. [19]. We set the number of layers of GCN and
GAT as 2, and that of JK-Net as 7. We use the implementations of all models in Deep Graph Library7.
We randomly split each dataset by 60%, 20% and 20% as the training, validation, and test sets and

7Website: https://www.dgl.ai. Apache license: https://github.com/dmlc/dgl/blob/master/
LICENSE.

14

https://www.dgl.ai
https://github.com/dmlc/dgl/blob/master/LICENSE
https://github.com/dmlc/dgl/blob/master/LICENSE

0.0 0.2 0.4 0.6 0.8 1.0

0.55

0.60

0.65

0.70

0.75

0.80

0.85

JKNet on Cora

0.0 0.2 0.4 0.6 0.8 1.0

0.78

0.79

0.80

0.81

0.82

0.83

0.84

0.85

GCN on Cora

0.0 0.2 0.4 0.6 0.8 1.0
0.55

0.60

0.65

0.70

0.75

0.80

0.85

GAT on Cora

0.0 0.2 0.4 0.6 0.8 1.0

0.50

0.55

0.60

0.65

0.70

JKNet on Citeseer

0.0 0.2 0.4 0.6 0.8 1.0

0.66

0.68

0.70

0.72

0.74

GCN on Citeseer

0.0 0.2 0.4 0.6 0.8 1.0
0.575

0.600

0.625

0.650

0.675

0.700

0.725

0.750
GAT on Citeseer

0.0 0.2 0.4 0.6 0.8 1.0

0.60

0.65

0.70

0.75

0.80

0.85

JKNet on Pubmed

0.0 0.2 0.4 0.6 0.8 1.0
0.76

0.78

0.80

0.82

0.84

0.86
GCN on Pubmed

0.0 0.2 0.4 0.6 0.8 1.0
0.55

0.60

0.65

0.70

0.75

0.80

0.85

GAT on Pubmed

Degree
Pagerank
Between
Random
RWCS
GC-RWCS
InfMax-Unif
InfMax-Norm

Figure 4: The attack performances with varying perturbation strengths (from 0 to 1). Each figure
corresponds to a dataset-model combination. The x-axis indicates the value of λ and the y-axis
indicates the classification accuracy after attack. The threshold is set as 10% and all other experiment
setups are the same as those in Table 2.

run 40 independent trials for each model and dataset combination. We apply the attack strategies
following the two-step procedure stated in Section 3.2. For the node selection step, we limit the
number of nodes to be attacked, r, as 1% of the graph size for each dataset. We test on two setups of
the node degree threshold, m, by setting it equal to the lowest degree of the top 10% and 30% nodes
respectively.

For the feature perturbation step, we follow a similar way as in Ma et al. [19] to construct the constant
perturbation vector ε. But our construction is more strictly black-box compared to Ma et al. [19].
Specifically, we first train 20 GCN models on each dataset. Then for each trained GCN (indexed by
k = 1, · · · , 20), we calculate a set of (signed) importance score ḡ(k)j = 1

N

∑N
i=1

∂L(H,y)
∂Xi,j

for each

dimension of feature, j = 1, · · · , D, and L(·, ·) is the classification loss. Intuitively, ḡ(k)j ’s are the
average gradients over all nodes and provides an indicator of how important an feature is to the
classification task at a coarse population level. We then select the top 2% important features by the
following procedure: 1) we first filter the features j’s to make sure that at least 80% of {ḡ(k)j }20k=1 have

the same sign; 2) then we select the top 0.02D features with largest average scores, 1
20

∑20
k=1 |ḡ

(k)
j |.

Then we construct the perturbation vector ε ∈ {−λ, 0, λ}D (λ is the perturbation strength and is
set as 10 in our experiments) by setting the dimensions corresponding to the (98%) non-important
features as 0, and the dimensions corresponding to the (2%) important features as +λ or −λ, with the

15

0.0
05

0.0
06

0.0
07

0.0
08

0.0
09 0.0
1

0.0
12

0.0
14

0.0
16

0.0
18 0.0
2

54

55

56

57

58

59

60

61

62
JKNet on Cora

0.0
05

0.0
06

0.0
07

0.0
08

0.0
09 0.0
1

0.0
12

0.0
14

0.0
16

0.0
18 0.0
2

78.0

78.5

79.0

79.5

80.0

GCN on Cora

0.0
05

0.0
06

0.0
07

0.0
08

0.0
09 0.0
1

0.0
12

0.0
14

0.0
16

0.0
18 0.0
2

55

56

57

58

59

60

61

62

63

GAT on Cora

0.0
05

0.0
06

0.0
07

0.0
08

0.0
09 0.0
1

0.0
12

0.0
14

0.0
16

0.0
18 0.0
2

47.0

47.5

48.0

48.5

49.0

49.5

50.0

50.5

JKNet on Citeseer

0.0
05

0.0
06

0.0
07

0.0
08

0.0
09 0.0
1

0.0
12

0.0
14

0.0
16

0.0
18 0.0
2

65.5

66.0

66.5

67.0

67.5

68.0

GCN on Citeseer

0.0
05

0.0
06

0.0
07

0.0
08

0.0
09 0.0
1

0.0
12

0.0
14

0.0
16

0.0
18 0.0
2

58

59

60

61

62

GAT on Citeseer

0.0
05

0.0
06

0.0
07

0.0
08

0.0
09 0.0
1

0.0
12

0.0
14

0.0
16

0.0
18 0.0
2

58

60

62

64

66

68

70

JKNet on Pubmed

0.0
05

0.0
06

0.0
07

0.0
08

0.0
09 0.0
1

0.0
12

0.0
14

0.0
16

0.0
18 0.0
2

76

77

78

79

80

81
GCN on Pubmed

0.0
05

0.0
06

0.0
07

0.0
08

0.0
09 0.0
1

0.0
12

0.0
14

0.0
16

0.0
18 0.0
2

56

58

60

62

64

66

68

GAT on Pubmed

InfMax-Unif 10%
InfMax-Norm 10%
GC-RWCS 10%
InfMax-Unif 30%
InfMax-Norm 30%
GC-RWCS 30%

Figure 5: Sensitivity analysis of the hyper-parameters a and σ. The experiment setups are the same
as those in Section 5.2. Each figure corresponds to a dataset-model combination. The x-axis indicates
the value of a or σ while the y-axis indicates the classification accuracy after attack. The results under
the threshold 10% are plotted in green while the results under the threshold 30% are plotted in blue.
In addition to the proposed InfMax-Unif and InfMax-Norm, we also plot the results of GC-RWCS as
the constant dashed lines for references. The plots are made in log-scale for the x-axis.

sign determined by the majority of {ḡ(k)j }20k=1. The same constant perturbation vectors are then added
to all models in all trials of the experiment. We highlight that the 20 GCN models used to construct
the perturbation vector are independently trained with different training splits compared to
the models (GCN, GAT, and JK-Net) we attack in Table 1. This makes our experiment setup
completely black-box. Notably, when attacking GAT and JK-Net, the construction of perturbation is
even unaware of the exact GNN architectures of the victim models.

C Additional Experiments

C.1 Results under the Experiment Setup by Ma et al. [19]

In a previous version of this paper, we conducted experiments under a setup exactly the same as
that by Ma et al. [19]. The main difference between our current setup (as detailed in Appendix B.2)

16

Table 2: Experiment results under the setup by Ma et al. [19]. Summary of the attack performance in
terms of test accuracy (%), the lower the better attack. Bold denotes the best performing strategy
in each setup. Underline indicates our strategy outperforms all the baseline strategies. Asterisk (*)
means the difference between our strategy and the best baseline strategy is statistically significant by
a pairwise t-test at significance level 0.05. The error bar (±) denotes the standard error of the mean
by 40 independent trials. We test on two setups of the node degree threshold, m, by setting it equal to
the lowest degree of the top 10% and 30% nodes respectively.

Cora Citeseer Pubmed
Method JKNet GCN GAT JKNet GCN GAT JKNet GCN GAT

None 85.9± 0.1 85.5± 0.2 87.7± 0.2 73.0± 0.2 75.0± 0.2 74.8± 0.2 85.7± 0.1 85.7± 0.1 85.2± 0.1

Threshold 10%

Random 69.9± 1.1 81.7± 0.3 72.6± 0.6 61.5± 0.9 71.6± 0.2 70.2± 0.5 76.1± 0.6 82.0± 0.3 73.5± 0.3
Degree 63.0± 1.4 78.7± 0.4 66.6± 0.7 53.7± 0.9 68.2± 0.3 63.9± 0.5 63.5± 0.9 78.9± 0.5 65.8± 0.7
Pagerank 71.7± 0.9 80.1± 0.3 74.2± 0.5 62.3± 0.6 70.0± 0.3 69.7± 0.3 71.8± 0.8 80.2± 0.3 71.2± 0.3
Betweenness 63.6± 1.4 80.2± 0.4 64.9± 0.5 54.9± 1.0 70.0± 0.3 65.5± 0.5 67.0± 1.0 78.4± 0.5 62.6± 0.6
RWCS 71.8± 0.8 80.3± 0.4 70.8± 0.5 61.9± 0.6 69.9± 0.3 69.4± 0.3 70.8± 0.8 79.7± 0.3 68.9± 0.4
GC-RWCS 55.2± 1.5 78.3± 0.5 57.1± 0.6 47.5± 1.0 66.3± 0.5 58.5± 0.6 61.7± 1.1 77.4± 0.6 57.8± 0.8
InfMax-Unif 54.3 ± 1.5* 77.9 ± 0.5∗ 55.6 ± 0.6∗ 47.1 ± 1.0∗ 66.2± 0.5 58.4± 0.6 60.0± 1.2* 77.1± 0.7* 57.0± 0.9*
InfMax-Norm 54.6± 1.5* 78.1± 0.5 56.9± 0.6 47.1 ± 1.0∗ 65.6 ± 0.5∗ 58.1 ± 0.6∗ 58.8 ± 1.1∗ 76.2 ± 0.7∗ 55.9 ± 1.0∗

Threshold 30%

Random 71.5± 1.1 82.1± 0.3 74.1± 0.6 64.0± 0.8 72.4± 0.2 71.7± 0.3 78.0± 0.4 82.4± 0.3 76.0± 0.3
Degree 67.5± 1.2 81.0± 0.4 70.4± 0.6 58.4± 1.0 70.5± 0.3 67.7± 0.4 73.2± 0.8 81.1± 0.4 71.0± 0.4
Pagerank 79.4± 0.5 82.5± 0.3 82.3± 0.3 70.2± 0.3 72.7± 0.2 73.8± 0.2 79.9± 0.3 82.6± 0.2 79.0± 0.2
Betweenness 66.9± 1.3 81.4± 0.3 67.5± 0.5 57.7± 1.0 70.8± 0.3 67.8± 0.5 75.3± 0.5 80.9± 0.4 71.7± 0.4
RWCS 79.2± 0.5 82.5± 0.3 82.3± 0.3 69.9± 0.3 72.7± 0.2 73.7± 0.2 78.2± 0.3 81.7± 0.3 77.8± 0.2
GC-RWCS 61.9± 1.5 80.2± 0.4 63.2± 0.5 50.6± 1.1 67.8± 0.4 62.1± 0.6 71.1± 0.8 79.9± 0.5 68.8± 0.4
InfMax-Unif 58.2± 1.5* 79.9 ± 0.4 59.6 ± 0.5∗ 49.6± 1.0∗ 67.3 ± 0.5∗ 61.2 ± 0.6∗ 69.4 ± 1.0∗ 80.1± 0.5 65.4± 0.5*
InfMax-Norm 58.0 ± 1.5∗ 79.9± 0.5 60.0± 0.5∗ 49.5 ± 1.0∗ 67.6± 0.5 61.6± 0.6∗ 69.6± 1.0∗ 79.7 ± 0.5 65.2 ± 0.5*

and their setup is that we now use GCN models independent of the victim models to construct the
constant perturbation vector, while they directly use the victim models to construct the perturbation
vector. Although the use of the model information is extremely limited in the setup by Ma et al. [19],
it is not completely black-box. Nevertheless, in this section, we provide the experiment results under
the setup by Ma et al. [19] for easier comparison with existing literature.

As can be seen in Table 2, the overall trend is almost the same as Table 1.

C.2 Sensitivity Analyses

Attack performance with varying perturbation strengths. In Figure 4, we demonstrate the attack
performances of different attack strategies with varying perturbation strengths. We first observe
that the proposed attack strategies with the fixed hyper-parameters (a = 0.01 for InfMax-Unif and
σ = 0.01 for InfMax-Norm) outperform all baselines in more cases. It is also worth noting that, as
suggested by Eq. (4), the distribution of θ is dependent on the perturbation ε and hence λ. In the
approximated uniform and normal distributions for InfMax-Unif and InfMax-Norm respectively, the
optimal choice of a and σ should be dependent on λ. Intuitively, smaller λ makes the θ have larger
variance, so the choice of a and σ should also be larger. This is indeed suggested by the results in
Figure 4. Recall that, in Section 5.1, we discussed that RWCS can be viewed as a special case of
InfMax-Unif with a =∞. And in Figure 4, we observe that RWCS (equivalent to InfMax-Unif with
a =∞) sometimes (e.g., for GCN) outperforms InfMax-Unif (with a = 0.01) when λ is very small.
However, we leave further optimization of the hyper-parameters of the proposed strategies to future
work.

Sensitivity analysis of a for InfMax-Unif and σ for InfMax-Norm. In Figure 5, we carry out
a sensitivity analysis with resepct to a and σ for InfMax-Unif and InfMax-Norm respectively. In
Section 5.2, we have fixed a = 0.01 and σ = 0.01 for all experiment settings. Here we vary them
from 0.005 to 0.02 and show that the results of the proposed strategies, especially those of the
InfMax-Norm, stay relatively stable with varying choices of the hyper-parameters.

C.3 Distributions of θ on More Nodes

Distributions of θ on more randomly selected nodes are provided in Figure 6. Many examples of the
distributions present bell shapes that are close to normal distributions. And it is approximately true
that the probability density function is non-increasing at the positive region.

17

0.10 0.05 0.00 0.05 0.10
0

50

100

150

200

250

300

350

0.3 0.2 0.1 0.0 0.1 0.2
0

25

50

75

100

125

150

175

200

0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20
0

50

100

150

200

0.3 0.2 0.1 0.0 0.1 0.2 0.3
0

50

100

150

200

250

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20
0

50

100

150

200

0.15 0.10 0.05 0.00 0.05 0.10
0

50

100

150

200

250

300

350

0.2 0.1 0.0 0.1 0.2
0

50

100

150

200

250

300

350

0.010 0.005 0.000 0.005 0.010 0.015
0

25

50

75

100

125

150

175

0.04 0.02 0.00 0.02 0.04
0

50

100

150

200

250

300

350

0.3 0.2 0.1 0.0 0.1 0.2 0.3
0

50

100

150

200

0.2 0.1 0.0 0.1 0.2
0

50

100

150

200

250

0.03 0.02 0.01 0.00 0.01 0.02
0

50

100

150

200

250

300

0.2 0.1 0.0 0.1 0.2 0.3 0.4
0

50

100

150

200

250

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
0

50

100

150

200

250

300

0.10 0.05 0.00 0.05 0.10
0

50

100

150

200

250

300

350

Figure 6: Each figure shows a histogram of θj for a fixed node j over 1000 independent trials of
GCN on Cora. The 15 nodes are randomly selected from the union of the validation set and test set.

18

	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Notations
	3.2 The Adversarial Attack Setup
	3.3 Influence Maximization on A Linear Threshold Model

	4 Analysis of the Adversarial Attack Problem
	4.1 Node Selection for Mis-classification Rate Maximization
	4.2 Connection to the Influence Maximization on A Linear Threshold Model
	4.3 Assumptions on the Thresholds
	4.4 Discussions on the Approximations

	5 Experiments
	5.1 Attack Strategies for Comparison
	5.2 Attack Experiments on Benchmark Datasets
	5.3 Visualizing the Distributions of
	5.4 Case Study of the Selected Nodes

	6 Conclusion
	A Proofs
	A.1 Proof for Proposition 1
	A.2 Proof for Lemma 1
	A.3 Proof for Proposition 2

	B More Experiment Details
	B.1 Baseline Methods
	B.2 More Details for the Experiment Setup

	C Additional Experiments
	C.1 Results under the Experiment Setup by ma2020black
	C.2 Sensitivity Analyses
	C.3 Distributions of on More Nodes

