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ABSTRACT
Learning from continuous data streams via classification/regression

is prevalent in many domains. Adapting to evolving data charac-

teristics (concept drift) while protecting data owners’ private in-

formation is an open challenge. We present a differentially private

ensemble solution to this problem with two distinguishing features:

it allows an unbounded number of ensemble updates to deal with

the potentially never-ending data streams under a fixed privacy

budget, and it is model agnostic, in that it treats any pre-trained

differentially private classification/regression model as a black-box.

Our method outperforms competitors on real-world and simulated

datasets for varying settings of privacy, concept drift, and data

distribution.

CCS CONCEPTS
• Security and privacy→ Privacy-preserving protocols; • In-
formation systems→ Data stream mining.
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1 INTRODUCTION
Continuous data streams generate large volumes of data, with ex-

amples being data from wearables [10], biosensors in medicine [16],

social media [31], news [29], mobile applications [2], electronic

health records [8], credit card transactional flows [9], malware data

[2]. To assist in decision making, machine learning models need to

handle data streams efficiently. Scalability is not the only challenge;

we have to consider that properties and patterns of data are subject

to change over time, a phenomenon known as concept drift. For
example, malware files and fake news evolve over time to evade

detection [2, 29].
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To further add to the challenge, data streams from many do-

mains involve sensitive, personal information about contributing

users, such as patients’ records and user data in mobile applica-

tions, protection of which is of paramount interest. While concept

drift and privacy have been extensively studied in isolation, works

considering both are in infancy. See more discussion in Section

2. In this work, our goal is to allow machine learning models to

deal with concept drift when training on potentially never-ending

data streams involving sensitive data, where the model(s) learned

can be published without disclosing sensitive information. To that

end, we consider Differential Privacy (DP) [1, 13, 40] as the privacy

definition, and widely used ensemble learning for data streams [7]

as the modelling paradigm.

1.1 Challenges
Enforcing privacy on ensembles handling concept drift is not triv-

ial. The main approaches of ensembles over data streams [7], such

as weight modification [7, 28] and online ensemble update [7, 35]

are not ideal for the privacy-preserving scenario where with new

incoming instances, the former continuously measures the perfor-

mance of a diverse set of classifiers to update the weights and the lat-

ter continuously updates the pool of online models. This continuous
update could lead to privacy budget depletion due to composition

of privacy loss, limiting the number of updates before the privacy

budget runs out. Our goal is to deal with the never-ending data

streams by allowing for an unbounded number of updates under a

fixed privacy budget.

1.2 Our Proposals
We propose a DP temporal ensemble approach in the form of dy-
namic ensemble line-up [7, 41]. In the non-private setting, the data

stream comes in the form of labeled data chunks 𝐷1, · · · , 𝐷𝑡 until

the current time 𝑡 , and at the time 𝑡 the ensemble of size 𝑘 , denoted

E𝑡 , consists of 𝑘 models 𝑀𝜏 (1) , · · · , 𝑀𝜏 (𝑘) trained on the 𝑘 corre-

sponding data chunks 𝐷𝜏 (1) , · · · , 𝐷𝜏 (𝑘) . 𝜏 (𝑖) maps the (relative)

position 𝑖 within E𝑡 to the corresponding (absolute) time point in

the data stream. With a weighting scheme, these 𝑘 models collec-

tively make the prediction for unlabeled data at the next time 𝑡 + 1.
As the labeled data chunk 𝐷𝑡+1 becomes available, a new model is

trained on 𝐷𝑡+1 and the next ensemble E𝑡+1 is obtained by replac-

ing either the oldest model or the weakest model in E𝑡 with the

new model. By replacing (instead of updating) some existing model,

this approach is particularly suited for limiting the accumulation of

privacy loss. Our contributions are specifically described as follows.

(1) (Section 4) We formulate the problem of DP temporal ensem-

bles for a release history with the formal definition provided

in Section 6.
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(2) (Section 5) At the core of our DP ensemble mechanism is

the DP weighting scheme for aggregating the prediction of

component models. We present the DP weighting scheme for

classification and regression. Our method is model agnostic,
that is, it treats DP models𝑀𝑖 as black-boxes.

(3) (Section 6) We present a DP ensemble mechanism for releas-

ing the ensemble E𝑡 = {𝑀𝜏 (1) , · · · , 𝑀𝜏 (𝑘) } at any time 𝑡 , to

ensure that the DP guarantee holds even if the adversary has

access to all released ensembles E𝑡 ′ for 𝑡 ′ ≤ 𝑡 . Our proposal

allows an unlimited number of ensemble updates for never

ending data streams at a constant privacy budget.

(4) (Section 7) To demonstrate the benefits of our method for

deep neural network models where the potentially large

number of model parameters present a challenge for re-

taining utility under DP guarantee, we consider a transfer

learning option for boosting utility where a public dataset is

available.

(5) (Section 7) We provide empirical evidence on the effective-

ness of the proposed DP temporal ensemble using real-world

and simulated datasets. The source code and datasets will be

made publicly available for reproducibility
1
.

2 RELATEDWORK
Non-private temporal ensembles have been studied before [7, 28,

39, 41]. See [7, 20, 30] for a review. These methods can be classified

into either explicit or implicit. Explicit methods use drift detection

and only update the model when drift is detected. Examples are

[11] and [44]. Implicit methods do not detect drift but adapt the

model to account for changes automatically. The updates can be

incremental in a single classifier [17], or weighted in an ensemble

[41]. Ensemble models in the implicit setting usually outperform

other approaches [30, 41]. Our work is an implicit method and

adapts dynamic ensemble line-up [7] but deals with sensitive data.

For privacy preserving works on data streams, [45] proposes DP

Bayesian classifiers with explicit drift detection. This method con-

tinuously updates the model parameters using incoming sensitive

data which reduces the privacy budget by some amount after each

update, thus, the privacy budget will run out after a finite number

of updates. Also, the method does not account for the privacy loss

for drift detection and the privacy loss of updates when no concept

drift is detected. The works in [14, 18, 19, 26, 27] focused on releas-

ing summary statistics such as counts, mean, mode, range queries,

centroids, etc.

There are previous works on static differentially private ensem-

bles such as [23, 42]. These works are not designed to handle stream-

ing data because they cannot accommodate concept drift.

3 DIFFERENTIAL PRIVACY
Definition 1 (Neighbors and Sensitivity). Two data sets 𝐷

and 𝐷 ′ are neighboring if they differ due to the substitution of exactly
one sample. The sensitivity of a function 𝑓 : D𝑛 → R𝑑 , denoted by
Δ𝑓 , is𝑚𝑎𝑥𝐷,𝐷′ | |𝑓 (𝐷) − 𝑓 (𝐷 ′) | | over all neighboring pairs 𝐷 and 𝐷 ′.

Definition 2 (Differential Privacy [12]). A randomizedmech-
anismM : D𝑛 → R𝑑 is (𝜀, 𝛿)-differentially private if for any pair

1
https://github.com/lgondara/DPTemporalEnsemble

of neighbouring data sets 𝐷,𝐷 ′ ∈ D𝑛 , and for all sets 𝑆 of possible
outputs:

Pr[M(𝐷) ∈ 𝑆] ≤ 𝑒𝜀Pr[M(𝐷 ′) ∈ 𝑆] + 𝛿 (1)

Since neighboring datasets differ by the data of one user, the

inequality above ensures that the output of a mechanismM satis-

fying DP will have a small impact, through the multiplicative factor

𝑒𝜀 and the additive factor 𝛿 , if we remove or add any single user

from the dataset used to generate the output.

Theorem 1 (Parallel Composition [32]). LetM𝑖 each provide
(𝜀𝑖 , 𝛿𝑖 )-differential privacy. Let 𝐷𝑖 be arbitrary disjoint subsets of
𝐷 . The sequence ofM𝑖 (𝐷𝑖 ) provides (𝑚𝑎𝑥𝑖𝜀𝑖 ,𝑚𝑎𝑥𝑖𝛿𝑖 )-differential
privacy.

Theorem 2 (Seqential Composition [32][15]). Let M𝑖 be
(𝜀𝑖 , 𝛿𝑖 )-differentially private. The adaptive sequence ofM𝑖 is (

∑
𝑖 𝜀𝑖 ,∑

𝑖 𝛿𝑖 )-differentially private.

Theorem 3 (Post Processing [15]). LetM : D𝑛 → R𝑑 be a
randomized mechanism that is (𝜀, 𝛿)-differentially private. Let 𝑓 :

R𝑑 → R𝑡 be a deterministic function. Then 𝑓 ◦ M : 𝐷𝑛 → R𝑡 is
(𝜀, 𝛿)-differentially private.

Definition 3 (Laplace Mechanism [13]). Given any function
𝑓 : D𝑛 → R𝑑 , the Laplace mechanism is defined as:M(𝐷, 𝑓 (), 𝜀) =
𝑓 (𝐷) + (𝑌1, · · · , 𝑌𝑑 ), where 𝑌𝑖 are i.i.d. random variables drawn from
𝐿𝑎𝑝 (Δ𝑓 /𝜀).

Theorem 4 (DP of Laplace Mechanism [13]). The Laplace
mechanism is (𝜀, 0)-differentially private.

4 PROBLEM STATEMENT
We consider a data stream 𝐷1, · · · , 𝐷𝑡 where each 𝐷𝑖 is a chunk of

data generated at the time 𝑖 and 𝑡 is the current time. Samples in 𝐷𝑖

are labeled with a class variable and we are interested in using the

data 𝐷1, · · · , 𝐷𝑡 to predict the class for unlabeled samples at the

next time 𝑡 + 1. A new data chunk 𝐷𝑡+1 that becomes available at

the next time 𝑡 +1 is added to the stream, so the stream is potentially

unbounded. We consider the dynamic setting where the data stream

is susceptible to concept drift.

An ensemble of size 𝑘 at time 𝑡 , E𝑡 = {𝑀𝜏 (1) , · · · , 𝑀𝜏 (𝑘) ,𝑤𝜏 (1) ,
· · · ,𝑤𝜏 (𝑘) }, consists of𝑘 predictionmodels𝑀𝑖s respectively trained

on 𝐷𝜏 (1) , · · · , 𝐷𝜏 (𝑘) , and their weights𝑤𝑖 , where 𝜏 (𝑖) denotes the
(absolute) time point corresponding to the (relative) position 𝑖

within E𝑡 . We assume 𝜏 (1), · · · , 𝜏 (𝑘) are listed in the ascending

order.

For classification, we have a categorical class variable 𝑐 ,𝑀𝑖,𝑐 (𝑥) ∈
[0, 1] denotes the prediction score by𝑀𝑖 for 𝑐 on a sample 𝑥 , and

the overall score predicted by E𝑡 is computed by

E𝑡,𝑐 (𝑥) =
∑𝑘
𝑖=1𝑤𝜏 (𝑖) ·𝑀𝜏 (𝑖),𝑐 (𝑥)∑𝑘

𝑖=1𝑤𝜏 (𝑖)
(2)

The predicted class for 𝑥 is the class 𝑐 with the maximum E𝑡,𝑐 (𝑥).
For regression, we have a continuous class variable, normalized

to within the range [0, 1], 𝑀𝑖 (𝑥) ∈ [0, 1] denotes the predicted

value by𝑀𝑖 for 𝑥 and the overall predicted value by E𝑡 is given by

E𝑡 (𝑥) =
∑𝑘
𝑖=1𝑤𝜏 (𝑖) ·𝑀𝜏 (𝑖) (𝑥)∑𝑘

𝑖=1𝑤𝜏 (𝑖)
(3)

https://github.com/lgondara/DPTemporalEnsemble
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As 𝐷𝑡+1 becomes available at time 𝑡 + 1, we use it to train a new

model and re-estimate the weights for all models in the ensemble

(more details later). Then we update E𝑡 to E𝑡+1 by replacing either

the oldest model or the worst (i.e., with smallest weight) model in

E𝑡 .
Problem of (𝜀, 𝛿)-DP Temporal Ensembles. The focus of this

work is the scenario where each 𝐷𝑖 contains sensitive, private infor-

mation about the contributing users. We assume that each sample

in ∪𝑖𝐷𝑖 has a unique identifier and all samples are independently

generated. This independence assumption would allow us to treat

all 𝐷𝑖 as disjoint subsets of ∪𝐷𝑖 . We want to ensure that, at any

current time 𝑡 , the entire history of released ensembles up to 𝑡 ,

i.e., E ′𝑡 for all 𝑡 ′ < 𝑡 , must satisfy (𝜀, 𝛿)-DP for given 𝜀, 𝛿 . A formal

definition of (𝜀, 𝛿)-DP for an ensemble and for a history will be

given in Section 6.1 and in Section 6.2.

We develop noisy weight mechanisms in Section 5 and provide

the privacy analysis for the overall temporal ensemble mechanism

in Section 6. The given 𝜀 is split into 𝜀1 for training models𝑀𝑖 and

𝜀2 for computing noisy weights𝑤∗
𝑖
, where 𝜀 = 𝜀1 + 𝜀2.

5 NOISY WEIGHT ESTIMATION
We assume that the labeled data 𝐷𝑖 is split into training, valida-

tion, and testing subsets. For an ensemble E𝑡 at time 𝑡 , the weights

𝑤𝜏 (1) , · · · ,𝑤𝜏 (𝑘) are measured using the performance on the vali-

dation subset of 𝐷𝑡 , denoted by𝑉𝑡 . We choose the validation subset

of 𝐷𝑡 to calculate the weights for all models in E𝑡 because 𝑡 is

closest to the next time point 𝑡 + 1 that the ensemble at time 𝑡

aims to predict. In this section, we present the noisy estimation of

𝑤𝜏 (1) , · · · ,𝑤𝜏 (𝑘) and we present the privacy analysis in Section 6.

For classification, we consider two settings. In the general set-
ting, we measure the classification accuracy for all classes. In the

focused setting, we consider the accuracy of a chosen class called

the positive class, which is commonly used in class-imbalanced

problems such as fake news/malware/disease detection.

5.1 Classification - General Setting
Consider a model 𝑀𝑖 in E𝑡 and the validation subset 𝑉𝑡 . In the

general setting, we consider the classification error of𝑀𝑖 defined

by the Mean Squared Error (MSE), as in [6, 41]:

𝑀𝑆𝐸𝑖 =
1

|𝑉𝑡 |
𝐸𝑟𝑟𝑖 (4)

where

𝐸𝑟𝑟𝑖 =
∑︁
𝑥 ∈𝑉𝑡
(1 −𝑀𝑖,𝑐 (𝑥))2 (5)

and𝑀𝑖,𝑐 (𝑥) is the score given by𝑀𝑖 for the instance 𝑥 and its true

class 𝑐 . For a random predictor, the𝑀𝑆𝐸 is given by

𝑀𝑆𝐸𝑟 =
∑︁
𝑐

𝑝 (𝑐) (1 − 𝑝 (𝑐))2 (6)

where 𝑝 (𝑐) is the proportion of class 𝑐 in 𝑉𝑡 . The weight𝑤𝑖 for𝑀𝑖

is defined as the hinge loss:

𝑤𝑖 = max(0, 𝑀𝑆𝐸𝑟 −𝑀𝑆𝐸𝑖 ) (7)

Lemma 1 (General setting). Let Δ𝐸𝑟𝑟𝑖 denote the sensitivity of
𝐸𝑟𝑟𝑖 defined over all neighboring validation subsets𝑉𝑡 ,𝑉 ′𝑡 . Δ𝐸𝑟𝑟𝑖 = 1.

Proof. Consider computing Equation (5) for neighboring vali-

dation sets 𝑉𝑡 ,𝑉
′
𝑡 . All 𝑀𝑖,𝑐 (𝑥) are same except for one instance 𝑥 ,

so 𝐸𝑟𝑟𝑖 differs by at most 1 because𝑀𝑖,𝑐 (𝑥) is at most 1. □

Computing Noisy Weight𝑤∗
𝑖
:𝑤∗

𝑖
is computed from Equation

(7) and (4) using the noisy 𝐸𝑟𝑟∗
𝑖
:

𝐸𝑟𝑟∗𝑖 = 𝐸𝑟𝑟𝑖 + 𝐿𝑎𝑝 (Δ𝐸𝑟𝑟𝑖/𝜀2) (8)

5.2 Classification - Focused Setting
The focused setting is concerned with prediction performance of

the positive class. Typically the positive class has a small proportion

compared to other classes called the negative class and the general

classification accuracy does not reflect the accuracy of the positive

class. In this case, we consider the balanced accuracy (BA):

𝐵𝐴 = 𝑎1 ·𝑇𝑃𝑅 + 𝑎2 ·𝑇𝑁𝑅 (9)

where 𝑎1 and 𝑎2 are constants and 𝑎1 + 𝑎2 = 1. 𝑇𝑃𝑅 and 𝑇𝑁𝑅 are

the true positive rate (the proportion of predicted positives that

are actually positive) and the true negative rate (the proportion of

predicted negatives that are actually negative). BA is in the range

[0, 1]. Since 𝑇𝑁𝑅 = 1 − 𝐹𝑃𝑅, where 𝐹𝑃𝑅 is the false positive rate

(the proportion of negatives that are predicted as positives), BA

is related to (TPR,FPR) commonly used for generating AUC. The

above BA generalizes the balanced accuracy in [5] that assumes

𝑎1 = 𝑎2 = 1/2.
To obtain the noisy weight, we assume that some estimates

of the proportions of positive samples and negative samples in

𝐷𝑖 , denoted by 𝑝 and 𝑛 with 𝑝 + 𝑛 = 1, are public. These are not
necessarily the exact proportions in the sensitive data, but rather

are estimates from general knowledge (for example, 𝑝 and 𝑛 come

from the general knowledge about the entire data stream). These

estimates allow us to estimate 𝐵𝐴𝑖 for𝑀𝑖 as follows:

𝐵𝐴𝑖 = 𝑎1
𝑇𝑃𝑖

𝑝 · |𝑉𝑡 |
+ 𝑎2

𝑇𝑁𝑖

𝑛 · |𝑉𝑡 |
(10)

where 𝑇𝑃𝑖 (resp. 𝑇𝑁𝑖 ) is the number of positive instances (resp.

negative instances) in𝑉𝑡 that are predicted by𝑀𝑖 as positive (nega-

tive).

Lemma 2 (Focused Setting). Let Δ𝐵𝐴𝑖 denote the sensitivity of
𝐵𝐴𝑖 defined over neighboring pairs𝑉𝑡 ,𝑉 ′𝑡 .Δ𝐵𝐴𝑖 =

1

|𝑉𝑡 |𝑚𝑎𝑥 ( 𝑎1𝑝 ,
𝑎2
1−𝑝 ).

Proof. Consider neighboring validation subsets 𝑉𝑡 ,𝑉
′
𝑡 . For sim-

plicity, we drop the index 𝑖 below.

𝐵𝐴 − 𝐵𝐴′ = 𝑎1

𝑝
× ( 𝑇𝑃|𝑉𝑡 |

− 𝑇𝑃 ′

|𝑉𝑡 |
) + 𝑎2

𝑛
× (𝑇𝑁|𝑉𝑡 |

− 𝑇𝑁 ′

|𝑉𝑡 |
)

=
1

|𝑉𝑡 |

(
𝑎1

𝑝
× (𝑇𝑃 −𝑇𝑃 ′) + 𝑎2

𝑛
× (𝑇𝑁 −𝑇𝑁 ′)

)
For neighboring𝑉𝑡 ,𝑉

′
𝑡 where only one sample is different, there are

four possible cases: (i) both𝑇𝑃 −𝑇𝑃 ′ and𝑇𝑁 −𝑇𝑁 ′ are 0, (ii) one of
|𝑇𝑃 −𝑇𝑃 ′ | and |𝑇𝑁 −𝑇𝑁 ′ | is 1 and the other is 0, (iii)𝑇𝑃 −𝑇𝑃 ′ = 1

and𝑇𝑁 −𝑇𝑁 ′ = −1, (iv)𝑇𝑃 −𝑇𝑃 ′ = −1 and𝑇𝑁 −𝑇𝑁 ′ = 1. Noting

𝑝 + 𝑛 = 1, we have:

|𝐵𝐴 − 𝐵𝐴′ | ≤ 1

|𝑉𝑡 |
×𝑚𝑎𝑥 (𝑎1

𝑝
,

𝑎2

1 − 𝑝 )

□
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In the above lemma we assume that the validation size |𝑉𝑡 | is
public. The same assumption was made in [1, 4, 25] (e.g. see Re-

mark 2.2 in [25]). Alternatively, if a minimum validation size |𝑉𝑡 |
for all 𝑉𝑡 s is required (for the purpose of statistical significance),

we can use the minimum size in Δ𝐵𝐴𝑖 without referring to specific

|𝑉𝑡 |.
Computing Noisy Weight𝑤∗

𝑖
: We add the Laplace noise:

𝑤∗𝑖 = 𝐵𝐴𝑖 + 𝐿𝑎𝑝 (Δ𝐵𝐴/𝜀2) (11)

5.3 Regression
For a continuous class variable, we define 𝐸𝑟𝑟𝑖 as

𝐸𝑟𝑟𝑖 =
∑︁
𝑥 ∈𝑉𝑡
(𝑦𝑥 − 𝑦𝑥 )2 (12)

where 𝑦𝑥 is the true class value of 𝑥 and 𝑦𝑥 is the predicted class

value by the regression model𝑀𝑖 . We then get𝑀𝑆𝐸𝑖 as

𝑀𝑆𝐸𝑖 =
1

|𝑉𝑡 |
𝐸𝑟𝑟𝑖 (13)

and define the weight for𝑀𝑖 as

𝑤𝑖 =
1

𝑀𝑆𝐸𝑖 + 𝜇
(14)

𝜇 is a small constant to allow weight calculation in rare situations

when𝑀𝑆𝐸𝑖 = 0. 𝜇 = 10
−5

is used in our experiments.

Lemma 3 (Regression). Let Δ𝐸𝑟𝑟𝑖 denote the sensitivity of 𝐸𝑟𝑟𝑖
defined over all neighboring validation subsets 𝑉𝑡 ,𝑉 ′𝑡 . Δ𝐸𝑟𝑟𝑖 = 1.

Proof. Recall that the true class value and the predicted class

value are in the range [0, 1]. So, for neighboring validation sets

𝑉𝑡 ,𝑉
′
𝑡 , 𝐸𝑟𝑟𝑖 differs by at most 1 because (𝑦𝑥 −𝑦𝑥 )2 is at most 1. □

Computing Noisy Weight𝑤∗
𝑖
: We add the Laplace noise

𝐸𝑟𝑟∗𝑖 = 𝐸𝑟𝑟𝑖 + 𝐿𝑎𝑝 (Δ𝐸𝑟𝑟𝑖/𝜀2) (15)

and compute𝑤∗
𝑖
using 𝐸𝑟𝑟∗

𝑖
, Eqn. (13) and Eqn. (14).

Discussion. The weighting scheme for both classification and

regression is model agnostic, that is, it treats the DP models𝑀𝑖 as

black-boxes. This is because the computation of the weights 𝑤𝑖s

only depends on the outputs, not the internal working of𝑀𝑖 .

6 DP TEMPORAL ENSEMBLE
In Section 6.1, we provide the privacy analysis for a single (𝜀, 𝛿)-DP
ensemble E𝑡 = {𝑀𝜏 (1) , · · · , 𝑀𝜏 (𝑘) ,𝑤

∗
𝜏 (1) , · · · ,𝑤

∗
𝜏 (𝑘) }, where each

model𝑀𝑖 is trained using any method on the training subset 𝑆𝑖 of

𝐷𝑖 and its weight𝑤∗
𝑖
is computed using the validation subset 𝑉𝑡 of

𝐷𝑡 . In Section 6.2, we update E𝑡 to E𝑡+1 and present the privacy

analysis for releasing all ensembles E1, · · · , E𝑡 up to the time 𝑡 .

6.1 Releasing A Single Ensemble
First, we extend the notion of DP in Definition 1 to releasing an en-

semble E𝑡 . Let 𝑋𝑡 =< 𝑆𝜏 (1) , · · · , 𝑆𝜏 (𝑘) ,𝑉𝑡 >, where 𝑆𝜏 (1) , · · · , 𝑆𝜏 (𝑘)
are the training subsets for𝑀𝜏 (1) , · · · , 𝑀𝜏 (𝑘) and𝑉𝑡 is the validation
subset of 𝐷𝑡 for computing the noisy weights𝑤∗

𝜏 (1) , · · · ,𝑤
∗
𝜏 (𝑘) .

Definition 4 (Neighboring Datasets for Ensembles). Con-
sider𝑋𝑡 =< 𝑆𝜏 (1) , · · · , 𝑆𝜏 (𝑘) ,𝑉𝑡 > and𝑋 ′𝑡 =< 𝑆 ′

𝜏 (1) , · · · , 𝑆
′
𝜏 (𝑘) ,𝑉

′
𝑡 >.

We say that 𝑋𝑡 and 𝑋 ′𝑡 are neighboring if ∪𝑖𝑆𝑖 ∪𝑉𝑡 and ∪𝑖𝑆 ′𝑖 ∪𝑉
′
𝑡

(duplicates preserved) are neighboring in the sense of Definition 1.

Note that 𝑋𝑡 and 𝑋
′
𝑡 are neighboring if and only if either for one

𝑖 , 𝑆𝑖 and 𝑆
′
𝑖
are neighboring and 𝑆 𝑗 = 𝑆 ′

𝑗
for all 𝑗 ≠ 𝑖 , or 𝑉𝑡 and 𝑉

′
𝑡

are neighboring and 𝑆𝑖 = 𝑆 ′
𝑖
for all 𝑖 .

Definition 5 (Differential Privacy for Ensembles). Amech-
anismC from the domain of𝑋𝑡 to the range of E𝑡 is (𝜀, 𝛿)-differentially
private if for all neighbouring pairs (𝑋𝑡 , 𝑋

′
𝑡 ) and for all sets O of pos-

sible outputs:

Pr[C(𝑋𝑡 ) ∈ O] ≤ 𝑒𝜀 Pr[C(𝑋 ′𝑡 ) ∈ O] + 𝛿 (16)

Theorem 5. Assume that each𝑀𝑖 in E𝑡 is produced by a model-
agnostic (𝜀1, 𝛿)-DP mechanism A and that the noisy weight 𝑤∗

𝑖
is

produced by the LaplacemechanismL in Section 5. Then the combined
mechanism that produces E𝑡 = {𝑀𝜏 (1) , · · · , 𝑀𝜏 (𝑘) ,𝑤

∗
𝜏 (1) , · · · ,𝑤

∗
𝜏 (𝑘) }

is (𝑚𝑎𝑥{𝜀1, 𝑘 · 𝜀2}, 𝛿)-differentially private.

Proof. For simplicity of proof, wewrite𝜏 (1), · · · , 𝜏 (𝑘) as 1, · · · , 𝑘 .
The (𝜀1, 𝛿)-DP guarantee ofA implies that for neighboring training

subsets 𝑆𝑖 , 𝑆
′
𝑖
(Def. 4), and for any possible setM𝑖 of outputs:

Pr[A(𝑆𝑖 ) ∈ M𝑖 ] ≤ 𝑒𝜀1 Pr[A(𝑆 ′𝑖 ) ∈ M𝑖 ] + 𝛿 (17)

For the weight calculation, the Laplace mechanism L provides

(𝜀2, 0)-DP for releasing the noisy weights𝑤∗
𝑖
following Theorem 4.

therefore, for any𝑀𝑖 ∈ M𝑖 , neighboring validation subsets 𝑉𝑡 and

𝑉 ′𝑡 , and any possible setW∗
𝑖
of weights:

Pr[L(𝑀𝑖 (𝑉𝑡 )) ∈ W∗𝑖 ] ≤ 𝑒𝜀2 Pr[L(𝑀𝑖 (𝑉 ′𝑡 )) ∈ W∗𝑖 ] (18)

Denoting our combined mechanism as C, with input 𝑋𝑡 =<

𝑆1, · · · , 𝑆𝑘 ,𝑉𝑡 >, and any possible set of outputs𝑂 = {M1, · · · ,M𝑘 ,

W∗
1
, · · · ,W∗

𝑘
}, we get:

Pr[C(𝑋𝑡 ) ∈ 𝑂] =
Pr[A(𝑆1) ∈ M1] · ... · Pr[A(𝑆𝑘 ) ∈ M𝑘 ]·

Pr[L(𝑀1 (𝑉𝑡 )) ∈ W∗1 ] · ... · Pr[L(𝑀𝑘 (𝑉𝑡 )) ∈ W∗𝑘 ] (19)

Now consider the only two possible cases of neighboring 𝑋𝑡 =<

𝑆1, · · · , 𝑆𝑘 ,𝑉𝑡 > and 𝑋 ′𝑡 =< 𝑆 ′
1
, · · · , 𝑆 ′

𝑘
,𝑉 ′𝑡 >: (I) change one arbi-

trary 𝑆𝑖 or (II) change 𝑉𝑡 .

For Case (I), all models should satisfy Equation (17), but since

only one 𝑆𝑖 changes to reach a neighboring input, Equation (17)

will be obtained on one 𝑀𝑖 and for all the others 𝑗 ≠ 𝑖 we would

get Pr[A(𝑆 𝑗 ) ∈ M 𝑗 ] = Pr[A(𝑆 ′
𝑗
) ∈ M 𝑗 ] as 𝑆 𝑗 = 𝑆 ′

𝑗
. Additionally,

since in this case we are not changing 𝑉𝑡 , 𝑉𝑡 = 𝑉 ′𝑡 , so for all 1 ≤
𝑖 ≤ 𝑘 , Pr[L(𝑀𝑖 (𝑉𝑡 )) ∈ W∗𝑖 ] = Pr[L(𝑀𝑖 (𝑉 ′𝑡 )) ∈ W∗𝑖 ]. Combining

these two facts we reach Pr[C(𝑋𝑡 ) ∈ 𝑂] ≤ 𝑒𝜀1 Pr[C(𝑋 ′𝑡 ) ∈ 𝑂] + 𝛿
from Equation (19) above.

For Case (II), we do not change any of 𝑆1, · · · , 𝑆𝑘 , thus for all
1 ≤ 𝑖 ≤ 𝑘 , Pr[A(𝑆𝑖 ) ∈ M𝑖 ] = Pr[A(𝑆 ′

𝑖
) ∈ M𝑖 ]. Additionally,

changing 𝑉𝑡 for this scenario, every application of the Laplace

mechanism satisfies Equation (18), which is done 𝑘 times for 𝑀𝑖 ,

1 ≤ 𝑖 ≤ 𝑘 . Combining these two facts we reach Pr[C(𝑋𝑡 ) ∈ 𝑂] ≤
𝑒𝑘𝜀2 Pr[C(𝑋 ′𝑡 ) ∈ 𝑂] from Equation (19) above.

Finally, since DPmust hold for the worst-case guarantee, we take

the maximum between the two cases defined above, which gives us

the (max{𝜀1, 𝑘 · 𝜀2}, 𝛿)-DP. Note that combining the two cases is a

tailored instantiation of the parallel composition (Theorem 1). □
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Discussion. The construction of (𝜀1, 𝛿)-DP mechanism A for

training a single model 𝑀𝑖 has been studied in the literature, for

example, DP neural networks [1], DP random forest [36], and

DP support-vector machine [37]. Our focus is on the construc-

tion of (𝜀, 𝛿)-DP mechanisms L for building an ensemble E𝑡 =

{𝑀𝜏 (1) , · · · , 𝑀𝜏 (𝑘) ,𝑤
∗
𝜏 (1) , · · · ,𝑤

∗
𝜏 (𝑘) }, using the single model mech-

anism A as a black-box.

6.2 Releasing the History of Ensembles

Algorithm 1 Update The Ensemble

Input: The ensemble E𝑡 = {𝑀𝜏 (1) , · · · , 𝑀𝜏 (𝑘) ,𝑤
∗
𝜏 (1) , · · · ,𝑤

∗
𝜏 (𝑘) };

the training and validation subsets at 𝑡 + 1, i.e., 𝑆𝑡+1 and 𝑉𝑡+1;
privacy parameters (𝜀1, 𝜀2, 𝛿); update_mode (oldest or worst).

Output: E𝑡+1
1: Train (𝜀1, 𝛿)-DP model𝑀𝑡+1 on 𝑆𝑡+1
2: if update_mode = “oldest" then
3: Calculate𝑤∗

𝜏 (2) , · · · ,𝑤
∗
𝜏 (𝑘) ,𝑤

∗
𝑡+1 for𝑀𝜏 (2) , · · · , 𝑀𝜏 (𝑘) , 𝑀𝑡+1

using 𝑉𝑡+1 and 𝜀2
4: 𝑤∗

𝜏 (1) , · · · ,𝑤
∗
𝜏 (𝑘−1) ,𝑤

∗
𝜏 (𝑘) ←𝑤∗

𝜏 (2) , · · · ,𝑤
∗
𝜏 (𝑘) ,𝑤

∗
𝑡+1

5: 𝑀𝜏 (1) , · · · , 𝑀𝜏 (𝑘−1) , 𝑀𝜏 (𝑘) ←𝑀𝜏 (2) , · · · , 𝑀𝜏 (𝑘) , 𝑀𝑡+1
6: E𝑡+1 = {𝑀𝜏 (1) , · · · , 𝑀𝜏 (𝑘) ,𝑤

∗
𝜏 (1) , · · · ,𝑤

∗
𝜏 (𝑘) }

7: else
8: Calculate𝑤∗

𝜏 (1) , · · · ,𝑤
∗
𝜏 (𝑘) ,𝑤

∗
𝑡+1 for𝑀𝜏 (1) , · · · , 𝑀𝜏 (𝑘) , 𝑀𝑡+1

using 𝑉𝑡+1 and 𝜀2
9: 𝑤∗

𝜏 (1) , · · · ,𝑤
∗
𝜏 (𝑘) ,𝑤

∗
𝜏 (𝑘+1) ←𝑤∗

𝜏 (1) , · · · ,𝑤
∗
𝜏 (𝑘) ,𝑤

∗
𝑡+1

10: 𝑖∗ ← 𝑎𝑟𝑔𝑚𝑖𝑛𝑖 {𝑤∗𝜏 (𝑖) | 1 ≤ 𝑖 ≤ 𝑘 + 1}
11: E𝑡+1 ← {𝑀𝜏 (𝑖) ,𝑤

∗
𝜏 (𝑖) | 1 ≤ 𝑖 ≤ 𝑘 + 1, 𝑖 ≠ 𝑖∗}

12: end if
13: return E𝑡+1

Algorithm 1 shows the steps for updating the ensemble E𝑡 to
adapt the new chunk 𝐷𝑡+1 for two update modes, indicated by the

input variable update_mode: replace the oldest model and replace

the worst model (i.e., the model having smallest𝑤∗
𝑖
). In the former

case 𝑉𝑡+1 is used 𝑘 times (Step 3), and in the latter case 𝑉𝑡+1 is

used 𝑘 + 1 times (Step 8). Theorem 5 shows that releasing a single

ensemble E𝑡 satisfies (max{𝜀1, 𝑘 · 𝜀2}, 𝛿)-DP. With the repeated

update at each time 𝑡 , the adversary is able to access the history of

all released ensembles up to the current time. We show that, with

the access to the history, the (max{𝜀1, 𝑘 · 𝜀2}, 𝛿)-DP remains to hold

in the case of replacing oldest model, and degrades to (max{𝜀1, (𝑘 +
1) · 𝜀2}, 𝛿)-DP in the case of replacing worst model.

First, we extend the notion of DP to the global input data 𝑋 from

time 1 to time 𝑡 , i.e., 𝑋 =< 𝑋1, · · · , 𝑋𝑡 > where 𝑋𝑖 is the input data

for the ensemble E𝑖 defined in Definition 4. We say that 𝑋 and

𝑋 ′ are neighboring if exactly one pair (𝑋𝑖 , 𝑋 ′𝑖 ) is neighboring, as
defined in Definition 4, and for all other 𝑗 ≠ 𝑖 ,𝑋 𝑗 = 𝑋 ′

𝑗
. We consider

the output consisting of all ensembles released up to the time 𝑡 , i.e.,

E =< E1, · · · , E𝑡 >.

Definition 6 (Differential Privacy for History). A mecha-
nism C from the domain of 𝑋 to the range of E is (𝜀, 𝛿)-differentially
private with respect to history if for any neighbouring pair (𝑋,𝑋 ′)

and for all sets O of possible outputs:

Pr[C(𝑋 ) ∈ O] ≤ 𝑒𝜀 Pr[C(𝑋 ′) ∈ O] + 𝛿 (20)

Theorem 6. With update_mode=“oldest", Algorithm 1 is (max{𝜀1, 𝑘 ·
𝜀2}, 𝛿)-DP with respect to history.

Proof. The proof is basically the same as for Theorem 5, noting

that 𝑋 and 𝑋 ′ differ only in a single sample either in the training

subset or in the validation subset, for one ensemble. □

Therefore, even if the adversary has access to all released ensem-

bles, the privacy loss does not accumulate compared to releasing a

single ensemble. This is due to the two facts. (i) each model in an

ensemble is trained on a disjoint training subset, which ensures that

accessing more models does not change the (𝜀1, 𝛿)-DP (i.e., parallel

composition, Theorem 1), (ii) each validation subset is used exactly

𝑘 times (that is, 𝑉𝑡 is used for the 𝑘 models in E𝑡 ), which ensures

the (𝑘 · 𝜀2, 0)-DP remains unchanged.

Theorem 7. With update_mode=“worst", Algorithm 1 is (max{𝜀1,
(𝑘 + 1) · 𝜀2}, 𝛿)-DP with respect to history.

Proof. The proof follows the same idea as Theorem 6, but for

the case of replacing the worst model, we have to calculate the

weights for all 𝑘 models already in the ensemble plus the additional
new model in order to find the worst model, so each validation

subset is used 𝑘 + 1 times. Therefore, now we have the overall

privacy guarantee of (max{𝜀1, (𝑘 + 1) · 𝜀2}, 𝛿)-DP. □

Discussion. Therefore, replacing worst model incurs a slightly
larger privacy loss, compared to replacing oldest model. Impor-

tantly, in both cases the privacy loss depends on the size of an

ensemble, 𝑘 , but not on the number of ensembles released. This

property is essential for practical use because the number of ensem-

ble updates is potentially unbounded for data streams. To optimize

the given privacy budget (𝜀, 𝛿), we can set 𝜀1 = 𝜀 and 𝜀2 = 𝜀/𝑘 when
replacing oldest model (Theorem 6), and set 𝜀1 = 𝜀 and 𝜀2 = 𝜀/𝑘+1
when replacing worst model (Theorem 7).

Dataset Attr. Obs. C/R Prop. Type

Hyperplane 20 Variable C 50% Synthetic

EMBER-B 2381 2,100,000 C 50% Real

EMBER-U 2381 1,365,000 C 30% Real

Housing Market 292 30,473 R NA Real

Table 1: C/R for classification/regression and Prop. for the
proportion of positive class.

7 EVALUATION
This section evaluates the proposed DP temporal ensemble method.

We train each𝑀𝑖 as a neural network using DPSGD [1] with privacy

budget (𝜀1, 𝛿). In each iteration, DPSGD adds the Gaussian noise

N(0, 𝜎2𝐶2) to the clipped gradient
𝑔 (𝑥𝑖 )

max(1,| |𝑔 (𝑥𝑖 ) | |2/𝐶) where 𝐶 is the

clipping factor. For a large number of model parameters, | |𝑔(𝑥𝑖 ) | |2
is large, leading to a noisy gradient. This effect is compounded

for typically small data chunk sizes where the sampling ratio for

a fixed minibatch size becomes relatively large, which increases

𝜎 . To reduce the norm | |𝑔(𝑥𝑖 ) | |2, we also consider the option of

transfer learning for training𝑀𝑖 : first, we pre-train a model using a
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public dataset 𝑃 without privacy concerns (for example, obsolete

dataset, anonymized dataset, dataset obtained with data owners’

explicit consent, or dataset from related but public domain) and

then, we train only the last few layers using the sensitive 𝐷𝑖 via

DPSGD keeping the parameters for other layers unchanged. If no

such public 𝑃 is available,𝑀𝑖 will be fully trained using the sensitive

𝐷𝑖 via DPSGD.

7.1 Data and Model Details
Table 1 shows the data summary.

7.1.1 Hyperplane. Hyperplane is a synthetic dataset used exten-

sively in the concept drift literature [22, 41] to classify points sep-

arated by a hyperplane. We simulate time-evolving concepts by

changing the orientation and the position of the hyperplane in a

smooth manner. As in [21], we use the HyperplaneGenerator()
function from [33] to create the simulated points, and use four pa-

rameters (n_drift_features, mag_change , noise_percentage,
and sigma_percentage) to generate four drift types: gradual drift
(concept changes slowly over time)

2
, rapid drift (change happens

at a rapid pace)
3
, recurrent drift (concepts reappear at future times,

every fifth time for our case)
4
, and abrupt drift (concept changes

suddenly at a time instance, every fifth time for our case)
5
. We

evaluate using the classification Accuracy for the general setting.

For all drift types, we generate a total of 20 chunks 𝐷𝑖s with the

default size of 1000, and use a fully connected neural network with

two hidden layers of sizes 20 and 10 respectively with ReLU as the

activation function for the hidden layers and softmax for the output

layer. The default drift type is rapid. We do not use any public data

or transfer learning for this dataset.

7.1.2 EMBER-(B & U). EMBER [3] contains features for Windows

executable files for the years of 2017 and 2018 with the goal to

classify malicious vs benign files, and the dataset has a natural

concept drift [43]. We remove unlabelled observations. EMBER-B
is the original class-balanced version and EMBER-U is obtained by

under-sampling the positive class to 30%. For EMBER-B, we evaluate

using classification Accuracy, and for EMBER-U we evaluate using

Balanced Accuracy (BA) with 𝑎1 = 0.7 and 𝑎2 = 0.3 (Eqn. (9)). The

data chunks𝐷𝑖s are created as bi-weekly observations, leading to an

average chunk size of 33,333 for EMBER-B and 21,666 for EMBER-U.

A fully connected neural network is selected via hyperparameter

search
6
. For transfer learning, we use the first six months of 2017 as

the public data 𝑃 , leave the last six months of 2017 as the time buffer,
and retrain the last two layers of the pre-trained model (preserving

the layer sizes) using 𝐷𝑖s for 2018.

7.1.3 Housing Market. Housing market [38] contains the property

information from August 2011 to June 2015, with the goal of pre-

dicting the continuous property price (i.e., regression). We evaluate

using 1-MSE where MSE is defined by Eqn. (13). We normalize the

property price to within [0,1]. A fully connected neural network is

selected via hyperparameter search
7
. For transfer learning, we use

2
Parameter values: <10, 0.1, 0.05, 0.1>

3
Parameter values: <20, 0.4, 0.1, 0.4>

4
Same parameters as in rapid drift, use restart() argument every fifth time

5
Parameter values: <0, 0, 0, 0>, switch labels every fifth time

6
Four hidden layers (1400,2000,1100,250,2), ReLU for hidden, softmax for output

7
Five hidden layers (500,350,250,150,50,1), ReLU for hidden, sigmoid for output

the data from 2011 as public data 𝑃 to pre-train a model, leave out

the data from 2012 as the time buffer, and use the months starting

from January 2013 as our monthly data chunks 𝐷𝑖s, leading to an

average chunk size of 859.𝑀𝑖 is obtained by retraining the last two

layers of the pre-trained model (preserving the sizes) using 𝐷𝑖 .

For all datasets: we standardize continuous features using Stan-

dardScaler from scikit-learn[34] and use the one-hot encoding for

categorical features. We run DPSGD with 30 epochs with the mini-

batch size of 100. The labeled data 𝐷𝑖 is split into train-validation-

test using 70%-20%-10% and we use the training subset for training

the model, validation subset for weight estimation, and the test

subset to report the performance. We report the average result of

10 runs with standard errors.

Method Private Ensemble Transfer Data

EPT ✓ ✓ ✓ [𝐷𝜏 (1) , · · · , 𝐷𝜏 (𝑘) ]
EP ✓ ✓ ✗ [𝐷𝜏 (1) , · · · , 𝐷𝜏 (𝑘) ]
PT(1) ✓ ✗ ✓ [𝐷𝜏 (1) ]
PT(𝑘) ✓ ✗ ✓ [𝐷𝜏 (1) ∪ · · · ∪ 𝐷𝜏 (𝑘) ]
ET ✗ ✓ ✓ [𝐷𝜏 (1) , · · · , 𝐷𝜏 (𝑘) ]
E ✗ ✓ ✗ [𝐷𝜏 (1) , · · · , 𝐷𝜏 (𝑘) ]

Table 2: Competitor methods. ✓ signifies the presence of a
traitwhereas✗ signifies its absence. Data is the data for train-
ing an ensemble or training a model for non-ensembles.

7.2 Competitor Methods
As discussed in Section 2, existing works on data streams either deal

with summary statistics or do not consider privacy, or cannot deal

with an unbounded number of updates. Table 2 lists the methods

evaluated and their characteristics. We use the following naming

convention: “E" denotes ensemble classifiers, “P" denotes DP, and
“T" denotes transfer learning.

EPT is the DP temporal ensemble proposed in Section 6 consist-

ing of 𝑘 models (𝑀𝑖s) trained on the 𝑘 data chunks𝐷𝜏 (1) , · · · , 𝐷𝜏 (𝑘)
with transfer learning, whereas EP does not use transfer learn-

ing. ET and E are the non-private versions of EPT and EP and

they serve as an upper bound for the performance of EPT and EP.

We also compare our methods with two non-ensemble solutions,
PT(1) and PT(𝑘), where a single model is used for prediction. PT(𝑘)

uses the union 𝐷𝜏 (1) ∪ · · · ∪ 𝐷𝜏 (𝑘) of 𝑘 chunks to train the model

and advances to the next non-overlapping window covering times

𝑡 + 1, · · · , 𝑡 + 𝑘 , and PT(1) is the special case of 𝑘 = 1, i.e., building

a new model using each new chunk. With a single model trained

using non-overlapping chunks, these methods do not need weight

estimation and will spend the whole privacy budget on training

the model. For prediction, EPT, EP, ET, E, and PT(1) are used to

predict in the next time (i.e., 𝑡 + 1) whereas PT(𝑘) predicts in its next

window (i.e., 𝑡 + 1, · · · , 𝑡 + 𝑘).
All DP methods are evaluated under the same privacy budget

(𝜀, 𝛿). The following default settings are used: (𝜀 = 1, 𝛿 = 0.0001),

window size 𝑘 = 5, drift type = “rapid", and update_mode = “oldest".

We set 𝜀1 = 𝜀 and 𝜀2 = 𝜀/𝑘 for update_mode = “oldest", and set 𝜀1 = 𝜀

and 𝜀2 = 𝜀/𝑘+1 for update_mode = “worst". We begin training for all
methods once we have the first 𝑘 data chunks. This delay is only

for evaluation purposes.
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Figure 1: Impact of privacy (Comparing EPT with ET and E). The vertical bars represent the standard errors. For Hyperplane,
there is no transfer learning, hence, EPT is same as EP and ET is same as E.
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Figure 2: Impact of transfer learning (Comparing EPT vs EP). EPT and EP are identical for Hyperplane.

Section 7.3 studies the utility loss of our DP method compared to

non-private counterparts, followed by the ablation studies evaluat-

ing the impact of transfer learning (Section 7.4), ensemble (Section

7.5), drift dynamics and chunk sizes (Section 7.6), and update mode

(Section 7.7).

7.3 Impact of Privacy Preservation
The first question is how privacy preservation impacts the perfor-

mance. To answer this question, we compare the performance of

EPT with the non-private counterparts ET and E in Figure 1. The

main finding is that EPT provides close utility (average difference

of < 3%) to ET for 𝜀 = 1. The utility gap increases as 𝜀 decreases,

with the average drop of 9% at 𝜀 = 0.2. Our privacy settings are

much tighter than those in the DPNN literature, for example, the

minimum and maximum values of 𝜀 are 2 and 100 according to the

survey [24]. Comparing the non-private models E and ET, transfer

learning does not help. However, as we will show later, transfer

learning significantly boosts the utility in the case of private models.

From now, we consider only the privacy preserving methods,

i.e., EPT, EP, PT(1), and PT(𝑘).

7.4 Impact of Transfer Learning
Figure 2 studies the effect of transfer learning by comparing EPT

against the non-transfer learning counterpart EP (Note that EPT

and EP are same for Hyperplane that has no transfer learning). EPT

outperforms EP by a significant margin, with the average boost

> 10% for EMBER-B and EMBER-U, and 7% for Housing Market,

for all settings of 𝜀. As the privacy budget gets tighter (𝜀 decreases),

EP decays in performance faster than EPT. This study supports

our claim at the beginning of this section that transfer learning

can boost the utility for training private models by reducing the

number of trainable parameters for DPSGD.

From now, we consider only DP methods with transfer learning,

i.e., EPT, PT(1), and PT(𝑘).

7.5 Impact of Ensemble
To investigate how the ensemble approach helps, in Figure 3 we

compare EPT with the non-ensemble counterparts PT(1) and PT(𝑘).

The first row varies 𝜀 and the second row varies 𝑘 . With the vary-

ing 𝜀, EPT outperforms the non-ensemble competitors consistently

because our novel DP weight mechanisms diminish the weights

for outdated models. PT(𝑘), in general, performs better than PT(1),

except for EMBER-B, because PT(1) uses a single data chunk, which

leads to a larger 𝜎 for the Gaussian noise, as discussed at the be-

ginning of this section. When 𝑘 ≥ 5, there is some performance

decline for EPT because more outdated data chunks are used in an

ensemble and because the budget 𝜀2 = 𝜀/𝑘 for weight estimation

gets tighter, but this decline is smaller than that for PT(𝑘) because

of the “auto-correction" due to the weighting scheme in EPT. In our

evaluation, we observed 3 ≥ 𝑘 ≤ 7 perform the best.

7.6 Impact of Concept Drifts
Figure 4 shows the impact of four simulated drift types using Hy-

perplane. When drift is rapid, as the chunk size |𝐷𝑖 | increases, the
performance of EPT and PT(1) initially increases and then decreases

due to increasing drift introduced within a data chunk. This de-

cline trend is especially observed for PT(𝑘) that uses the union of

𝑘 chunks to train the model. So the chunk size is a double-edged

sword for rapid drift: too small or too large will hurt. There is a

similar trend for recurring drift. When drift is gradual, all methods

benefit as |𝐷𝑖 | increases because drift is introduced slowly. When

drift is abrupt, both EPT and PT(1) adapt well, but PT(𝑘) fails to

learn in this case as it uses a stale model, i.e., an abrupt change

occurs after the model training.



WSDM ’22, February 21–25, 2022, Tempe, AZ, USA. Gondara, et al.

1.0 0.8 0.6 0.4 0.2

0.55

0.60

0.65

0.70

0.75

0.80

Ac
cu

ra
cy

EPT PT(1) PT(k)

(a) Hyperplane

1.0 0.8 0.6 0.4 0.2
0.70

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

EPT PT(1) PT(k)

(b) EMBER-B

1.0 0.8 0.6 0.4 0.2
0.4

0.5

0.6

0.7

0.8

B
A

EPT PT(1) PT(k)

(c) EMBER-U

1.0 0.8 0.6 0.4 0.2
0.90

0.92

0.94

0.96

0.98

1.00

1-
M

SE

EPT PT(1) PT(k)

(d) Housing Market

119753
k

0.55

0.60

0.65

0.70

0.75

0.80

Ac
cu

ra
cy

EPT PT(1) PT(k)

(e) Hyperplane

119753
k

0.70

0.75

0.80

0.85

0.90
Ac

cu
ra

cy

EPT PT(1) PT(k)

(f) EMBER-B

119753
k

0.25

0.35

0.45

0.55

0.65

0.75

B
A

EPT PT(1) PT(k)

(g) EMBER-U

119753
k

0.90

0.92

0.94

0.96

0.98

1.00

1-
M

SE

EPT PT(1) PT(k)

(h) Housing Market

Figure 3: Impact of ensemble (Comparing EPT vs PT(1) and PT(𝑘)). First row shows the comparison with varying 𝜀 while the
second row shows the comparison with varying 𝑘 .
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Figure 4: Impact of drifts (Comparing ensemble approaches for various drift types and chunk sizes.)
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Figure 5: Impact of model replacement (Comparing replacing oldest model vs replacing worst model).

7.7 Impact of Model Replacement
Figure 5 shows the impact of replacing old model vs replacing

worst model during the ensemble update of EPT. For Hyperplane,

where we choose recurring drift, replacing the worst model is better

than replacing the oldest model. For the other datasets, however,

replacing the oldest model gives slightly better performance due

to adding a smaller noise in the weight estimation, i.e., 𝜀2 = 𝜀/𝑘 vs

𝜀2 = 𝜀/𝑘+1. See Theorem 6 and Theorem 7.

8 CONCLUSION
We presented a practical DP solution to predictive modeling (both

classification and regression) for data streams with concept drift.

To the best of our knowledge, this is the first work that allows an

unbounded number of updates under a fixed privacy budget. The

key component is a novel DP weighting mechanism for integrating

the models in an ensemble. Our solution is model agnostic and can

be used with any existing DP classification/regression method.
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