
Secure Aggregation for Federated Learning in Flower
Kwing Hei Li

University of Cambridge
Pedro Porto Buarque de Gusmão

University of Cambridge

Daniel J. Beutel
University of Cambridge

Nicholas D. Lane
University of Cambridge

ABSTRACT
Federated Learning (FL) allows parties to learn a shared prediction
model by delegating the training computation to clients and aggre-
gating all the separately trained models on the server. To prevent
private information being inferred from local models, Secure Aggre-
gation (SA) protocols are used to ensure that the server is unable to
inspect individual trained models as it aggregates them. However,
current implementations of SA in FL frameworks have limitations,
including vulnerability to client dropouts or configuration difficul-
ties.

In this paper, we present Salvia, an implementation of SA for
Python users in the Flower FL framework. Based on the SecAgg(+)
protocols for a semi-honest threat model, Salvia is robust against
client dropouts and exposes a flexible and easy-to-use API that is
compatible with various machine learning frameworks. We show
that Salvia’s experimental performance is consistentwith SecAgg(+)’s
theoretical computation and communication complexities.

CCS CONCEPTS
• Security and privacy→Distributed systems security; •Com-
puting methodologies → Machine learning approaches.

KEYWORDS
Federated Learning, Secure Aggregation, Secure Multi-party Com-
putation

ACM Reference Format:
KwingHei Li, Pedro Porto Buarque deGusmão, Daniel J. Beutel, andNicholas
D. Lane. 2021. Secure Aggregation for Federated Learning in Flower. ACM
Trans. Graph. 37, 4, Article 111 (August 2021), 7 pages. https://doi.org/10.
1145/3488659.3493776

1 INTRODUCTION
Federated Learning (FL) [19, 27] is a recent machine learning (ML)
paradigm that allows a centralized server to compute a global model
by aggregating local models trained by a set of clients. Though not
having direct access to users’ data, a malicious server can still infer
patterns of private data through inference attacks on clients’ local
models [2, 12, 28].

© 2021 Association for Computing Machinery.
0730-0301/2021/8-ART111 $15.00
https://doi.org/10.1145/3488659.3493776

Secure aggregation (SA) [6], in general, refers to any protocol
that allows a group of mutually distrustful parties, each holding
a private value, to compute an aggregate value without revealing
any information about their private value to each other. This is
especially relevant in the context of FL as we would want the server
to perform the aggregation step with SA. That way, the server
cannot access clients’ trained models and obtain information about
their private data.

Current implementations of SA in FL frameworks generally fall
under one of two main categories:

Trusted Execution Environment: The data-sensitive compu-
tation for aggregating models is delegated to an isolated processing
environment, which is supported by trusted hardware running
parallel to the operating system, e.g. the Intel Software Guard Ex-
tensions [13]. The server is only able to inspect the final result of
the computation, but not any intermediate results or inputs to the
computation performed in the isolated environment.

FL frameworks such as PySyft [23] and OpenFL [22] provide
support for this kind of SA, by using a lightweight library OS,
Graphene [8], to integrate its code with the secure hardware. How-
ever, a ML engineer may find it difficult to configure the program
files to use the hardware; Configuration steps are long and compli-
cated, and there is a lack of documentation and examples for using
these trusted hardware to perform SA in FL. In addition, various
attacks [16, 18] targeting supposedly-secure hardware have been
discovered in recent years.

Multi-party Computation: Privacy of locally-trained models
is achieved by applying techniques from cryptography, e.g. Yao’s
garbled circuits [31], homomorphic encryption [10] or secret shar-
ing [7]. Instead of relying on trusted hardware, the server operates
directly on encrypted or masked models to calculate the aggregated
result without revealing individual clients’ contributions.

FL frameworks such as Crypten [15] provide support for this
kind of SA. Though these SA methods can be designed to expose an
easy-to-use API to engineers, most implementations of multi-party
computation SA protocols cannot work around dropouts, a phenom-
enon all too common with cross-device FL. On top of that, these
protocols often incur significant computation and communication
overhead, making them infeasible in larger FL experiments.

In summary, most implementations or proposed solutions for
SA in common FL frameworks have one or more of the following
limitations that hinder their usability:

• Not trivial to configure and use. This is the case for most frame-
works, especially those that rely on trusted execution environ-
ments for SA, like PySyft and OpenFL.

• Dependent on certain trusted hardware and prone to existing or
future attacks on it. This is the case for all frameworks that use
trusted hardware for SA, like PySyft and OpenFL.

8

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3488659.3493776
https://doi.org/10.1145/3488659.3493776
https://doi.org/10.1145/3488659.3493776
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3488659.3493776&domain=pdf&date_stamp=2021-12-07

DistributedML ’21, December 7, 2021, Virtual Event, Germany K. H. Li et al.

• Inability to tolerate client dropouts. This is the case for most
frameworks that utilize multi-party computation protocols for
SA, like Crypten.

• Computation and communication overhead too significant to be
used in larger FL settings. This is the case for many proposed
multi-party computation protocols, where the protocol itself is
computationally expensive [21].
In this paper, we present Salvia [17], an implementation of SA

in the open-source FL framework Flower that aims to address each
of the above limitations by:
• Exposing a flexible and easily-configurable API that works with
Flower’s existing Strategy abstraction.

• Utilizing a multi-party computation protocol that does not re-
quire trusted hardware.

• Tolerating various percentages of client dropouts while providing
strong security guarantees.

• Using a SA algorithm that has low theoretical computation and
communication complexities.
We explain Salvia’s system design and implementation details in

section 2 and section 3, respectively. We also present experiments
that explore the algorithmic aspects of Salvia’s computation and
communication costs in section 4. Lastly, we discuss Salvia’s current
limitations and directions for future work in section 5.

2 SYSTEM DESIGN
We present Salvia’s design goals that address limitations of other
SA implementations, and summarize the assumptions made for
our implementation. We also present Flower and SecAgg(+), which
are the chosen underlying framework and SA protocol for Salvia’s
design, respectively.

2.1 Design Goals
Many frameworks provide support for SA, though there are weak-
nesses in their designs that hinder engineers from using them.
Based on these observations, we present five main design goals for
implementing Salvia:

1) Usability: Given the difficulty in using SA for some FL frame-
works, Salvia should be intuitive and easy to use.

2) Flexibility: Given the complexity of FL systems, Salvia should
provide a flexible API for users to configure parameters of the
protocol to fit their experiment/deployment goals.

3) Compatibility: Given the robust and diverse range of exist-
ing ML frameworks, Salvia should be compatible with the most
commonly-used ones.

4) Reliability: Given that dropouts of mobile devices in FL is
common, Salvia should be robust against such behaviour.

5) Efficiency: Given that real-world FL is often used on large
systems, Salvia should not incur significant communication and
computation overhead to the FL training.

2.2 Assumptions
We present the assumptions made for our implementation:

Semi-honest threat model: Parties cannot deviate from the
protocol specification. However, corrupted parties may cooperate
outside the protocol to exchange information, e.g. secret shares.

Liveness properties on the response time of clients: Af-
ter sending a request to a client, the server eventually receives a
response or detects a disconnection from the client.

Secure links between clients and server: Links are encrypted
and authenticated in advance.

2.3 Framework Selection – Flower
Flower (Figure 1) [5] is a recent FL framework that provides higher-
level abstractions enabling researchers to extend and implement
FL ideas on a reliable stack. It is one of the very few frameworks
that can support heterogeneous clients running on different ML
frameworks (including TensorFlow [1] and PyTorch [20]) and using
different programming languages. Choosing Flower as Salvia’s un-
derlying FL framework allows Salvia to be compatible with many
existing ML frameworks; Each client can freely choose which ML
framework to use for their local training pipelines independently.
Flower also has a large suite of built-in Strategies representing
state-of-the-art FL algorithms for users to freely extend, modify,
and use for their experiments. We also note that Flower did not
have any support for SA in the past, which is a significant limitation
in terms of privacy promises associated with FL.

Figure 1: Flower’s Basic Architecture (without Salvia)

2.4 Protocol Selection – SecAgg(+)
We chose the SecAgg [25] and SecAgg+ [4] protocols for semi-
honest scenarios (parties cannot deviate from the protocol) as the
base algorithm of Salvia. These multi-party computation protocols
rely on cryptographic primitives to generate private masks for
encrypting locally-trained models seen as a single vector of integer
weights. These masks cancel each other out when the encrypted
vectors are aggregated.

We use 𝑛 and 𝑙 to denote the number of clients participating in
the protocol and the model size, respectively. We use 𝑘 to denote the
number of other clients each client communicates with (including
itself) in the protocol, using the server as a relay.

Like SecAgg and SecAgg+, there are five stages in Salvia:
Stage 0 – Setup Parameters: The server sends values of the

protocol’s parameters to each client.
Stage 1 – Ask Keys: Each client generates private-public keys

and shares the public keys via the server.

9

Secure Aggregation for Federated Learning in Flower DistributedML ’21, December 7, 2021, Virtual Event, Germany

Stage 2 – Share Keys: Each client generates secret shares of its
private key and a randomly generated seed, and shares it with its 𝑘
neighbors via the server.

Stage 3 – Ask Vectors: Each client creates masks for its model
vector, generated with its private key and randomly generated seed.
It then sends the masked vector to the server.

Stage 4 –UnmaskVectors: The server asks clients to contribute
secret shares they have received in the Share Keys Stage to remove
the masks of the aggregated masked vector.

The main difference between SecAgg and SecAgg+ lies in the
value of 𝑘 . For the former, the value of 𝑘 is the same as 𝑛. As a result,
all clients consider each other to be close neighbors, and secret
shares are generated for all other clients. For the latter, 𝑘 is any
value smaller than 𝑛 (usually 𝑂 (log𝑛)). Each client thus produces
shares for its closest 𝑘 neighbors (including itself), thus producing
a (𝑘 − 1)-connected communication graph. As both protocols differ
mainly by their 𝑘 value 1 and that their underlying algorithms work
similarly, we use SecAgg(+) to represent both protocols.

The computation and communication overhead complexities of
Salvia are summarized in Table 1.

Table 1: SecAgg(+)’s Overhead

Computation Communication
Server 𝑂 (𝑛𝑘 (𝑘 + 𝑙)) 𝑂 (𝑛(𝑘 + 𝑙))
Client 𝑂 (𝑘 (𝑘 + 𝑙)) 𝑂 (𝑘 + 𝑙)

We chose these two protocols as the base algorithm of Salvia for
the following reasons:

Flexible API: SecAgg(+) lends itself easily to provide a variety
of parameters to be configured, allowing us to design a set of APIs
that is flexible to the user’s needs. Depending on the parameters
used, the protocols can tolerate various percentages of corrupt users
and dropouts, and is suitable for a wide range of FL scenarios of
various complexities. This enables us to specifically address both
our Flexibility and Reliability design goals.

Simple Configuration: The execution of these protocols for
both the server and clients do not rely on any special hardware
support. This allows much of the logic to be directly implemented
into a FL framework, decreasing the amount of configuration work
a user has to set up to use Salvia. This enables us to specifically
address our Usability design goal.

Low Overhead: SecAgg’s communication and computation
overhead is lower than other traditional multi-party computation
SA protocols. This overhead is even more significantly lowered
when SecAgg+ is used, allowing a smaller value of 𝑘 to be used
without sacrificing significant security guarantees. For example, the
server’s communication and computation complexities are linear
to 𝑛. Furthermore, the client’s communication and computation
complexities do not increase with 𝑛. This enables us to specifically
address our Efficiency design goal.

Clear Specifications: SecAgg(+) served as the inspiration for
many other SAmulti-party computation algorithms, e.g. CCESA [9],

1We acknowledge the fact that there exists an optimization that only works for SecAgg,
but not SecAgg+ in the Unmask Vectors Stage. However, since both protocols have
many features in common, we consider SecAgg+ as a generalized version of SecAgg.

TurboAgg [29] and FastSecAgg [14]. We are also not aware of other
common FL frameworks that provide SA via the SecAgg(+) pro-
tocols. Implementing SecAgg(+) in a FL framework could provide
valuable insights on the implementations of other similar protocols.

3 IMPLEMENTATION
We now describe details of implementing Salvia within Flower.

3.1 Salvia’s Architecture
Salvia’s architecture consists of three major components: Salvia-
compatible Strategies, the server-side logic (Figure 2), and the client-
side logic (Figure 3).

To use Salvia, the user must provide a Salvia-compatible Strategy
that provides the configuration parameters of the protocol when
starting the server, see subsection 3.3 and subsection 3.4 for details.

Salvia’s server-side logic provides functions that are called by
the FL Loop, the heart of Flower’s core architecture (Figure 1). In a
normal FL round, the loop asks the Strategy to produce configura-
tion parameters, sends those parameters to the clients via the RPC
server and client, receives the trained clients’ model vectors and
delegates the result aggregation to the Strategy. If the user chooses
to use SA in their FL training stage, a special sec_agg_fit function
is executed in the Loop, which first asks the Strategy to provide
parameters that customize core aspects of the SA algorithm. Unlike
a normal FL, the aggregation computation is performed within the
Loop instead of being delegated to the Strategy. Though this limits
the flexibility of the aggregation step (subsection 3.3), this is neces-
sary as the aggregation computation involves complicated logic to
remove the masks of the aggregated model vector, and should not
be exposed to the user directly.

Figure 2: Server-side Architecture with Salvia
The Salvia-compatible Strategy can be one of the standard
Strategies provided by Flower (grey), or one that is imple-
mented by the user themselves (blue).

Salvia’s client-side logic is implemented in a wrapper class of
the Flower client. Depending on the header of the messages re-
ceived, the client inspects its contents, executes the corresponding
SecAgg(+) function, and responds to the server’s request for each
stage of the SecAgg(+) protocol.

3.2 Cryptographic Primitives
A suite of functions providing cryptographic primitives are used
in both the server and client-side logic of Salvia. We opted not to
directly provide our own implementations of these cryptographic
primitives at the current stage. Instead, we make use of cryptog-
raphy modules that are widely used in the Python community to

10

DistributedML ’21, December 7, 2021, Virtual Event, Germany K. H. Li et al.

Figure 3: Client-side Architecture with Salvia

limit the risk of incorrect implementation of critical cryptography
functions. We discuss the cryptographic primitives used in Salvia.

Private-Public Key Generation: This is used to create a com-
mon seed between two clients for generating pairwise masks, and
a mutual key shared between two clients for authenticated encryp-
tion of secret shares. We used functions provided by the Elliptic
curve cryptography module in Cryptography [3] for this primitive.

Authenticated Encryption: To distribute secret shares during
the Share Keys stage, the message is encrypted by an authenticated
encryption function to guarantee confidentiality and integrity of
the message. We used functions provided by the Fernet module in
Cryptography for this primitive.

𝑡-out-of-𝑛 Secret Sharing Scheme:Dependingwhether a client
dropped out after the Ask Vectors Stage, the server asks all clients
for a secret share they received, either from the original client’s
first private key, or its private seed. If at least 𝑡 out of 𝑛 shares
are received by the server, then the secret is reconstructed [26].
Otherwise, the shares cannot give any extra information about
the secret. We used the Shamir’s secret sharing module from the
PyCryptodome [11] library for this primitive.

Random Number Generator: Each client produces a random
number that acts as the seed for generating its own private mask
of its model vector. We used the random function provided by the
Python [30] os library for this primitive.

PseudoRandomNumberGenerator:To ensure pairs of clients
generate the same pairwise masks, a pseudo-random number gen-
erator is required so that the same mask is produced among clients
when given identical seeds. We used the standard random function
in Python’s standard library for this primitive.

3.3 Federation Strategies
In Flower, users can experiment with state-of-the-art algorithms
and modify the behavior of their FL workload through the Strategy
abstraction. A Strategy customizes core aspects of the FL process,
e.g. client sampling and training parameters. Currently, Flower pro-
vides a comprehensive suite of FL Strategies, representing the wide
range of FL algorithms used by the FL community, e.g. FedAvg [19]
and FedProx [24]. In addition, users can extend or modify these
built-in Strategies, or even implement their own. We address our
Usability and Compatibility design goals by allowing Salvia to
be compatible with this Strategy abstraction, i.e. users can choose
Strategies easily and flexibly to be used in conjunction with Salvia.

For a Strategy to be Salvia-compatible, the Strategy must also
be a subclass of the SecAggStrategy abstract base class. This means
that the user needs to provide a definition of get_sec_agg_param(),

a function called by the FL Loop at the beginning of the round to
obtain a dictionary of SecAgg(+)-related parameters, see subsec-
tion 3.4. After assigning default values for undefined parameters,
the FL Loop verifies that all parameters are valid for the SecAgg(+)
protocol and passes the dictionary to clients in the Setup Parameters
Stage. Since the FL Loop automatically fills in default values for un-
defined parameters, the implementation of the get_sec_agg_param()
could be as simple as returning an empty dictionary.

Like a normal Strategy, a Salvia-compatible one provides arbi-
trary logic and parameters to customize the client sampling and
client’s model fitting process. However, as mentioned in subsec-
tion 3.1, it cannot tune the weighted aggregation process which
occurs together with the Unmask Vectors Stage in the FL Loop, see
subsection 3.5.

3.4 API Parameters
To achieve our Flexibility goal, users can specify values of Salvia-
related parameters for configuring the SA protocol via the dictio-
nary returned by the get_sec_agg_param() function of their Strategy.
These parameters are categorized into these classes:

Minimum Number of Clients: To prevent the server from
computing an aggregated vector of too few people (an aggregated
vector from a single client in the extreme case), the user can specify
the minimum number of clients required to be available by the
end of the protocol. If the number of available clients drops below
this limit, the server and clients refuse to continue the protocol for
security reasons.

The user can control this limit through one of two ways, by
providing an exact value of this limit with the parameter min_num,
or by specifying a fraction with respect to the number of clients
sampled in min_frac. If both are provided, the least restrictive of
the two is used.

Secret Sharing: The generation and reconstruction functions
of the secret sharing cryptographic primitive is controlled by two
parameters provided by the user. share_num specifies the num-
ber of shares generated for each secret, and threshold specifies the
minimum number of shares required to reconstruct the secret. Inci-
dentally, share_num also represents the value of 𝑘 , i.e. the number of
neighbors each client communicates with (including itself). There-
fore, if the value of share_num is identical to the number of clients
sampled, the protocol executed is SecAgg.

Quantization: For masks generated by cryptographic primitives
to work properly, client’s locally-trained model vector must be
quantized beforehand. This quantization step can be configured
through the clipping_range and target_range parameters. For each
real value of the trained model vector, clients first clip the value
within the range [−clipping_range, clipping_range] and then map it
to an integer between 0 and (target_range-1) uniformly. Similarly, an
inverse translation is performed on the server’s side by converting
each integer element of the quantized aggregated vector to the float
type, and mapping it to a real value in the range [−clipping_range,
clipping_range] uniformly to produce the real-valued aggregated
model vector.

Though information is lost after quantization which might af-
fect the accuracy of the FL, this procedure is compulsory for the
cryptographic primitives to work properly. A user can decrease

11

Secure Aggregation for Federated Learning in Flower DistributedML ’21, December 7, 2021, Virtual Event, Germany

the amount of information lost from quantization by providing a
sufficiently large value of target_range.

Weighted Aggregation: max_weights_factor denotes the max-
imum weight that could be applied to a client’s model vector for
weighted aggregation. Themod_range parameter specifies the mod-
ulus of the aggregation computation, and also the range of values
elements in client’s vector masks can take, see subsection 3.5.

3.5 Weighted Aggregation
Fundamentally, the SecAgg and SecAgg+ protocols only allow the
server to calculate an unweighted average of all received model
vectors. However, we often want to calculate a weighted average of
all vectors, e.g. a client who has trained on more data should have a
larger influence on the final global model than one who has trained
with fewer. This is not trivial because the server cannot perform
arbitrary operations on clients’ masked vectors without modifying
the masks themselves.

We address this issue by applying the technique described in the
appendix of [25]: Salvia’s client-side logic automatically multiplies
the client’s model vector by the amount of training data used, and
appends that factor to the front of the vector, producing a modified
vector to be masked. On the server’s side, at the end of the Unmask
Vectors Stage, the server pops the first element of the vector, repre-
senting the sum of all factors, and divides the rest of the vector by
that value to obtain a weighted average of all input vectors.

The max_weights_factor prevents clients from multiplying their
vector by too large a factor that risks ‘overflowing’ the field and
affecting the aggregation result. If a client trains its model by an
amount of data that exceeds max_weights_factor, the vector is only
multiplied by max_weights_factor instead of the actual amount of
data trained. In addition, after all Salvia-related parameters are
defined, the FL Loop checks that mod_range is at least as large as
(max_weights_factor × target_range × number of sampled clients
) so that it is impossible for the aggregated vector to exceed the
chosen modulus field.

An interesting side-effect of this design choice is that we can
execute unweighted aggregation by setting max_weights_factor to
1, as each client automatically multiplies their vector by the same
factor of value 1.

4 EVALUATION
To verify that Salvia’s behavior matches our expectations in theo-
retical complexity, we evaluate the changes of Salvia’s computation
and communication overhead with the number of clients or the
model vector size. We ran our FL simulations on a Linux work-
station with an Intel Xeon E-2136 CPU (3.30GHz), with 256 GB of
RAM. In our simulations, all entries of our local vectors were of
size 24 bits. We ignore communication latency in our simulations.
Moreover, all dropouts simulated happened after stage 2, i.e. Share
Keys Stage. This is because this would impose the most significant
overhead as the server not only needs to regenerate their secret,
but also compute their pairwise masks generated between their
neighbors.

For our simulations, share_num and threshold were set to 51
and 26, respectively. These parameters were chosen to reference
SecAgg+’s proven correctness and security guarantees, where we

can tolerate up to 5% dropouts and 5% corrupted clients with cor-
rectness holding with probability 1 − 2−20 and security holding
with probability 1− 2−40. Though not shown in our following simu-
lations, users can choose larger values for share_num and threshold
to tolerate higher percentages of dropouts and corrupted clients.

We observe that all our experiment results are consistent with the
theoretical computation and communication overhead complexities
for SecAgg(+) from Table 1, thus achieving our Efficiency design
goal.

Varying the number of clients: We measured the CPU run-
ning times of the server and a client, and the total data transfer per
client, as the number of sampled clients increases. Fixing the model
vector size to 100k entries, we plotted the results measured through
sampling 100 clients to sampling up to 500 clients in Figure 4a, 4b,
and 4c. We also measured how the performance would change after
client dropouts by repeating the experiments with a 5% dropouts.

We observe that the server’s running time increases linearly with
the number of sampled clients, which matches the expected compu-
tation cost’s complexity as the server repeats the same operations
for each available client, e.g. reconstructing secrets and generating
masks. The server’s running time increases whenever there are 5%
clients dropping out, as the server has to perform extra computa-
tions to calculate all 𝑘 pairwise masks for each client dropped out in
the Unmask Vectors Stage. On the other hand, the client’s running
time remains constant with the number of sampled clients regard-
less whether there are dropouts. This is because each client only
communicates with 𝑘 other neighbors and the actual number of
sampled clients does not affect the client-side logic. Lastly, we note
that the total data transferred per client remains unchanged as each
client is only communicating with exactly 𝑘 neighbors regardless
of the total number of clients and dropouts.

Varying vector size: We measured the CPU running times
of the server and a client, and the total data transfer per client,
as the model vector size increases. Fixing the number of sampled
clients to 100, we plotted the results measured through aggregating
a vector of size 100k entries to aggregating one of size 500k entries
in Figure 4d, 4e, and 4f. Like before, we repeated our experiments
with a 5% dropouts.

We observe that both the server’s and clients’ running times
increase linearly with the model vector size. This matches both
expected computation cost’s complexities because all computation
costs involving model vectors are linear to the vectors’ sizes, e.g.
generating masks and unmasking vectors. In addition, like before,
the server’s running time increases and the client’s running time
remains unchanged when there are 5% clients dropping out. We also
observe that the total data transferred per client increases linearly
with the model vector size as expected, because each client sends
the vector to the server for aggregation.

5 LIMITATIONS AND FUTUREWORK
We recognize a few limitations of our current work and we point
out future work to address these issues.

At this moment, the secret sharing scheme function is one of
the most significant bottlenecks on Salvia’s computation cost. In
the future, we wish to provide our own implementation of the

12

DistributedML ’21, December 7, 2021, Virtual Event, Germany K. H. Li et al.

0 100 200 300 400 500
0

200

400

600

800

1,000

Number of sampled clients

CP
U
ru
nn

in
g
tim

e
(s
)

0% dropout
5% dropout

(a) Running time of server with increasing
number of clients

0 100 200 300 400 500
0

20

40

60

80

100

Number of sampled clients

CP
U
ru
nn

in
g
tim

e
(s
)

0% dropout
5% dropout

(b) Running time of client with increasing
number of clients

0 100 200 300 400 500
0

5

10

15

20

Number of sampled clients

D
at
a
tr
an
sf
er
re
d
(M

B)

0% dropout
5% dropout

(c) Total data transfer per client with
increasing number of clients

0 1 2 3 4 5

·105

0

50

100

150

200

250

300

Model vector size

CP
U
ru
nn

in
g
tim

e
(s
)

0% dropout
5% dropout

(d) Running time of server with increasing
vector size

0 1 2 3 4 5

·105

0

50

100

150

200

250

300

Model vector size

CP
U
ru
nn

in
g
tim

e
(s
)

0% dropout
5% dropout

(e) Running time of client with increasing
vector size

0 1 2 3 4 5

·105

0

5

10

15

20

Model vector size

D
at
a
tr
an
sf
er
re
d
(M

B)

0% dropout
5% dropout

(f) Total data transfer per client with
increasing vector size

Figure 4: Experiment Results

secret sharingmechanism that is more efficient while not sacrificing
security guarantees.

In addition, our support for SA on Flower is only limited to
Python users. We aim to rewrite cryptographic functions that are
specific to the Python library, such that it can be used in FL scenarios
where clients are running under different programming languages
on their backends, e.g. C++.

Lastly, we would want to allow users to customize more aspects
of their FL experiments. For example, Salvia fixes clients’ weights
factor to be the amount of training data used. In addition, users
cannot customize the quantization step. We hope to extend our
implementation to allow users to provide arbitrary logic specifying
how clients compute the weights factor and how quantization is
performed via the Salvia-compatible Strategy.

6 CONCLUSION
We presented Salvia, an open-source implementation of SA based
on the SecAgg(+) protocols in the FL framework Flower. Leverag-
ing Flower’s ML framework-agnostic property, Salvia is compatible
with a diverse range of ML frameworks. We explained how Salvia’s
API provides a set of flexible and easily-configurable parameters
and how it works together with Flower’s Strategy abstraction. We
showed that Salvia can handle client dropouts, and its performance
is consistent with SecAgg(+)’s theoretical computation and com-
munication complexities. Future work includes improving the effi-
ciency of the secret-sharing functions, extending Salvia for clients

running in other programming languages, and providing support
for configuring the weights factor via the Strategy abstraction.

ACKNOWLEDGMENTS
This work was supported by the UK’s Engineering and Physical
Sciences Research Council (EPSRC) with grant EP/S001530/1 (the
MOA project) and the European Research Council (ERC) via the
REDIAL project (Grant Agreement ID: 805194). We would also like
to thank Prof. Mycroft and the anonymous reviewers for helpful
discussions and suggestions.

REFERENCES
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
https://www.tensorflow.org/ Software available from tensorflow.org.

[2] Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov,
Kunal Talwar, and Li Zhang. 2016. Deep Learning with Differential Privacy.
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security (Oct 2016). https://doi.org/10.1145/2976749.2978318

[3] Python Cryptographic Authority. 2021. Cryptography (version 3.4.8). https:
//github.com/pyca/cryptography

13

https://www.tensorflow.org/
https://doi.org/10.1145/2976749.2978318
https://github.com/pyca/cryptography
https://github.com/pyca/cryptography

Secure Aggregation for Federated Learning in Flower DistributedML ’21, December 7, 2021, Virtual Event, Germany

[4] James Henry Bell, Kallista A. Bonawitz, Adrià Gascón, Tancrède Lepoint, andMar-
iana Raykova. 2020. Secure Single-Server Aggregation with (Poly)Logarithmic
Overhead. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security (Virtual Event, USA) (CCS ’20). Association for Comput-
ing Machinery, New York, NY, USA, 1253–1269. https://doi.org/10.1145/3372297.
3417885

[5] Daniel J. Beutel, Taner Topal, Akhil Mathur, Xinchi Qiu, Titouan Parcollet, and
Nicholas D. Lane. 2020. Flower: A Friendly Federated Learning Research Frame-
work. CoRR abs/2007.14390 (2020). arXiv:2007.14390 https://arxiv.org/abs/2007.
14390

[6] Kallista A. Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Bren-
dan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. 2016.
Practical Secure Aggregation for Federated Learning on User-Held Data. CoRR
abs/1611.04482 (2016). arXiv:1611.04482 http://arxiv.org/abs/1611.04482

[7] Elette Boyle, Kai-Min Chung, and Rafael Pass. 2015. Large-Scale Secure Com-
putation: Multi-party Computation for (Parallel) RAM Programs. In CRYPTO.
Springer, 742–762. https://doi.org/10.1007/978-3-662-48000-7_36

[8] Chia che Tsai, Donald E. Porter, and Mona Vij. 2017. Graphene-SGX: A Practical
Library OS for Unmodified Applications on SGX. In 2017 USENIXAnnual Technical
Conference (USENIX ATC 17). USENIX Association, Santa Clara, CA, 645–658.
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tsai

[9] Beongjun Choi, Jy-yong Sohn, Dong-Jun Han, and Jaekyun Moon. 2020.
Communication-Computation Efficient Secure Aggregation for Federated Learn-
ing. CoRR abs/2012.05433 (2020). arXiv:2012.05433 https://arxiv.org/abs/2012.
05433

[10] Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah Zakarias. 2011. Multiparty
Computation from Somewhat Homomorphic Encryption. IACR Cryptology ePrint
Archive 2011 (01 2011), 535. https://doi.org/10.1007/978-3-642-32009-5_38

[11] Helder Eijs. 2020. PyCryptodome (version 3.9.9). https://github.com/Legrandin/
pycryptodome

[12] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. 2015. Model Inversion
Attacks That Exploit Confidence Information and Basic Countermeasures. In Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security (Denver, Colorado, USA) (CCS ’15). Association for Computing Machin-
ery, New York, NY, USA, 1322–1333. https://doi.org/10.1145/2810103.2813677

[13] Intel Corporation 2007. Intel 64 and IA-32 Architectures Software Developer’s
Manual - Volume 3B. Intel Corporation.

[14] Swanand Kadhe, Nived Rajaraman, Onur Ozan Koyluoglu, and Kannan Ram-
chandran. 2020. FastSecAgg: Scalable Secure Aggregation for Privacy-Preserving
Federated Learning. CoRR abs/2009.11248 (2020). arXiv:2009.11248 https:
//arxiv.org/abs/2009.11248

[15] B. Knott, S. Venkataraman, A.Y. Hannun, S. Sengupta, M. Ibrahim, and L.J.P.
van der Maaten. 2020. CrypTen: Secure Multi-Party Computation Meets Machine
Learning. In Proceedings of the NeurIPS Workshop on Privacy-Preserving Machine
Learning.

[16] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execu-
tion. In 40th IEEE Symposium on Security and Privacy (S&P’19).

[17] Kwing Hei Li. 2021. SecAgg Experimental. https://github.com/hei411/flower/
tree/secagg_experimental.

[18] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from User
Space. In 27th USENIX Security Symposium (USENIX Security 18).

[19] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise
Aguera y Arcas. 2017. Communication-Efficient Learning of Deep Networks
from Decentralized Data. In Proceedings of the 20th International Conference on
Artificial Intelligence and Statistics (Proceedings of Machine Learning Research,
Vol. 54), Aarti Singh and Jerry Zhu (Eds.). PMLR, 1273–1282. https://proceedings.
mlr.press/v54/mcmahan17a.html

[20] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban
Desmaison, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. CoRR abs/1912.01703 (2019). arXiv:1912.01703 http://arxiv.org/abs/1912.
01703

[21] Vibhor Rastogi and Suman Nath. 2010. Differentially Private Aggregation of
Distributed Time-Series with Transformation and Encryption. In Proceedings of
the 2010 ACM SIGMOD International Conference on Management of Data (Indi-
anapolis, Indiana, USA) (SIGMOD ’10). Association for Computing Machinery,
New York, NY, USA, 735–746. https://doi.org/10.1145/1807167.1807247

[22] G Anthony Reina, Alexey Gruzdev, Patrick Foley, Olga Perepelkina, Mansi
Sharma, Igor Davidyuk, Ilya Trushkin, Maksim Radionov, Aleksandr Mokrov,
Dmitry Agapov, Jason Martin, Brandon Edwards, Micah J. Sheller, Sarthak
Pati, Prakash Narayana Moorthy, Shih han Wang, Prashant Shah, and Spyri-
don Bakas. 2021. OpenFL: An open-source framework for Federated Learning.
arXiv:2105.06413 [cs.LG]

[23] Theo Ryffel, Andrew Trask, Morten Dahl, Bobby Wagner, Jason Mancuso, Daniel
Rueckert, and Jonathan Passerat-Palmbach. 2018. A generic framework for
privacy preserving deep learning. CoRR abs/1811.04017 (2018). arXiv:1811.04017
http://arxiv.org/abs/1811.04017

[24] Anit Kumar Sahu, Tian Li, Maziar Sanjabi, Manzil Zaheer, Ameet Talwalkar,
and Virginia Smith. 2018. On the Convergence of Federated Optimization in
Heterogeneous Networks. CoRR abs/1812.06127 (2018). arXiv:1812.06127 http:
//arxiv.org/abs/1812.06127

[25] Aaron Segal, Antonio Marcedone, Benjamin Kreuter, Daniel Ramage, H. Brendan
McMahan, Karn Seth, K. A. Bonawitz, Sarvar Patel, and Vladimir Ivanov. 2017.
Practical Secure Aggregation for Privacy-Preserving Machine Learning. In CCS.
https://eprint.iacr.org/2017/281.pdf

[26] Adi Shamir. 1979. How to Share a Secret. Commun. ACM 22, 11 (Nov. 1979),
612–613. https://doi.org/10.1145/359168.359176

[27] Reza Shokri and Vitaly Shmatikov. 2015. Privacy-preserving deep learning. In
2015 53rd Annual Allerton Conference on Communication, Control, and Computing
(Allerton). 909–910. https://doi.org/10.1109/ALLERTON.2015.7447103

[28] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. 2017. Mem-
bership Inference Attacks Against Machine Learning Models. In 2017 IEEE Sym-
posium on Security and Privacy (SP). 3–18. https://doi.org/10.1109/SP.2017.41

[29] Jinhyun So, Basak Guler, and Amir Salman Avestimehr. 2020. Turbo-Aggregate:
Breaking the Quadratic Aggregation Barrier in Secure Federated Learning. CoRR
abs/2002.04156 (2020). arXiv:2002.04156 https://arxiv.org/abs/2002.04156

[30] Guido Van Rossum and Fred L Drake Jr. 1995. Python reference manual. Centrum
voor Wiskunde en Informatica Amsterdam.

[31] Andrew C. Yao. 1982. Protocols for secure computations. In 23rd Annual
Symposium on Foundations of Computer Science (sfcs 1982). 160–164. https:
//doi.org/10.1109/SFCS.1982.38

14

https://doi.org/10.1145/3372297.3417885
https://doi.org/10.1145/3372297.3417885
https://arxiv.org/abs/2007.14390
https://arxiv.org/abs/2007.14390
https://arxiv.org/abs/2007.14390
https://arxiv.org/abs/1611.04482
http://arxiv.org/abs/1611.04482
https://doi.org/10.1007/978-3-662-48000-7_36
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tsai
https://arxiv.org/abs/2012.05433
https://arxiv.org/abs/2012.05433
https://arxiv.org/abs/2012.05433
https://doi.org/10.1007/978-3-642-32009-5_38
https://github.com/Legrandin/pycryptodome
https://github.com/Legrandin/pycryptodome
https://doi.org/10.1145/2810103.2813677
https://arxiv.org/abs/2009.11248
https://arxiv.org/abs/2009.11248
https://arxiv.org/abs/2009.11248
https://github.com/hei411/flower/tree/secagg_experimental
https://github.com/hei411/flower/tree/secagg_experimental
https://proceedings.mlr.press/v54/mcmahan17a.html
https://proceedings.mlr.press/v54/mcmahan17a.html
https://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1912.01703
https://doi.org/10.1145/1807167.1807247
https://arxiv.org/abs/2105.06413
https://arxiv.org/abs/1811.04017
http://arxiv.org/abs/1811.04017
https://arxiv.org/abs/1812.06127
http://arxiv.org/abs/1812.06127
http://arxiv.org/abs/1812.06127
https://eprint.iacr.org/2017/281.pdf
https://doi.org/10.1145/359168.359176
https://doi.org/10.1109/ALLERTON.2015.7447103
https://doi.org/10.1109/SP.2017.41
https://arxiv.org/abs/2002.04156
https://arxiv.org/abs/2002.04156
https://doi.org/10.1109/SFCS.1982.38
https://doi.org/10.1109/SFCS.1982.38

	Abstract
	1 Introduction
	2 System Design
	2.1 Design Goals
	2.2 Assumptions
	2.3 Framework Selection – Flower
	2.4 Protocol Selection – SecAgg(+)

	3 Implementation
	3.1 Salvia's Architecture
	3.2 Cryptographic Primitives
	3.3 Federation Strategies
	3.4 API Parameters
	3.5 Weighted Aggregation

	4 Evaluation
	5 Limitations and Future Work
	6 Conclusion
	Acknowledgments
	References

