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ABSTRACT
The increasing complexity of the e-mobility infrastructure leads to
an increasing risk of security threats, which may negatively affect
any connected infrastructures such as the power grid. The grid
is one of the most important critical infrastructures, making it a
valuable target for cyber attacks. This situation gives rise to the
potential of e-mobility-based attacks to the grid, e.g., causing large-
scale black outs based on a sudden increase in charging demand. In
this paper, we propose a framework for simulating and analyzing
the impact of e-mobility-based attacks on grid resilience. We derive
e-mobility-specific attacks, based on an analysis of adversaries
and threats, and combine these attacks in our framework with
models for grid and e-mobility as well as simulation-based outage
analysis. In different case studies, the effects of e-mobility-based
attacks on grid resilience are evaluated. The results show, e.g., the
scope of increased vulnerability during peak load hours, enabling
attacks even at low levels of e-mobility compromise, the increased
impact of combined attack strategies, and the time from attack to
outage, which may decrease to sub-second ranges for high levels of
e-mobility growth and compromise. We further discuss potential
protection mechanisms for different resilience objectives including
approaches for detection, prevention, and response. This work thus
provides the basis for comprehensive resilience research regarding
the interconnection of e-mobility and grid.
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1 INTRODUCTION
As a critical infrastructure, power grids must maintain their func-
tionality under any circumstances since a large-scale power outage
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could negatively affect the lives of millions of people. Of para-
mount importance is the protection against cyber attacks, since
the grid is an attractive target for sophisticated attacks [Hollick
and Katzenbeisser 2019] with an increasing risk of cyber attacks by
nation-states [Geers 2010]. Perimeter-based security fails to pro-
tect against today’s threats, making alternative approaches such
as cyber resiliency necessary. Cyber resiliency is defined as “the
ability to anticipate, withstand, recover from, and adapt to adverse
conditions, stresses, attacks, or compromises on systems that use
or are enabled by cyber resources” [Ross et al. 2019].

A major challenge is the secure integration of e-mobility. Due
to the close link between e-mobility infrastructure and power grid,
any disturbances or changes in behavior of one can have grave
effects on the other. For instance, it is commonly predicted that,
due to the steady growth of the Electric Vehicle (EV) market, an
uncontrolled charging of EVs will have negative effects on the
power grid ranging from lower power quality, over a decline in
transformer life span, to increased line loss [Xiao et al. 2014]. This
issue can be addressed via controlled charging (e.g., by shifting
the bulk of EV load to night hours) [Verzijlbergh et al. 2012] and
moreover, the use of Vehicle to Grid (V2G) power transfer could
even be used to increase grid stability [Tan et al. 2016]. Both of
these methods, however, generally require a trustworthy e-mobility
infrastructure that faithfully implements the grid-friendly charging
schedules (defining consumption over time) and V2G strategies.
Thus, when considering an active attacker with (partial) control
over the e-mobility infrastructure, traditional methods for grid
stability fail and the threat of targeted demand-side attacks arises.
For example, an attacker controlling a botnet of compromised EVs
or Charge Points (CPs) can manipulate the charging schedules in
order to perform demand-side attacks causing line failures and
power outages. For the development of resiliency solutions, it is
necessary to know the behavior of the power grid under attack and
what impact the attacker can cause.

In this paper, we propose a framework for simulating and an-
alyzing the impact of e-mobility-based attacks on the resilience
of the power grid against these kinds of attacks. The framework
combines models for e-mobility and power grid with different types
of identified attacks to simulate and analyze possible grid outages.
It shows at what times of a day attacks are most easily carried out,
how many compromised CPs and EVs are needed for successful
attacks, and howmuch time is available to respond to attacks before
a power outage occurs. With our implementation of the framework,
we analyze several case studies showing the impact of the different
attacks. In addition, we propose and discuss possible protection
mechanisms to increase the resilience of the power grid against
e-mobility-based attacks.

The remainder of this paper is structured as follows: we distin-
guish our work from related work in Section 2. Section 3 describes
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our assumed system model and in Section 4 the assumed adversary
model. We introduce our framework in Section 5 and describe the
implementation and evaluation of the case studies in Section 6.
Possible protection methods to increase resiliency are discussed in
Section 7. Finally, we conclude the paper in Section 8.

2 RELATEDWORK
The successful cyber attacks on the Ukrainian power grid in 2015
and 2016 [Case 2016; Kshetri and Voas 2017] have shown that secu-
rity is of paramount importance with regard to any communication
or control mechanisms related to the power grid. Dynamic load
altering attacks against power grid stability are discussed in [Amini
et al. 2016] where the attacker controls the changes in the victim
load based on a feedback from the power system frequency. They
also discuss a possible protection scheme. Dvorkin and Garg pro-
pose a modeling framework to analyze the impact of distributed
cyber attacks via Internet of Things (IoT)-controlled loads on power
grids [Dvorkin and Garg 2017]. The framework can model an at-
tacker that has hacked several IoT-controlled loads to alternate
their net power injections into the electrical grid to disrupt normal
grid operations. Soltan et al. discuss the use of an IoT botnet of
high wattage devices to disrupt the power grid by the use of so
called Manipulation of demand via IoT (MadIoT) attacks [Soltan
et al. 2018]. Based on simulations, Soltan et al. demonstrate that a
botnet of compromised high wattage devices such as air condition-
ers can be used to manipulate the power demand in the grid and
disrupt normal operation.

With the integration of e-mobility into the power grid, the secu-
rity of the e-mobility infrastructure is becoming increasingly impor-
tant. Security issues of the e-mobility charging infrastructure are
discussed in [Pratt and Carroll 2019] and of CPs in [Gottumukkala
et al. 2019]. An overview of security issues of EVs connected to
other vehicles, road infrastructure systems, Internet systems etc.
is given in [Fraiji et al. 2018]. The security of ISO/IEC 15118 (a
protocol for the communication between EVs and CPs) is analyzed
in [Bao et al. 2018] showing several scenarios for successful attacks.
Baker and Martinovic show that electromagnetic side-channel at-
tacks on the Power Line Communication (PLC) of ISO/IEC 15118
are possible to eavesdrop on the communication [Baker and Marti-
novic 2019]. They also identified security issues in real systems, e.g.,
the widespread absence of TLS in public locations or the leakage of
private information such as long-term unique identifiers. Security
threats of Open Charge Point Protocol (OCPP) (a protocol for the
communication between CPs and their operator) are discussed in
[Alcaraz et al. 2017].

Several works address security and privacy for e-mobility. For
example, the integration of Hardware Security Modules (HSMs)
into ISO/IEC 15118 to protect critical data such as credentials is
proposed in [Fuchs et al. 2020a,b,c,d]. A protection mechanism
against man-in-the-middle attacks on OCPP is proposed in [Rubio
et al. 2018]. In [Zelle et al. 2018], the authors propose a mechanism
for privacy-preserving charging and billing. However, none of these
works addresses the impact on the power grid.

The general potential of e-mobility based attacks on the grid
is discussed in [Ahmed and Dow 2016; Pratt and Carroll 2019].
In [Mousavian et al. 2015], a probabilistic model for the worm

propagation between EVs and CPs is proposed. The model is used
to evaluate threat levels and afterwards isolate infected nodes in
order to minimize the potential of attacks to the power grid. The
work presented in [ElHussini et al. 2021] and [Acharya et al. 2020]
is closest to ours by analyzing EV-based attacks on the power grid.
The authors of [ElHussini et al. 2021] propose three attack variations
(sudden surge in power demand, sudden surge in power supply, and
a switching attack) to cause disturbances to the grid frequency and
perform a simulation-based study to show the possible effects of
successful attacks. The authors of [Acharya et al. 2020] evaluate how
a demand-side attack can cause frequency instability in the power
grid and show the potential of attack optimization via publicly
available data. They also perform simulations to evaluate the impact
of this attack on the power grid of Manhattan, NY, USA.

In contrast to related work, our work considers the full range
of attack vectors that result from the complex e-mobility infras-
tructure. Additionally, our work aims for a more comprehensive
consideration of the possible e-mobility effects on grid resiliency,
which is important due to the high criticality of the power grid
infrastructure.

3 E-MOBILITY SYSTEM MODEL
In this section, we briefly describe our assumed e-mobility system
model and the connection between e-mobility infrastructure and
power grid.

From a power grid perspective, an EV is a new mobile power
consumer with relatively large power and high difficulty to plan
energy demand, high storage capacity, and optional time flexibility
of power demand. E-mobility must be integrated into the power
grid in a way that serves the grid in order to keep power generation
and power consumption in balance. This requires (bidirectional)
communication between EV and the e-mobility infrastructure as
well as between the e-mobility infrastructure and the power grid
to control the charging processes, i.e., intelligent load management
is required in order to adapt the charging power to the available
electricity.

EVs can be charged at CPs in private, semi-public, or public
locations. Typical charging powers at private locations range from
3.7 kW to 11 kW, in some cases even up to 22 kW. The EVs are
often charged overnight at home at a wallbox and can thus be very
well integrated into a load management system. At semi-public
locations, CPs with 11 or 22 kW charging power are usually found.
Here, too, the EVs can be well integrated into a load management,
e.g., as long as the EV is charged during the day in the parking lot
at work. CPs with 11 or 22 kW for so-called normal charging can
also be found at public locations. However, there are also more and
more fast CPs with up to 150 kW, e.g., at highway rest stops where
EVs have to be charged as quickly as possible. Charging capacities
of up to 450 kW are also being standardized. At public locations,
load management is more difficult to implement. At highway rest
stops, time-based load management is hardly feasible. Nevertheless,
the charging power can be adapted to the available electricity. For
public charging with longer standing times, e.g., at CPs integrated
in streetlights, load management could be implemented.

Figure 1 shows our assumed system model with the close con-
nection of e-mobility infrastructure and power grid.
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Figure 1: E-Mobility System Model

The right part shows private charging where the EV is charged
at a CP for example at home at a wallbox. The charging event can be
influenced regarding the charging power and can be shifted in time
remotely by the Distribution System Operator (DSO) via the EV
user’s Home Energy Management System (HEMS). In addition, the
charging event can be influenced by the EV user, either by accessing
a wallbox backend system which communicates via OCPP with the
wallbox or via the HEMS. Additionally, the EV itself could influence
the charging schedule. However, the DSO has always the highest
priority in performing load management to ensure grid stability.

The left part shows charging at public CPs. The EV user has a
contract with an e-Mobility Service Provider (eMSP) and either re-
ceives External Identification Means (EIM) credentials, e.g., an RFID
card which is presented at the CP for authorization (not shown), or
contract credentials which are installed in the EV enabling Plug-
and-Charge (PnC) according to ISO/IEC 15118 [ISO/IEC 2014]. In
the latter case, the EV user then only needs to connect the charging
cable and authentication, negotiation of charging parameters, etc. is
done automatically via PLC over the charging cable and no further
user interaction is required. The CP is operated by a Charge Point
Operator (CPO) and communication is done via OCPP or IEC 63110.
The CPO communicates with the eMSP, e.g., via Open Charge Point
Interface (OCPI) (cf. [ElaadNL 2017]), for authentication and billing
processes. In case of roaming, i.e., the EV is charged at a CP where
the user has no contract, a Contract Clearing House (CCH) can
serve as intermediary between the different parties. The DSO pro-
vides energy to the CPs of the CPO and communicates via Open
Smart Charging Protocol (OSCP) with the CPO to provide informa-
tion such as capacity forecasts. Load management can be performed
by the DSO directly, especially in critical cases to ensure grid sta-
bility, the CPO by sending load profiles to the charging EVs, or the
eMSP by sending variable price tariffs which are negotiated via
ISO/IEC 15118. Charging at semi-public CPs can either be the same
as the private or public scenario or a combination of both.

The e-mobility systemmodel is currently still being further devel-
oped. In the near future, bidirectional charging enables application
such as vehicle to home (V2H) for energy transfer between EVs
and the home system and V2G for feeding energy from the EV back
into the power grid.

4 ADVERSARY MODEL
A successful attack to the power grid could negatively affect the
lives of millions of people, with consequences ranging from signifi-
cant economic damages to severe harm of human health [Anderson
and Bell 2012; Joo et al. 2007]. The grid thus represents a high value
target with an increased risk of sophisticated attacks by potent
adversaries. Due to the general potential of high-wattage devices to
disrupt the grid [Soltan et al. 2018] in combination with the close
link between e-mobility and grid, we thus consider the following
strong but realistic e-mobility-based adversaries to grid resilience:

E-Mobility Backend Hacker: The e-mobility infrastructure (cf.
Section 3) includes a variety of backend systems that can all
have an effect on the charging behavior of EVs/CPs. If an ad-
versary is able to spoof or take control of one or more of these
systems, an attack to the power grid (e.g., by altering the charg-
ing behavior of a large amount EVs/CPs) may be possible. That
the successful hack of e-mobility backend systems is a realistic
threat to consider is demonstrated by the many successful
attacks on corporate/industrial systems of the past such as the
2013 Yahoo hack in which over 1bn accounts were compro-
mised [Thielman 2016], the 2014 Sony hack, which resulted in
the first attribution of a cyber attack to a nation-state by a US
president [Haggard and Lindsay 2015], or Stuxnet, which af-
fected approximately 100,000 hosts while targeting industrial
control systems primarily in Iran [Falliere et al. 2011]. More-
over, the potential of a cyber attack to a corporate/industrial
system being used to attack the power grid is exemplified by
the successful attacks to the Ukrainian grid in 2015 and 2016,
which led to significant blackouts based on compromises to
the grid operators’ computer systems [Case 2016; Kshetri and
Voas 2017]. The threat of similar cyber attacks to power grids
around the world is often considered to be realistic [Sullivan
and Kamensky 2017]. Thus, the potential of attacks to the grid
based on compromised e-mobility backend systems should not
be neglected.

Botnet of EVs/CPs: Similar to the high wattage IoT device-based
attacks [Soltan et al. 2018], a botnet of EVs/CPs may be used
to adversely affect the grid. That the successful establishment
of a large scale botnet is a realistic threat to consider is demon-
strated by the variety of real-world botnet-based attacks in
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the past [Kolias et al. 2017], most famously the Mirai botnet
with an estimated peak of 600,000 infected devices, which was
used to conduct over 15,000 attacks including high-profile tar-
gets such as the Domain Name System (DNS) provider Dyn
[Antonakakis et al. 2017]. Additionally, it is not uncommon
that locally/remotely exploitable vulnerabilities in vehicles are
exposed (cf., e.g., [Checkoway et al. 2011]), which may enable
the establishment of a botnet. The most prominent example
is the 2015 Jeep hack [Miller and Valasek 2015], which could
be exploited via a vehicle’s cellular interface and enabled an
adversary to remotely take (partial) control of the vehicle’s
internal systems leading to a recall of 1.4m vehicles. Simi-
larly, vulnerabilities in CPs are not uncommon. For instance,
in [Dalheimer 2017] a CP could be compromised through the
installation of a custom firmware via physical access to a local
interface (allowing full control of the CP), in [Dmitry Sklya
2018] a CP could be compromised through its wireless inter-
faces due to insecure input processing (allowing full control
of the CP), and in [ElHussini et al. 2021] CPs could be compro-
mised remotely due to the insecure configuration of their web
interfaces with default username/password (allowing access to
the CPs’ web interface-controlled functions, including charge
schedules). Thus, the potential of attacks to the grid based on
a botnet of EVs/CPs should not be neglected.

Based on these adversaries, we identify the following e-mobility-
based attack vectors to grid resilience:
(1) Manipulation of charge schedules: An adversary who has com-

promised a grid operator1 or can spoof a grid operator to a CPO
(e.g., due to a security flaw in the used communication protocol
or a leaked private key) can send manipulated grid capacity
forecasts leading the CPO to generate charge schedules that
may exceed the actual grid capacity. Similarly, an adversary
who has compromised a CPO or can spoof a CPO to CPs can
directly instruct any affected CP to change its charge schedule
to exceed grid capacity.
An adversary with a botnet of compromised CPs can directly
change their charge schedules in order to conduct demand-side
attacks to the grid. Furthermore, an adversary with a botnet
of compromised EVs can alter their charge schedule selection
(within the bound of offered schedules) with potentially harmful
effects to the grid.

(2) Manipulation of charge prices: The designs of load balancing
mechanism are commonly based on price incentives in order to
couple the goals of grid operators and customers (e.g., cheaper
prices during off-peak hours) [Eid et al. 2016; Gan et al. 2012;
Maigha and Crow 2016]. Thus, an adversary that can manipu-
late the reported electricity prices can indirectly influence the
charge schedule selection of EV users (or EVs if they are pre-
programmed to charge based on user preferences) and with that
the adversary can affect the electricity demand at select times.
An adversary who has compromised an eMSP or can spoof an
eMSP to the CCH or CPOs can define manipulated price data.
Similarly, if price data is not end-to-end authenticated, then a

1Assuming the grid operator compromise does not allow the adversary to directly
influence the grid, e.g., if the compromise only affects the grid operator’s system that
is used for communication with CPOs.
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Figure 2: Overview of Analysis Framework

compromised/spoofed CCH, CPO, or CP may also manipulate
price data. In case of private charging, the respective target
would usually be the electricity provider or DSO. If an adver-
sary can incentivize enough EVs/users to charge at inopportune
times, they may be able to cause grid overload scenarios.

(3) Manipulation of reported data: The possibility of false data in-
jection attacks against state estimation in the power grid is a
general issue [Liu et al. 2011] and a similar threat arises in the
context of e-mobility integration. In order to accurately predict
and plan for the available/required grid capacity in an area, the
grid operator is informed about the e-mobility demand. The
respective e-mobility data includes current measurements of
CPs, the EVs’ selected charge schedules, and CP reservations
(allowing the derivation of the future energy demand at CPs).
While a compromised/spoofed eMSP or CCH could only ma-
nipulate the reported CP reservations, a compromised/spoofed
CPO could manipulate any of these values. Additionally, a bot-
net of compromised CPs could be used to report manipulated
measurements and charge schedule selections. The malicious
manipulation of these values may lead to an underestimation
of demand, i.e., to an overestimation of available grid capacity
and thus cause grid overload scenarios.

5 FRAMEWORK FOR E-MOBILITY-BASED
GRID ATTACK ANALYSIS

The general idea for e-mobility-based grid attack analysis is to use a
combined e-mobility/grid model with simulation-based grid outage
analysis while applying the attacks from Section 4 (cf. Fig. 2). Grid
and e-mobility load profiles are scaled to the desired scenario (e.g.,
reflecting a certain penetration of EVs) such that the resulting e-
mobility/grid models allow for the analysis of different realistic
use cases. The model is used as basis for the implementation of
e-mobility-base attack scenarios, possibly considering additional
protection methods, which serves as input for the simulation based
grid outage analysis. The results, under consideration of attacks
and protections, can then be used for resilience-related evaluations.

5.1 E-Mobility and Grid Model
As the grid attack analysis is based on amodel of e-mobility and grid,
it is important for a meaningful analysis that this model reflects a
realistic scenario. For power grids, fine-grained load profiles are
commonly available for larger scale networks. For smaller scale dis-
tribution networks, privacy-protection often hinders the availability
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of detailed profiles, making synthetic datasets the more promising
solution [Zhang et al. 2018]; especially, considering that energy
consumers usually exhibit distinct and predictable load profiles
[Kim et al. 2011], which allows synthetic datasets to be reasonably
representative of realistic scenarios.

Similarly, an e-mobility model may be derived from public data
(cf., e.g., [Acharya et al. 2020]). Public e-mobility data, however,
usually can only represent the load profiles of public CPs and thus
does not reflect charging at home or at work. Considering that
the (large scale) charging behavior of EV users too is predictable
[Gaete-Morales et al. 2021; Qian et al. 2010], synthetic models for
e-mobility load are a promising alternative, capable of reflecting
relevant parameters (current load, grid availability, State of Charge
(SoC), etc.) at fine-grained time intervals. Furthermore, synthetic
models may be used to represent different load balancing strategies
(e.g., instant charging or shifting charges to off-peak hours) and
their effect on the discussed e-mobility attacks.

By scaling both kinds of input data, a combined e-mobility and
grid model can be built. The data could, for instance, be scaled to
represent the same scenario if the data comes from different sources
or be scaled to represent the desired situation such as peak load
times or the future growth of the e-mobility sector. The combined
model is thus suited for a detailed analysis of the interdependence
between the two infrastructures in any given scenario.

5.2 Grid Simulation and Outage Analysis
For the analysis of failures in a power system, it is common prac-
tice to use simulation models, most importantly, (i) models using
transient analysis with detailed system dynamics and (ii)models us-
ing AC power flow-based steady-state analysis [Huang et al. 2019].
Transient analysis canmodel detailed voltage and frequency control
properties of generators [Ma and Chowdhury 2006]. Steady-state
analysis can model cascading outages due to line overloads and/or
unacceptable voltage conditions [Henneaux et al. 2018]. With re-
gard to cascading outages, several grid protection mechanisms are
relevant [Huang et al. 2019]: (i) over-/underfrequency protections,
which may initiate controlled load shedding if the grid frequency
is too low or may disconnect generators to prevent hardware dam-
age if the frequency is too high/low, (ii) overcurrent protections,
which may disconnect power lines if their current is too high, and
(iii) over-/undervoltage protection, which may initiate generator
disconnects or load shedding if the voltage is too high/low. Overcur-
rent and over-/undervoltage protections are commonly based on
inverse-time relays [Mirko 2008; Siemens 2005; Wang and Baldick
2013], initiating protective actions after a time that is calculated
based on the following equations:

Overcurrent: t = 0.14
(I/IS )0.02 − 1

TMS[s] (1)

Overvoltage: t = TMS
(V /VS ) − 1 [s] (2)

Undervoltage: t = TMS
1 − (V /VS )

[s] (3)

Where t is the tripping time in seconds, TMS is the time multiplier
setting, I is the measured current, IS is the relay setting current, V
is the measured voltage, and VS is the relay setting voltage.

By using the combined e-mobility and grid model as the ba-
sis for simulation, the detailed effects of e-mobility-based attacks
on grid resilience can be evaluated during outage analysis. The e-
mobility-based attacks discussed in Section 4 can initiate cascading
outages in different ways. An increase in demand either through a
manipulation of charge schedules, prices, or reported data would
increase currents and decrease frequencies/voltages, thus, poten-
tially triggering the respective protections. Similarly, a decrease
in demand or increase in V2G power transfer through any of the
mentioned manipulations would increase frequencies/voltages and
thus potentially triggering the respective protections. Additionally,
combinations of the different adversaries and attacks are possible,
e.g., a botnet of CPs could be used to increase the demand of affected
charging sessions via manipulated charge schedules while a com-
promised eMSP backend system simultaneously indicates reduced
charge prices in order to increase the demand at charging sessions
that are not directly affected by the botnet. While e-mobility (or
general smart grid) protection measures are not investigated in de-
tail in this paper, their influence on grid resilience can be analyzed
similarly during simulation. In addition, this approach is suitable for
analyzing the interdependence between the initial conditions, at-
tacks, and protections (e.g., with regard to EV penetration, method
of compromise, and response timings).

5.3 Resilience Evaluations
As previously mentioned, the close relation between e-mobility and
power grid motivates considerations from a resilience perspective.
That is, it is important to, under consideration of the interdepen-
dence of grid and e-mobility, evaluate the combined system’s ability
to anticipate, withstand, recover from, and adapt to adversarial and
non-adversarial disruptions/threats (cf. [Ross et al. 2019]).

For the evaluation of resilience, corresponding metrics are gen-
erally based on an assessment of the system’s performance level
before, during, and after a disruption in order to capture the nega-
tive effects of the disruption throughout its entire lifespan as well
as positive effects of potential prevention-, detection-, response-,
adaption-, and recovery-related measures [Bodeau et al. 2018].
Within the context of the power grid, resilience-related perfor-
mance levels can cover a wide variety of aspects, including the
timely delivery of meter data, the timely curtailment of demand
for load balancing, the timely identification of and recovery from
outages, or the timely detection of and response to security threats
before other operations are effected [AlMajali et al. 2012].

Within the context of simulation-based outage analysis, we focus
on the continued delivery of electricity as main performance indica-
tor. Thus, with regard to the analysis of e-mobility-based threats to
grid resilience, i.e., from an adversary’s perspective, we are primar-
ily concerned with the amount of outage over time while consid-
ering adversarial threats (cf. Section 4) as well as non-adversarial
threats (e.g., peak loads or a naturally increasing e-mobility elec-
tricity demand). For a more thorough evaluation of resilience in
this context, respective protection measures may be included in
order to represent important functions like prevention, response,
or recovery (cf. Section 7).
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6 IMPLEMENTATION AND CASE STUDIES
The framework for e-mobility-based grid attack analysis was im-
plemented in Python using pandapower [Thurner et al. 2018] for
grid simulation, specifically, AC steady-state analysis. Thus, outage
analysis assumes that the attacks do not cause frequency instabili-
ties. Considering that in [Soltan et al. 2018] frequency instabilities
required much larger attacks than line outages, we consider this
assumption reasonable. The implementation of the outage anal-
ysis process is based on the general AC cascading failure model
described in [Cetinay et al. 2018], using the more detailed grid
protections as discussed in Section 5.2.

Regarding grid protections, the value IS of Equation 1 is set to
1.5 × the rated current (IN ) of the line (cf. [Siemens 2005]) and to 2
× IN in case of initially overloaded lines (cf. [Cetinay et al. 2018]),
using the values of the pandapower models for IN . The overvoltage
value VS of Equation 2 is set to 1.3 pu and the undervoltage value
VS of Equation 3 is set to 0.8 pu (cf. [Huang et al. 2019]). The TMS
values are set to 0.05 for Equation 1 and 0.5 for Equations 2 and
3 [Huang et al. 2019]. For undervoltage load shedding at a bus, a
default value of 25% is used [Song et al. 2015].

EVs are modeled as electricity storages in pandapower and the
corresponding e-mobility load profile is based on the synthetic
dataset with hourly precision generated with the tool emobpy de-
scribed in [Gaete-Morales et al. 2021]. This data describes the vehi-
cle mobility, driving consumption, grid availability, grid demand,
and SoC of 200 representative EV profiles over the year (cf. [Gaete-
Morales et al. 2021]). Notably, grid availability indicates whether
and with which power rating an EV is connected to the grid, includ-
ing level 1 (3.6 kW), 2 (11 or 22 kW), and 3 (75 or 150 kW) charging (0
kW if not connected). Additionally, grid demand and SoC are each
calculated for different charging/load balancing strategies, namely
immediate full capacity (no load balancing), immediate balanced
(immediate charging but at a reduced rate, such that a full SoC is
reached just in time before departure), at home balanced (similar to
the previous one but only at home), and at home night-time balanced
(similar to the previous one but only at night).

The e-mobility load profile is scaled to the desired scenario from
the 200 EV profiles for a specific point in time by means of weighted
random sampling, whereby the weights are based on the distribu-
tions of level 1, 2, and 3 charging demand as reported/estimated in
[Engel et al. 2018] for the European Union in the years 2020 and
2030, i.e., 36%, 58%, 6% and 7%, 61%, 32% respectively. The grid load
profile data and scaling are discussed in the following subsections.

6.1 Case Study 1: MV Oberrhein
For the first case study, we use the synthetic Medium Voltage (MV)
distribution system MV Oberrhein as provided in pandapower. In
order to represent changes in load over time, we use public load
profile data from an MV system [EWE Netz 2020] (specifically MS
I; using the mean load per hour as the data is provided with 15
min precision). The load profile is scaled to fit the peak within the
capacity of the MV Oberrhein system.

We consider two EV penetration scenarios for Germany (cf. [Fed-
eral Ministry of Transport and Digital Infrastructur 2021]), namely
(i) the current (2020 in the following) scenario with 1,000,000 EVs

and (ii) a 2030 scenario with 14,000,000 EVs; assuming the previ-
ously mentioned distributions of level 1, 2, and 3 charging from
[Engel et al. 2018]. Additionally, we assume a steady population of
83,000,000 in Germany [Federal Statistical Office (Destatis) 2019]
and a population of 36,413 for the area that the MV Oberrhein
system is designed to cover [Statistisches Landesamt Baden-Würt-
temberg 2021], resulting in 439 EVs for the 2020 scenario and 6,142
EVs for 2030.

The respective amounts of EVs for the 2020 and 2030 cases are
sampled from the EV charging data [Gaete-Morales et al. 2021]
per hour as previously described. The resulting hourly EV loads
are added to the default grid load and the resulting cumulative
load is again scaled to fit the peak within the capacity of the MV
Oberrhein system. The load profiles of this combined e-mobility
and grid model for the 2030 scenario with the four different load
balancing strategies as well as without EV loads are shown in
Fig. 3. Specifically, the more pale-colored lines in Fig. 3 show the
mean power consumption per hour of day, group by business days,
Saturdays, and Sundays, over the four seasons.

Based on this model, we evaluate the attack potential of an
e-mobility-based adversary to the grid. Hereby, we focus on the
outage as the loss in demand as a result of the attack [Soltan et al.
2018]. The attack consists of increasing the active charging power
of any adversary controlled charging process with a not full SoC
to the respective grid availability (based on the data from [Gaete-
Morales et al. 2021]). For this, the adversary controlled charging
processes are picked randomly and the scope of adversary control
is reported as compromise (e.g., a compromise of 50% may reflect
a compromised backend system that controls 50% of the CPs or a
botnet that incorporates 50% of CPs in the area). This attack reflects
the manipulation of charge schedules or charge prices (assuming a
change of charge price enables an increase to grid availability) as
described in Section 4.

In order to evaluate an adversaries attack potential over the year,
we simulated this attack for the different models and at different
levels of compromise (in 25% steps) for every hour of the year. In
the 2020 scenario, no attack lead to an outage. In the 2030 scenario,
attacks lead to outage starting at 50% compromise. Notably, an
exception was the immediate full capacity load balancing strategy,
which never resulted in any outage. This is a result of the EVs
mostly sitting at full SoC such that even a 100% compromise did not
result in enough demand for a successful attack. While this could be
interpreted as a positive, it is worth noting that every (considered)
adversary who is able to increase demand is also able to lower it
(e.g., directly via the charge schedule or indirectly by increasing the
charging price; cf. Section 4). Hence, in the following, we consider
an adversary who prepares their demand increase attack by first
stopping or lowering the speed of any controlled charging process
and is thus always able to increase the active charging power to
the respective grid availability.

While, with the modified attack, no outages occurred in the 2020
scenario, in the 2030 scenario, outages started at 50% compromise
for all load balancing strategies. The resulting mean outages over
the year are shown in Fig. 3. With the modified attack, the imme-
diate full capacity load balancing strategy generally results in the
highest outages due to the overall increased demand and also results
in the highest peak of 12.28% mean outage during winter business
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Figure 3: Base Grid Load Compared to Outage % in MV Oberrhein Scenario 2030 at 50% Compromise

days at 18:00. The other load balancing strategies only show minor
differences. Further results are that the difference between load
balancing strategies becomes smaller with increasing compromise
percentage since the demand of non-compromised charge sessions
becomes less important and that at 75% compromise attacks resulted
in outages even during off-peak hours.

Since grid load profiles as well as e-mobility load profiles com-
monly exhibit similar trends, it is a reasonable assumption that the
demonstrated times with high attack potential are valid for most
scenarios. Additionally, considering that the load profiles are fairly
predictable and information on them is widely available, it is also a
reasonable assumption that an adversary would attempt an attack
during peak load times. For this reason, we investigate the attack
potential at different levels of compromise during peak load times
in more detail. Based on the previous experiment, we can identify
winter business days at 18:00 as one of the times with the highest
attack potential. We hence simulate the modified attack at different
levels of compromise (in 1% steps) during every winter business
days at 18:00 for the immediate full capacity load balancing strategy
as a worst-case scenario. The simulations were run 10 times each
and results are summarized in Fig. 4 and Table 1. Specifically, Fig. 4
shows a scatter plot of the outage over time, i.e., showing the up to
four different outage stages representing the up to four line failures,
for the different levels of compromise. The data points are grouped
based on proximity and the sizes of the marks in Fig. 4 represent
the respective group sizes.

Table 1: Outage over Time at Different Compromise %

Compro-
mise %

Fastest Outage Highest Outage Avg. Line
Failures

Mean Total
Outage %Time in s Outage % Time in s Outage %

100.0 0.455 27.621 2.324 81.459 3.774 73.245
90.0 0.473 22.773 5.002 80.958 3.452 66.835
80.0 0.476 24.156 5.618 80.766 2.955 57.650
70.0 0.646 21.442 7.506 80.257 2.061 40.798
60.0 0.888 21.321 7.374 77.849 1.089 22.057
50.0 1.376 21.426 112.068 54.346 0.579 11.934
40.0 3.020 20.946 25.955 34.409 0.114 2.362
30.0 165.644 20.799 165.644 20.799 0.002 0.032
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Figure 4: Outage over Time at Different Compromise %

The results show that outages not only become larger with in-
creasing level of compromise but also faster. For example, the mean
times of the first line failure for 100%, 80%, and 60% compromise
are 0.66s, 1.4s, and 8.1s respectively. The mean total outages for
100%, 80%, and 60% compromise are 73.25%, 57.65%, and 22.06%
respectively. The results also show that outages start becoming pos-
sible at 30% compromise and rather likely at 50% compromise with
an average 0.58 line failures per attack. Fig. 5 shows the average
times and probabilities of line failures for the 100% compromise
case. Note that line failures (2) and (3) as well as (4) and (6) were
mutually exclusive resulting in up to four line failures.

In order to investigate the potential of combined attacks, we
again start with the immediate full capacity load balancing scenario
during winter business days at 18:00. In this scenario, we evaluate
an attack that combines the previously described demand increase
attack at adversary controlled charging processes (including the
SoC preparation modification) with the malicious modification of
reported data as discussed in Section 4. For this, the adversarial
effect of the modified data is modeled as a percentage increase in
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and Probabilities

(1): 0.662s  100%
(2): 1.003s  23%
(3): 1.198s  72%
(4): 2.489s  1%
(5): 2.741s  86%
(6): 3.585s  95%
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Figure 5: Line Failures at 100% Compromise

overall e-mobility demand. Thus, this attack represents the potential
of an adversary to, e.g., use a botnet of CPs or a spoofed CPO to
report a low demand, leading to the overestimation of available
capacity and thus to the generation of charging schedules with
increased demand that affect any charging sessions in the area
(in addition to the direct demand increase at adversary controlled
sessions).

The simulations were run 10 times per winter business day at
18:00 for different levels of compromise percentage (with 5% steps
from 25% to 45%) and different levels overall e-mobility load increase
(with 1% steps up to 200%). Notably, an increase in overall e-mobility
load of 200% based on the manipulation of load balancing-relevant
data can be considered possible since the highest difference in peak
e-mobility load between the different load balancing strategies
for the case study is 207.6% (cf. Fig. 3). Additionally, manipulated
e-mobility data may also affect the load balancing of other non-e-
mobility energy consumers, resulting in similar demand increases.

Fig. 6 shows the mean total outage percentage at the end of an
attack for the different levels of compromise in relation to the e-
mobility load increase percentage. As shown in Fig. 6, the combined
attack can significantly increase the attack potential of an adversary.
For instance, an increase in 1%, 5%, and 10% of e-mobility load leads
to an average increase in outage percentage of 0.03, 0.15, and 0.3
respectively. Additionally, the results demonstrate that attacks start
to become successful at even lower levels of compromise. Specif-
ically, with a 25% compromise, attacks start resulting in outages
at an 8% e-mobility load increase and the mean outage percentage
surpasses that of the default 30% and 35% compromise cases at 34%
and 91% e-mobility load increase respectively.

6.2 Case Study 2: Polish Grid 2008
For the second case study, we use the model of the polish grid
during the 2008 summer morning peak as provided in pandapower.
This scenario is used to evaluate the potential of large-scale attacks
during peak demand times. Specifically, we evaluate the attack
potential at different levels of compromise (at 10% steps) and with
different levels of EV penetration. EV penetration is represented
as the average amount of EVs per person (with steps of 0.0125),
assuming a population of 38,354,000 in the grid area [Statistics
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Figure 6: Mean Outage of Combined Attack

Poland 2020] (i.e., each step corresponds to an addition of 479,425
EVs). For comparison, in the previous case study, the German 2020
scenario was equal to an EV penetration of 0.012 EVs per person
and the German 2030 scenario was equal to 0.169 EVs per person.

The different amounts of EVs are randomly sampled, using the
2020 distribution of level 1, 2, and 3 charging, from the e-mobility
data set for every summer business day at 08:00, representing the
summer morning peak. The EV loads are added to the pandapower
grid model and afterwards, all demand is scaled down such that the
resulting load is equal to the load before EV addition. The attack is
again modeled as the increase of demand at adversary controlled
charging sessions including the SoC preparation modification as
discussed in Section 6.1. We assume that the compensation for
the increased demand is distributed among all generators with an
amount that is proportional to their capacity [Soltan et al. 2018].

Fig. 7 shows the mean total outages after the attacks at the
different levels of compromise and EV penetration (marks with a
mean total outage of 0% are omitted for better visibility). The results
show, for instance, that attacks with 100%, 50%, 40%, 30%, and 20%
compromise start to result in outages at 0.025, 0.5, 0.0625, 0.0750,
and 0.1250 EVs per person respectively. It also shows a strong rise
in outage sizes as either compromise percentage or EV penetration
increases. Fig. 8 shows the average times and probabilities of line
failures for the 100% compromise case with 0.1 EVs per person. It
shows, e.g., sub-second times for most line failures and that many
lines had a 100% failure probability during this attack scenario.

In order to investigate the effect of the changing distributions in
level 1, 2, and 3 charging demand, we simulate the same attack dur-
ing the same times on the example of a 50% compromise with 0.075
EVs per person. EVs are randomly sampled, using the previously
mentioned 2020 and 2030 distributions. The simulations were run
10 times for every included day and the resulting outages over time
are shown in Fig. 9. Specifically, results are grouped based on the
order of line failures and Fig. 9 shows the mean values for every
line failure sequence that occurred more than once. Line thickness
represents the amount of simulations with the same order of line
failures and Xs show individual line failures. The results show a
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Figure 7: Outage over EV Penetration and Compromise %

Avg. Line Failure Times
and Probabilities

(1-4): 0.51-0.59s  100%
(5): 0.62s  4%
(6-12): 0.7-0.78s  12-100%
(13-20): 0.8-0.89s  6-100%
(21-38): 0.9-0.99s  1-100%
(39-40): 1.02-1.03s  64-66%
(41-43): 1.11-1.19s  1-100%
(44): 1.25s  1%
(45-46): 1.32-1.37s  78-87%
(47): 1.49s  3%
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(49): 1.73s  87%
(50): 3.85s  78%
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Figure 8: Line Failures (100% Compromise, 0.1 EV/Person)

strong tendency for faster and larger outages with the 2030 distri-
bution. With the 2020 distribution, the average time for the first
line failure was 2.5s and for the first resulting outage 4.6s, whereas
with the 2030 distribution, the times were 1.1s and 2.2s respectively.
Additionally, with the 2020 distribution, the mean final outage was
33.9% and with the 2030 distribution, it was 51.6% (notably higher
than the 49.9% outage of the 70% compromise case at 0.075 EVs per
person with 2020 charge level distribution; cf. Fig. 7).

7 E-MOBILITY-BASED PROTECTIONS
Compared to the regular MadIoT attacks, the e-mobility sector
introduces new attack vectors to grid resilience due to its complex
infrastructure and variety of protocols. However, the e-mobility
infrastructure also opens up possibilities for unique protection
measures (e.g., due to its intrinsic support for metering or load
balancing with the possibility of V2G), which can serve to address
different aspects of resilience:
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Figure 9: Outage Trend (50% Compromise, 0.075 EV/Person)

Detection: A timely and accurate attack detection is important in
order to adequately respond to potential threats. In the general
smart grid context, several attack detection approaches have
been proposed including Intrusion Detection Systems (IDSs)
[Radoglou-Grammatikis and Sarigiannidis 2019] and machine
learning-based mechanisms [Ozay et al. 2015]. The use of
similar/new techniques in the context of e-mobility should
consider its distinct challenges (e.g., the mobility of EVs raises
increased privacy concerns, which may affect the possibility
to use fine-grained data) and opportunities (e.g., the infras-
tructure involves communication and sensor readings from
disparate sources, which may serve to increase resilience if
used appropriately). Thus, the investigation of specialized de-
tection approaches for the different e-mobility-based attacks
(cf. Section 4) is relevant, considering privacy needs, the exist-
ing infrastructure, and timing-/accuracy-constraints (e.g., to
guarantee attack detection before any outage).

Prevention: The two distinct types of adversaries (cf. Section 4)
mostly require different types of preventive measures (besides
the application of common security best practices). The threats
from backend hackers could be addressed via more decentral-
ized approaches. Blockchain-based approaches have already
been proposed in the general smart grid context with the pos-
sibility of increasing resilience [Musleh et al. 2019]. In the
e-mobility context, however, decentralized approaches usually
only focus on secure authentication (e.g., [Huang et al. 2018])
and further investigations of their potential resiliency benefits
are warranted.
The threat of a botnet based attack could, for instance, be ad-
dressed via the use of trusted computing methods such as a
secure boot (i.e., a device can only boot after a validation of its
local software) or remote attestation (i.e., a device can attest
the integrity of its software state to a remote verifier). The
use of trusted computing methods for additional security in
the smart grid context is generally advisable [Metke and Ekl
2010] and approaches that integrate trusted computing into
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existing e-mobility protocols with a focus on secure authenti-
cation already exist [Fuchs et al. 2020a,b,c,d]. However, further
investigations of the potential to increase resilience based on
trusted computing methods is still required.

Reaction: Another important aspect of resilience are appropriate
reactive measures in order to, e.g., constrain the attack, restore
the system into its pre-attacked state, or transform the system
into a new working state. A commonly suggested reactive
measure in the smart grid context is islanding, i.e., splitting
the system into stable self-sufficient islands in order to isolate
failures and prevent a cascade [Panteli et al. 2016]. Addition-
ally, the e-mobility sector is commonly envisioned to support
islanding mechanism via V2G technology [Mohsen et al. 2014].
However, the secure integration of e-mobility-based islanding
support into existing protocols and/or under consideration of
sophisticated adversaries (e.g., consideration the potential of
compromised CPs/EVs) still provides room for more research.
Similarly, load balancing mechanisms are a general measure
to increase smart grid resilience with high relevance to the
e-mobility use case (e.g., [Khalid et al. 2020]). However, the
secure integration of these mechanisms into existing protocols
under consideration of sophisticated e-mobility-based adver-
saries, the potential of load balancing as a reactive protection
measure under consideration of the potentially very strict re-
quirements for reaction times, as well as the need for privacy
considerations still provides room for more research.

One should note that, due to the power grid’s high level of criti-
cality, no single solution can provide an adequate level of resilience.
Instead, it is important to implement a comprehensive defense-in-
depth approach, including a multitude of protective measures at
different levels, such that even the failure of a single (or multiple)
protective measure(s) does not enable the disruption of operations.

8 CONCLUSION
Due to the close relation between e-mobility sector and power
grid, the potential of e-mobility-based attacks to the grid is feasible.
Moreover, the threat of such an attack is especially relevant due
to the complexity of the e-mobility infrastructure and the risk of
these attacks is steadily increasing with the ever-rising EV market
share. In this work, we define e-mobility-specific adversaries and
attacks with the potential to negatively affect the grid. Moreover,
we propose a framework to evaluate the impact of these attacks
on the grid from a resilience-perspective that uses a combined
e-mobility and grid model in conjunction with simulation-based
outage analysis.

The framework is implemented using AC steady-state outage
analysis and examples for grid and e-mobility models, reflecting
different case studies and scenarios. The implementation is used to
demonstrate the attack potential at different times of day, levels of
e-mobility growth, and levels of compromise as well as the attacks’
impact on the grid over time, which, e.g., may serve to indicate the
required response time of protective measures. Evaluations show
the high significance of the overall grid load in enabling a successful
attack at lower levels of compromise and in increasing the impact
at higher levels of compromise. It is further shown that, while,
general EV-related load balancing approaches only have a relatively

small impact on attack potential, if security is not guaranteed, an
adversarymay abuse load balancingmechanisms to further increase
the impact of attacks to the grid by reporting manipulated data in a
combined attack. The results further indicate that, while, successful
attacks at current levels of EV penetration are unlikely, the growing
e-mobility sector steadily raises the risk, making attacks at high
level of compromise feasible in the near-term future.

These observations highlight the importance of security- and
moreover resilience-related research in the area. In this context, we
propose and discuss possible protection methods including mech-
anisms for detection, prevention, and reaction that may serve to
increase resilience. This paper can thus be used as a starting point
for further research on resiliency mechanisms for the power grid
against e-mobility-based attacks.
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