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Abstract

Valued constraint satisfaction problems (VCSPs) are a large class
of combinatorial optimisation problems. The computational complex-
ity of VCSPs depends on the set of allowed cost functions in the in-
put. Recently, the computational complexity of all VCSPs for finite
sets of cost functions over finite domains has been classified. Many
natural optimisation problems, however, cannot be formulated as VC-
SPs over a finite domain. We initiate the systematic investigation of
infinite-domain VCSPs by studying the complexity of VCSPs for piece-
wise linear homogeneous cost functions. Such VCSPs can be solved in
polynomial time if the cost functions are improved by fully symmet-
ric fractional operations of all arities. We show this by reducing the
problem to a finite-domain VCSP which can be solved using the basic
linear program relaxation. It follows that VCSPs for submodular PLH
cost functions can be solved in polynomial time; in fact, we show that
submodular PLH functions form a maximally tractable class of PLH
cost functions.

1 Introduction

In a valued constraint satisfaction problem (VCSP) we are given a finite set
of variables, a finite set of cost functions that depend on these variables, and
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a cost u; the task is to find values for the variables such that the sum of the
cost functions is at most u. By restricting the set of possible cost functions
in the input, a great variety of computational optimisation problems can be
modelled as a valued constraint satisfaction problem. By allowing the cost
functions to evaluate to +∞, we can even model ‘crisp’ (i.e., hard) constraints
on the variable assignments, and hence the class of (classical) constraint
satisfaction problems (CSPs) is a subclass of the class of all VCSPs.

If the domain is finite, the computational complexity of VCSPs has re-
cently been classified for all sets of cost functions, assuming the Feder-Vardi
conjecture for classical CSPs [16, 15, 17]. Even more recently, two solutions
to the Feder-Vardi conjecture have been announced [23, 7]. These fascinating
achievements settle the complexity of VCSPs over finite domains.

Several outstanding combinatorial optimisation problems cannot be for-
mulated as VCSPs over a finite domain, but they can be formulated as
VCSPs over the domain Q, the set of rational numbers. One example is the
famous linear programming problem, where the task is to optimise a linear
function subject to linear inequalities. This can be modelled as a VCSP
by allowing unary linear cost functions and cost functions of higher arity
to express the crisp linear inequalities. Another example is the minimisa-
tion problem for sums of piecewise linear convex cost functions (see, e.g.,
[6]). Both of these problems can be solved in polynomial time, e.g. by the
ellipsoid method (see, e.g., [11]).

Despite the great interest in such concrete VCSPs over the rational num-
bers in the literature, VCSPs over infinite domains have not yet been studied
systematically. In order to obtain general results we need to restrict the class
of cost functions that we investigate, because without any restriction it is
already hopeless to classify the complexity of infinite-domain CSPs (any
language over a finite alphabet is polynomial-time Turing equivalent to an
infinite domain CSP [2]). One restriction that captures a variety of optimisa-
tion problems of theoretical and practical interest is the class of all piecewise
linear homogeneous cost functions over Q, defined below. We first illustrate
by an example the type of cost functions that we want to capture in our
framework.

Example 1.1. (Least correlation clustering with partial infor-

mation) We consider the following problem: we are given a graph on n
vertices such that the set of edges E is partitioned in two classes, E− and
E+. An edge (x, y) ∈ E is either in E+ or in E− depending on whether x
and y have been deemed to be similar or different. The goal is to (decide
whether it is possible to) produce a partition of the vertices, namely a clus-
tering, that agrees with the edge partition on at least l edges, where l is a
given (rational) number between 0 and |E|. That is, we want a clustering
that bounds the number of disagreements, i.e., the number of edges from
E+ between clusters plus the number of edges from E− inside clusters. This
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problem can be seen as an instance of a VCSP with variables x1, . . . , xn,
with objective function

φ(x1, . . . , xn) =
∑

(xi,xj)∈E+

f1(xi, xj) +
∑

(xi,xj)∈E−

f2(xi, xj),

and with threshold u := |E| − l, where the cost functions f1, f2 : Q2 → Q
are defined by

f1(xi, xj) =

{

0 if xi = xj

1 otherwise
, and f2(xi, xj) =

{

1 if xi = xj

0 otherwise
.

Observe that this problem cannot be modelled as a VCSP over a finite do-
main, as we do not want to bound the possible number of clusters and we
want want to allow graphs with any finite number of vertices as input. The
least correlation clustering with partial information that we defined above
is a generalisation of the well-known min-correlation clustering problem (see
[1]). As the min-correlation clustering problem is known to be NP-hard, so
is our problem. △

A partial function f : Qn → Q is called piecewise linear homogeneous
(PLH) if it is first-order definable over the structure L := (Q;<, 1, (c·)c∈Q);
being undefined at (x1, . . . , xn) ∈ Qn is interpreted as f(x1, . . . , xn) = +∞.
The structure L has quantifier elimination (see Section 3.4) and hence there
are finitely many regions such that f is a homogeneous linear polynomial in
each region; this is the motivation for the name piecewise linear homogeneous.
The cost function from Example 1.1 is PLH.

In this article we present a sampling technique to solve VCSPs for PLH
cost functions in polynomial time. The technique consists of a polynomial-
time many-one reduction from the VCSP for a finite set of PLH cost functions
to the VCSP for a sample, i.e., the same set of cost functions interpreted over
a suitable finite domain. We present this technique in two steps: first, in Sec-
tion 4 we present the reduction for the feasibility problem, i.e., the problem of
deciding whether there exists an assignment of values for the variables with
finite cost; second, in Section 5 we extend this method to solve the optimi-
sation problem, i.e., the task of deciding whether there exists an assignment
of values for the variables with cost at most equal to a given threshold. In
Section 6 we present a sufficient condition under which infinite-domain VC-
SPs that admit an efficient sampling algorithm can be solved in polynomial
time using linear programming relaxation. The condition is given in terms
of algebraic properties of the cost functions, namely the existence of fully
symmetric fractional polymorphisms of all arities. We combine the results
mentioned above to solve the VCSP for sets of PLH cost functions having
such fractional polymorphisms. In particular, we apply the combination to
show containment in P of the VCSP for submodular PLH cost functions,
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for convex PLH cost functions, and for componentwise increasing PLH cost
functions.

Submodular cost functions naturally appear in several scientific fields
such as, for example, economics, game theory, machine learning, and com-
puter vision, and play a key role in operational research and combinatorial
optimisation (see, e.g., [10]). Submodularity also plays an important role
for the computational complexity of VCSPs over finite domains, and guided
the research on VCSPs for some time (see, e.g., [8, 14]), even though this
might no longer be visible in the final classification obtained in [16, 15, 17].
The polynomial-time tractability of VCSPs for submodular PLH cost func-
tions is the main result of an extended abstract [5] which announced some
of the results presented here: we first provided a polynomial-time many one
reduction to a finite-domain VCSP with costs in the ring Q⋆ := Q((ǫ)) of
formal Laurent power series in one indeterminate. Then we used a fully com-
binatorial polynomial-time algorithm to solve the VCSP for the Q⋆-valued
submodular sample.

In the present article, starting from the same polynomial-time many-one
reduction, we provide a polynomial-time many-one reduction to a finite-
domain VCSP with values in Q and then use linear programming relaxation
to solve the finite-domain problem. The approach we present here is more
general: it can be applied to all VCSPs for PLH cost functions that have fully
symmetric fractional polymorphisms of all arities and it does not require the
existence of fully combinatorial algorithms solving the finite-domain VCSP
computed by our reduction. The concept of fractional polymorphisms comes
from universal algebra and it has been fruitfully used to characterise the
computational complexity of finite-domain VCSPs (see, e.g., [16], [21], [17],
[15]). At the end of Section 7.1, we also show that submodularity defines
a maximal tractable class of PLH valued structures: informally, adding any
cost function that is not submodular leads to an NP-hard VCSP. Section 8
closes with some problems and challenges for future research.

2 Valued Constraint Satisfaction Problems

A valued structure Γ (over D) consists of

• a signature τ consisting of function symbols f , each equipped with an
arity ar(f),

• a set D = dom(Γ) (the domain),

• for each f ∈ τ a cost function, i.e., a function fΓ : Dar(f) → Q∪{+∞}.
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Here, +∞ is an extra element with the expected properties that for all
c ∈ Q ∪ {+∞}

(+∞) + c = c+ (+∞) = +∞

and c < +∞ iff c ∈ Q.

Let Γ be a valued structure with a finite signature τ . The valued constraint
satisfaction problem for Γ, denoted by VCSP(Γ), is the following computa-
tional problem.

Definition 2.1. An instance I of VCSP(Γ) consists of

• a finite set of variables VI ,

• an expression φI of the form

m∑

i=1

fi(x
i
1, . . . , x

i
ar(fi)

)

where f1, . . . , fm ∈ τ and all the xij are variables from VI , and

• a value uI ∈ Q.

The task is to decide whether there exists an assignment α : VI → dom(Γ),
whose cost, defined as

m∑

i=1

fΓi (α(x
i
1), . . . , α(x

i
ar(fi)

))

is finite, and if so, whether there is one whose cost is at most uI .

Note that, given a valued structure Γ, if the signature τ of Γ is finite, it is
inessential for the computational complexity of VCSP(Γ) how the function
symbols in φI are represented.

The function from φΓI : dom(Γ)|VI | → Q ∪ {+∞} described by the ex-
pression φI is also called the objective function. The problem of deciding
whether there exists an assignment α : V → dom(Γ) with finite cost is called
the feasibility problem, which can also be modelled as a (classical) constraint
satisfaction problem (cf. Section 3.2). The choice of defining the VCSP as
a decision problem and not as an optimisation problem as it is common for
VCSPs over finite domains is motivated by two major issues that do not oc-
cur in the finite-domain case: first, in the infinite-domain setting one needs
to capture the difference between a proper minimum and an infimum value
that the cost of the assignment can be arbitrarily close to but never reach;
second, our definition allows to model the case in which the infimum is −∞,
i.e., when there are assignments for the variables of arbitrarily small cost.
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By a finite-valued structure we refer to a valued structure whose cost
functions are finite-valued, i.e., they assume a finite value on every point
with rational coordinates. The VCSP for a finite-valued structure is merely
an optimisation problem and it does not involve any associated feasibility
problem, i.e., the problem asking wheather there is an assignment with finite
cost.

VCSPs have been studied intensively when D = dom(Γ) is finite, and as
mentioned in the introduction, in this case a complete classification of the
computational complexity of VCSP(Γ) has been obtained recently. However,
many well-known optimisation problems can only be formulated when we
allow infinite domains D.

Example 2.2. Let Γ be the valued structure with domain D := Q and the
signature τ = {R+, R1,≤, id} where

• R+ is ternary, and

RΓ
+(x, y, z) =

{

0 if x+ y = z

+∞ otherwise;

• R1 is unary and

RΓ
1 (x) :=

{

0 if x = 1

+∞ otherwise;

• ≤ is binary and

≤Γ (x, y) :=

{

0 if x ≤ y

+∞ otherwise;

• id is unary and
idΓ(x) := x.

Then instances of VCSP(Γ) can be viewed as instances of the linear pro-
gram feasibility problem, i.e., the problem of deciding whether there exists
a solution satisfying finitely many linear inequality constraints. △

We give another example to illustrate the flexibility of the VCSP frame-
work for formulating optimisation problems; the valued structure in this
example contains non-convex cost functions, but, as we will see later, can be
solved in polynomial time.

Example 2.3. Let Γ be the valued structure with signature τ = {g1, g2, g3}
and the cost functions

• gΓ1 : Q → Q defined by g1(x) = −x,
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• gΓ2 : Q
2 → Q defined by g2(x, y) := min(x,−y), and

• gΓ3 : Q
3 → Q defined by g3(x, y, z) := max(x, y, z).

Two examples of instances of VCSP(Γ) are

g1(x) + g1(y) + g1(z) + g2(x, y)

+g3(x, y, z) + g3(x, x, x) + g3(x, x, x) (1)

and g1(x) + g1(y) + g1(z)

+g3(x, y, z) + g3(x, x, y) + g3(y, z, z) (2)

We can make the cost function described by the expression in (1) arbitrarily
small by fixing x to 0 and choosing y and z sufficiently large. On the other
hand, the minimum for the cost function in (2) is 0, obtained by setting
x, y, z to 0. Note that g1 and g3 are convex functions, but g2 is not. △

3 Cost Functions over the Rationals

The class of all valued structures over arbitrary infinite domains is too large
to allow for complete complexity classifications, so we have to restrict our
focus to subclasses. In this section we describe natural and large classes of
cost functions over the domain D = Q, the rational numbers. These classes
are most naturally introduced using first-order definability, so we briefly fix
the necessary logic concepts.

3.1 Logic Preliminaries

We fix some standard logic terminology; see, e.g., [12]. A signature is a
set τ of function and relation symbols. Each function symbol f and each
relation symbol R is equipped with an arity ar(f), ar(R) ∈ N. A τ -structure
A consists of

• a set A = dom(A), called the domain of A, whose elements are called
the elements of the τ -structure;

• a relation RA ⊆ Aar(R) for each relation symbol R ∈ τ ;

• a function fA : Aar(f) → A for each function symbol f ∈ τ .

Function symbols of arity 0 are allowed and are called constant symbols. We
give two examples of structures that play an important role in this article.

Example 3.1. Let S be the structure with domain Q and signature σ :=
{+, 1,≤} where

• + is a binary function symbol that denotes the usual addition over Q,

7



• 1 is a constant symbol that denotes 1 ∈ Q, and

• ≤ is a binary relation symbol that denotes the usual linear order of the
rationals. △

Example 3.2. Let L be the structure with domain Q and (countably infi-
nite) signature τ0 := {<, 1} ∪ {c·}c∈Q where

• < is a relation symbol of arity 2 and <L is the strict linear order of Q,

• 1 is a constant symbol and 1L := 1 ∈ Q, and

• c· is a unary function symbol for every c ∈ Q such that (c·)L is the
function x 7→ cx (multiplication by c). △

A relational structure (or structure with relational signature) is a struc-
ture whose signature contains only relation symbols. A structure (or a valued
structure) is called finite if its domain is finite.

3.2 Constraint Satisfaction Problems

Let Γ be a valued structure with signature τ . The question whether an
instance of VCSP(Γ) is feasible, that is, has an assignment with finite cost,
can be viewed as a (classical) constraint satisfaction problem. Formally,
the constraint satisfaction problem for a structure A with a finite relational
signature τ is the following computational problem, denoted by CSP(A):

• the input is a finite conjunction ψ of atomic τ -formulas, and

• the question is whether ψ is satisfiable in A.

We can associate to Γ the following relational structure Feas(Γ): for every
function symbol f of arity n from τ the signature of Feas(Γ) contains a rela-
tion symbol Rf of arity n such that RFeas(Γ)

f = dom(fΓ). Every polynomial-
time algorithm for VCSP(Γ) in particular has to solve CSP(Feas(Γ)). In
fact, an instance φ of VCSP(Γ) can be translated into an instance ψ of
CSP(Feas(Γ)) by replacing subexpressions of the form f(x1, . . . , xn) in φ by
Rf (x1, . . . , xn) and by replacing + by ∧. It is easy to see that φ is a feasible
instance of VCSP(Γ) if, and only if, ψ is satisfiable in Feas(Γ).

3.3 Quantifier Elimination

We adopt the usual definition of first-order logic. A formula is atomic if it
does not contain logical symbols (connectives or quantifiers). By convention,
we have two special atomic formulas, ⊤ and ⊥, to denote truth and falsity.

Let τ be a signature. We say that a τ -structure A has quantifier elimina-
tion if every first-order τ -formula is equivalent to a quantifier-free τ -formula
over A.
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Theorem 3.3 ([9], Section 3, Theorem 1). The structure S from Exam-
ple 3.1 has quantifier elimination.

Theorem 3.4. The structure L from Example 3.2 has quantifier elimination.

To prove Theorem 3.4 it suffices to prove the following lemma.

Lemma 3.5. For every quantifier-free τ0-formula ϕ there exists a quantifier-
free τ0-formula ψ such that ∃x.ϕ is equivalent to ψ over L.

Proof. Observe that every atomic τ0-formula φ has at most two variables:

• if φ has no variables, then it is equivalent to ⊤ or ⊥,

• if φ has only one variable, say x, then it is equivalent to c·xσ d·1 or
to d·1σ c·x for σ ∈ {<,=} and c, d ∈ Q. Moreover, if c = 0 then φ is
equivalent to a formula without variables, and otherwise φ is equivalent
to xσ d

c
·1 or to d

c
·1σ x for σ ∈ {<,=}, which we abbreviate by the more

common x < d
c
, x = d

c
, and d

c
< x, respectively.

• if φ has two variables, say x and y, then φ is equivalent to c·xσ d·y or
c·xσ d·y for σ ∈ {<,=}. Moreover, if c = 0 or d = 0 then the formula
φ is equivalent to a formula with at most one variable, and otherwise
φ is equivalent to xσ d

c
·y or to d

c
·y σ x.

We define ψ in five steps.

1. Rewrite ϕ, using De Morgan’s laws, in such a way that all the negations
are applied to atomic formulas.

2. Replace

• ¬(s = t) by s < t ∨ t < s, and
• ¬(s < t) by t < s ∨ s = t,

where s and t are τ0-terms.

3. Write ϕ in disjunctive normal form in such a way that each of the
clauses is a conjunction of non-negated atomic τ0-formulas (this can
be done by distributivity).

4. Observe that ∃x
∨

i

∧

j χi,j, where the χi,j are atomic τ0-formulas, is
equivalent to

∨

i ∃x
∧

j χi,j. Therefore, it is sufficient to prove the
lemma for ϕ =

∧

j χj where the χj are atomic τ0-formulas. As ex-
plained above, we can assume without loss of generality that the χj

are of the form ⊤, ⊥, xσ c, c σ x, or xσ cy, for c ∈ Q and σ ∈ {<,=}.
If χj equals ⊥, then ϕ is equivalent to ⊥ and there is nothing to be
shown. If χj equals ⊤ then it can simply be removed from ϕ. If χj

equals x = c or x = cy then replace every occurrence of x by c · 1 or
by c · y, respectively. Then ϕ does not contain the variable x anymore
and thus ∃x.ϕ is equivalent to ϕ.

9



5. We are left with the case that all atomic τ0-formulas involving x are
(strict) inequalities, that is, ϕ =

∧

i χi ∧
∧

i χ
′
i ∧
∧

i χ
′′
l , where

• the χi are atomic formulas not containing x,

• the χ′
i are atomic formulas of the form x > ui,

• the χ′′
i are atomic formulas of the form x < vi.

Then ∃x.ϕ is equivalent to
∧

i χi ∧
∧

i,j(ui < vj).

Each step of this procedure preserves the satisfying assignments for ϕ and the
resulting formula is in the required form; this is obvious for all but the last
step, and for the last step follows from the correctness of Fourier-Motzkin
elimination for systems of linear inequalities (see, e.g., [19], Section 12.2).
Therefore, the procedure is correct.

(of Theorem 3.4). Let ϕ be a τ0-formula. We prove that it is equivalent to
a quantifier-free τ0-formula by induction on the number n of quantifiers of
ϕ. For n = 1 we have two cases:

• If ϕ is of the form ∃x.ϕ′ (with ϕ′ quantifier-free) then, by Lemma 3.5,
it is equivalent to a quantifier-free τ0-formula ψ.

• If ϕ is of the form ∀x.ϕ′ (with ϕ′ quantifier-free), then it is equivalent
to ¬∃x.¬ϕ′. By Lemma 3.5, ∃x.¬ϕ′ is equivalent to a quantifier-free τ0-
formula ψ. Therefore, ϕ is equivalent to the quantifier-free τ0-formula
¬ψ.

Now suppose that ϕ is of the form Q1x1Q2x2 · · ·Qnxn.ϕ
′ for n ≥ 2 and

Q1, . . . , Qn ∈ {∀,∃}, and suppose that the statement is true for τ0-formulas
with at most n− 1 quantifiers. In particular, Q2x2 · · ·Qnxn.ϕ

′ is equivalent
to a quantifier -free τ0-formula ψ. Therefore, ϕ is equivalent to Q1x1.ψ, that
is, a τ0-formula with one quantifier that is equivalent to a quantifier-free
τ0-formula, again by the inductive hypothesis.

3.4 Piecewise Linear Homogeneous Functions

A partial function of arity n ∈ N over a set A is a function

f : dom(f) → A for some dom(f) ⊆ An .

Let A be a τ -structure. A partial function over A is called first-order definable
over A if there exists a first-order τ -formula φ(x0, x1, . . . , xn) such that for
all a1, . . . , an ∈ A

• if (a1, . . . , an) ∈ dom(f) then A |= φ(a0, a1, . . . , an) if, and only if,
a0 = f(a1, . . . , an), and
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• if f(a1, . . . , an) /∈ dom(f) then there is no a0 ∈ A such that
A |= φ(a0, a1, . . . , an).

In the following, we consider cost functions over Q, which will be func-
tions from Qn → Q∪{+∞}. It is sometimes convenient to view a cost
function as a partial function over Q. If t ∈ Qar(f) \dom(f) we interpret this
as f(t) = +∞.

Definition 3.6. A cost function f : Qn → Q∪{+∞} (viewed as a partial
function) is called

• piecewise linear (PL) if it is first-order definable over S, piecewise
linear functions are sometimes called semilinear functions;

• piecewise linear homogeneous (PLH) if it is first-order definable over L
(viewed as a partial function).

A valued structure Γ is called piecewise linear (piecewise linear homogeneous)
if every cost function in Γ is PL (or PLH, respectively).

Definition 3.7. A relational structure A with domain Q and relational
signature τ is called piecewise linear homogeneous (PLH) if, for all R ∈ τ ,
the interpretation RA is PLH.

Clearly, if Γ is a PLH valued structure then Feas(Γ) is a PLH relational
structure. Every PLH cost function is also PL, since all functions of the
structure L are clearly first-order definable in S. The cost functions in the
valued structure from Example 2.3 are PLH. The cost functions in the valued
structure from Example 2.2 are PL, but not PLH.

We would like to point out that already the class of PLH cost functions
is very large. In particular, it can be seen as a generalisation of the class
of all cost functions over a finite domain. Indeed, every VCSP for a val-
ued structure over a finite domain is also a VCSP for a valued structure
that is PLH. To see this, suppose that f : Dd → Q∪{+∞} is such a cost
function, identifying D with a subset of Q in an arbitrary way. Then the
function f ′ : Qd → Q∪{+∞} defined by f ′(x1, . . . , xn) := f(x1, . . . , xn) if
x1, . . . , xn ∈ D, and f ′(x1, . . . , xn) = +∞ otherwise, is PLH.

In the following, we prove that the VCSP for a PLH valued structure
with finite signature is polynomial-time many-one equivalent to the VCSP
for a valued structure over a suitable finite domain. This will be done in two
steps: firstly we will show the reduction for the feasibility problem, i.e., we
will prove such a reduction for PLH relational structure; secondly we will
extend this method to solve the optimisation problem, i.e., to find a solution
of cost at most equal to the threshold given in the instance.
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4 Efficiently Sampling a PLH Relational Structure

Throughout this section, we fix a PLH relational structure A with finite
signature τ . We present an efficient sampling algorithm for A. Before defin-
ing the notion of sampling algorithm, we recall a well-known concept from
universal algebra.

Definition 4.1. Let A and B be (relational) structures with the same sig-
nature τ with domain A and B respectively. A homomorphism from A to B

is a function h : A→ B such that for every relation symbol R ∈ τ and tuple
a ∈ Dar(R)

RA(a) implies RB (g(a)) ,

where the function g is applied componentwise. We say that A is homomor-
phic to B and write A → B to indicate the existence of a homomorphism
from A to B.

We now formally introduce the notion of a sampling algorithm for a
relational structure.

Definition 4.2. Let C be a structure with finite relational signature τ . A
sampling algorithm for C takes as input a positive integer d and computes a
finite-domain structure D homomorphic to C such that every finite conjunc-
tion of atomic τ -formulas having at most d distinct free variables is satisfiable
in C if, and only if, it is satisfiable in D. A sampling algorithm is called ef-
ficient if its running time is bounded by a polynomial in d. We refer to the
output of a sampling algorithm by calling it the sample.

The definition above is a slight re-formulation of Definition 2.2 in [3], and
it is easily seen to give the same results using the same proofs. We decided
to bound the number of variables instead of the size of the conjunction of
atomic τ -formulas because this is more natural in our context. These two
quantities are polynomially related by the assumption that the signature τ
is finite.

We give a formal definition of the numerical data in A, we will need
it later on. By quantifier elimination (Theorem 3.4), each of the finitely
many relations RA for R ∈ τ has a a quantifier-free τ0-formula φR over L.
As in the proof of Theorem 3.4, we can assume that all formulas φR are
positive (namely contain no negations). From now on, we will fix one such
representation. Let At(φR) denote the set of atomic subformulas of φR.
Each atomic τ0-formula is of the form t1

<
= t2, where t1 and t2 are terms. We

call an atomic formula trivial if it is equivalent to ⊥ or ⊤, and non-trivial
otherwise. As in the proof of Theorem 3.4, we make the assumption that
atomic formulas are of the form ⊥ or ⊤ if they are trivial, and otherwise of
the form either c1 ·1<

=xi, or xi <=c2 ·1, or c1 ·xi <=c2 ·xj with constants c1 and c2
not both negative and where function symbols ci· are never composed. This

12



assumption can be made without loss of generality (again, see the proof of
Theorem 3.4).

Given a set of non-trivial atomic formulas Φ, we define

H(Φ) =

{
c1
c2

∣
∣
∣
∣
t1 = c1 · xi, t2 = c2 · xj, for some t1

<

=
t2 in Φ

}

K(Φ) =

{
c2
c1

∣
∣
∣
∣
t1 = c1 · xi, t2 = c2 · 1, for some t1

<

=
t2 in Φ

}

∪

{
c1
c2

∣
∣
∣
∣
t1 = c1 · 1, t2 = c2 · xj, for some t1

<

=
t2 in Φ

}

The efficient sampling algorithm for A works in two steps. First, the
problem CSP(A) is transferred to the equivalent CSP for a suitable structure
A
⋆ that is an extension of an expansion (or an expansion of an extension)

of A, and second we provide an efficient sampling algorithm for A⋆, which is
also an efficient sampling algorithm for A.

Definition 4.3. The ordered Q-vector space Q⋆ is defined as

Q⋆ = {x+ yǫ | x, y ∈ Q}

where ǫ is merely a formal device, namely x+ yǫ represents the pair (x, y).
We define addition and multiplication by a scalar componentwise

(x1 + y1ǫ) + (x2 + y2ǫ) = (x1 + x2) + (y1 + y2)ǫ

c · (x+ yǫ) = (cx) + (cy)ǫ.

Clearly, Q is embedded in Q⋆, by mapping every rational number x into
x + 0ǫ. The order is induced by Q extended with 0 < ǫ ≪ 1, namely the
lexicographical order of the components x and y

(x1 + y1ǫ) < (x2 + y2ǫ) iff

{

x1 < x2 or

x1 = x2 ∧ y1 < y2.

Any τ0-formula has an obvious interpretation in any ordered Q-vector
space extending Q, and, in particular, in Q⋆.

Theorem 4.4 ([22], Chapter 1, Remark 7.9). The first-order theory of or-
dered Q-vector spaces in the signature τ0 ∪ {+,−} is complete.

Let A
⋆ be the τ -structure obtained by interpreting each relation symbol

R ∈ τ by the relation RA⋆
defined on Q⋆ by the same (quantifier-free) τ0-

formula φR that defines RA over Q (the choice of equivalent τ0-formulas is
immaterial). Theorem 4.4 has the following immediate consequence.

13



Corollary 4.5. Let φ be a τ -formula. Then φ is satisfiable in A if, and only
if, φ is satisfiable in A

⋆.

Our goal is to prove the following theorem.

Theorem 4.6. There is an efficient sampling algorithm for A
⋆.

Before giving the proof of Theorem 4.6 we present some preliminary
lemmas in which we explicitly define the domain of the wanted sample. Let
φ be an atomic τ0-formula. We write φ̄ for the formula t1 ≤ t2 if φ is of the
form t1 < t2, and for the formula t1 = t2 if φ is of the form t1 = t2. We call
φ̄ the closure of the formula φ. First, we investigate the positive solutions to
the closures of finitely many atomic τ0-formulas. Then, in a second step that
builds on the first one, we investigate the solutions to finitely many atomic
τ0-formulas.

Lemma 4.7. Let Φ be a finite set of atomic τ0-formulas having free vari-
ables in {v1, . . . , vd}. Assume that Φ̄ :=

⋃

φ∈Φ φ̄ has a simultaneous solu-

tion (x1, . . . , xd) ∈ Q>0 in positive numbers. Then Φ̄ has a solution taking
values in the set CΦ,d ⊂ Q defined as follows

CΦ,d =

{

|k|
s∏

i=1

|hi|
ei

∣
∣
∣
∣
∣
k ∈ K(Φ), e1, . . . , es ∈ Z,

s∑

r=1

|er| < d

}

where h1, . . . , hs is an enumeration of the (finitely many) elements of H(Φ).

Proof. Let γ ≤ β be maximal such that there are Ψ1,Ψ2,Ψ3 with

Φ̄ = {s1 = s′1, . . . , sα = s′α} ∪ {t1 ≤ t′1, . . . , tβ ≤ t′β}

Ψ1 = {s1 = s′1, . . . , sα = s′α}

Ψ2 = {t1 = t′1, . . . , tγ = t′γ}

Ψ3 = {tγ+1 ≤ t′γ+1, . . . , tβ ≤ t′β},

where si, s′i, tj , t
′
j are τ0-terms for all i, j, and Ψ1 ∪ Ψ2 ∪ Ψ3 is satisfiable

in positive numbers. Clearly the space of positive solutions of Ψ1 ∪ Ψ2

must be contained in that of Ψ3. In fact, by construction, they intersect:
consider any straight line segment connecting a solution of Ψ1 ∪ Ψ2 ∪ Ψ3

and a solution of Ψ1 ∪Ψ2 not satisfying Ψ3, on this segment there must be
a solution of Ψ1 ∪ Ψ2 ∪ Ψ3 lying on the boundary of one of the inequalities
of Ψ3, contradicting the maximality of γ. By the last observation it suffices
to prove that there is a solution of Ψ1 ∪ Ψ2 taking values in CΦ,d. Put an
edge between two variables xi and xj when they appear in the same formula
of Ψ1 ∪Ψ2. For each connected component of the graph thus defined, either
it contains at least one variable vi such that there is a constraint of the
form h ·vi = k ·1, or all constraints are of the form h ·vi = h′ ·vj . In the first

14



case assign vi =
k
h
, in the second assign one of the variables vi arbitrarily

to 1, then, in any case, since the diameter of the connected component is
smaller than d, all variables in this connected component are forced to take
values in CΦ,d by simple propagation of vi.

Lemma 4.8. Let Φ be a finite set of atomic τ0-formulas having free variables
in {v1, . . . , vd}. Assume that the formulas in Φ are simultaneously satisfiable
in Q. Then they are simultaneously satisfiable in

DΦ,d := −C⋆
Φ,d ∪ {0} ∪ C⋆

Φ,d ⊆ Q⋆

where
C⋆
Φ,d = {x+ nxǫ | x ∈ CΦ,d, n ∈ Z, −d ≤ n ≤ d} ⊆ Q⋆

CΦ,d is defined as in Lemma 4.7, and −C⋆
Φ,d denotes the set {−x | x ∈ C⋆

Φ,d}.

Proof. First we fix a solution vi = ai for i = 1 . . . d of Φ. In general, some of
the values ai will be positive, some 0, and some negative: we look for a new
solution z1, . . . , zd ∈ DΦ,d such that zi is positive, respectively 0 or negative,
if and only if ai is. To this aim we rewrite the formulas in Φ replacing each
variable vi with either yi, or 0 (formally 0 · 1), or −yi (formally −1 · yi).
We call Φ+ the new set of formulas, which, by construction, is satisfiable
in positive numbers yi = bi. To establish the lemma, it suffices to find a
solution of Φ+ taking values in C⋆

Φ,d.
By Lemma 4.7, we have an assignment yi = ci of values c1, . . . , cd in

CΦ+,d ⊆ CΦ,d that satisfies simultaneously all formulas φ̄ with φ ∈ Φ+. Let
n1, . . . , nd ∈ {n ∈ Z | −d ≤ n ≤ d} be such that for all i, j

ni < nj if and only if bi
ci
<

bj
cj

0 < ni if and only if 1 < bi
ci

ni < 0 if and only if bi
ci
< 1.

Such numbers exist: simply sort the set {1}∪
{
bi
ci

| i = 1, . . . , d
}

and consider
the positions in the sorted sequence counting from that of 1. We claim that
the assignment yi = ci + niciǫ ∈ Q⋆ satisfies all formulas of Φ+. To check
this, we consider the different cases for atomic formulas

• k · yi < h · yj: if kci < hcj this is obviously satisfied. Otherwise
kci = hcj , in this case k and h are positive and the constraint

kci + kniciǫ < hcj + hnjcjǫ

is equivalent to ni < nj. This, in turn, is equivalent by construction
to bi

ci
<

bj
cj

which we get by observing that bihcj = bikci < bjhci.
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• k · yi = h · yj: obviously kbi = hbj and kci = hcj , therefore bi
ci

=
bj
cj

,
and, as a consequence, also ni = nj from which the statement.

• k · 1 < h · yj: similarly to the first case, if k < hcj this is immediate.
Otherwise k = hcj , so k and h are positive, the constraint

k · 1 < hcj + hnjcjǫ

is equivalent to 0 < nj, in other words 1 <
bj
cj

, which follows observing
that hcj = k < hbj .

• k · yi < h · 1: as the case above.

• k · 1 = h · yj: obviously k · 1 = hbj = hcj , therefore bj
cj

= 1, so nj = 0

and the case follows.

• k · yi = h · 1: as the case above.

of Theorem 4.6. On input d, the sampling algorithm produces the finite sub-
structure A⋆

At(τ),d of A⋆ having domainDAt(τ),d where At(τ) :=
⋃

R∈τ At(φR),
that is, the τ -structure with domain DAt(τ),d in which each relation sym-
bol R ∈ τ denotes the restriction of RA⋆

to DAt(τ),d. It is immediate to
observe that this structure can be computed in polynomial time in d. Since
A
⋆
At(τ),d is a substructure of A⋆, it is clear that if an instance is satisfiable

in A
⋆
At(τ),d, then it is a fortiori satisfiable in A

⋆.
The vice versa follows from Lemma 4.8. In fact, consider a set Ψ of

atomic τ -formulas having free variables x1, . . . , xd. Assume that Ψ is satis-
fied in A

⋆ by one assignment xi = ai for i ∈ {1, . . . , d}. For each R ∈ Ψ let
ΦR ⊂ At(φR) be the set of atomic subformulas of φR which are satisfied by
our assignment ai. Clearly the atomic τ0-formulas Φ :=

⋃

R∈Ψ ΦR are simul-
taneously satisfiable. Remembering that the formulas φR have no negations
by construction, it is obvious that any simultaneous solution of Φ must also
satisfy Ψ. By Lemma 4.8, Φ has a solution in the set DΦ,d defined therein.
We can observe that CΦ,d ⊂ CAt(τ),d, hence DΦ,d ⊂ DAt(τ),d and the claim
follows.

From Theorem 4.6 it easily follows that there is an efficient sampling
algorithm for A.

Corollary 4.9. There exists an efficient sampling algorithm for A.

Proof. On input d, the sampling algorithm produces the τ0-reduct of the
sample for A

⋆ (on input d) described in the proof of Theorem 4.6. By
Corollary 4.5 and Theorem 4.6, this is an efficient sampling algorithm for
A.
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Definition 4.10. A k-ary operation g : Qk → Q is called a polymorphism
of A if for all R ∈ τ we have that g(x1, . . . , xk) ∈ RA for all x1, . . . , xk ∈ RA,
namely RA is preserved by g (where g is applied component-wise).

As an application of Theorem 4.6 we prove the following result:

Theorem 4.11. Let A be a PLH relational structure that is preserved by max.
Then CSP(A) is polynomial-time solvable.

This result is incomparable to known results about semilinear relations
preserved by max [4]. In particular, there, the weaker bound NP∩co-NP has
been shown for a larger class, and polynomial tractability only for a smaller
class (which does not contain many PLH relations preserved by max, for
instance x ≥ max(y, z)). To prove Theorem 4.11 we use the notion of totally
symmetric polymorphism and a result from [3].

Definition 4.12. A k-ary operation g is totally symmetric if

g(x1, . . . , xk) = g(y1, . . . , yk) whenever {x1, . . . , xk} = {y1, . . . , yk}.

Example 4.13. For every k ≥ 1, the k-ary totally symmetric operation
max(k) defined by (x1, . . . , xk) 7→ max(x1, . . . , xk) is totally symmetric. △

Theorem 4.14 ([3], Theorem 2.5). Let A be a structure over a finite rela-
tional signature with totally symmetric polymorphisms of all arities. If there
exists an efficient sampling algorithm for A then CSP(A) is in P.

of Theorem 4.11. Since A is preserved by max, for every k ≥ 1, the k-ary
totally symmetric operation max(k) (see Example 4.13) preserves A. To see
this, observe that for every x1, . . . , xk ∈ Q, it holds that

max(k)(x1, . . . , xk) = max(x1,max(x2, . . . ,max(xk−1, xk) . . .)).

Therefore, as by Corollary 4.9 there exists an efficient sampling algorithm for
A, from Theorem 4.14 it follows that CSP(A) can be solved in polynomial
time.

5 Efficient Sampling for PLH Valued Structures

In this section we introduce the notion of a sampling algorithm for valued
structures and we exhibit an efficient sampling algorithm for PLH valued
structures. Analogously to the case of relational structures, before defining
the notion of a sampling algorithm for valued structures, we define a gener-
alisation of the universal algebraic concept of a homomorphism to the valued
constraint satisfaction framework.
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Definition 5.1. Let ∆ and Γ be valued structures with the same signature
τ with domain D and C respectively. Let CD denote the set of all functions
g : D → C. A fractional homomorphism [20] from ∆ to Γ is a function
ω : CD → Q≥0 with finite support, Supp(ω) := {g ∈ CD | ω(g) > 0}, such
that

∑

g∈CD ω(g) = 1, and such that for every function symbol f ∈ τ and
tuple a ∈ Dar(f), it holds that

∑

g∈CD

ω(g)fΓ(g(a)) ≤ f∆(a),

where the functions g are applied componentwise. We say that ∆ is frac-
tionally homomorphic to Γ and write ∆ →f Γ to indicate the existence of a
fractional homomorphism from ∆ to Γ.

Let Γ be a valued structure with domain C and signature τ . A valued
substructure ∆ of Γ is a valued structure with domain D ⊆ C, with signature
τ , and such that the interpretation of a function symbol f from τ is the
restriction of fΓ to the domain D. Trivially, if Γ is a valued structure and
∆ is a valued substructure of Γ, then ∆ is fractionally homomorphic to Γ.

Definition 5.2. Let Γ be a valued structure with domain C and finite sig-
nature τ . A sampling algorithm for Γ takes as input a positive integer d
and computes a finite-domain valued τ -structure ∆ fractionally homomor-
phic to Γ such that, for every finite sum φ of τ -terms having at most d
distinct variables, V = {x1, . . . , xd}, and every u ∈ Q, there exists a solu-
tion h : V → C with φΓ(h(x1), . . . , h(xd)) ≤ u if, and only if, there exists a
solution h′ : V → D with φ∆(h′(x1), . . . , h′(xd)) ≤ u. A sampling algorithm
is called efficient if its running time is bounded by a polynomial in d.

The valued finite structure computed by a sampling algorithm is called
a sample.

Remark 5.3. Observe that the output ∆d of a sampling algorithm for a
given valued structure Γ with finite signature τ does not depend on the
rational threshold u. Therefore, the given sampling algorithm has the prop-
erty that given a finite sum φ of function symbols from τ with variables
V := {x1, . . . , xn}, it holds that

inf
h : V→dom(Γ)

φΓ(h(x1), . . . , h(xn)) = inf
h′ : V→dom(∆d)

φ∆d(h′(x1), . . . , h
′(xn)).

5.1 The Ring of Formal Laurent Power Series

In the present section we extend the method developed in Section 4 to the
treatment of VCSPs. To better highlight the analogy with Section 4, so
that the reader already familiar with it may quickly get an intuition of the
arguments here, we use identical notation to represent corresponding objects.
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This choice has the drawback that some symbols, notably Q⋆, need to be
re-defined (the new Q⋆ will contain the old one). In this section, we will
sometimes skip details that can be borrowed unchanged from Section 4.

Definition 5.4. Let Q⋆ denote the ring Q((ǫ)) of formal Laurent power
series in the indeterminate ǫ, that is, Q⋆ is the set of formal expressions

+∞∑

i=−∞

aiǫ
i

where ai 6= 0 for only finitely many negative values of i. Clearly, Q is
embedded in Q⋆ (the embedding is defined similarly to its corresponding in
Section 4). The ring operations on Q⋆ are defined as usual

+∞∑

i=−∞

aiǫ
i +

+∞∑

i=−∞

biǫ
i =

+∞∑

i=−∞

(ai + bi)ǫ
i

+∞∑

i=−∞

aiǫ
i ·

+∞∑

i=−∞

biǫ
i =

+∞∑

i=−∞





+∞∑

j=−∞

ajbi−j



 ǫ
i

where the sum in the product definition is always finite by the hypothesis on
ai, bi with negative index i. The order is the lexicographical order induced
by 0 < ǫ ≪ 1, i.e.,

+∞∑

i=−∞

aiǫ
i <

+∞∑

i=−∞

biǫ
i iff ∃i ai < bi ∧ ∀j < i aj = bj .

It is well known that Q⋆ is an ordered field, that is, all non-zero elements have
a multiplicative inverse and the order is compatible with the field operations.
We define the following subsets of Q⋆ for m ≤ n

Q⋆
m,n :=

{
n∑

i=m

ǫ
iai

∣
∣
∣
∣
∣
ai ∈ Q

}

⊂ Q⋆ .

Definition 5.5. We define a new structure L
⋆, which is an extension of an

expansion (or an expansion of an extension) of L, having Q⋆ as domain and
τ1 := τ0 ∪ {k}k∈Q⋆

−1,1
as signature, where the interpretation of symbols in τ0

is formally the same as for L and the symbols k ∈ Q⋆
−1,1 denote constants

(zero-ary functions).

Notice that, for technical reasons, we allow only constants from Q⋆
−1,1.

In the remainder of this section, τ1-formulas will be interpreted in the struc-
ture L⋆. We make for τ1-formulas the same assumptions as in Section 4 (that
atomic subformulas are of the form either c1·1<

=xi, or xi <=c2·1, or c1·xi <=c2·xj
with constants c1 and c2 not both negative and where function symbols ci·

19



are never composed). Also H(Φ) and K(Φ), where Φ is a set of atomic τ1-
formulas, are defined similarly to Section 4, and the only difference is that
now Φ is a set of atomic τ1-formulas rather than τ0-formulas. Observe that
the reduct of L⋆ obtained by restricting the signature to τ0 is elementarily
equivalent to L, namely it satisfies the same first-order sentences.

Similarly as in Section 4, for every valued PLH structure Γ and for every
positive integer number d, we explicitly give a τ1-structure with finite domain
D⋆ such that every instance of VCSP(Γ) with at most d distinct free variables
has a solution with values in Q if, and only if, it has a solution with values
in D⋆ ⊆ Q⋆ (Lemma 5.8). We will need two preliminary results: Lemma 5.6
and Lemma 5.7, which are analogues of Lemma 4.7 and Lemma 4.8 from
Section 4. More specifically, in Lemma 5.6 we consider the positive solutions
to the closures of finitely τ1-formulas, and in Lemma 5.7 we consider the
positive solutions to finitely many τ1-formulas.

Lemma 5.6. Let Φ be a finite set of atomic τ1-formulas having free variables
in {v1, . . . , vd} and let Φ̄ be the set

⋃

φ∈Φ φ̄. Suppose that there is 0 < r ∈ Q⋆

such that all satisfying assignments of Φ̄ with values (x1, . . . , xd) in Q⋆ also
satisfy 0 < xi ≤ r for all i. Let u, α1, . . . , αd be elements of Q⋆. Assume
that the formulas in Φ are simultaneously satisfiable by a point (x1, . . . , xd) ∈
(Q⋆)d such that

∑

i αixi < u. Let us define the set

CΦ,d =

{

|k|
s∏

i=1

|hi|
ei

∣
∣
∣
∣
∣
k ∈ K(Φ), e1, . . . , es ∈ Z,

s∑

r=1

|er| < d

}

⊆ Q⋆
−1,1

where h1, . . . , hs is an enumeration of the (finitely many) elements of H(Φ).
Then there is a point in (x′1, . . . , x

′
d) ∈ (CΦ,d)

d ⊆ (Q⋆)d with
∑

i αix
′
i < u

that satisfies simultaneously all φ̄, for φ ∈ Φ.

Proof. As in the proof of Lemma 4.7 (to which we direct the reader for many
details) we take a maximal γ ≤ β such that there are Ψ1,Ψ2,Ψ3 with

Φ̄ = {s1 = s′1, . . . , sα = s′α} ∪ {t1 ≤ t′1, . . . , tβ ≤ t′β}

Ψ1 = {s1 = s′1, . . . , sα = s′α}

Ψ2 = {t1 = t′1, . . . , tγ = t′γ}

Ψ3 = {tγ+1 ≤ t′γ+1, . . . , tβ ≤ t′β}

and Ψ1∪Ψ2∪Ψ3 is satisfiable by an assignment (x1, . . . , xd) with
∑

i αixi <
u. As in the proof of Lemma 4.7 the set of solutions of Ψ1 ∪ Ψ2 satisfy-
ing

∑

i αixi < u is contained in the solutions of Ψ3. So, here too, it suffices
to show that there is a solution of Ψ1 ∪ Ψ2 with

∑

i αivi < u taking values
in CΦ,d. The proof of Lemma 4.7 shows that there is a solution of Ψ1 ∪ Ψ2

taking values (x1, . . . , xd) in CΦ,d without necessarily meeting the require-
ment that

∑

i αixi < u. We will prove that, in fact, any such solution meets
the additional constraint.
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Let xi = ai, bi be two distinct satisfying assignments for Ψ1 ∪ Ψ2 such
that

∑

i αiai < u and
∑

i αibi ≥ u. We know that the first exists, and
we assume the second towards a contradiction. The two assignments must
differ, so, without loss of generality a1 6= b1. For t ∈ Q⋆, with t ≥ 0, define
the assignment xi(t) = (1 + t)ai − tbi. Since all constraints in Ψ1 ∪ Ψ2

are equalities, it is clear that the new assignment xi(t) satisfies Ψ1 ∪Ψ2 for
all t ∈ Q⋆. Moreover, if t ≥ 0

∑

i

αixi(t) ≤
∑

i

αiai − t

(
∑

i

αibi −
∑

i

αiai

)

< u

Let t = 2r
|b1−a1|

. Then

x1(t) = a1 +
2r

|b− a|
(a− b)

is either not smaller than 2r or smaller than 0 depending on the sign of (a−b).
In either case we have a solution xi = xi(t) of Ψ1∪Ψ2 satisfying

∑

i αixi(t) <
u, which must therefore be a solution of Φ that does not satisfy 0 < xi ≤
r.

Lemma 5.7. Let Φ be a finite set of atomic τ1-formulas having free variables
in {v1, . . . , vd}. Suppose that there are 0 < l < r ∈ Q⋆ such that all satisfying
assignments (x1, . . . , xd) of Φ in the domain Q⋆ also satisfy l < xi < r for
all i. Let α1, . . . , αd be rational numbers and u ∈ Q⋆

−1,1. Assume that the

formulas in Φ are simultaneously satisfiable by a point (x1, . . . , xd) ∈ (Q⋆)d

such that
∑

i αixi ≤ u. Then the same formulas are simultaneously satisfiable
by a point (x′1, . . . , x

′
d) ∈ (C⋆

Φ,d)
d ⊆ (Q⋆)d such that

∑

i αix
′
i ≤ u where

C⋆
Φ,d = {x+ nxǫ3 | x ∈ CΦ,d, n ∈ Z, −d ≤ n ≤ d} ⊆ Q⋆

−1,4 .

Proof. We consider two cases: either all satisfying assignments (x1, . . . , xd)
satisfy the inequality

∑

i αixi ≥ u, or there exists a satisfying assignment
(x1, . . . , xd) for Φ such that

∑

i αixi < u.
In the first case, we claim that all satisfying assignments, in fact, satisfy

∑

i αixi = u. In fact, assume that xi = ai, bi are two satisfying assignments
such that

∑

i αiai = u and v :=
∑

i αibi > u. As in the proof of Lemma 5.6,
consider assignments of the form xi(t) = (1 + t)ai − tbi for t ∈ Q⋆. Clearly
∑

i αixi(t) = u−t(v−u) < u for all t > 0. As in Lemma 5.6, the new assign-
ment must satisfy all equality constraints in Φ. Each inequality constraint
implies a strict inequality on t (remember that Φ only has strict inequali-
ties). Since all of these must be satisfied by t = 0, there is an open interval
of acceptable values of t around 0, and, in particular, an acceptable t > 0.
Our claim is thus established. Therefore, in this case, it suffices to find any
satisfying assignment for Φ taking values in C⋆

Φ,d. The assignment is now
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constructed as in the proof of Lemma 4.8, replacing the formal symbol ǫ in
that proof by ǫ

3. Namely take a satisfying assignment xi = bi for Φ, and, by
Lemma 5.6, one satisfying assignment xi = ci for Φ̄ taking values in CΦ,d.
Observe that the hypothesis that all solutions of Φ satisfy l < xi for all i
is used here to ensure that all solutions of Φ̄ assign positive values to the
variables, which is required by Lemma 5.6. Let −d ≤ n1, . . . , nd ≤ d be
integers such that for all i, j

ni < nj if and only if bi
ci
<

bj
cj

0 < ni if and only if 1 < bi
ci

ni < 0 if and only if bi
ci
< 1

The assignment yi = ci + niciǫ
3 can be seen to satisfy all formulas of Φ

by the same check as in the proof of Lemma 4.8. Observe that we have to
replace ǫ in Lemma 4.8 by ǫ

3 here, so that Q⋆
−1,1 ∩ ǫ

3Q⋆
−1,1 = ∅.

For the second case, fix a satisfying assignment xi = bi. By Lemma 5.6
there is an assignment xi = ci ∈ CΦ,d such that

∑

i αici < u and this
assignment satisfies φ̄ for all φ ∈ Φ. From these two assignments construct
the numbers ni and then the assignment yi = ci + niciǫ

3 as before. For the
same reason it is clear that the new assignment satisfies Φ. To conclude that
∑

i αiyi < u we write
∑

i

αiyi =
∑

i

αici + ǫ
3
∑

i

αinici < u

because the first summand is in Q⋆
−1,1 and smaller than u, therefore the

second summand is neglected in the lexicographical order.

Lemma 5.8. Let Φ be a finite set of atomic τ0-formulas having free variables
in {v1, . . . , vd}. Let u, α1, . . . , αd be rational numbers. Then the following
are equivalent:

1. The formulas in Φ are simultaneously satisfiable in Q, by a point
(x1, . . . , xd) ∈ Qd such that

∑

i αixi ≤ u.

2. The formulas in Φ are simultaneously satisfiable in DΦ,d ⊆ Q⋆, by a
point (x′1, . . . , x

′
d) ∈ Dd

Φ,d such that
∑

i αix
′
i ≤ u, where the set DΦ,d is

defined as follows

DΦ,d := −C⋆
Φ′,d ∪ {0} ∪ C⋆

Φ′,d ⊆ Q⋆
−1,4

Φ′ := Φ ∪ {x > ǫ, x < −ǫ, x > −ǫ
−1, x < ǫ

−1}.

Remark 5.9. Observe that the set DΦ,d depends neither on the αi’s nor on
u. In fact, it only depends on the set of formulas Φ and on the number d of
free variables.
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Proof. The implication 2 → 1 is immediate observing that the conditions Φ
and

∑

i αixi ≤ u are first-order definable in S. In fact, any assignments
with values in DΦ,d satisfying the conditions is, in particular, an assignment
in Q⋆, and, by the completeness of the first order theory of ordered Q-vector
spaces, we have an assignment taking values in Q.

For the vice versa, fix any assignment xi = ai with ai ∈ Q for i ∈
{1, . . . , d}. We pre-process the formulas in Φ producing a new set of atomic
formulas Φ′ as follows. We replace every variable xi such that ai = 0 with the
constant 0 = 0 · 1. Then we replace each of the remaining variables xi with
either yi or −yi according to the sign of ai. Finally, we add the constraints
ǫ < yi and yi < ǫ

−1 for each of these variables. Similarly we produce new
coefficients α′

i = sign(ai)αi. It is clear that the new set of formulas Φ′

has a satisfying assignment in positive rational numbers with
∑

i α
′
iyi ≤ u.

Observing that a positive rational x always satisfies ǫ < x < ǫ
−1, we see

that Φ′ satisfies the hypothesis of Lemma 5.7 with l = ǫ and r = ǫ
−1. Hence

the statement.

Remark 5.10. Lemma 5.8 provides a polynomial-time many-one reduction
of the VCSP for a PLH valued structure Γ with finite signature to the VCSP
for a valued structure ∆⋆ with finite signature having as domain a finite
subset of Q⋆. We want to point out that, however, Lemma 5.8 does not give
rise to a sampling algorithm: firstly, the computed finite domain is a subset
of Q⋆ rather than Q, secondly, the signature of ∆⋆ is strictly larger than
the signature of Γ. In the next section we show how to obtain an efficient
sampling algorithm for PLH valued structures using Lemma 5.8.

5.2 Reduction to a VCSP over a Finite Rational Domain

In this section we use the results achieved in Section 5.1 to provide an efficient
sampling algorithm for PLH valued structures.

Let Φ be a finite set of τ0-formulas having at most d distinct free variables.
By Lemma 5.8, for every α1, . . . , αd, u ∈ Q the formulas in Φ are simulta-
neously satisfiable in Q by a point (x1, . . . , xd) such that

∑d
i=1 αixi ≤ u if,

and only if, they are simultaneously satisfiable in DΦ,d ⊆ Q⋆
−1,4 by a point

(x′1, . . . , x
′
d) such that

∑d
i=1 αix

′
i ≤ u. The elements in DΦ,d ⊆ Q⋆

−1,4 are of
the form

4∑

i=−1

xiǫ
i where xi ∈ −CΦ,d ∪ {0} ∪ CΦ,d

where CΦ,d is as in Lemma 4.7. In L
⋆ it holds that

−ǫ
−1 < x < −ǫ for every x ∈ −CΦ,d,

ǫ < x < ǫ
−1 for every x ∈ CΦ,d.

(See Lemmas 5.6, 5.7, 5.8, and Lemmas 4.7, 4.8.)
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Lemma 5.11. Let Φ be a finite set of τ0-formulas having at most d distinct
free variables. Let DΦ,d be defined as in Lemma 5.8 (2.) and let D

⋆ be
the finite substructure of L⋆ with domain DΦ,d ⊆ Q⋆

−1,4. Then there exists a
positive rational ε with −ε−1 < x < −ε for every x ∈ −CΦ,d and ε < x < ε−1

for every x ∈ CΦ,d such that the map η : DΦ,d → Q defined by

4∑

j=1

xjǫ
j 7→

4∑

j=1

xjε
j

is a homomorphism from the τ0-reduct of D⋆ to L. Moreover, ε and η are
computable in time polynomial in d.

Proof. Let CΦ,d ⊆ Q be as in Lemma 4.7 and let −CΦ,d := {−x | x ∈ CΦ,d}.
We define C := {x− y | x, y ∈ CΦ,d and x− y > 0}. Observe that C ⊇ CΦ,d.
Define

ε :=
1

6

minC

maxC
.

The number ε is positive and rational and it can be computed in time poly-
nomial in d. Furthermore,

0 < ε < 1,

ε < minC < minCΦ,d implying max(−CΦ,d) < −ε, and

maxC = maxCΦ,d < ε−1 implying −ε−1 < min(−CΦ,d).

It follows that −ε−1 < x < −ε for every x ∈ −CΦ,d, and ε < x < ε−1 for
every x ∈ CΦ,d.

It is easy to see that η preserves the scalar multiplication by rational
elements and the identity in Q. We prove now that η is order preserving
(and therefore injective). Let us consider

x :=

4∑

j=−1

xjǫ
j , and y :=

4∑

j=−1

yjǫ
j ∈ DΦ,d

such that x is smaller than y in the lexicographic order induced by Q⋆
−1,4.

This means that there exists an index i ∈ {−1, . . . , 4} such that xj = yj
for −1 ≤ j < i and xi < yi. Since ε > 0, it holds that xiεi < yiε

i and,
consequently,

i∑

j=−1

xjε
j <

i∑

j=1

yjε
j.

Moreover, if i 6= 4 then for all j ∈ {i+ 1, . . . , 4}

(xj − yj)ε
j−i ≤ (xj − yj)ε ≤ (maxC)ε ≤

minC

6
≤
yi − xi

6
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because ε < 1, and xj − yj ≤ maxC (indeed, if xj − yj > 0 then xj − yj ∈
C, otherwise xj − yj is smaller than any element in C). Therefore we get
(xj − yj)ε

j ≤ yi−xi

6 εi, and

4∑

j=i+1

(xj − yj)ε
j ≤

4∑

j=i+1

yi − xi
6

εi ≤
5

6
(yi − xi)ε

i < (yi − xi)ε
i.

It follows that
4∑

j=i

xjε
j <

4∑

j=i

yjε
j,

and, because xj = yj for −1 ≤ j ≤ i− 1,
4∑

j=−1

xjε
j <

4∑

j=−1

yjε
j ,

i.e., η preserves the order.

Let Φ be a finite set of τ0-formulas with at most d variables, and let η be
the map introduced in Lemma 5.11, we set EΦ,d := η(DΦ,d) ⊆ Q. Lemma
5.11 implies the following corollary.

Corollary 5.12. Let Γ be a PLH valued structure with finite signature τ .
Then there exists an efficient sampling algorithm for Γ.

Proof. For every cost function f in τ let us consider the quantifier-free τ0-
formula φf defining RΓ

f = dom(f) over Q. Let At(φf ) denote the set of
atomic subformulas of φf and let At(τ) :=

⋃

f∈τ At(φf ).
On input d, the algorithm produces the valued finite substructure ∆ of

Γ having domain η(DAt(τ),d), where eta is defined as in Lemma 5.11. It is
immediate to see that the valued structure ∆ has size polynomial in d and
can be computed in time polynomial in d, because DAt(τ),d and η(DAt(τ),d)
can be computed in polynomial time in d (see Remark 5.9, and Lemma 5.11).
Let φ be a finite sum of function symbols from τ with at most d variables
from V := {v1, . . . , vd}, and let u be a rational number. By Lemma 5.8 there
exists an assignment h : V → Q such that φΓ(h) ≤ u if, and only if, there
exists an assignment h′ : V → DAt(τ),d such that φΓ

⋆

(h) ≤ u. Furthermore,
by Lemma 5.11 there exists a positive rational number ε such that the map
η : DAt(τ),d → Q is a homomorphism of τ0-structures from the τ0-reduct of
D

⋆ to L. Since η is injective, the assignment η ◦ h′ : V → η(DAt(τ),d) has
cost φ∆(η ◦ h′) ≤ u.

6 Fully Symmetric Fractional Polymorphisms

In this section we give sufficient algebraic conditions under which valued
structures with an infinite domain that admit an efficient sampling algorithm
can be solved in polynomial time.
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6.1 Universal Algebraic Tools

In this section we survey the concepts from universal algebra that we need
and use in the remainder of the article.

Definition 6.1. Let ∆ and Γ be valued structures with the same signature
τ with domain D and C respectively. Let CD denote the set of all functions
g : D → C. A fractional homomorphism [20] from ∆ to Γ is a function
ω : CD → Q≥0 with finite support, Supp(ω) := {g ∈ CD | ω(g) > 0}, such
that

∑

g∈CD ω(g) = 1, and such that for every function symbol f ∈ τ and
tuple a ∈ Dar(f), it holds that

∑

g∈CD

ω(g)fΓ(g(a)) ≤ f∆(a),

where the functions g are applied componentwise. We write ∆ →f Γ to
indicate the existence of a fractional homomorphism from ∆ to Γ.

The following proposition is adapted from [20], Proposition 2.1 where
it is stated for valued structures with finite domains. In fact, we need not
explicitly prove it, as the proof of the proposition in the finite-domain case
can be easily modified to work in the infinite-domain case.

Proposition 6.2. Let ∆ and Γ be valued structures with the same signature
τ and with domain D and C, respectively. Assume that ∆ →f Γ. Let I be an
instance of VCSP(Γ) having variables VI = {x1, . . . , xn}, objective function
φI(x1, . . . , xn), and threshold uI ∈ Q ∪ {+∞}. Suppose that there exists an
assignment h : VI → D such that φ∆I (h(x1, . . . , h(xn)) ≤ uI . Then there
exists an assignment h′ : VI → C such that φΓI (h

′(x1), . . . , h
′(xn)) ≤ uI . In

particular, it holds that

inf
c∈Cn

φΓI (c) ≤ inf
d∈Dn

φ∆I (d).

Let Γ be a valued structure with countable (possibly infinite) domain C
and signature τ . An m-ary operation on C is a function g : Cm → C. Let
O

(m)
C denote the set of all m-ary operations on C.

Definition 6.3. An m-ary fractional operation is a function ω : O
(m)
C →

Q≥0. The set {g ∈ O
(m)
C | ω(g) > 0} is called the support of ω and it is

denoted by Supp(ω). An m-ary fractional operation with finite support is
a fractional polymorphism if

∑

g∈Supp(ω) ω(g) = 1 and for every f ∈ τ and
tuples a1, . . . , am ∈ Car(f) it holds that

∑

g∈O
(m)
C

ω(g)fΓ(g(a1, . . . , am)) ≤
1

m

m∑

i=1

fΓ(ai)
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(where g is applied component-wise). The set of all fractional polymor-
phisms of a valued structure Γ is denoted by fPol(Γ). If ω is a fractional
polymorphism of Γ we say that Γ is improved by ω.

Let Sm be the symmetric group on {1, . . . ,m}. An m-ary operation g is
fully symmetric if for every permutation π ∈ Sm, we have

g(x1, . . . , xm) = g(xπ(1), . . . , xπ(m)).

Note that every totally symmetric operation (see Definition 4.12) is also fully
symmetric. A fractional operation is fully symmetric (totally symmetric,
respectively) if every operation in its support is fully symmetric (totally
symmetric, respectively). The fractional operations in the next example are
totally symmetric.

Example 6.4. Let D be a totally ordered set. Let min and max be, respec-
tively, the binary operations giving the smallest and the largest among two
arguments, respectively. The fractional operation ωmax : O

(2)
D → [0, 1],

ωmax(g) :=

{

1 if g = max

0 otherwise

is a binary totally symmetric fractional operation with finite support. The
fractional operation ωmin : O

(2)
D → [0, 1], is defined dually and it is a binary

totally symmetric fractional operation with finite support, too. △

The next example shows a family of fractional operations that are fully
symmetric but not totally symmetric.

Example 6.5. Let avg(k) : Dk → D be the k-ary arithmetic average opera-
tion defined, for every (x1, . . . , xk) ∈ Dk, by

avg(x1, . . . , xk) =
1

k

k∑

i=1

xi.

Let us define, for every k ≥ 2, the fractional operation ω
(k)
conv : O

(k)
D → Q≥0

such that

ω(k)
conv(g) =

{

1 if g = avg(k)

0 otherwise.

The fractional operations ω(k)
conv are fully symmetric, but for k ≥ 3 they

are not totally symmetric, because, e.g., {1, 1, 2} = {1, 2, 2} but 1+1+2
3 6=

1+2+2
3 . △
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6.2 The Basic Linear Programming Relaxation

Every VCSP over a finite domain has a natural linear programming relax-
ation. Let Γ be a valued structure with finite domain D and let I be an
instance of VCSP(Γ) with set of free variables VI = {x1, . . . , xd}, and objec-
tive function

φI(x1, . . . , xd) =
∑

j∈J

fj(x
j
1, . . . , x

j
nj
),

with fj ∈ Γ, xj = (xj1, . . . , x
j
nj ) ∈ V nj , for all j ∈ J (the set J is finite and

indexing the cost functions that are summands of φI). Define the sets W1,
W2, and W of variables λj(t), µxi

(a), for j ∈ J , t ∈ Dnj , xi ∈ V , and a ∈ D,
as follows.

W1 := {λj(t) | j ∈ J and t = (t1, . . . , tnj
) ∈ Dnj},

W2 := {µxi
(a) | xi ∈ V and a ∈ D},

W := W1 ∪W2.

Then the basic linear programming, BLP, relaxation associated to I (see
[20], [16], and references therein) is a linear program with variables W and
is defined as follows

BLP(I,Γ) := min
λj(t)∈Q

∑

j∈J

∑

t∈Dnj

λj(t)f
Γ
j (t)

such that
∑

t∈Dnj :tl=a

λj(t) = µ
x
j
l

(a) for all j ∈ J , l ∈ {1, . . . , nj}, a ∈ D

∑

a∈D

µxi
(a) = 1 for all xi ∈ V

λj(t) = 0 for all j ∈ J , t /∈ dom(fj)

0 ≤ λj(t), µxi
(a) ≤ 1 for all λj(t) ∈W1, µxi

(a) ∈W2.

If there is no feasible solution to this linear program, then BLP(I,Γ) =
+∞. We say that the BLP relaxation solves I if BLP(I,Γ) = minx∈Dd φI(x).
We say that the BLP relaxation solves VCSP(Γ) if it solves all instances of
VCSP(Γ). For a given instance of a finite-domain VCSP, the corresponding
BLP relaxation can be computed in polynomial time. Therefore, if the VCSP
for a valued structure Γ is solved by the BLP relaxation, then VCSP(Γ) can
be solved in polynomial time.

Let Γ be a valued structure that admits an efficient sampling algorithm.
We may solve VCSP(Γ) by using the following algorithm that computes the
BLP relaxation of the sample, and then solves the BLP relaxation.
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ALGORITHM 1: Sampling + BLP Algorithm

Input: I := (VI , φI , uI).
Output: accepts if there exists an assignment h : VI → dom(Γ) such that

φI(h(x1, . . . , x|VI |)) ≤ uI .
∆ := Sampling

Γ
(|VI |);

BLP(I,∆);
if BLP(I,∆) ≤ uI then

accept;
else

reject;
end

Note that Algorithm 1 runs in polynomial time in |VI |, and that if it
rejects, then indeed the answer to VCSP(Γ) is no, without further assump-
tions.

In the following we present a sufficient condition under which Algorithm
1 correctly solves VCSP(Γ). Valued structures over a finite domain that can
be solved by the BLP relaxation have been characterised by Kolmogorov,
Thapper, and Živný.

Theorem 6.6 ([16], Theorem 1). Let ∆ be a valued structure with finite
signature and finite domain. Then the following are equivalent:

1. the BLP relaxation solves VCSP(∆);

2. ∆ has fully symmetric fractional polymorphisms of all arities.

One of the main results of this section, Theorem 6.10, states that if
Γ is improved by fully symmetric fractional operations of all arities, then
Algorithm 1 correctly solves VCSP(Γ) in polynomial time. Note that there
are examples of PLH valued structures which have fully symmetric fractional
polymorphisms, but the computed sample does not have fully symmetric
fractional polymorphisms (Example 6.12).

Definition 6.7. Let ∆ be a valued τ -structure with domain D and let
m ≥ 1. The multiset-structure Pm(∆) [20] is the valued structure with

domain
((

D
m

))

i.e., the set of multisets of elements from D of size m, and

for every k-ary function symbol f ∈ τ , and α1, . . . , αk ∈
((

D
m

))

the function

fP
m(∆) is defined as follows

fP
m(∆)(α1, . . . , αk) :=

1

m
min

t1,...,tk∈Dm:{tl}=αl

m∑

i=1

f∆(t1i , . . . , t
k
i ).

(Here we denote by {tl} the multiset whose elements are the coordinates of
tl.)
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Lemma 6.8 ([20], Lemma 2.2). Let ∆ be a valued structure with finite do-
main, and m ≥ 2. Then Pm(∆) →f ∆ if, and only if, ∆ has an m-ary fully
symmetric fractional polymorphism.

Lemma 6.9. Let Γ be a valued structure (with finite signature τ), and let ∆
be a valued structures with finite domain such that ∆ →f Γ, and let m ≥ 2
be an integer. If Γ has an m-ary fully symmetric fractional polymorphism,
then Pm(∆) →f Γ.

Lemma 6.9 is a generalisation of Lemma 6.8 to valued structures with
arbitrary domain. However, while Lemma 6.8 follows directly from the defi-
nition of Pm(∆), our proof of Lemma 6.9 is inspired by the proof of [3]. In
fact, Lemma 6.9 is a generalisation of [3], Lemma 2.4 to valued structures,
and to the weaker assumption that the polymorphisms are fully symmetric
rather than totally symmetric.

of Lemma 6.9. Let C and D be, respectively, the domain of Γ and the do-
main of ∆, respectively. Let χ be a fractional homomorphism from ∆ to Γ
and let ω be an m-ary fully symmetric fractional polymorphism of Γ. For
every g ∈ Supp(ω) ⊆ O

(m)
C and every h ∈ Supp(χ) ⊆ CD we define

(g ◦ h) :

((
D

m

))

→ C

by setting
(g ◦ h)(α) = g(h(a1), . . . , h(am))

for every α = {a1, . . . , am} ∈
((

D
m

))

. Observe that (g ◦ h) is well defined

as g is fully symmetric (the order of h(a1), . . . , h(am) does not matter). We
define the function ω′ : C((Dm)) → Q≥0 as follows, for every g ∈ C((Dm)),

ω′(g′) =
∑

g∈Supp(ω)

∑

h∈Supp(χ):g◦h=g′

ω(g)χ(h).

We claim that ω′ is a fractional homomorphism from Pm(∆) to Γ. Indeed,
the support Supp(ω′) = {(g ◦h) | g ∈ Supp(ω), h ∈ Supp(χ)}, is finite as the
support of ω and the support of χ are finite. It also holds that

∑

g′∈Supp(ω′)

ω′(g′) =
∑

g∈Supp(ω)

ω(g)
∑

h∈Supp(χ)

χ(h) =
∑

g∈Supp(ω)

ω(g) = 1.

Furthermore, for every k-ary f ∈ τ and tuple (α1, . . . , αk) ∈
((

D
m

))k

, with
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αi = {α1
i , . . . , α

m
i }, it holds that

∑

g′∈C((
D
m))

ω′(g′)fΓ(g′(α1, . . . , αk))

=
∑

g∈Supp(ω)

∑

h∈Supp(χ)

ω(g)χ(h)fΓ(g(h(α1
1), . . . , h(α

m
1 )), . . . , g(h(α1

k), . . . , h(α
m
k )))

≤
∑

h∈Supp(χ)

χ(h)

(

1

m

m∑

i=1

fΓ
(

h(α
π1(i)
1 ), . . . , h(α

π1(i)
1 )

)
)

(3)

=
1

m

m∑

i=1

∑

h∈Supp(χ)

χ(h)fΓ
(

h(α
π1(i)
1 ), . . . , h(α

π1(i)
1 )

)

≤
1

m

m∑

i=1

f∆(α
π1(i)
1 , . . . , α

πk(i)
k ) (4)

for every π1, . . . , πk ∈ Sm. Inequality (3) holds because ω is a fully sym-
metric fractional polymorphism of Γ, and Inequality (4) holds because χ is
a fractional homomorphism from ∆ to Γ. Then, in particular it holds that

∑

g′∈C((
D
m))

ω′(g′)fΓ(g′(α1, . . . , αk)) ≤
1

m
min

t1,...,tk∈Dm:{tl}=αl

m∑

i=1

f∆(t1i , . . . t
k
i )

=fP
m(∆)(α1, . . . , αk).

Theorem 6.10. Let Γ be a valued structure with finite signature having fully
symmetric fractional polymorphisms of all arities. If there exists an efficient
sampling algorithm for Γ, then Algorithm 1 correctly solves VCSP(Γ) (in
polynomial time).

Proof. Let I be an instance of VCSP(Γ) with variables VI = {x1, . . . , xn},
objective function φI(x1, . . . , xn) =

∑

j∈J γj(x
j) where J is a finite set of

indices, γj ∈ Γ, and xj ∈ V
ar(fj)
I , and threshold uI . Let ∆ be the finite-

domain valued structure computed by the sampling algorithm for Γ on input
|VI |.

Let C be the (possibly infinite) domain of Γ and D the finite domain of ∆.
Note that if BLP(I,∆) � uI (this also includes the case BLP(I,∆) = +∞,
i.e., the case that I is not feasible) then infd∈Dn φI(d) � uI which implies
infc∈Cn φI(c) � uI since D was produced by the sampling algorithm for Γ on
input |VI |. We may therefore safely reject. Otherwise, if BLP(I,∆) ≤ uI ,
then inf

α∈((Dm))
n φI(α) ≤ BLP(I,∆). The proof of this last statement is

contained in the first part of the proof of Theorem 3.2 in [20]; we report it
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here for completeness. Let (λ⋆, µ⋆) be an optimal solution to BLP(I,∆) and
let M be a positive integer such that M · λ⋆, and M · µ⋆ are both integral.
Let ν : VI →

((
D
M

))

be defined by mapping the variable xi to the multiset in
which the elements are distributed accordingly to µ⋆xi

, i.e., for every a ∈ D
the number of occurrences of a in ν(xi) is equal to Mµ⋆xi

(a). Let fj be a
k-ary function symbol in τ that occurs in a term fj(x

j) of the objective
function φI . Now we write

M ·
∑

t∈Dk

λ⋆j(t)f
∆
j (t) = f∆j (α1) + · · ·+ f∆j (αM ),

where the αi ∈ Dk are such that λ⋆j (t)-fractions are equal to t. Let us define
α′
l := (α1

i , . . . , α
M
i ) for 1 ≤ i ≤ k. We get

∑

t∈Dk

λ⋆j (t)f
∆
j (t) =

1

M

M∑

i=1

f∆j (αi) =
1

M

M∑

i=1

f∆j (αi
1, . . . , α

i
k)

≥
1

M
min

t1,...,tk∈DM :{tl}={α′
l
}

M∑

i=1

f∆j (t1i , . . . , t
k
i ) = f

PM (∆)
j (α′

1, . . . , α
′
k)

=f
PM(∆)
j (ν(x)),

where the last equality follows as the number of a’s in α′
i is

M ·
∑

t∈Dk :ti=a

λ⋆j(t) =M · µ⋆xi
(a).

Then

BLP(I,∆) =
∑

j∈J

∑

t∈Dar(fj)

λ⋆j (t)f
∆
j (t) =

∑

j∈J




∑

t∈Dar(fj )

λ⋆j(t)f
∆
j (t)





≥
∑

j∈J

(

f
PM (∆)
j (ν(x))

)

≥ inf
α∈((Dm))

n
φI(α).

Since we assumed BLP(I,∆) ≤ uI , we obtain inf((Dm))
φI(α) ≤ uI . More-

over, since Γ has fully symmetric fractional polymorphisms of all arities,
Lemma 6.9 implies the existence of a fractional homomorphism ω : C((DM)) →
Q≥0. From Proposition 6.2 it follows that

inf
c∈Cn

φI(c) ≤ inf
α∈((Dm))

n
φI(α) ≤ BLP(I,∆) ≤ uI .
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We now give examples of valued structures that satisfy the hypothesis
of Theorem 6.10. A set S ⊆ Qn is said to be convex if for any two points
x, y ∈ S every point between them is still in S, i.e., for any λ ∈ [0, 1] ∩ Q,
λx + (1 − λ)y ∈ S. A function f : Qn → Q ∪ {+∞} is said to be convex if
for any two points x, y ∈ Qn and for any λ ∈ [0, 1] ∩Q, it holds

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

Proposition 6.11. Let D ⊆ Q be a convex set. Let Γ be a valued structure
with domain D such that every cost function in Γ is convex. Then, for every
k ≥ 2, the valued structure Γ is improved by the fully symmetric fractional

operation ω
(k)
conv : O

(k)
D → Q≥0 (see Example 6.5) such that

ω(k)
conv(g) =

{

1 if g = avg(k)

0 otherwise.

Proof. Let f : Dn → Q ∪ {+∞} be a convex cost function. Jensen’s Inequal-
ity (cf. [13]) implies that for all k ≥ 2 and for all x1, . . . , xk ∈ Dn

f

(

1

k

k∑

i=1

xi

)

≤
1

k

k∑

i=1

f(xi).

Therefore, for every k ≥ 2, the function f is improved by the fully symmetric
fractional operation ω

(k)
conv.

Example 6.12. Let Γ be a convex valued structure with domain Q that
admits an efficient sampling algorithm. Then, for all k ≥ 2, the valued struc-
ture Γ is improved by the k-ary fully symmetric fractional operation ω

(k)
conv

defined in Example 6.5 (see Proposition 6.11), and therefore, by Theorem
6.10, Algorithm 1 solves VCSP(Γ). Note that the finite-domain valued struc-
ture computed by the sampling algorithm might not have fully symmetric
fractional polymorphisms of all arities. In fact, the fractional polymorphisms
ω
(k)
conv are not even inherited by valued finite substructures of Γ whose domain

contains more than one element. △

If the VCSP for a valued structure is solvable by Algorithm 1, then
it is possible to find a solution in polynomial time, by applying the self-
reduction algorithm (see [16]) to the instance I of VCSP(∆). Observe that
the assignment obtained by self-reduction has values in D and therefore it
is also an assignment with values in C.

Proposition 6.13 ([16], Proposition 8). Let Γ be an arbitrary valued struc-
ture with finite domain. Let I := (VI , φI , uI) be an instance of VCSP(Γ). If
the BLP relaxation solves VCSP(Γ), then an assignment to the variables in
VI with cost at most uI can be found in polynomial time.
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We remark that Theorem 6.10 generalises the following known result
(that we used in Section 4 to prove the polynomial-time complexity of the
CSP for PLH relational structures preserved by max).

Theorem 4.14 ([3], Theorem 2.5). Let A be a structure over a finite rela-
tional signature with totally symmetric polymorphisms of all arities. If there
exists an efficient sampling algorithm for A then CSP(A) is in P.

More precisely, we extended Theorem 4.14 to valued structures and, at
the same time, to the weaker assumption of having fully symmetric poly-
morphisms of all arities rather than totally symmetric polymorphisms of all
arities. The following example is adapted from [18] (Example 99), and it
exhibits a PL valued structure having fully symmetric polymorphisms of all
arities but having no totally symmetric polymorphism of arity 3.

Example 6.14. Let us consider the PL valued structure Γ with domain Q,
signature {f+, f−}, and such that fΓ+, f

Γ
− : Q3 → Q ∪ {+∞} are defined by

fΓ+(x1, x2, x3) :=

{

x1 + x2 + x3 if x1 + x2 + x3 ≥ 1

+∞ otherwise,

and

fΓ−(x1, x2, x3) :=

{

x1 + x2 + x3 if x1 + x2 + x3 ≤ −1

+∞ otherwise.

Clearly, the cost functions fΓ+, and fΓ− are PL and it is easy to see that
they are convex. As all cost functions in Γ are PL and convex, by Proposition
6.11, the valued structure Γ is improved by the fully symmetric fractional
operations ω(k)

conv, for every k ≥ 2, i.e., Γ has fully symmetric fractional poly-
morphisms of all arities. We already observed that the fractional operations
ω
(k)
conv are not totally symmetric for k ≥ 3 (see Example 6.5).

Assume now that ω is a ternary totally symmetric fractional polymor-
phism of Γ and let t : Q3 → Q be a totally symmetric operation in Supp(ω),
then, in particular, t is a polymorphism of Feas(Γ), i.e., t preserves the fea-
sibility relations

dom(fΓ+) = {(x1, x2, x3) ∈ Q3 | x1 + x2 + x3 ≥ 1}, and

dom(fΓ−) = {(x1, x2, x3) ∈ Q3 | x1 + x2 + x3 ≤ −1}.

By the total symmetry of t, there exists a ∈ Q such that

t(1, 1,−1) = t(1,−1, 1) = t(−1, 1, 1)

=t(−1,−1, 1) = t(−1, 1,−1) = t(1,−1,−1) = a.

Observe that (1, 1,−1), (1,−1, 1), (−1, 1, 1) ∈ dom(fΓ+), then, by applying t
componentwise we get (a, a, a) ∈ dom(fΓ+), i.e., a ≥ 1

3 ; on the other hand,
(−1,−1, 1), (−1, 1,−1), (1,−1,−1) ∈ dom(fΓ−), then, by applying t compo-
nentwise we get (a, a, a) ∈ dom(fΓ−), i.e., a ≤ −1

3 , that is a contradiction. △
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In the next section we will apply Theorem 6.10 to PLH valued structures.

7 Polynomial-Time PLH VCSPs

We apply the results of Sections 5 and 6 to state the polynomial-time tractabil-
ity of the VCSP for PLH valued structures with finite signature that are
improved by fully symmetric operations of all arities.

Proposition 7.1. Let Γ be a valued PLH constraint language with finite
signature that is improved by fully symmetric fractional polymorphisms of all
arities. Then VCSP(Γ) can be solved in polynomial time.

Proof. The statement is an immediate consequence of Theorem 6.10 and
the fact that PLH valued structures with finite signature admit an efficient
sampling algorithm (Corollary 5.12).

7.1 Submodular PLH Valued Structures

We have already mentioned the importance of submodularity in the intro-
duction to this article. In this section we apply Proposition 7.1 to prove that
the VCSP of submodular PLH valued structures with finite signature can be
solved in polynomial time. Moreover, we show that submodularity defines a
maximally tractable class of valued structures within the class of PLH valued
structures.

Corollary 7.2. Let Γ be a PLH valued structure with finite signature such
that the cost functions in Γ are submodular. Then VCSP(Γ) can be solved
in polynomial time.

We already observed in Section 7.1 that a function over a totally or-
dered set D is submodular if, and only if, it is improved by the binary fully
symmetric fractional operation ωsub : O

2
D → Q≥0 such that

ωsub(g) =







1
2 if g = max
1
2 if g = min

0 otherwise.

In fact, there is another equivalent characterisation of submodularity based
on fractional polymorphisms. For every k ≥ 2 and every i ∈ {1, . . . , k} we
define s(k)i : Dk → D to be the operation returning the i-th smallest of its
arguments with respect to the total order in D. Observe that for k = 2

we get s(2)1 = min and s
(2)
2 = max. We define for every k ≥ 2 the k-ary

fractional operation ω
(k)
sub : O

(k)
D → Q≥0 having support

Supp(ω
(k)
sub) = {s

(k)
i | 1 ≤ i ≤ k}
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by setting

ω
(k)
sub(g) :=

{
1
k

if g ∈ Supp(ω
(k)
sub)

0 otherwise.

The operations s(k)i (x1, . . . , xk) are fully symmetric for all i ∈ {1, . . . , k} and
all k ≥ 2, therefore the fractional operations ω(k)

sub are fully symmetric for all

k ≥ 2. It is an easy observation that, for k = 2, the fractional operation ω(2)
sub

is exactly the fractional operation ωsub characterising submodular functions.

Proposition 7.3. Let D be a totally ordered set and let f be a submodular

function over D. Then for all k ≥ 2, the fractional operation ω
(k)
sub improves

the function f .

Proof. Clearly,
∑

g∈Supp(ω
(k)
sub)

ω
(k)
sub(g) = 1.

We want to prove that for all k ≥ 2 and for all x1, . . . , xk ∈ Dn it holds that

1

k

k∑

i=1

f(s
(k)
i (x1, . . . , xk)) ≤

1

k

(

f(x1) + · · ·+ f(xk)
)

. (5)

By using the submodularity of f we can write

f(x1) + · · ·+ f(xk) =
1

k − 1

∑

1≤i<j≤k

(
f(xi) + f(xj)

)

≥
1

k − 1

∑

1≤i<j≤k

(
f(min(xi, xj)) + f(max(xi, xj))

)

=
∑

1≤i<j≤k

f(min(xi1, x
j
1), . . . ,min(xin, x

j
n)) + f(max(xi1, x

j
1), . . . ,max(xin, x

j
n))

k − 1

≥
k∑

i=1

f
(

s
(k)
i (x11, . . . , x

k
1), . . . , s

(k)
i (x1n, . . . , x

k
n)
)

, (6)

from which Inequality (5) follows. We prove Inequality (6) by induction
on n. Observe that for every coordinate 1 ≤ l ≤ n, the following equality
between multisets holds:

{

min(xil, x
j
l ) | 1 ≤ i < j ≤ k

}

∪
{

max(xil, x
j
l ) | 1 ≤ i < j ≤ k

}

=
{
s
(k)
1 (x1l , . . . , x

k
l )

︸ ︷︷ ︸

k−1 occurrences

, s
(k)
2 (x1l , . . . , x

k
l )

︸ ︷︷ ︸

k−1 occurrences

, . . . , s
(k)
k (x1l , . . . , x

k
l )

︸ ︷︷ ︸

k−1 occurrences

}
. (7)

If f has arity n = 1, then Inequality (6) immediately follows from Equality
(7). Let n ≥ 2, assume that Inequality (6) is true for submodular functions
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of arity at most n− 1, and let us prove it for submodular functions of arity
n. From Equality (7) and from the inductive hypothesis it follows that there
exist (k − 1)-many permutations π1, . . . , πk−1 ∈ Sk such that
∑

1≤i<j≤k

(

f(min(xi1, x
j
1), . . . ,min(xin, x

j
n)) + f(max(xi1, x

j
1), . . . ,max(xin, x

j
n))
)

≥
k−1∑

p=1

k∑

i=1

f
(

s
(k)
i (x11, . . . , x

k
1), . . . , s

(k)
i (x1n−1, . . . , x

k
n−1), s

(k)
πp(i)

(x1n, . . . , x
k
n)
)

.

(8)

We claim that for every p ∈ {1, . . . , k − 1} it holds that

k∑

i=1

f
(

s
(k)
i (x11, . . . , x

k
1), . . . , s

(k)
i (x1n−1, . . . , x

k
n−1), s

(k)
πp(i)

(x1n, . . . , x
k
n)
)

≥
k∑

i=1

f
(

s
(k)
i (x11, . . . , x

k
1), . . . , s

(k)
i (x1n−1, . . . , x

k
n−1), s

(k)
i (x1n, . . . , x

k
n)
)

. (9)

To prove Inequality (9), let j := max {i ∈ {1, . . . , k} | πp(i) 6= i}. Then there
exists l ∈ {1, . . . , j − 1} such that πp(l) = j. By the submodularity of f we
have that

f
(

s
(k)
j (x11, . . . , x

k
1), . . . , s

(k)
j (x1n−1, . . . , x

k
n−1), s

(k)
πp(j)

(x1n, . . . , x
k
n)
)

+ f
(

s
(k)
l (x11, . . . , x

k
1), . . . , s

(k)
l (x1n−1, . . . , x

k
n−1), s

(k)
j (x1n, . . . , x

k
n)
)

≥ f
(

s
(k)
j (x11, . . . , x

k
1), . . . , s

(k)
j (x1n−1, . . . , x

k
n−1), s

(k)
j (x1n, . . . , x

k
n)
)

+ f
(

s
(k)
l (x11, . . . , x

k
1), . . . , s

(k)
l (x1n−1, . . . , x

k
n−1), s

(k)
πp(j)

(x1n, . . . , x
k
n)
)

.

After this step

k∑

i=1

f
(

s
(k)
i (x11, . . . , x

k
1), . . . , s

(k)
i (x1n−1, . . . , x

k
n−1), s

(k)
πp(i)

(x1n, . . . , x
k
n)
)

≥
k∑

i=j

f
(

s
(k)
i (x11, . . . , x

k
1), . . . , s

(k)
i (x1n−1, . . . , x

k
n−1), s

(k)
i (x1n, . . . , x

k
n)
)

+

j−1
∑

i=1

f
(

s
(k)
i (x11, . . . , x

k
1), . . . , s

(k)
i (x1n−1, . . . , x

k
n−1), s

(k)
π′
p(i)

(x1n, . . . , x
k
n)
)

where π′p ∈ Sk is the permutation defined by

π′p(i) =

{

πp(j) if i = l

πp(i) otherwise.
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By reiterating the procedure for at most j − 1 ≤ k times for every p ∈
{1, . . . , k − 1}, we get the claim. Then, using Inequality (9), we can rewrite
Inequality (8) as
∑

1≤i<j≤k

(

f(min(xi1, x
j
1), . . . ,min(xin, x

j
n)) + f(max(xi1, x

j
1), . . . ,max(xin, x

j
n))
)

≥
k−1∑

p=1

k∑

i=1

f
(

s
(k)
i (x11, . . . , x

k
1), . . . , s

(k)
i (x1n−1, . . . , x

k
n−1), s

(k)
i (x1n, . . . , x

k
n)
)

=

k−1∑

p=1

k∑

i=1

f
(

s
(k)
i (x1, . . . , xk)

)

= (k − 1)

k∑

i=1

f
(

s
(k)
i (x1, . . . , xk)

)

,

that is, Inequality (6) holds and this concludes the proof.

The next corollary immediately follows from the full symmetry of frac-
tional operations ω(k)

sub and Proposition 7.3.

Corollary 7.4. Let Γ be a valued PL (or PLH) submodular constraint lan-
guage. Then Γ has fully symmetric fractional polymorphisms of all arities.

of Corollary 7.2. The proof follows directly from Proposition 7.1, since every
valued submodular PLH constraint language has fully symmetric fractional
polymorphysms of all arities (Corollary 7.4).

We show that submodular PLH valued structures are maximal tractable
within the class of PLH valued structures. Let Γ be a valued structure with
signature τ . A valued reduct Γ′ of Γ is a valued structure with domain
dom(Γ) and such that the signature τ ′ can be obtained from τ by dropping
some of the function symbols. The interpretation of function symbols from
τ ′ in Γ′ is as in Γ. In this case we also say that Γ is an expansion of ∆. A
valued reduct of a valued structure is said finite if its signature is finite.

Definition 7.5. Let V be a class of valued structures with fixed domain D
and let Γ be a valued structure in V. We say that Γ is maximal tractable
within V if

• VCSP(Γ′) is polynomial time solvable for every valued finite reduct Γ′

of Γ; and

• for every valued structure ∆ in V that is an expansion of Γ, there exists
a valued finite reduct ∆′ of ∆ such that VCSP(∆′) is NP-hard.

We will make use of the following result.

Theorem 7.6 ([8], Theorem 6.7). Let D be a finite totally ordered set.
Then the valued structure containing all submodular cost functions over D
is maximal tractable within the class of all valued structures with domain D.
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We show that the class of submodular PLH valued structures is maximal
tractable within the class of PLH valued structures.

Definition 7.7. Given a finite domain D ⊂ Q and a partial function
f : Dn → Q we define the canonical extension of f as f̂ : Qn → Q, by

f̂(x) =

{

f(x) x ∈ Dn

+∞ otherwise.

Note that the canonical extension of a submodular function over a finite
domain is submodular and PLH.

Theorem 7.8. The valued structure containing all submodular PLH cost
functions is maximal tractable within the class of PLH valued structures.

Proof. Polynomial-time tractability of the VCSP for submodular PLH valued
structures with finite signature has been stated in Theorem 7.2.

Let fQ be an m-ary PLH cost function over Q that is not submodular,
i.e., there exists a couple of points, a := (a1, . . . , am), b := (b1, . . . , bm) ∈ Qm

such that

fQ(a) + fQ(b) < fQ(min(a, b)) + fQ(max(a, b)).

Let
D := {a1, . . . , am, b1, . . . , bm} ⊂ Q,

and let ∆ be the valued structure with domain D and such that its signature
τ contains a function symbol for every submodular cost functions on D.
Notice that the restriction fQ|D is not submodular, for our choice of D.
Therefore, by Theorem 7.6, there exists a valued structure ∆′ having domain
D and signature τ ′ ∪ {f}, where τ ′ ⊆ τ is finite and the cost function
f∆

′
= fQ| D, such that VCSP(∆′) NP-hard.
We define Γ′ to be the (submodular PLH) valued structure with domain

D, signature τ ′ ∪ {f, χD}, and such that the interpretation of functions
symbols in the signature is as it follows:

• for every g ∈ τ ′, the cost function gΓ
′

is the canonical extension of g∆
′
,

• the cost function fΓ
′

is fQ, and

• the unary cost function χΓ′

D : Q → Q ∪ {+∞} is defined, for every
x ∈ Q as

χΓ′

D (x) =

{

0 if x ∈ D

+∞ if x ∈ Q \D.

Observe that χΓ′

D is submodular and PLH.
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The valued structure Γ′ is an extension of an expansion (or an expansion of
an extension) of ∆′. We claim that VCSP(Γ′) in NP-hard. Indeed, for every
instance I := (V, φI , u) of VCSP(∆′), with V := {v1, . . . , vn}, we define the
instance J := (V, φJ , u) of VCSP(Γ′) such that

φJ(v1, . . . , vn) := φI(v1, . . . , vn) +
n∑

i=1

χD(vi).

Because of the terms involving χD, an assignment h : V → Q is such that
φΓ

′

J (h(v1), . . . , h(vn)) is smaller than +∞ if, and only if, h(vi) ∈ D for all
vi ∈ V . In this case,

φΓ
′

J (h(v1), . . . , h(vn)) = φ∆
′

I (h(v1), . . . , h(vn))

and therefore, deciding whether there exists an assignment h : V → Q such
that

φΓ
′

J (h(v1), . . . , h(vn)) ≤ u

is equivalent to decide whether there exists an assignment h′ : V → D such
that

φ∆
′

I (h′(v1), . . . , h
′(vn)) ≤ u.

Since J is computable in polynomial-time from I, the NP-hardness of the
problem VCSP(Γ′) follows from the NP-hardness of VCSP(∆′).

7.2 Convex PLH Valued Structures

We have already seen that if Γ is a valued structure such that all cost func-
tions in Γ are convex, then Γ has fully symmetric fractional polymorphisms
of all arities (see Proposition 6.11). Therefore, the next corollary follows
directly from Proposition 6.11 and Corollary 7.1.

Corollary 7.9. Let Γ be a PLH valued structure with finite signature such
that the cost functions in Γ are convex. Then VCSP(Γ) can be solved in
polynomial time.

7.3 Componentwise Increasing PLH Valued Structures

Let f : Qn → Q∪{+∞} be an n-ary function. We say that

• f is componentwise increasing if

f(x1, . . . , xi−1, yi, xi+1, . . . , xn) ≤ f(x1, . . . , xi−1, zi, xi+1, . . . , xn),

for every yi < zi , 1 ≤ i ≤ k, and x1, . . . , xi−1, xi+1, . . . , xn ∈ Q;
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• f is componentwise decreasing if

f(x1, . . . , xi−1, yi, xi+1, . . . , xn) ≥ f(x1, . . . , xi−1, zi, xi+1, . . . , xn),

for every yi < zi, 1 ≤ i ≤ k, and x1, . . . , xi−1, xi+1, . . . , xn ∈ Q;

In [8], componentwise increasing functions, and componentwise decreas-
ing functions are respectively referred to as monotone functions and antitone
functions.

Let us define, for every k ≥ 2, the fractional operations ω(k)
min : O

(k)
D →

Q≥0, and ω(k)
max : O

(k)
D → Q≥0 by setting, respectively,

ω
(k)
min(g) :=

{

1 if g = min(k)

0 otherwise,

and ω(k)
max(g) is dually defined. The fractional operations ω(k)

min and ω
(k)
max are

fully symmetric (in fact they are totally symmetric).
A valued structure Γ is said to be componentwise increasing (component-

wise decreasing, respectively) if all the cost functions in Γ are componentwise
increasing (componentwise decreasing, respectively).

Corollary 7.10. Let Γ be a componentwise increasing PLH valued structure
with finite signature. Then VCSP(Γ) can be solved in polynomial time.

Proof. The proof follows from Proposition 7.1, since for every k ≥ 2 the
fully symmetric fractional operation ω

(k)
min improves Γ as the next lemma

shows.

Lemma 7.11. A function f : Qn → Q∪{+∞} is componentwise increasing

if, and only if, f is improved by ω
(k)
min , for every k ≥ 2.

Proof. Let k ≥ 2 and let us first consider f componentwise increasing with
arity 1. Let us consider x1, . . . , xk ∈ Q and let us assume without loss of
generality that x1 = min(x1, . . . , xk). Then we have that

f(min(x1, . . . , xk)) = f(x1) =

k times
︷ ︸︸ ︷

f(x1) + · · ·+ f(x1)

k
≤
f(x1) + · · ·+ f(xk)

k
,

i.e., ω(k)
min is a fractional polymorphism of f . Assume now that, for n ≥ 2,

every (n − 1)-ary componentwise increasing function is improved by ω
(k)
min,

and let us prove that for every n ∈ N, an n-ary componentwise increasing
function f is improved by ω

(k)
min. Let us fix x1, . . . , xk ∈ Qn. The restricted

function
f(·,min(x1n, . . . , x

k
n)) : Qn−1 → Q ∪ {+∞} ,
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which maps every (z1, . . . , zn−1) ∈ Qn−1 to f(z1, . . . , zn−1,min(x1n, . . . , x
k
n)),

is clearly componentwise increasing and therefore, by the inductive hypoth-
esis, it is improved by ω(k)

min, that is,

f(min(x11, . . . , x
k
1), . . . ,min(x1n−1, . . . , x

k
n−1),min(x1n, . . . , x

k
n))

≤
f(x11, . . . , x

1
n−1,min(x1n, . . . , x

k
n)) + · · ·+ f(xk1, . . . , x

k
n−1,min(x1n, . . . , x

k
n))

k
.

Again by the fact that f is componentwise increasing we get that the
right-hand side of the last inequality is

≤
1

k
(f(x11, . . . , x

1
n−1, x

1
n) + · · ·+ f(xk1, . . . , x

k
n−1, x

k
n)),

i.e., f is improved by ω(k)
min.

Conversely, if f : Qn → Q∪{+∞} is improved by ω
(k)
min for all k ≥ 2,

then in particular it is improved by ωmin = ω
(2)
min. For all i ∈ {1, . . . , n}, and

x1, . . . , xi−1, yi, zi, xi+1, . . . , xn ∈ Q such that yi < zi it holds that

f(x1, . . . , xi−1, yi, xi+1, . . . , xn)

≤
f(x1, . . . , xi−1, yi, xi+1, . . . , xn)

2
+
f(x1, . . . xi−1, zi, xi+1, . . . , xn)

2
.

It follows that

f(x1, . . . , xi−1, yi, xi+1, . . . , xn) ≤ f(x1, . . . xi−1, zi, xi+1, . . . , xn),

i.e., f is componentwise increasing.

Lemma 7.11 and Corollary 7.10 may be shown to have a dual form that
holds in the case of componentwise decreasing cost functions.

The valued structure containing all componentwise decreasing PLH func-
tions (all componentwise increasing PLH cost functions, respectively) is max-
imal tractable within the class of PLH valued structures. The proof is similar
to the proof of the maximal tractability of submodular PLH valued structures
(Theorem 7.8) and uses a result by Cohen, Cooper, Jeavons, and Krokhin
stating the maximal tractability of componentwise decreasing finite-domain
valued structures (see [8], Theorem 6.15).

8 Conclusion and Outlook

We have presented two main results: an efficient sampling algorithm for PLH
valued structures with finite signature, and an algebraic condition for the
VCSP of infinite-domain valued structures that admit an efficient sampling
algorithm to be solved in polynomial time by the BLP relaxation. By com-
bining these two results we obtained a polynomial-time algorithm for PLH
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valued structures over the rationals that are improved by fully symmetric
fractional operations of all arities. Finally, we showed that this polynomial-
time algorithm solves the VCSP for PLH cost functions that are submodu-
lar, convex, or piecewise increasing. In fact, our algorithm not only decides
whether there exists a solution of cost at most uI , but it can also be adapted
to efficiently compute the infimum of the cost of all solutions (which might
be −∞), and decides whether the infimum is attained. The modification is
straightforward observing that the computed sample does not depend on the
threshold uI .

We also showed that submodular PLH cost functions are maximally
tractable within the class of PLH cost functions. Such maximal tractability
results are of particular importance for the more ambitious goal of classifying
the complexity of the VCSP for all classes of PLH cost functions: to prove a
complexity dichotomy it suffices to identify all maximally tractable classes.
In the same direction, the study of the algebraic properties that make a
PLH valued structure NP-hard, namely an algebraic theory of hardness, is
an interesting field of future research. Another challenge is to understand
which algebraic properties of fractional polymorphisms of an infinite-domain
valued structure are necessary the polynomial-time tractability of the VCSP
under the assumption that the valued structure admits an efficient sampling
algorithm. Finally, we would like to extend our tractability result to the
class of all submodular piecewise linear VCSPs. We believe that submodu-
lar piecewise linear VCSPs are in P, too. But note that already the structure
(Q; 0, S,D) where S := {(x, y) | y = x+1} and D := {(x, y) | y = 2x} (which
has both min and max as polymorphisms) does not admit an efficient sam-
pling algorithm (it is easy to see that for every d ∈ N every sample computed
on input d must have exponentially many vertices in d), so a different ap-
proach than the approach in this article is needed.
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