
Linear, or Non-Linear, That is theQuestion!

Taeyong Kong∗
Yonsei University

Seoul, Korea
qbxlvnf11@yonsei.ac.kr

Taeri Kim∗

Hanyang University
Seoul, Korea

taerik@hanyang.ac.kr

Jinsung Jeon
Yonsei University

Seoul, Korea
jjsjjs0902@yonsei.ac.kr

Jeongwhan Choi
Yonsei University

Seoul, Korea
jeongwhan.choi@yonsei.ac.kr

Yeon-Chang Lee
Hanyang University

Seoul, Korea
lyc0324@hanyang.ac.kr

Noseong Park†
Yonsei University

Seoul, Korea
noseong@yonsei.ac.kr

Sang-Wook Kim†

Hanyang University
Seoul, Korea

wook@hanyang.ac.kr

ABSTRACT
There were fierce debates on whether the non-linear embedding
propagation of GCNs is appropriate to GCN-based recommender
systems. It was recently found that the linear embedding propaga-
tion shows better accuracy than the non-linear embedding prop-
agation. Since this phenomenon was discovered especially in rec-
ommender systems, it is required that we carefully analyze the
linearity and non-linearity issue. In this work, therefore, we revisit
the issues of i) which of the linear or non-linear propagation is
better and ii) which factors of users/items decide the linearity/non-
linearity of the embedding propagation. We propose a novelHybrid
Method of Linear and non-linEar collaborative filTering method
(HMLET, pronounced as Hamlet). In our design, there exist both
linear and non-linear propagation steps, when processing each user
or item node, and our gating module chooses one of them, which
results in a hybrid model of the linear and non-linear GCN-based
collaborative filtering (CF). The proposed model yields the best
accuracy in three public benchmark datasets. Moreover, we clas-
sify users/items into the following three classes depending on our
gating modules’ selections: Full-Non-Linearity (FNL), Partial-Non-
Linearity (PNL), and Full-Linearity (FL). We found that there exist
strong correlations between nodes’ centrality and their class mem-
bership, i.e., important user/item nodes exhibit more preferences
towards the non-linearity during the propagation steps. To our
knowledge, we are the first who design a hybrid method and report
the correlation between the graph centrality and the linearity/non-
linearity of nodes. All HMLET codes and datasets are available at:
https://github.com/qbxlvnf11/HMLET.

CCS CONCEPTS
• Information systems→ Recommender systems.

∗Two first authors have contributed equally to this work.
†Co-corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WSDM ’22, February 21–25, 2022, Tempe, AZ, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9132-0/22/02. . . $15.00
https://doi.org/10.1145/3488560.3498501

KEYWORDS
Recommender Systems, Collaborative Filtering, Embedding Propa-
gation, Graph Neural Network

ACM Reference Format:
Taeyong Kong, Taeri Kim, Jinsung Jeon, Jeongwhan Choi, Yeon-Chang Lee,
Noseong Park, and Sang-Wook Kim. 2022. Linear, or Non-Linear, That is the
Question!. In Proceedings of the Fifteenth ACM International Conference on
Web Search and Data Mining (WSDM ’22), February 21–25, 2022, Tempe, AZ,
USA. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3488560.
3498501

1 INTRODUCTION
Recommender systems, personalized information filtering (IF) tech-
nologies, can be applied tomany services, ranging fromE-commerce,
advertising, and social media to many other online and offline ser-
vice platforms [38]. One of the most popular recommender systems,
collaborative filtering (CF), provides personalized preferred items
to users by learning user and item embeddings from their historical
user-item interactions [3, 4, 7, 8, 16, 18, 23, 24, 30, 34].

One of the mainstream research directions in recommender sys-
tems is how to learn high-order connectivity of user-item inter-
actions while filtering out noises. Recently, GCN-based CF meth-
ods became popular in recommender systems because they show
strong points to capture such latent high-order connectivity. Since
existing GCNs are originally designed for graph or node classifi-
cation tasks on attributed graphs, however, two limitations had
been raised out when it comes to GCN-based CF methods: training
difficulty [6, 15, 37] and over-smoothing [5, 6, 15]. Over-smoothing
degrades the recommendation accuracy by considering the connec-
tivity information too much [6]. To overcome these problems, a
couple of linear GCNs (linear embedding propagation-based GCNs)
were proposed [6, 15]. These methods effectively alleviate the afore-
mentioned two limitations and show superior performance over
non-linear GCNs (non-linear embedding propagation-based GCNs).
Even though linear GCNs show the state-of-the-art performance
in many benchmark CF datasets, it is questionable in our opinion
whether they can properly handle users and items with various
characteristics and whether linear GCNs are consistently superior
to non-linear GCNs in all cases. In addition, we are curious about,
if one outperforms the other, which factors of graphs decide it.

To this end, we propose a Hybrid Method of Linear and non-
linEar collaborative filTering (HMLET, pronounced as Hamlet),
a GCN-based CF method. HMLET has the following key design
points: i) We adopt a gating concept to decide between the linear

ar
X

iv
:2

11
1.

07
26

5v
2

 [
cs

.I
R

]
 2

4
D

ec
 2

02
1

https://doi.org/10.1145/3488560.3498501
https://doi.org/10.1145/3488560.3498501
https://doi.org/10.1145/3488560.3498501

Linear

+
Non-lin.

Gating
Module

+

Linear

Non-lin.
Gating
Module

+ +

initial
embedding

Linear

Non-lin.
Gating
Module

Linear

Non-lin.
Gating
Module

residual
prediction

(a) HMLET(All)

Linear

+
Non-lin.

Gating
Module

+

Linear

Non-lin.
Gating
Module

+ +

initial
embedding

Linear

Bypass
Gating
Module

Linear

Bypass
Gating
Module

residual
prediction

(b) HMLET(Front)

Linear

+
Bypass

Gating
Module

+

Linear

Non-lin.
Gating
Module

+ +

initial
embedding

Linear

Non-lin.
Gating
Module

Linear

Bypass
Gating
Module

residual
prediction

(c) HMLET(Middle)

Linear

+
Bypass

Gating
Module

+

Linear

Bypass
Gating
Module

+ +

initial
embedding

Linear

Non-lin.
Gating
Module

Linear

Non-lin.
Gating
Module

residual
prediction

(d) HMLET(End)

Figure 1: Four variants of HMLET in terms of the location of
the non-linear propagation. HMLET(End) shows the best ac-
curacy in our experiments. It was known that the problemof
over-smoothing happens with more than 2 non-linear prop-
agation layers, and we use up to 2 non-linear layers.

and non-linear propagation for each node in a layer. ii) We per-
form residual prediction, where the embeddings from all layers are
aggregated and used collectively for final predictions. Therefore,
we let our gating modules decide which of the linear or non-linear
propagation is used for a certain node at a certain layer instead
of relying on manually designed architectures. This gating mecha-
nism’s key point is how to generate appropriate one-hot vectors.
For this purpose, we adopt the Gumbel-softmax [11, 27].

To our knowledge, we are the first who combines the linear and
non-linear embedding propagation in a systematic way, i.e., via the
gating in our paper. Our gating mechanism can be considered as
a sort of neural architecture search (NAS) for the GCN-based CF
method. However, our proposed mechanism is more sophisticated
because it provides the switching function for each user/item and
the overall GCN architecture can be varied from a node’s perspec-
tive to another.

We conduct experiments with three benchmark CF datasets and
compare our HMLET with various state-of-the-art CF methods in
terms of the normalized discounted cumulative gain (NDCG), recall,
and precision. We also define several variations of HMLET in terms
of the locations of the non-linear propagation layers (see Fig. 1).
Among all of them, HMLET(End) shows the best performance in all
datasets. Furthermore, we define three classes of nodes, i.e., users
and items, depending on their preferences on the linear or non-
linear propagation: Full-Non-Linearity (FNL), Partial-Non-Linearity
(PNL), and Full-Linearity (FL). An FNL (resp. FL) node means that
our gating module chooses the non-linear (resp. linear) propagation
every time for the node and a PNL node has a mixed characteristic.
At the end, we analyze the class-specific characteristics in terms of
various graph centrality metrics and reveal that there exist strong
correlations between the graph centrality, i.e., the role of a node in a
graph, and the linear/non-linear gating outcomes (see Table 1). Our
discovery shows that recommendation datasets are complicated
because the linearity and non-linearity are mixed.

Contributions of our paper can be summarized as follows:

Table 1: The characteristics of node classes in terms of vari-
ous metrics. FNL (resp. FL) means a class of nodes for which
our gating modules select only the non-linear (resp. lin-
ear) propagation in all layers. For PNL, our gating modules
choose different propagation methods in different layers.

Class Degree PageRank Betweenness Closeness

FNL High High High High
PNL Moderate Moderate Moderate Moderate
FL Low Low Low Low

• We propose HMLET, which dynamically selects the best propa-
gation method for each node in a layer.
• We reveal that the role of a node in a graph is closely related
to its linearity/non-linearity, e.g., our gating module prefers the
non-linear embedding propagation for the nodes with strong
connections to other nodes.
• Our experiments on three benchmark datasets show thatHMLET

outperforms baselines in yielding better performance.

2 RELATEDWORKS
In this section, we review recommender systems and the Gumbel-
softmax used in our proposed gating module.

2.1 Recommender Systems
Traditional recommender systems have focused on matrix factor-
ization (MF) techniques [19, 23]. Typical MF-based methods include
BPR [30] and WRMF [18]. These MF-based methods simply learn
relationships between users and items via dot products. There-
fore, they have limitations in considering potentially complex re-
lationships between users and items inherent in user-item inter-
actions [16]. To overcome these limitations, deep learning-based
recommender systems, e.g., Autoencoders [21, 33] and GCNs [2, 12,
22, 37], have been proposed to effectively learn more complicated
relationships between users and items [32, 35, 38, 39].

Recently, recommender systems using GCNs [32, 35, 38] are gath-
ering much attention. GCN-based methods can effectively learn the
behavioral patterns between users and items by directly capturing
the collaborative signals inherent in the user-item interactions [35].
Typical GCN-based methods include GC-MC [32], PinSage [38],
and NGCF [35]. In general, GCN-based methods model a set of user-
item interactions as a user-item bipartite graph and then perform
the following three steps:

(Step 1) Initialization Step: They randomly set the initial 𝐷-
dimensional embedding 𝒆0 of all user 𝑢 and item 𝑣 , i.e., 𝒆0𝑢 , 𝒆0𝑣 ∈ R𝐷 .

(Step 2) Propagation Step: First of all, this propagation step
is iterated 𝐾 times, i.e., 𝐾 layers of embedding propagation. Given
the 𝐾 layers, the embedding of a user node 𝑢 (resp. an item node 𝑣)
in 𝑖-th layer is updated based on the embeddings of 𝑢’s (resp. 𝑣 ’s)
neighbors 𝑁𝑢 (resp. 𝑁𝑣) in (𝑖 − 1)-th layer as follows:

𝒆𝑖𝑢 = 𝜎 (Σ𝑣∈𝑁𝑢 𝒆
𝑖−1
𝑣 𝑾𝑖), 𝒆𝑖𝑣 = 𝜎 (Σ𝑢∈𝑁𝑣 𝒆

𝑖−1
𝑢 𝑾𝑖), (1)

where 𝜎 denotes a non-linear activation function, e.g., ReLU, and
𝑾𝑖 ∈ R𝐷×𝐷 is a trainable transformation matrix. There exist some
other variations: i) including the self-embeddings, i.e., 𝑁𝑢 = 𝑁𝑢 ∪
{𝑢} and 𝑁𝑣 = 𝑁𝑣 ∪ {𝑣}, ii) removing the transformation matrix,

Table 2: GCN-based recommender systems. In each layer, the
gating module in HMLET chooses either of the linear or the
non-linear propagation for each node.

GC-MC PinSage NGCF LR-GCCF LightGCN HMLET

Non-Linear Propagation O O O X X O
Linear Propagation X X X O O O
Residual Prediction X X O O O O

and iii) removing the non-linear activation function, which is in
particular called as linear propagation [6, 15].

(Step 3) Prediction Step: The preference of user 𝑢 to item 𝑣 is
typically predicted using the dot product between the user 𝑢’s and
item 𝑣 ’s embeddings in the last layer 𝐾 , i.e., 𝑟𝑢,𝑣 = 𝒆𝐾𝑢 ⊙ 𝒆𝐾𝑣 .

However, these GCN-based methods have two limitations: i)
training difficulty [6, 15, 37] and ii) over-smoothing, i.e., too similar
embeddings of nodes [5, 6, 15]. First, the training difficulty is caused
by their use of a non-linear activation function in the propagation
step [6, 15, 37]. Specifically, the non-linear activation function com-
plicates the propagation step, and even worse, this operation is
repeatedly performed whenever a new layer is created. Thus, they
suffer from the training difficulty of the non-linear activation func-
tions for large-scale user-item bipartite graphs [6, 37].

Next, the over-smoothing is caused as they use only the embed-
dings updated through the last layer in the prediction layer [6].
Specifically, as the number of layers increases, the embedding of a
node will be influenced more from its neighbors’ embeddings. As a
result, the embedding of a node in the last layer becomes similar to
the embeddings of many directly/indirectly connected nodes [5, 6].
This phenomenon prevents most of the existing GCN-based meth-
ods from effectively utilizing the information of high-order neigh-
borhood. Empirically, this is also shown by the fact that most of
non-linear GCN-based methods show better performance when
using only a few layers instead of deep networks.

Recently, LR-GCCF [6] and LightGCN [15], which are GCN-
based recommender systems to alleviate the problems, have been
proposed. First, to alleviate the former problem, they perform a
linear embedding propagationwithout using a non-linear activation
function in the propagation step. In order to mitigate the latter
problem, they utilize the embeddings from all layers for prediction.
After that, they perform residual prediction [6, 15], which predict
each user’s preference to each item with the multiple embeddings
from the multiple layers. In [6, 15], the authors demonstrated that
a GCN architecture with the linear embedding propagation and the
residual prediction can significantly improve the recommendation
accuracy by successfully addressing the two problems.

In summary, GCN-based recommender systems can be character-
ized by, as shown in Table 2, the propagation and prediction types.
We note that all existing methods consider only one of the linear or
non-linear propagation, i.e., they assume only one type of user-item
interactions. However, we conjecture that user-item interactions are
neither only linear nor only non-linear, for which we will conduct
in-depth analyses in Section 4.3. In this paper, therefore, we propose
a Hybrid Method of Linear and non-linEar collaborative filTering
method (HMLET), which considers both the two disparate propa-
gation steps and selects an appropriate embedding propagation for
each node in a layer.

2.2 Gumbel-softmax
The Gumbel-max trick [11, 27] provides a way to sample a one-hot
vector from a categorical distribution with class probabilities 𝝅 :

𝒛 = 𝑜𝑛𝑒_ℎ𝑜𝑡 (argmax
𝑖
[𝑔𝑖 + log𝜋𝑖]), (2)

where 𝑔1 ...𝑔𝑘 are drawn from the unit Gumbel distribution. The
argmax operator does not allow the gradient flow via the Gumbel-
max, because it gives zero gradients irrespective of how 𝝅 was
created. To this end, the Gumbel-softmax [20] generates 𝒚 that
approximates 𝒛 via the reparameterization trick defined as follows:

𝑦𝑖 =
exp ((log (𝜋𝑖) + 𝑔𝑖) /𝜏)∑𝑘
𝑗=1 exp

((
log

(
𝜋 𝑗

)
+ 𝑔 𝑗

)
/𝜏
) , (3)

where 𝑦𝑖 is 𝑖-th component of the vector 𝒚, and 𝜏 is a temperature
that determines how closely the function approximates 𝝅 . However,
the Gumbel-softmax is challenging to use if it needs to sample
discrete values because, when the temperature is high, its output is
not categorical. To solve this problem, the straight-through Gumbel-
softmax (STGS) [20] can be used. STGS always generates discrete
values for its forward pass, i.e., 𝒚 is a one-hot vector, while letting
the gradients flow through 𝒚 for its backward pass, even when the
temperature is high. This makes neural networks with the Gumbel-
softmax trainable.

This Gumbel-softmax has been widely used to learn optimal
categorical distributions. One such example is network architecture
search (NAS) [13, 17, 25, 36]. In NAS, we let an algorithm find opti-
mal operators (among many pre-determined candidates prepared
by users) and their connections. All these processes can be mod-
eled by generating optimal one-hot (or multi-hot) vectors via the
Gumbel-softmax [20]. Another example is multi-generator-based
generative adversarial networks (GANs) [10]. Park et al. showed
that data is typically multi-modal, and it is necessary to separate
modes and assign a generator to each mode of data, e.g., one gener-
ator for long-hair females, another generator for short-hair males,
and so on for a GAN generating facial images [29]. In our case,
we try to separate the two modes, i.e., the linear and non-linear
characteristics of nodes.

3 PROPOSED APPROACH
We first formulate our problem of top-𝑁 recommendation as fol-
lows: Let 𝑢 ∈ 𝑈 and 𝑣 ∈ 𝐼 denote a user and an item, respectively,
where𝑈 and 𝐼 denote the sets of all users and all items, respectively;
𝑁𝑢 denotes a set of items rated by user𝑢. For each user𝑢, the goal is
to recommend the top-𝑁 items that are most likely to be preferred
by 𝑢 among her unrated items, i.e., 𝐼 \ 𝑁𝑢 .

In this section, among several variations of HMLET, we mainly
describe HMLET(End) for ease of writing because it shows the
best accuracy — other variations can be easily modified from HM-

LET(End) and we omit their descriptions. Its key concept is to adopt
the gating between the linear and non-linear propagation in a
layer. In other words, we prepare both the linear and non-linear
propagation steps in a layer and let our gating module with STGS
decide which one to use for each node. Table 3 summarizes a list of
notations used in this paper.

Figure 2 illustrates the overall workflow of HMLET(End). After
constructing the user-item interaction as a user-item bipartite graph,

𝒆!
"!𝒆!

""

𝒆!
𝒆!

#!

User-Item	Graph

v u

𝒆!1

Layer 1

𝒆2
##

𝒆!
#"

𝒆2
""

𝒆2
#!

𝒆2
"!

𝒆!
3" 𝒆!

3!

𝑟̂!"# 𝑟̂!"$ 𝑟̂!"+

•

+

•

+

•

Linear
Embedding Propagation

Non-linear
Embedding Propagation

Residual Prediction

𝒆2
3!𝒆2

3"𝒆21

𝒆2
#"

Gating
Module

Gating
Module

Gating
ModuleGating

Module

𝑟̂!"%+ 𝑟̂!"&

Layer 3 Layer 4

Layer 4Layer 3

𝒆!
"#

𝒆2
"#

Layer 1

Gating
Module

Gating
Module

𝒆!
3#

•

𝒆2
3#

𝒆!
#$

Layer 2

𝒆2
#$

𝒆!
"$

𝒆2
"$

Layer 2

𝒆!
3$

•

𝒆2
3$

Gating
Module

Gating
Module

Bypass Bypass

Figure 2: The detailed workflow of HMLET(End). One can consider our gating module as a relay switch between the linear
and non-linear propagation. While calculating an embedding for a user or an item in the third and fourth layer, therefore,
our gating module learns the optimal selection between them for each node. For instance, it can select a sequence of linear→
linear→ linear→ non-linear for some nodes while it can select a totally different sequence for other nodes.

Table 3: Notations used in this paper

Notation Description

𝐾 The number of total layers
𝒆
𝐿𝑖
𝑢 , 𝒆𝐿𝑖𝑣 𝑢’s and 𝑣’s embeddings at 𝑖-th linear layer

𝒆
𝑁𝑖
𝑢 , 𝒆𝑁𝑖𝑣 𝑢’s and 𝑣’s embeddings at 𝑖-th non-linear layer
𝒆
𝐺𝑖
𝑢 , 𝒆𝐺𝑖𝑣 𝑢’s and 𝑣’s embeddings selected by the gating module at 𝑖-th layer
𝐷 The size (dimension) of embedding
|𝑈 |, |𝐼 | The number of users and items
𝑟𝑢𝑣 The user 𝑢’s final preference on item 𝑣

N𝑢 , N𝑣 The set of items rated to user 𝑢 and the set of users who rated item 𝑣

HMLET initializes the user and item embeddings in the initialization
step. After that, each embedding is propagated to its neighbors
through𝐾 propagation layers. The gating module inHMLET selects
either of the linear or the non-linear propagation in a layer for each
node (Section 3.1). To this end, we use the gating module with
STGS. In order to predict each user’s preference on each item, the
dot product of the user embedding and the item embedding in each
layer is aggregated and we use their sum for prediction (Section 3.2).

3.1 Propagation Layer
We omit the description of the initialization step due to its obvi-
ousness. HMLET propagates the embedding 𝒆𝑢 (resp. 𝒆𝑣) of each
user 𝑢 (resp. each item 𝑣) through the propagation layers. In this
subsection, we describe the propagation process. We first formally
define the linear and the non-linear propagation steps used in this
paper. Then, we present our gating module.

3.1.1 Propagation. Recently, the authors of LightGCN [15] found
that the feature transformation and the non-linear activation do
not have a positive effect on the effectiveness of CF. So, LightGCN
removed the feature transformation and the non-linear activation
from Eq. (1), and it shows better performance than existing non-
linear GCNs for recommendation. In HMLET, we adopt the linear
layer definition of LightGCN. Therefore, our linear embedding
propagation is performed as follows:

𝒆𝐿𝑖+1𝑢 =

∑︁
𝑣∈N𝑢

1√︁
|N𝑢 ∥N𝑣 |

𝒆𝐺𝑖𝑣 , 𝒆𝐿𝑖+1𝑣 =

∑︁
𝑢∈N𝑣

1√︁
|N𝑢 ∥N𝑣 |

𝒆𝐺𝑖𝑢 , (4)

where 𝒆𝐿𝑖+1𝑢 and 𝒆𝐿𝑖+1𝑣 are the linear embeddings for user 𝑢 and item
𝑣 . Since our gating module, which will be described shortly, selects
between the linear and the non-linear embeddings, 𝒆𝐺𝑖𝑢 and 𝒆𝐺𝑖𝑣
means the embeddings selected by our gating module in the previ-
ous 𝑖-th layer. If 𝑖 = 0, 𝒆𝐺𝑖𝑢 = 𝒆0𝑢 and 𝒆𝐺𝑖𝑣 = 𝒆0𝑣 , i.e., initial embeddings.

1√
|N𝑢 ∥N𝑣 |

is a symmetric normalization term to restrict the scale

of embeddings into a reasonable boundary.
For the non-linear embedding propagation, we design a variant of

the linear embedding propagation by adding non-linear activation
functions. Its propagation is preformed as follows:

𝒆𝑁𝑖+1𝑢 =


𝒆𝑁𝑖𝑢 , if 𝑏𝑦𝑝𝑎𝑠𝑠
𝜙

(∑︁
𝑣∈N𝑢

1√
|N𝑢 ∥N𝑣 |

𝒆𝐺𝑖𝑣

)
, if 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒,

𝒆𝑁𝑖+1𝑣 =


𝒆𝑁𝑖𝑣 , if 𝑏𝑦𝑝𝑎𝑠𝑠
𝜙

(∑︁
𝑢∈N𝑣

1√
|N𝑢 ∥N𝑣 |

𝒆𝐺𝑖𝑢

)
, if 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒,

(5)

where 𝜙 is a non-linear activation function, e.g., ELU, Leaky ReLU.
For instance, as shown in Figure 2, HMLET(End) bypasses the non-
linearity propagation on the first and second layers to address
the over-smoothing problem and then propagates the non-linear
embedding in the third and fourth layers.

3.1.2 Gating Module. Now, we have the two types of the em-
beddings for each node, created by the linear and non-linear prop-
agation in Eqs. (4) and (5), respectively, in the previous 𝑖-th layer.
Therefore, we should select one of the linear and non-linear em-
beddings for the propagation in the next (𝑖 + 1)-th layer.

Toward this end, we add a gating module, which dynamically
selects either of the linear or non-linear embedding after under-
standing the inherent characteristics of nodes. A separate gating
module should be added whenever the linear and the non-linear

Algorithm 1: Gating Module
Input: Linear embedding 𝒆𝐿 , Non-linear embedding 𝒆𝑁 ,

Temperature 𝜏 , Gating type 𝜉
1 Function Gating_Module(𝒆𝐿, 𝒆𝑁 , 𝜏 , 𝜉):
2 if 𝜉 = linear then
3 𝒆𝐺 ← 𝒆𝐿

4 else if 𝜉 = non-linear then
5 𝒆𝐺 ← 𝒆𝑁

6 else
7 𝒆concat ← 𝒆𝐿 | |𝒆𝑁
8 𝒍 ← MLP(𝒆concat)
9 𝒈 ← STGS(𝒍, 𝜏)

10 𝒆𝐺 ← 𝒈 · [𝒆𝐿, 𝒆𝑁]
11 return 𝒆𝐺

propagation co-exist in a layer. The intuition behind this technique
is that i) the embeddings of nodes may exhibit both the linearity
and the non-linearity in their characteristics and ii) the linearity
and the non-linearity of nodes may vary from one layer to another.

The process of the gating module with STGS is shown in Al-
gorithm 1. For simplicity but without loss of generality, we use
the symbol 𝒆𝐿 and 𝒆𝑁 to denote the linear and non-linear embed-
dings, respectively, after omitting other subscripts and superscripts.
We support three gating types: i) choose the linear embedding
(bypassing the non-linear propagation), ii) choose the non-linear
embedding (bypassing the linear propagation), and iii) let the gat-
ing module choose one of them. The variable 𝜉 notates the gating
type. If 𝜉 is the first or second type, a designated embedding type is
selected. If 𝜉 is the third type, the input embeddings, i.e., the linear
and non-linear embedding, are concatenated and then passed to
an MLP (multi-layer perceptron) (Lines 7 and 8 in Algorithm 1).
The result of the MLP is a logit vector 𝒍 , an input for STGS (Line
9). The logit vector 𝒍 corresponds to log𝝅 explained in Section 2.2.
𝒈 represents a linear or non-linear selection by the gating module,
i.e., 𝒈 is a two-dimensional one-hot vector. Therefore, 𝒆𝐺 is the
same as either of 𝒆𝐿 or 𝒆𝑁 (Line 10).

3.1.3 Variants of HMLET. As shown in Figure 1 and Table 4,
there can be four variants of HMLET, denoted as HMLET(All), HM-

LET(Front), HMLET(Middle), and HMLET(End), depending on the
locations of the non-linear layers. Each method except HMLET(All)
uses up to 2 non-linear layers since it is known that more than 2
non-linear layers cause the problem of over-smoothing [6]. More-
over, we test with various options of where to put them. First, HM-

LET(Front) focuses on the fact that GCNs are highly influenced by
close neighborhood, i.e., in the first and second layers [31]. There-
fore, HMLET(Front) adopts the gating module in the front and
uses only the linear propagation layers afterwards. Second, HM-

LET(Middle) only uses the linear propagation in the front and last
and then adopts the gating module in the second and third layers.
Last, as the gating module is located in the third and fourth layers,
HMLET(End) focuses on gating in the third and fourth layers — our
experiments and analyses show thatHMLET(End) is the best among
the four variations of the proposed method. We select 𝒆𝐿3 or 𝒆𝑁3

at the third layer and 𝒆𝐿4 or 𝒆𝑁4 at the fourth layer via the gating
modules, respectively. If the linear embeddings are selected for a
node in all layers, it is the same as using a linear GCN with 𝐾 = 4

Table 4: Variants of HMLET in terms of their setting for the
non-linear propagation in Eq. (5) and the gating type 𝝃

Layer 1 2 3 4

HMLET(All) propagate/gating propagate/gating propagate/gating propagate/gating
HMLET(Front) propagate/gating propagate/gating bypass/linear bypass/linear
HMLET(Middle) bypass/linear propagate/gating propagate/gating bypass/linear
HMLET(End) bypass/linear bypass/linear propagate/gating propagate/gating

Algorithm 2: HMLET

Input: The number of total layers 𝐾 , A bipartite graph𝐺
1 Function HMLET(𝐾,𝐺):
2 Initialize 𝒆0𝑢 , 𝒆0𝑣, for ∀𝑢, ∀𝑣
3 𝑖𝑡𝑒𝑟 ← 0
4 while the BPR loss is not converged do
5 𝜏 ← 1.0 exp(−0.001 × 𝑖𝑡𝑒𝑟)
6 𝑟𝑢,𝑣 = 𝒆0𝑢 ⊙ 𝒆0𝑣, for ∀𝑢, ∀𝑣
7 for 𝑖 ← 1 to 𝐾 do
8 𝒆𝐿𝑖𝑢 , 𝒆

𝐿𝑖
𝑣 = Eq. (4), for ∀𝑢, ∀𝑣

9 𝒆𝑁𝑖𝑢 , 𝒆𝑁𝑖𝑣 = Eq. (5), for ∀𝑢, ∀𝑣
10 𝒆𝐺𝑖𝑢 = Gating_Module(𝒆𝐿𝑖𝑢 , 𝒆

𝑁𝑖
𝑢 , 𝜏, 𝜉𝑖), for ∀𝑢

11 𝒆𝐺𝑖𝑣 = Gating_Module(𝒆𝐿𝑖𝑣 , 𝒆
𝑁𝑖
𝑣 , 𝜏, 𝜉𝑖), for ∀𝑣

12 𝑟𝑢,𝑣 += 𝒆𝐺𝑖𝑢 ⊙ 𝒆𝐺𝑖𝑣 , for ∀𝑢, ∀𝑣
13 Update 𝒆0𝑢 , 𝒆0𝑣 with the BPR Loss for ∀𝑢, ∀𝑣
14 Train the parameters of the gating modules with the BPR Loss
15 𝑖𝑡𝑒𝑟 += 1
16 return 𝑟𝑢,𝑣 , for ∀𝑢, ∀𝑣

for processing the node. If the non-linear embedding is selected for
other node in all layers, it reduces to a non-linear GCN with 𝐾 = 2.
Likewise, HMLET(End) can be considered as a node-wise dynamic
GCN (between the linear and non-linear propagation) with varying
𝐾 ∈ {2, 4}.

3.2 Prediction Layer
After propagating through all 𝐾 layers, we predict a user 𝑢’s pref-
erence for an item 𝑣 . To this end, we create a dot product value of
𝒆𝐺𝑖𝑢 and 𝒆𝐺𝑖𝑣 in each layer and use the following residual prediction:

𝑟 𝑖𝑢𝑣 = 𝒆𝐺𝑖𝑢 ⊙ 𝒆𝐺𝑖𝑣 , 𝑟𝑢𝑣 = 𝛽

𝐾∑︁
𝑖=0

𝑟 𝑖𝑢𝑣 . (6)

In some layers, a gating module can be missing. In such a case,
there is only one type of embeddings, but we also use 𝒆𝐺𝑖𝑢 /𝒆𝐺𝑖𝑣 to
denote these embeddings for ease of writing.

In most previous GCN-based recommender system research,
only the embedding of the last layer was used to predict, but in
HMLET, the above residual prediction 𝑟𝑢𝑣 with 𝛽 is used. Similar
to LightGCN, 𝛽 is set to 1/(𝐾 + 1). This residual prediction can
produce good performance by using not only the embedding in the
last layer but also the embeddings in previous layers.

3.3 Training Method
For trainingHMLET, we employ the Bayesian Personalized Ranking
(BPR) loss [30], denoted 𝑳, which is frequently used in many CF
methods. The BPR loss is written as follows:

Table 5: Statistics of public benchmark datasets

Dataset # User # Item # Interaction Sparsity

Gowalla 29,858 40,981 1,027,370 99.916%
Yelp2018 31,668 38,048 1,561,406 99.870%

Amazon-Book 52,643 91,599 2,984,108 99.938%

𝑳 = −
|𝑈 |∑︁
𝑢=1

∑︁
𝑖∈𝑁𝑢

∑︁
𝑗∉𝑁𝑢

ln(𝜎 (𝑟𝑢𝑖 − 𝑟𝑢𝑗)) + 𝜆 ∥𝚯∥2, (7)

where 𝜎 is the sigmoid function. Θ is the initial embeddings and
the parameters of the gating modules, and 𝜆 controls the 𝐿2 regular-
ization strength. We use each observed user-item interaction as a
positive instance and employ the strategy used in [15] for sampling
a negative instance.

We employ STGS for a smooth optimization of the gating module.
We can train the network with annealing the temperature 𝜏 , and we
use the temperature decay for each epoch (Line 5 in Algorithm 2). In
order to calculate 𝑟𝑢𝑣 as in Eq. (6), we accumulate the dot product
results (Lines 6 and 12). Then, we train the initial embeddings
(Line 13) and the parameters of the gating modules (Line 14).

4 EXPERIMENTS
In this section, we evaluate our proposed approach via comprehen-
sive experiments. We design our experiments, aiming at answering
the following key research questions (RQs):
• RQ1:Which variation of HMLET is the most effective in terms
of recommendation accuracy?
• RQ2:Does gating between the linear and non-linear propagation
provide more accurate recommendations than baseline methods?
• RQ3:What are the characteristics of the nodes that use i) only
the linear propagation, ii) only the non-linear propagation, or iii)
different propagation steps in different layers?

4.1 Experimental Environments
4.1.1 Datasets. For evaluation, we used the following three real-
word datasets: Gowalla, Yelp2018, and Amazon-Book from various
domains. They are all publicly available. Table 5 shows the detailed
statistics of the three datasets.
• Gowalla is a location-based social networking website where
users share their locations by checking-in [26]. This dataset con-
tains user-website interactions.
• Yelp2018 is a subset of small business and user data used in
Yelp Dataset Challenge 2018. This dataset contains user-business
interactions.
• Amazon-Book contains purchase records of Amazon users [14].
This dataset contains user-item interactions. Amazon-Book has
the highest sparsity among these three public datasets.
Following [35], we filtered out those users and items with less

than ten interactions in all datasets, i.e., a 10-core setting. For testing,
we then split a dataset into training (80%), validation (10%), and test
(10%) sets in the same way as in [35].

4.1.2 Baseline Methods. We compare HMLET with the follow-
ing five state-of-the-art methods to verify its effectiveness:
• BPR [30] is a matrix factorization (MF) trained by the Bayesian
Personalized Ranking (BPR) loss.

HMLET(All) HMLET(Front) HMLET(Middle) HMLET(End)

Types

0.026

0.028

0.03

N
D
CG

@
20

Amazon-Book

Types

0.04

0.042

0.044

Yelp2018

Types

0.12

0.122

0.124
Gowalla

Figure 3: The comparison of NDCG@20 with all types of
HMLET in three public benchmarks.

• WRMF [18] is an MF solved by the weight alternating least
square (WALS) technique.
• NGCF [35] is a non-linear GCN-based recommender system
performing residual prediction.
• LR-GCCF [6] is a linear GCN-based recommender system which
removes the non-linear activation function but still use the trans-
formation matrix in Eq. (1). This method performs the residual
prediction.
• LightGCN [15] is yet another linear GCN-based recommender
system performing the residual prediction. This method differs
from LR-GCCF in that it does not use the transformation matrix.

For MF-based methods, we use the implementations in the pop-
ular open-source library, called NeuRec.1 For GCN-based methods,
we use the source codes provided by the authors [6, 15, 35]. To eval-
uate accuracy, we use the top-20 recommendations and measure
the accuracy in terms of the normalized discounted cumulative
gain (NDCG), recall, and precision, which are all frequently used
in recommendation research [6, 15, 35].

4.1.3 Hyper-parameter Settings. We choose the best hyper-
parameter set via the grid search with the validation set. The best
setting found in HMLET is as follows: the number of linear layers is
set to 4; the number of non-linear layers is set to 4 in HMLET(All)
and 2 for HMLET(Front), HMLET(Middle), and HMLET(End); the
optimizer is Adam; the learning rate is 0.001; the 𝐿2 regularization
coefficient 𝜆 is 1E-4; the mini-batch size is 2,048; the dropout rate
is 0.4. And, we use the temperature 𝜏 with an initialization to 0.7, a
minimum temperature of 0.01, and a decay factor of 0.995. Also, for
fair comparison, we set the embedding sizes for all methods to 512.
In non-linear layers, we test two non-linear activation functions:
Leaky-ReLU (negative slope = 0.01) and ELU (𝛼 = 1.0). For baseline
models, we tuned their hyper-parameters via the grid search in the
ranges suggested in their respective papers.

4.2 Experimental Results
4.2.1 Comparison among Model Variations (RQ1). For an-
swering RQ1, we first compare the accuracies of HMLET(All), HM-

LET(Front),HMLET(Middle), andHMLET(End). Figures 3 illustrates
the results where X-axis represents the types of HMLET, and Y-axis
represents NDCG@20.

HMLET(End) is the best among all variations of HMLET. The
accuracies of all variations except HMLET(End) are similar. Specif-
ically, the difference between HMLET(End) and other variations
is around 7%, 0.9%, 1% in Amazon-Book, Yelp2018, and Gowalla,

1https://github.com/wubinzzu/NeuRec.

https://github.com/wubinzzu/NeuRec.

Table 6: The comparison of overall performance with baseline models on three public benchmarks

Amazon-Book Yelp2018 Gowalla
Metrics NDCG@20 Recall@20 Precision@20 NDCG@20 Recall@20 Precision@20 NDCG@20 Recall@20 Precision@20
BPR 0.0181 0.0307 0.0065 0.0289 0.0476 0.0062 0.0847 0.1341 0.0203

WRMF 0.0242 0.0405 0.0085 0.0402 0.0645 0.0145 0.1007 0.1538 0.0243
NGCF 0.0250 0.0426 0.0086 0.0371 0.0601 0.0134 0.1071 0.1661 0.0253

LR-GCCF 0.0213 0.0361 0.0077 0.0351 0.0581 0.0129 0.0989 0.1545 0.0240
LightGCN 0.0283 0.0484 0.0099 0.0420 0.0678 0.0152 0.1212 0.1870 0.0288

HMLET(End) 0.0300 0.0510 0.0103 0.0434 0.0696 0.0155 0.1231 0.1908 0.0293
%Improve 6.00% 5.37% 4.04% 3.33% 2.65% 1.97% 1.56% 2.03% 1.73%
𝑝-value 1.59E-37 1.71E-34 5.16E-36 5.57E-58 2.90E-39 1.61E-44 8.51E-25 4.17E-131 3.39E-27

Table 7: The selection ratio by gating modules in Amazon-
Book

Layer 1 Layer 2 Layer 3 Layer 4
Propagation Linear Non-Lin. Linear Non-Lin. Linear Non-Lin. Linear Non-Lin.
HMLET(All) 77.05% 22.95% 60.45% 39.55% 68.01% 31.99% 40.77% 59.23%

HMLET(Front) 74.30% 25.70% 62.09% 37.91% 100% 0% 100% 0%
HMLET(Middle) 100% 0% 63.03% 36.97% 72.41% 27.59% 100% 0%
HMLET(End) 100% 0% 100% 0% 5.19% 94.81% 49.55% 50.45%

respectively. However, the differences in accuracy among HM-

LET(All), HMLET(Front), and HMLET(Middle) are as small as 0.2%.
These results indicate that i) the effectiveness of the gating mod-

ule greatly depends on the location where the gating module exists,
and ii) the non-linear propagation is useful to capture distant neigh-
borhood information — note that we added the gating modules at
the last two layers in HMLET(End). As shown in Table 7, each vari-
ation has a quite different linear/non-linear embedding selection
ratio. HMLET(End), the best model, uses the non-linear propaga-
tion in the layers 3 and 4, and their selection ratios are significant,
e.g., 5.19% of linear vs. 94.81% of non-linear in the third layer. This
observation also applies to the second best model,HMLET(All). Sim-
ilar selection ratio patterns are observed in the other two datasets.

4.2.2 Comparison with Baselines (RQ2). Table 6 illustrates
our main experimental results. In them, the values in boldface
indicate the best accuracy in each column, and the values in italic
mean the best baseline accuracy. Also, ‘%Improve’ indicates the
degree of accuracy improvements over the best baseline by HM-

LET(End). Lastly, we conduct 𝑡-tests with a 95% confidence level
to verify the statistical significance of the accuracy differences be-
tween HMLET(End) and the baselines.

We summarize the results shown in Table 6 as follows. First,
among the five baseline methods, we observe that LightGCN consis-
tently shows the best accuracy in all datasets. Second, HMLET(End)
consistently provides the highest accuracy in all datasets and with
all metrics. Specifically, HMLET(End) outperforms LightGCN by
6.00%, 3.33%, and 1.56% for the datasets in terms of NDCG@20,
respectively. The 𝑝-values are below 0.05, indicating that the differ-
ences are statistically significant. We highlight that HMLET(End)
shows remarkable improvements in Amazon-Book which is the
largest dataset in this paper.

4.3 Linearity or Non-Linearity
In this subsection, we define three different classes of nodes, depend-
ing on their preferences on the linear or non-linear propagation,

and perform in-depth analyses on them. In order to analyze accu-
rately, we use the embeddings learned by HMLET(End), the best
performing variation of HMLET, for Amazon-Book. Due to space
limitations, we omit the results for the other datasets, which show
similar patterns to those in Amazon-Book.

4.3.1 Node Class and Graph Centrality. We first classify all
nodes into one of the following three classes according to the em-
bedding types selected by the gating modules:
• Full-Non-Linearity (FNL) is a class of nodes in which all em-
beddings selected by the gating modules are non-linear embed-
dings.
• Partial-Non-Linearity (PNL) is a class of nodes in which the
embeddings selected by the gating modules are mixed with linear
embeddings and non-linear embeddings.
• Full-Linearity (FL) is a class of nodes in which all embeddings
selected by the gating modules are linear embeddings.
We next introduce three graph centrality metrics to study the

characteristics of the classes:
• PageRank [28] measures the relative importance of nodes in
a graph. A node is considered as important, even though its
connectivity with other nodes is not that strong, if connected to
other important nodes.
• Betweenness Centrality [1] measures the centrality of a node
as an intermediary in a graph. The more a node appears in mul-
tiple shortest paths, the higher the betweenness centrality of the
node.
• Closeness Centrality [9] measures the centrality of a node by
considering general connections to other nodes in a graph. The
less hops it takes for a node to reach all other nodes, the higher
the closeness centrality.

4.3.2 Characteristics of Node Classes (RQ3). In this subsec-
tion, we analyze the characteristics of the nodes in each class in
terms of the various centrality metrics. Table 8 shows the relative
class size in our three datasets. In Amazon-Book and Yelp2018, most
nodes were classified as FNL and PNL (about 47-48% and 50-52%,
respectively), and a few nodes were classified as FL (about 1-2%).
However, in Gowalla, the ratio of FL is about 12%, which is rela-
tively higher compared to the other two datasets. Figure 4 shows
the relative sizes of the three classes by degree, and Figure 5 shows
the statistics of the centrality scores in each class. From them, it
can be seen that the degree and centrality scores increase in order
of FL, PNL, and FNL. Now, we deliver the meaning of the above
results for each class.

Table 8: The relative class sizes in three datasets

Class Amazon-Book Yelp2018 Gowalla

FNL 46.78% 47.95% 27.49%
PNL 51.77% 49.59% 60.84%
FL 1.45% 2.46% 11.67%

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
0

20

40

60

80

Re
la
tiv

e
cl
as
ss

iz
e FNL

PNL
FL

Figure 4: The class ratio of nodes sorted by degree. 𝑖-th bin in
X-axismeans a range of [(10∗(𝒊−1))-th percentile, (10∗ 𝒊)-th
percentile) in terms of degree. Nodes with a high degree are
themost likely to be in FNL (10th), andnodeswith a small de-
gree are likely to be in FL (1st). We also find that nodes clas-
sified as PNL are more evenly distributed than other classes.

• FNL Attributes: A node in FNL is either an active user or a
popular item with more direct/indirect interaction information,
i.e., a high degree and closeness centrality, and higher influence,
i.e., a high PageRank and betweenness centrality, than nodes in
other classes. So, they will receive a lot of information during
the propagation step. Therefore, the sophisticated non-linear
propagation is required to correctly extract useful information
from much potentially noisy information.
• FL Attributes: A node in FL is either a user or an item that
does not have much direct/indirect interaction information, i.e., a
low degree and closeness centrality, and little influence, i.e., a
low PageRank and betweenness centrality, compared to nodes
in other classes. The information they receive during the propa-
gation step may mostly consist of useful information related to
themselves with little noise. Therefore, the simple linear propa-
gation is required to take useful information as it is, rather than
refining it.
• PNL Attributes: A node in PNL, compared to nodes in other
classes, is a user or an itemwith neither too large nor too small di-
rect/indirect interaction information, i.e., a moderate degree and
closeness centrality, and influence, i.e., a moderate PageRank and
betweenness centrality. In other words, although they have many
direct neighbors, there are few indirect neighbors connected to
the direct neighbors, or even if there are few direct neighbors,
their indirect neighbors can be many. Therefore, they need to
perform one of the non-linear or linear operations depending on
the information they receive from neighbors.

In order to double-check our interpretations, we show the statis-
tics of the similarity of embeddings for each class. So, we calculate
the cosine similarity between a node and its direct neighbors by us-
ing the embeddings learned byHMLET(End). The results are shown
in Table 9. From these results, we can confirm that the neighbors of
a node in FNL consist of diversified nodes, i.e., a low mean and high
variance. Also, FL nodes’ neighbors mainly consist of similar nodes,
i.e., a high mean and low variance. Lastly, PNL nodes’ neighbors

FNL PNL FL
0

0.5

1

1.5
·10−5

PageRank
FNL PNL FL

0
1
2
3

·10−5

Betweenness
FNL PNL FL

0.15

0.2

0.25

0.3

Closeness

Figure 5: The statistics of PageRank, betweenness centrality,
and closeness centrality.

Table 9: The statistics of the cosine similarity between a
node’s embedding and its direct neighbors’ embeddings in
each node class

Similarity FNL PNL FL

Mean 0.6369 0.6449 0.7157
Variance 0.0179 0.0162 0.0160

are in between the previous two cases, i.e., a moderate mean and
variance between nodes in other classes.

5 CONCLUSIONS AND FUTUREWORK
In this paper, we presented a novel GCN-based CF method, named
as HMLET, that can select the linear or non-linear propagation step
in a layer for each node. We further analyzed how the linear/non-
linear selection mechanism works using various graph analytics
techniques. To this end, we first designed our linear and non-linear
propagation steps, being inspired by various state-of-the-art linear
and non-linear GCNs for CF. Then, we used STGS to learn the opti-
mal selection between the linear and non-linear propagation steps.
The intuition behind such design choice is that it is not optimal to
put both the linear and the non-linear propagation in every layer. In
this sense, we have defined several variations of HMLET in terms
of combining the linear and non-linear propagation steps.

Through extensive experiments using three standard benchmark
datasets, we demonstrated that HMLET shows the best accuracy in
all datasets. Furthermore, we presented in-depth analyses of how
the linearity and non-linearity of nodes are decided in a graph.
Toward this end, we classified nodes into three classes, i.e., Full-
Non-Linearity, Partial-Non-Linearity, and Full-Linearity, depending
on our gating module’s selections and studied correlations between
nodes’ centrality scores and their class membership.

We conjecture that GCNs for CF should somehow consider both
linear and non-linear operations. We do not say that our specific
mechanism to combine the linear and the non-linear propagation
steps is optimal. We hope that our discovery encourages much
follow-up research work.

ACKNOWLEDGMENT
The work of Sang-Wook Kim was supported by Samsung Research
Funding & Incubation Center of Samsung Electronics under Project
Number SRFC-IT1901-03. The work of Noseong Park was supported
by the Yonsei University Research Fund of 2021 and the Institute of
Information & Communications Technology Planning & Evaluation
(IITP) grant funded by the Korean government (MSIT) (No. 2020-
0-01361, Artificial Intelligence Graduate School Program (Yonsei
University)).

REFERENCES
[1] Ulrik Brandes. 2001. A faster algorithm for betweenness centrality. Journal of

mathematical sociology 25, 2 (2001), 163–177.
[2] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2014. Spectral

networks and deep locally connected networks on graphs. In Proc. of the Int’l
Conf. on Learning Representations (ICLR).

[3] Dong-Kyu Chae, Jin-Soo Kang, Sang-Wook Kim, and Jung-Tae Lee. 2018. CFGAN:
A Generic Collaborative Filtering Framework based on Generative Adversarial
Networks. In Proc. of the ACM Int’l Conf. on Information and Knowledge Manage-
ment (CIKM).

[4] Dong-Kyu Chae, Jihoo Kim, Duen Horng Chau, and Sang-Wook Kim. 2020. AR-
CF: Augmenting Virtual Users and Items in Collaborative Filtering for Addressing
Cold-Start Problems. In Proc. of the ACM Int’l Conf. on Research & Development
in Information Retrieval (SIGIR).

[5] Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. 2020. Measuring
and relieving the over-smoothing problem for graph neural networks from the
topological view. In Proc. of the AAAI Conf. on Artificial Intelligence (AAAI).

[6] Lei Chen, Le Wu, Richang Hong, Kun Zhang, and Meng Wang. 2020. Revisiting
Graph Based Collaborative Filtering: A Linear Residual Graph Convolutional
Network Approach. In Proc. of the AAAI Conf. on Artificial Intelligence (AAAI).

[7] Jeongwhan Choi, Jinsung Jeon, and Noseong Park. 2021. LT-OCF: Learnable-Time
ODE-based Collaborative Filtering. In Proc. of the ACM Int’l Conf. on Information
and Knowledge Management (CIKM).

[8] Travis Ebesu, Bin Shen, and Yi Fang. 2018. Collaborative Memory Network
for Recommendation Systems. In Proc. of the ACM Int’l Conf. on Research &
Development in Information Retrieval (SIGIR).

[9] Linton C Freeman. 1978. Centrality in social networks conceptual clarification.
Social networks 1, 3 (1978), 215–239.

[10] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversar-
ial nets. In Proc. of the Annual Conf. on Neural Information Processing Systems
(NeurIPS).

[11] Emil Julius Gumbel. 1954. Statistical theory of extreme values and some practical
applications. NBS Applied Mathematics Series 33 (1954).

[12] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive Representation
Learning on Large Graphs. In Proc. of the Annual Conf. on Neural Information
Processing Systems (NeurIPS).

[13] Chaoyang He, Haishan Ye, Li Shen, and Tong Zhang. 2020. Milenas: Efficient
neural architecture search via mixed-level reformulation. In Proc. of the IEEE/CVF
Conf. on Computer Vision and Pattern Recognition (CVPR).

[14] Ruining He and Julian McAuley. 2016. Ups and downs: Modeling the visual
evolution of fashion trends with one-class collaborative filtering. In Proc. of The
Web Conference (WWW).

[15] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, YongDong Zhang, and Meng
Wang. 2020. LightGCN: Simplifying and Powering Graph Convolution Network
for Recommendation. In Proc. of the ACM Int’l Conf. on Research & Development
in Information Retrieval (SIGIR).

[16] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-seng Chua.
2017. Neural Collaborative Filtering. In Proc. of The Web Conference (WWW).

[17] Shoukang Hu, Sirui Xie, Hehui Zheng, Chunxiao Liu, Jianping Shi, Xunying
Liu, and Dahua Lin. 2020. Dsnas: Direct neural architecture search without
parameter retraining. In Proc. of the IEEE/CVF Conf. on Computer Vision and
Pattern Recognition (CVPR).

[18] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative filtering for
implicit feedback datasets. In Proc. of the IEEE Int’l Conf. on Data Mining (ICDM).

[19] Won-Seok Hwang, Juan Parc, Sang-Wook Kim, Jongwuk Lee, and Dongwon
Lee. 2016. "Told you i didn’t like it": Exploiting uninteresting items for effective
collaborative filtering. In Proc. of the IEEE Int’l Conf. on Data Engineering (ICDE).

[20] Eric Jang, Shixiang Gu, and Ben Poole. 2016. Categorical reparameterization with
gumbel-softmax. In Proc. of the Int’l Conf. on Learning Representations (ICLR).

[21] Diederik P Kingma and Max Welling. 2013. Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114 (2013).

[22] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In Proc. of the Int’l Conf. on Learning Representa-
tions (ICLR).

[23] Y. Koren, R. Bell, and C. Volinsky. 2009. Matrix Factorization Techniques for
Recommender Systems. Computer 42, 8 (2009), 30–37.

[24] Yeon-Chang Lee, Sang-Wook Kim, and Dongwon Lee. 2018. gOCCF: Graph-
Theoretic One-Class Collaborative Filtering Based on Uninteresting Items. In
Proc. of the AAAI Conf. on Artificial Intelligence (AAAI).

[25] Yanxi Li, Minjing Dong, Yunhe Wang, and Chang Xu. 2020. Neural architecture
search in a proxy validation loss landscape. In Proc. of the Int’l Conf. on Machine
Learning (ICML).

[26] Dawen Liang, Laurent Charlin, James McInerney, and David M Blei. 2016. Mod-
eling user exposure in recommendation. In Proc. of The Web Conference (WWW).

[27] Chris J Maddison, Daniel Tarlow, and Tom Minka. 2014. A* sampling. arXiv
preprint arXiv:1411.0030 (2014).

[28] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
PageRank citation ranking: Bringing order to the web. Technical Report. Stanford
InfoLab.

[29] David Keetae Park, Seungjoo Yoo, Hyojin Bahng, Jaegul Choo, and Noseong
Park. 2018. MEGAN: Mixture of Experts of Generative Adversarial Networks
for Multimodal Image Generation. In Proc. of the Int’l Joint Conf. on Artificial
Intelligence (IJCAI).

[30] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian Personalized Ranking from Implicit Feedback. In Proc. of the
Int’l Conf. on Uncertainty in Artificial Intelligence (UAI).

[31] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. Line: Large-scale information network embedding. In Proc. of The Web
Conference (WWW).

[32] Rianne van den Berg, Thomas N. Kipf, and Max Welling. 2018. Graph Convolu-
tional Matrix Completion. In Proc. of the ACM Int’l Conf. on Knowledge Discovery
and Data Mining (KDD).

[33] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol.
2008. Extracting and composing robust features with denoising autoencoders. In
Proc. of the Int’l Conf. on Machine Learning (ICML).

[34] Hao Wang, Naiyan Wang, and Dit-Yan Yeung. 2014. Collaborative Deep Learning
for Recommender Systems. In Proc. of the ACM Int’l Conf. on Knowledge Discovery
and Data Mining (KDD).

[35] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.
Neural Graph Collaborative Filtering. In Proc. of the ACM Int’l Conf. on Research
& Development in Information Retrieval (SIGIR).

[36] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming
Wu, Yuandong Tian, Peter Vajda, Yangqing Jia, and Kurt Keutzer. 2019. Fbnet:
Hardware-aware efficient convnet design via differentiable neural architecture
search. In Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition
(CVPR).

[37] Felix Wu, Tianyi Zhang, Amauri Holanda de Souza, Christopher Fifty, Tao Yu,
and Kilian Q. Weinberger. 2019. Simplifying Graph Convolutional Networks. In
Proc. of the Int’l Conf. on Machine Learning (ICML).

[38] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton,
and Jure Leskovec. 2018. Graph Convolutional Neural Networks for Web-Scale
Recommender Systems. In Proc. of the ACM Int’l Conf. on Knowledge Discovery
and Data Mining (KDD).

[39] Guijuan Zhang, Yang Liu, and Xiaoning Jin. 2020. A survey of autoencoder-based
recommender systems. Frontiers of Computer Science 14, 2 (2020), 430–450.

	Abstract
	1 Introduction
	2 Related Works
	2.1 Recommender Systems
	2.2 Gumbel-softmax

	3 Proposed Approach
	3.1 Propagation Layer
	3.2 Prediction Layer
	3.3 Training Method

	4 Experiments
	4.1 Experimental Environments
	4.2 Experimental Results
	4.3 Linearity or Non-Linearity

	5 Conclusions and Future Work
	References

