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ABSTRACT

In this paper, we investigate common pitfalls affecting the eval-
uation of authentication systems based on touch dynamics. We
consider different factors that lead to misrepresented performance,
are incompatible with stated system and threat models or impede
reproducibility and comparability with previous work. Specifically,
we investigate the effects of (i) small sample sizes (both number
of users and recording sessions), (ii) using different phone models
in training data, (iii) selecting non-contiguous training data, (iv)
inserting attacker samples in training data and (v) swipe aggrega-
tion. We perform a systematic review of 30 touch dynamics papers
showing that all of them overlook at least one of these pitfalls. To
quantify each pitfall’s effect, we design a set of experiments and
collect a new longitudinal dataset of touch dynamics from 470 users
over 31 days comprised of 1,166,092 unique swipes. We make this
dataset and our code available online. Our results show significant
percentage-point changes in reported mean EER for several pitfalls:
including attacker data (2.55%), non-contiguous training data (3.8%),
phone model mixing (3.2%-5.8%). We show that, in a common eval-
uation setting, cumulative effects of these evaluation choices result
in a combined difference of 8.9% EER. We also largely observe these
effects across the entire ROC curve. Furthermore, we validate the
pitfalls on four distinct classifiers - SVM, Random Forest, Neural
Network, and kNN. Based on these insights, we propose a set of best
practices that, if followed, will lead to more realistic and comparable
reporting of results in the field.

1 INTRODUCTION

Touch dynamics systems use distinctive touchscreen gestures for
authentication. These interactions include both common gestures
like swipes and scrolls and more advanced ones like pinch-and-
zoom. Touch dynamics have been proposed as a way to improve
the security of login-time authentication mechanisms and to enable
continuous authentication while a device is being used. The field
has been growing rapidly since the first papers were published in
2012, with 30 papers collecting unique swipe-and-scroll datasets
published so far.

Despite the growth in the field, no standard set of methods has
been established to enable comparison between published work
and transition to real-world deployment. While authors largely
report the Equal Error Rate (EER) as a metric of average system
performance, there are vast differences in methodological choices

when evaluating systems on a static dataset. The goal of this pa-
per is to identify these methodological choices, investigate how
common they are in published work, and quantify their effect on
reported system performance. These steps are crucial to enable fair
comparisons between papers, ensure reproducibility of results and
obtain results that are compatible with a real-world system- and
threat model.

Through our analysis of the existing work, we identify six pitfalls
where design flaws in the experiment, data collection, or analysis
impede comparability or lead to unrealistic results. To examine the
impact of each of these pitfalls on a touch dynamics system we col-
lect our own longitudinal large-scale dataset of swipes. Specifically,
we investigate the effects of sample and model size, mixing different
phone models in the analysis, using non-contiguous training data,
including attacker data in training, using arbitrary aggregation
windows, and the implications of code and data availability. We
quantify the effect of each pitfall with their effect on the system
equal error rate, showing that pitfalls lead to conspicuous changes
in the resulting performance. The dataset and code from our study
are openly accessible to advance the field further.
In this study we make the following key contributions:

• We identified six evaluation pitfalls: small sample size, phone
model mixing, selecting non-contiguous training data, in-
cluding attacker samples, swipe aggregation, and code/
dataset availability. We conducted a systematic analysis of
the touch-based authentication literature, showing that all
published studies overlook at least one of the pitfalls.

• We quantified the effects stemming from these pitfalls in
terms of resulting EER; to do so we collected a new 470-user
touch dynamics dataset comprised of daily interactions over
31 days. The dataset and our code are available online.1

• We outlined a set of best practices to avoid the identified pit-
falls. These practices include both recommendations for ex-
perimental design and methods and also recommendations
to allow for reproducibility and comparability of results in
the field.

2 COMMON EVALUATION PITFALLS

In this section, we present our identified evaluation pitfalls in touch
authentication systems.
1https://github.com/ssloxford/evaluation-pitfalls-touch
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Figure 1: Examples of training data selection approaches. The “dedi-

cated sessions” method samples data from self-contained sessions

and does not posses information from future ones. The “random”

method takes training samples from all session aiding in generaliza-

tion although it does not represent a realistic authentication scenario.
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Figure 2: Visualization of the difference between attacker modeling

approaches. The “include attacker” model creates a better boundary

between legitimate and invalid data but it does not represent a realis-

tic authentication scenario as specific attacker data is rarely available

at the time of model creation.

P1: Small sample size. Sample size can refer both to the num-
ber of users in a study and the amount of data collection sessions
recorded per user. Due to various experimental limitations, often
touch authentication methods are evaluated on limited amounts of
data, with a median of ∼40 distinct users and two data collection
sessions. Nevertheless, the accuracy of the measured performance
may benefit from a larger number of users. In fact, sampling nega-
tive training data from larger pools of users can lead to differences
in the performance of the recognition model, affecting the mean
system performance. On the other hand, collecting longitudinal
data is also necessary to estimate the effect of changing user behav-
ior over time, as this may change across different sessions. These
sample size effects are non-trivial to measure and hinder a robust
generalization of results found on smaller samples.
P2: Phone model mixing. Many studies in the field perform data
collection on multiple distinct device models. This can be a result of
convenience (especially in remote studies) or an attempt to demon-
strate system performance on different hardware. While phone
models might look similar, slightly different specifications cause
fundamental differences when devices are used to collect swipes.
These differences are caused by various factors, including the shape
of the phone, its resolution, how it is held, touchscreen sampling
rate, and the value range of its pressure and area sensors. In general,
an attacker would use the same phone model as their victim as they
use the same physical device in an in-person attack. Mixing phone
models in testing violates this requirement as attackers and victims
use different device models. It is worth noting that this pitfall does
not apply in the case of remote authentication where the attacker
can send data from any device model.
P3: Non-contiguous training data selection. In practice, a bio-
metric authentication system has an enrollment (training) phase
which precedes the use of the system (or its evaluation). However,
when using the randomized training data selection method, swipes
are randomly sampled from the whole user data as shown in Fig-
ure 1 (right). This does not resemble how a deployed system works,
as it essentially evaluates the system by testing on samples from the
past. As a consequence, randomized training data selection leads
to biased performance estimation.
P4: Attacker data in training.While there are several ways to
design an authentication method, a common approach is to use

a binary classifier that discriminates between legitimate and non-
legitimate user samples. In this case, the negative samples (non-
legitimate) are generally gathered from the available pool of users,
the same user pool is then used to test the system recognition rates.
However, most stated threat models rule out the possibility that the
classifier was trained with negative training data belonging to an
attacker: attacker samples should be unknown. Figure 2 illustrates
this problem: including the attacker samples in the training data
provides a significant benefit against attacks compared to what
happens when the attacker is excluded from training. This prop-
erty has been initially addressed in [11], where it is shown that it
artificially reduces the zero-effort attack success rates. The inclu-
sion of an attacker in training data is incompatible with a realistic
threat model. It is important to clarify that attacker data we use to
delineate the negative class consists of legitimate swipes of other
users. While active attacks are interesting to examine, we limit our
analysis to zero-effort attackers.
P5: Aggregation window size. Intuitively, the use of multiple
swipes when evaluating a particular model leads to an increase
in performance [17, 19, 20, 32, 44]. While aggregating multiple
swipes for an authentication decision is a legitimate approach in
general (e.g., it mitigates occasional erratic behavior and improves
recognition), it has two important drawbacks. Firstly, it impedes
straightforward comparison between different approaches when
the aggregation window size is different. Secondly, in a realistic
threat scenario, it allows the attacker a non-negligible time to per-
form their attack, as the anomalous attacker behavior will only
be identified after a certain number of swipes (depending on the
aggregation window size).
P6: Dataset and code availability. Datasets and codebases of
touch-based authentication systems are rarely made publicly avail-
able. This is a major impediment to reproducibility and progress
in the field. Sharing datasets would enable researchers to reliably
separate the effects of different models from those of the collected
data. Sharing the code used to obtain the results is especially im-
portant in light of the pitfalls investigated in this paper: oftentimes
unstated assumptions are made which are not trivial to spot.

3 RELATEDWORK

The focus of our work is on mobile continuous authentication sys-
tems based on swiping and scrolling behavior. While our work
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concentrates on the use of swipes as the most widespread touch
method, there are other types of touch gestures used for authentica-
tion (e.g., “pinch to zoom” [40], screen taps [45]). In this paper, we
consider swipes and scrolls - horizontal and vertical displacements
on a touch-capacitive display done using a single finger.

3.1 Background

Origin of touch-based authentication. Feng et al. developed one
of the earliest systems in touch-based continuous authentication
on smartphones [13]. Soon after, other systems solely based on
the data provided by the phone were developed [17, 20, 25]. Many
hybrid approaches for touch-based authentication have also been
proposed. For instance, some research includes sensor data coming
from the accelerometer and gyroscope [22, 39]. Deb et al. include
30 different modalities including GPS and magnetometer [10] and
Rahul et al. have even taken into account the power usage of the
device [26].
Data collection modalities. There are varying approaches for
data collection in touch-based authentication. Frank et al. use text-
reading to collect vertical scrolls and a “spot the difference” game
to gather horizontal swipes [17]. Similarly, Antal et al. use text
reading and image gallery tasks [5]. Others include social media
interactions [26], zooming on pictures [15] and questionnaires [32].
Buschek et al. evaluate the influence of GUI elements and hand
postures on the performance of touch dynamic systems [9]. In
order to analyze the time stability of the biometric, some recent
studies collect data over multiple sessions or days. Watanabe et al.
specifically look into the long-term performance of touch-based
systems by collecting data over 6 months [38]. They demonstrate
promising results for the time-stability of the biometric. While the
data from some experiments is collected in a restricted environment
during lab sessions, Feng et al. [15] recruited 100 users to use their
data collection application over the course of 3 weeks to provide a
more realistic environment when performing everyday tasks.
Feature extraction and classification modalities. Most feature
extraction methods in touch authentication systems focus on de-
scribing the geometrical attributes of swipes such as coordinates,
duration, acceleration, deviation, and direction [17, 20]. Zhao et al.,
however, use a method to convert the stroke information into an
image that can be used for statistical feature model extraction [44].
There is a vast variability in the classification approaches in touch-
based authentication. Some studies have focused on systematizing
and comparing knowledge within the field. Fierrez et al. [6] analyze
and compare recent efforts in the field in terms of datasets, classi-
fiers, and performance. Serwadda et al. compare the most common
machine learning algorithms in the context of touch-based authenti-
cation [32]. The studies suggest that Support Vector Machine (SVM)
and Random Forest perform the best for touch-based tasks. Fierrez
et al. provide insights into model and design choice performance by
benchmarking open-access datasets [16]. They find that landscape
phone orientation and horizontal gestures prove to be more stable
and discriminative.
Performance and metrics. The difference in data collection and
classification approaches leads to significant variability in the re-
sults reported in the field, with authors claiming EERs between

0% [8, 17] and 22.1% [22] Studies also vary in their evaluation met-
rics as results are reported in False Acceptance Rate (FAR), False
Rejection Rate (FRR), Equal Error Rate (EER), Receiver Operating
Characteristics (ROC) curve, and Accuracy. While it has been ar-
gued that EER does not adequately describe systematic errors [12],
it is generally accepted as a good measure of average system perfor-
mance. Furthermore, [34] argues the importance of considering the
ROC curve for performance as the EER metric could be misleading
depending on TPR (True Positive Rate) and FPR (False Positive Rate)
system requirements. In this paper, we abstract from the variety
of experimental choices outlined in this section and investigate
fundamental effects of evaluation pitfalls on the EER and ROC
curve.

3.2 Prevalence of evaluation pitfalls

To check how prevalent the pitfalls are, we analyzed the touch-
authentication literature. We report an overview of our findings
on 30 studies from the last decade, each of the studies introduces
a new touch-based dataset in Table 1. We only selected studies
with experiments containing natural swiping behavior such as
navigating through specific tasks. We did not consider studies that
only rely on mobile keystroke dynamics, sensors, tapping, and one-
time gestures for authentication. Patterns that emerge are discussed
throughout the paper. Table 1 shows that all of the studies included
in the table are subject to at least one of the pitfalls described in
Section 2.

Our set of studies have a close to equal split in their study en-
vironment, with 15 studies done in a lab and 13 remotely – the
collection environment was unclear for the 2 remaining studies. We
find that the median number of participants is 40, who complete a
median of 2 sessions. This relatively low number of median sessions
is concerning and we analyze the impact of this (P1) in section 7.
Seven of the studies hand out devices to participants for a period
of time without specific instructions on how often to use them,
meaning that the precise number of sessions is not known.

Of our analyzed studies, 28% mix device models in their data
collection and do not discuss splitting them in the evaluation, falling
into P2.

Likewise, 30% of the studies do not clearly explain the way they
select their training and testing data, with a further 18% using a
randomized approach to select data, and are thus snared by P3. For
those that do not explain their selection process, the code is also
not shared, making it impossible to know how the selection was
performed.

In terms of attacker modeling, an overwhelming majority (80%)
of the studies investigated use an unrealistic attacker modeling
approach and include attacker data into the training set, falling
victim to P4. A much smaller number of studies succumb to P5, with
17% reporting their results only on the analysis of an aggregation
group of more than one swipe, hindering comparability across
studies.

P6 also captures many works, with only 8 studies (27%) sharing
their datasets upon publication, two of which no longer have func-
tional web pages. Furthermore, none of the studies we examined
share a complete codebase of their work. One study, [17], does share
the feature extraction code files but not the rest of the analysis.
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Table 1: Data collection and analysis choices in touch dynamics studies.  denotes that the study fulfills the column recommendation (i.e.,

does not fall into the evaluation pitfall) and # denotes that it does not, ? means that the information was not shared or it is unclear from

the paper, — means not applicable and G# in the last column means that the code or dataset is no longer available through the provided url

(accessed on 14 April 2021)). The “Cont. (Period)” Sessions label indicates that the phone was given to the users for a period of time without

specific instructions on how often to use it. The “Single Device Model” column marks whether the analysis separates data belonging to distinct

phone models (even if the data collection included various phone models).

P1 P2 P3 P4 P5 P6

Study
(Publication Year) Environment Users Sessions

Single
Device
Model

Contiguous
Training
Data

Exclude Attacker
From Training

Single Gesture
Analysis Available
(Aggregation Sizes)

Dataset / Code
Availability

[17] (2012) Lab 41 3 #  #  (1-20)  /#
[14] (2012) Lab 40 1  ? #  (1-9) # /#
[20] (2013) Remote 75 Cont. (?)    # (2-20) # /#
[8] (2013) Remote 100 Cont. (?) ? ? #  (1-30) # /#
[32] (2013) Lab 190 2   # # (10) G# /#
[18] (2014) Remote 32 Cont. (5-10 weeks) #  #  (1) # /#
[15] (2014) Remote 23 Cont. (3 weeks) # #   (1-10) # /#
[31] (2014) Lab 20 1  #   (1) # /#
[44] (2014) Lab 78 6  ? ?  (1-7) # /#
[40] (2014) Lab 32 1     (1,3,5) G# /#
[43] (2015) Lab 50 1   #  (1-19) # /#
[28] (2015) Lab 20 1  ? ?  (1) # /#
[5] (2015) Remote 71 4 # ? #  (1-20)  /#
[42] (2015) ? 14 1  ? #  (1-15) # /#
[36] (2015) Remote 22 30   # — # /#
[27] (2015) Lab 73 2   #  (1) # /#
[33] (2016) Lab 24 3   #  (1-20) # /#
[7] (2016) Lab 40 1  # #  (1-5) # /#
[23] (2016) Remote 48 Cont. (2 months)   # # (2-16)  /#
[19] (2016) Remote 28 7 #  # # (4) # /#
[3] (2017) ? 40 1 # ? ?  (1,5,11) # /#
[38] (2017) Remote 40 Cont. (6 months)   #  (1) # /#
[37] (2017) Lab 20 8  #   (1) # /#
[4] (2017) Lab 20 1   #  (1-5) # /#
[24] (2018) Remote 48 20   #  (1) # /#
[35] (2019) Lab 31 8  ? # # (5)  /#
[29] (2019) Remote 2218 1 - 7619 # — — —  / —
[41] (2019) Remote 45 Cont. (2 weeks)  ? #  (1) # /#
[30] (2020) Lab 30 1  # #  (1) # /#
[2] (2021) Remote 600 5 # — — —  / —
Ours Remote 470 31 Both Both Both  (1-20)  / 

Recent studies have gathered large amounts of data by making
collection apps available on public app stores [2, 29]. This is a step
in the right direction in terms of dataset sizes but presents other
challenges. For instance, in the case of [29] there is data from 2218
users collected on 2418 different devices and in [2] there is data from
600 users on 278 distinct devices. There is likely a large variation
in the unique device models used as well, especially considering
the large fragmentation of the Android ecosystem. Furthermore,
multiple people may perform the tasks on the same account (e.g. a
parent giving a child to play the game).

4 STUDY DESIGN

We designed our data collection experiment to enable us to thor-
oughly measure the effects of each of the pitfalls described in Sec-
tion 2. As a consequence, we have a few notable differences from
previous datasets. We collected all data remotely on a carefully
constrained set of devices. Furthermore, we obtained data from 470
participants (well above the median of 40) and collected data of

up to 31 sessions (compared to the median of 2). In the remainder
of this section, we discuss the designs of the key parts of our data
collection experiment.

4.1 Remote collection

Remote data collection provides two major benefits. Firstly, it al-
lows for the collection of large amounts of data which is impractical
for a lab study due to the difficulty of recruiting participants with
particular qualities at scale. Furthermore, external factors such as
the COVID-19 pandemic may prevent lab studies altogether, leav-
ing remote collection as the only viable option. For our study, we
utilized Amazon Mechanical Turk (MTurk) - a popular crowdsourc-
ing platform, where workers perform Human Intelligence Tasks
(HITs) in exchange for payment. The platform gives access to a
large population of potential subjects and allows for targeting by
age, gender, and other demographic criteria.

We created an MTurk HIT, which described the requirements
and details of the study and guided the subjects to install the data
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collection app which was distributed through TestFlight - an online
service for over-the-air installation on the iOS platform, which does
not allow the general public to install the application. The HIT also
contained the participant information sheet, as required by our
institutional review board. This study received ethical approval.
Application Onboarding. Upon opening the application, users
were required to complete a consent form and provide demographic
information as they would in a lab study. Users were then required
to complete their first pair of tasks once. This established a connec-
tion between MTurk and the application, providing users with the
first payment, and allowing payments to be automatically generated
for subsequent completions of the task.
Study Duration.Within the study, participants were either invited
to participate for 7 or 31 days. Each day participants were prompted
with a notification (if they allowed notifications from the applica-
tion) to complete the task at 9 am, and again at 7 pm if the task had
not yet been completed that day. Not all users, however, completed
their tasks consistently as further discussed in Appendix D.

4.2 Devices

We selected the iOS platform to carry out our data collection ef-
forts in order to ensure the consistency of hardware and software
throughout experimentation. The other major mobile operating
system, Android, includes a much higher number of device models
with varying screen sizes and sensors making it impractical for our
analysis. Moreover, the majority of Android devices approximate
their reported touch pressure values by considering the size of the
touchpoint while the iPhone models we have chosen support “3D
touch” - a true pressure sensor built into the screen of the devices.
Due to these restrictions, we have narrowed down our efforts to
the nine devices shown in Appendix E.

These design choices left us with a large number of users using
a limited amount of models but still let us make a comparison in
terms of phone size, resolution, and even hardware differences.
To our knowledge, there is only one other paper [43] in the field
which focuses on iOS devices for touch-based authentication and
the dataset is not publicly available. While we have placed specific
restrictions on our data collection and experimentation, the dataset
can be used for developing systems beyond the specifics of this
study.

4.3 Application

To facilitate our study we developed an iOS application that col-
lects touch and sensor data as users perform common smartphone
interactions. We collected coordinates and pressure data for each
user interaction with the screen at the maximum rate of 60Hz. Fur-
thermore, we also recorded the accelerometer and gyroscope data
at their maximum frequency of 100Hz.

The application required users to complete two tasks: a social
media style task and an image gallery task. The design and intention
of these tasks are described in Section 4.4. We optimized the number
of rounds of each task to equalize the completion time and the
number of swipes and scrolls collected per task. Both tasks were
intended to be completed with the phone in a vertical position,
and thus we did not allow a change in the layout when the device
was rotated. The application home page included elements such as

completion streak and earning potential in order to increase user
retention throughout the study.

The order in which the two tasks were presented was randomly
determined before each session, and the instructions for completing
each task were provided before each task begins. The user was
required to perform five rounds of each task, with the correctness
of answers being validated to ensure the legitimacy of the data
and avoid abuse. If the user made a mistake, they were prompted
to repeat that round of the task. On completion of both tasks, the
touch and sensor data was transmitted to a remote server.

4.4 Task Design

Social media task. The goal of the social media game is to gather
touch data by simulating how users tend to use their phones on com-
mon vertical scrolling tasks such as browsing a social media feed
or looking through a list of news articles. In this task, users were
required to scroll through a feed in order to find articles or posts
which fit a given description. The articles and corresponding images
were gathered from the copyright-free content of NewsUSA [1] and
we manually created a non-ambiguous corresponding description
for each one of them. Each description was associated with one
unique article or post and there were 600 such pairs available in
the system. The feed was 20 items long and the correct description-
answer pair was randomly chosen and mixed with arbitrary decoys
pooled from the rest of the pairs.
Image gallery task. The goal of the image gallery game is to gather
touch data by simulating how users tend to use their phones on
common horizontal swiping tasks such as browsing a list of photos
or application screens. In this task, users were presented with a
horizontal list of pictures in which only a single image was visible
at any given time. Users were required to count the number of
occurrences of a specific object while swiping through the gallery.
For instance, the objects could be animals such as dogs and cats
or food items such as pizza. All the images were gathered from
the open computer vision “Common Objects in Context” (COCO)
dataset [21]. There were a total of 200 unique images in the sys-
tem and each challenge presented 20 images in the gallery while
ensuring that between 2 and 6 of them contain the target object. At
the end of the round users were required to enter the number of
objects they have counted.

The application’s source code is available with the rest of the
data and code from the project.

4.5 Limitations

As with any remote data collection experiment, the lack of direct
experimenter involvement poses challenges. The two actions that
could compromise the quality of the dataset are participants com-
pleting the study twice or participants asking others to complete
some of their sessions. The first case is highly problematic since the
user would appear twice in the data under different labels. How-
ever, to do so the participant would require two MTurk accounts,
two Apple accounts, two physical devices, and the capability to
accept and complete the HIT twice before it expires. The second
case of participants handing their phones to someone else for some
of their sessions is harder to rule out entirely. However, we have
reminded participants not to do so at the start of each session and,
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the impact of participants disregarding this would be limited to
individual sessions.

Lastly, data may have been collected under varying uncontrolled
conditions that differ both between users and sessions of the same
user. For instance, a user could be sitting or walking, holding the
phone, or having it on a table. While this may hinder the overall
performance (as it adds variability), it should be considered a more
realistic representation of the way a touch-based system will be
used in practice.

5 DATASET

In total, we collected data from 470 users amounting to 6,017 unique
sessions and 1,166,092 unique swipes. On average, users completed
13 sessions with cumulative distribution function plots for each
study duration group shown in Appendix D. The majority of the
users that completed the first few sessions continued throughout
the whole duration of the experiment. On average, an image gallery
task took 1:54 minutes to complete and resulted in the collection of
124 swipes. The social media task took 1:48 minutes to complete and
resulted in 79 scrolls using the same method. The average duration
of a swipe was 58ms and the average flight time between swipes
was 630ms. The demographics of our participants can be found in
Appendix D.

6 MACHINE LEARNING PIPELINE

Here we present our data and machine learning pipeline and we
describe how we investigate the effect of the pitfalls P2, P3, and P4,
which require specific steps. P1 and P5 are analyzed directly by vary-
ing the sample size and the aggregation window size, respectively.
Our implementation is available online.
Division by phone model. As outlined in Section 4.2, our partici-
pants used 9 distinct phone models for data collection. While their
hardware and sensors are likely to be very similar, there are differ-
ences in their screen size, resolution, and shape. In order to control
for the effect of P2, we create distinct data subsets by isolating data
collected by each phone model (which we refer to with the phone
model name, e.g., xs max). We compare the performance on this
phone model-specific subsets with the performance computed on
the entire dataset containing data from all models, which we refer
to as combined.
Preprocessing and feature extraction. As the first step, we ag-
gregate individual touch samples (consisting of X/Y coordinates
and touch pressure) within a game into horizontal swipes (image
gallery task) and vertical scrolls (social media task). In all future
steps, scrolls and swipes are classified separately and independently.
In order to avoid including taps, we remove swipes shorter than 3
samples and the ones that do not deviate by more than 5 pixels from
the starting point. For each remaining swipe and scroll, we calculate
a set of features directly taken from [17]. All positional features are
normalized to the screen resolution. We also distinguish between
the direction (left/right or up/down) of both swipes and scrolls.
Training data selection. In order to control for the effect of P3, we
consider fourmethods of dividing the target user’s data into training
and testing sets. In the following,𝑈 identifies the set comprising of
all users, 𝑁𝑖 identifies the number of samples (swipes) belonging

to user 𝑖 , and 𝑓𝑡𝑟𝑎𝑖𝑛 and 𝑓𝑡𝑒𝑠𝑡 refer to the fraction of samples used
for training and testing, respectively.

• random: we choose training samples for a user out of all the
available samples at random, i.e., all sessions are merged, test-
ing uses the remaining samples. This process is repeated inde-
pendently for each user.

• contiguous: we combine all samples of a user and we select
the first portion (in chronological order) of samples for training
and the remainder for testing.

• dedicatedSessions: for a user, we select a subset of their ses-
sions for training and test on the remaining sessions. This
ensures that each session is used for either training or testing
and that training and testing samples are never drawn from
the same session. We investigate selecting sessions both con-
tiguously (in chronological order, with first sessions used for
training, later sessions used for testing) and randomly.

• intraSession: for a user, we select a specific session and use
the first half of samples for training and the remainder for
testing. Only samples from the chosen session are used.

Attacker modeling. To evaluate the effect of P4, we examine two
different scenarios, one where attacker samples are included in
training data and one where they are not. In both cases, we train a
binary model where the user’s samples are labeled as positive and
multiple other users are combined into a single negative class.

• excludeAtk: For each user we randomly divide the remaining
users into two equally-sized sets 𝑈1 and 𝑈2. For training, we
select positive class data from the available data from the user
and negative class data from𝑈1. We ensure the two classes are
balanced. For testing, we treat all users from𝑈2 as attackers and
classify their samples along with the user’s testing samples.
This ensures that there is no overlap in the attackers used
for training and testing. We use this approach over the leave-
one-out method proposed in [12] to avoid overfitting when a
separate threshold is chosen for each user-attacker pair.

• includeAtk: We select a user and split the remaining users
into𝑈1 and𝑈2. We first train and test the system on𝑈1. This
involves training a model for each user 𝑖 where 𝑁𝑖 ∗ 𝑓𝑡𝑟𝑎𝑖𝑛 of
the user’s samples and 𝑁𝑖∗𝑓𝑡𝑟𝑎𝑖𝑛

|𝑈1 | of each attacker’s samples are
used for training and the rest for testing. This ensures that the
negative and positive classes are balanced in the training data.
This process is then separately repeated with𝑈2.

Scaling. Following the division of data into training and testing
batches along with the inclusion or exclusion of attacker data, we
standardize each feature by computing the mean and standard
deviation of the training data. The training and testing samples of
both the user and the attackers are scaled by subtracting the mean
and dividing by the standard deviation of this training data.
Classification. Following scaling, we fit a classifier to our training
data for each user. We then classify the samples in the testing set,
which gives us a probability for each sample. This probability is in
turn used for both sample aggregation and threshold selection.
Sample aggregation. For this optional step, instead of treating
samples independently, we group a set of consecutive samples
together and take their mean probability estimation, which we use
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instead of individual probability estimation for threshold selection
and final decision.
Threshold selection. Taking the distance scores for the testing
samples (both user and attacker samples), we compute the EER
for each user. This is done by finding the distance score threshold
where the FAR and FRR are equal. The mean EER for a given system
is the average EER across all users.

7 ANALYSIS

To quantify each pitfall’s effect on the evaluation performance, we
analyze their effect one at a time. Our system implementation is
based on one of the seminal papers in the field [17]. We report
our results from the SVM classifier as it is the best performing
method in the study but also experiment with other classifiers
(Random Forest, Neural Network, and k-Nearest Neighbors (kNN)).
We discuss classifier differences at the end of this section. When
investigating one pitfall, we control the remaining experimental
choices estimating a baseline performance as follows: (i) combined,
(ii) contiguous, (iii) excludeAtk and no sample aggregation. We
chose this specific configuration as a default in our experiments for
the following reasons. For phone model mixing and training data
selection, we chose the most common configurations in Table 1 -
combined and contiguous respectively. However, we chose ex-
cludeAtk as previous work on the topic has already shown the
negative effects of using the unrealistic includAtk approach [11].
We do not use an aggregation of samples in our default configu-
ration as it adds another dimension to the data and results, thus
making comparison within experiments and previous work more
complicated. Unless differently specified, we focus on the effect of
pitfalls on the mean EER, i.e., for an experiment configuration, we
train the system, then use the test set to estimate each user’s EER
(per-user EER) and report the average of those. We also report the
mean ROC curve with 95% confidence intervals where appropriate.

The baseline system resulted in a mean EER of 8.4% and a stan-
dard deviation of ±5.57. As our goal is to investigate the fundamen-
tal effects of evaluation pitfalls, we focus on the most populous left
swipe type to limit sources of variability. Details about the per-user
EER distribution and effects of swipe direction on performance can
be found in Appendix F.

P1: Small sample size

Here we investigate non-trivial effects of user sample size and the
effect of the amount of available data per user on the resulting mean
EER.

7.0.1 User sample size. Oftentimes it is assumed that the EER of a
given authentication method can be reliably estimated by sampling
roughly 40 users (the median number of users in Table 1). To in-
vestigate this, we randomly sample 𝑛 < 470 users from our dataset
and compute the mean EER of the system fit on those 𝑛 and the
standard deviation of each sample’s per-user EER distribution. We
focus on the standard deviation of the per-user EER distribution as
it is a proxy to the evaluation of systematic errors and EER outliers:
certain users with high per-user EER are responsible for a larger
proportion of the resulting mean EER [12]. The sampling procedure
is repeated 1,000 times for each 𝑛. We then use 𝑛=40 (median user

sample size in Table 1) as a reference: we test whether the metrics
obtained at 𝑛=40 reliably predict the behavior for different 𝑛.
Effect on mean EER. The left-hand of Figure 4 reports the dif-
ference in behavior between the EER measured empirically for
various 𝑛 and the EER extrapolated from the performance of the
𝑛=40 subset. The figure shows that increasing the number of users
in the model has a non-negligible effect on the EER: while we obtain
EER=9.14% for 𝑛=40, increasing the number of users has a large
benefit, reaching EER=8.41% for 𝑛=400.
Effect on per-user EER standard deviation. The right-hand of
Figure 4 reports the difference in behavior between the empirical
per-user EER standard deviation for various 𝑛 and the standard
deviation extrapolated from the performance of the 𝑛=40 subset.
Given the effect described in the previous paragraph, to allow for
meaningful comparison we adjust the extrapolated standard de-
viation to account for the reduction in mean EER (which reduces
the per-user EER standard deviation). We do so by adjusting the
standard deviation extrapolated at each 𝑛 with the scaling ration
between the empirical mean EER measured at 𝑛 and the one mea-
sured at 40;2 this moves the two distributions to the same mean
EER. Figure 4 (right) shows how for increasing 𝑛 there is a notable
decrement in the per-user EER standard deviation, which is not
solely explained by EER mean reduction presented above.

Overall, we find that increasing the user sample size greatly
benefits the machine learning model (at least in our general method
and SVM), thanks to the added variety of negative samples coming
from larger pools of users. Larger sample sizes not only lead to
lower and more accurate measurement of underlying EER but also
have a regularizing effect on the resulting per-user EER distribution,
leading to fewer outliers. This also challenges previous findings
regarding the usage of error distribution metrics [12] as user sample
sizes also will have an effect on such EER distribution across users.

7.0.2 Number of sessions and swipes. Increasing the amount of data
collected per user may lead to differences in performance: (i) across
several data collection sessions users may get acclimatized to the
task (leading to better stability of the collected swipes) and (ii) larger
amount of data per user may generally benefit the performance of
the machine learning model. In the following paragraphs, we test
both factors separately.
Effect of user acclimatization. We use data from the 68 users
who completed the full 31 sessions, given a number of sessions 𝑆 ,
we split the data into the earliest collected 𝑠 sessions (Early) and
the latest collected 𝑠 sessions (Late). If users gradually get used
to the experimental settings (i.e., their behavior exhibits reduced
variation), then Early sessionswill performworse than Late sessions
when the user has acclimatized after many repetitions.We apply our
authentication pipeline on both early and late sets, making several
splits with 𝑠 ranging from 3 to 15. We report the results in Figure 5,
showing no significant difference between the performance of early
and late sessions. Therefore the data shows no evidence of task
acclimatization leading to changes in performance.
Effect of amount of data per-user.We again use data from the
68 users who completed the full 31 sessions, we consider the effect
2given empirical per-user EER standard deviation and EER mean measured at 𝑛, 𝜎𝑛
and `𝑛 , we estimate �̂�𝑚 using 𝑛=40 as �̂�𝑚 =

`𝑚
`40

𝜎40 .
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Figure 3: ROC Curves for different pitfalls and their cumulative effect. All other parameters are fixed. EER (%) values reported in the legend.
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of the increasing amount of data per user by evaluating the system
performance as the number of sessions grows. Figure 6 shows the
resulting EER for growing number of sessions. We found that no
specific trends emerge as the session count varies. We extend the
analysis to the remaining users as well by considering the number
of swipes per-user rather than the number of sessions. Figure 7
shows the relationship between number of swipes and resulting
per-user EER, points are labeled by Short or Long batch depending
on whether the user belonged to either study batch (see Section 4).
We found that there is not a clear distinction or trend based on
the number of swipes, reinforcing the previous results of Figure 6.
Both figures indeed suggest that the number of swipes or sessions
does not necessarily affect the performance of our model which
contradicts hypothesis (ii). While long-term studies are necessary
to investigate the stability of the biometric, the availability of long-
term data does not affect EER in a significant way.

P2: Phone model mixing

In this section, we compare the system performance on data be-
longing to individual phone models and when merging together
data from various phone models (combined). We then explore this
concept further by measuring how accurately we can predict the
phone model a swipe originated from.
Effect of combining phonemodels.As evidenced in the previous
Section 7, increasing 𝑛 leads to an EER reduction (see Figure 4).

Table 2: Model performance when training and testing with the same

phone model or when mixing phone models (combined). combined

results in overestimation of performance even when subsampling

to the number of users present in each specific phone model.

Model Users
(𝑛)

Mean EER
(CI 95%)

combined EER
(CI 95%) P-value

6s 70 12.3% (±2.46) 8.8% (±2.04) .032

6s plus 19 14.2% (±6.28) 9.9% (±4.00) .233
7 73 11.8% (±1.60) 8.7% (±1.17) .002

7 plus 50 11.6% (±2.19) 9.1% (±1.81) .082
8 68 12.4% (±1.84) 8.8% (±1.14) .001

8 plus 55 12.7% (±2.32) 9.0% (±1.94) .014

x 71 13.1% (±2.03) 8.8% (±1.68) .002

xs 34 13.6% (±3.01) 9.1% (±2.01) .014

xs max 30 12.9% (±4.01) 9.3% (±2.66) .135

To account for this, we compare each single-phone subset to a
combined subsample from all phone models, with an equal number
of users as for each respective phone model. Table 2 presents the
results for combined dataset and single-phone model subsets. The
table shows that the combined approach leads to an overestimation
of performance. We observed a decrease in EER for each of the
phone models. Furthermore, we performed a 𝑡-test and found that
the EER difference between a single phone model and a subsample
is statistically significant (P < .05) except for 6s Plus, 7 Plus and XS
MAX. Figure 3a shows the complete ROC curves for the iPhone 7
model (which includes the most number of users in our dataset) and
its respective combinedmodel. The overestimation of performance
is present throughout the whole of the ROC curves apart from
extreme TPR and FPR values. The ROC curves for the other phone
models can be found in Appendix A.
Phone model identifiability. We create a phone model classifier
whose aim is to identify the iPhone model of a given swipe. We
merge all the available data and label each swipe with its originating
phone model; data is then divided into 80/20 train-test splits. The
data is balanced such that each phone model had an equal number
of swipes in the training split. We make sure that users which were
used in training were not considered in testing and vice versa (to
avoid biasing the prediction with the users’ identities). We fit an
SVM classifierwith the data.We perform this experiment once using
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users belong to (see Section 4).

all 9 phone models and again only with the 6s, 7 and 8 models as
these three have equal screen sizes, resolutions, and pixel densities.
The classifier achieves 44% accuracywhere a random baselinemodel
would yield 11.1%. When considering only 6s, 7 and 8, we achieved
an accuracy of 49% compared to a baseline of 33.3%. A complete
confusion matrix for the classification of the experiments including
all nine phone models can be found in Appendix G. This shows
that differences in the properties of the devices are reflected in
the identification outcome, i.e., swipes belonging to similar phone
models tend to be more similar.

These results indicate that it is undesirable to mix different phone
models in data collection and analysis for touch-based authentica-
tion. Furthermore, it is irrelevant whether the mixed models have
similar screen sizes, dimensions, or display pixel densities. The
practice of mixing phone models can lead to an artificial increase
of performance between 2.5% and 4.5% EER.

P3: Non-contiguous training data selection

We compared the classification performance of our model under the
conditions described in Section 6: (i) random, (ii) contiguous, (iii)
dedicatedSessions and (iv) intraSession. For a fair comparison,
we only used data from the 409 users which have completed 2 or
more sessions as this is a prerequisite for the dedicatedSessions
modality. We present our findings in Table 3. As expected the
intraSessionmethod yielded the best performance as users have a
more stable interaction pattern during a single session than through
time [17]. The fact that the model performed well in this category is
hopeful, but in practice, users carry out many sessions throughout
time and the intraSession result should not be considered an
accurate metric for touch-based authentication systems. Mixing
and randomizing samples from all sessions (random approach)
provided a similar effect as the model learns on information about
users’ interactions throughout all sessions. contiguous training
also allows the model to learn from an overlapping session, which
yields better performance. The dedicatedSessions scenario is the
most realistic one for a touch authentication system as it relies on
self-contained training sessions - as they will be performed in a
deployed system.

We found that results between all of the methods vary consider-
ably and performance seems to be overestimated compared to the

Table 3: Model performance for common training data selection

approaches. Randomselection results in overestimated performance.

Data Selection Method Mean EER (%) CI (95%)

random 6.4 ± 0.28
contiguous 8.6 ± 0.55
dedicatedSessions (Contiguous) 10.1 ± 0.70
dedicatedSessions (Random) 10.2 ± 0.68
intraSession 5.6 ± 0.25

realistic dedicatedSessions approach. An unrealistic training data
selection can lead to an increase in performance of 3.8% EER when
using a random approach compared to the dedicatedSessions
approach. The complete ROC curves resulting from this experiment
are available in Figure 3c. The ROC curve results are mostly con-
sistent with the EER reported in Table 3 apart from random and
intraSession curves where random selection has a higher TPR
above 0.08% FPR.

P4: Attacker data in training

We compared different attack modeling choices as described in
Section 6: (i) excludeAtk and (ii) includeAtk. To do so, we ran-
domly subsampled 𝑛 users from our dataset at various 𝑛, for each
𝑛 we apply our pipeline and compute the resulting EER for the
two approaches. This procedure is repeated 10 times, Figure 8 and
Figure 9 illustrate the results. We find that includeAtk results in
consistently lower mean EER when compared to excludeAtk, see
Figure 8. However, Figure 9 shows how the EER difference between
the two approaches decreases exponentially as the number of users
(𝑛) increases. This is expected as the fewer users are considered the
more the presence of attacker data impacts the classifier (e.g., 10% of
negative training data for 𝑛=11 users, <1% of negative training data
for 𝑛 > 101 users). This diminishing return also explains why in in-
cludeAtk the EER increases when more users are included, despite
the expectation that more data might result in better performance.
Figure 9 shows that at 𝑛=40, the EER difference between the two
approaches is 2.55%. As pointed out in Table 1, 80% of our reported
studies falls into P4, meaning that these might not present perfor-
mance metrics appropriate for the specified threat model. Overall,
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depending on the user sample size considered, includeAtk can
lead to an artificial performance gain of between 0.3% and 6.9%.
Figure 3c shows the ROC curves of includeAtk and excludeAtk
models for 40 users (the average number of users from Table 1). The
ROC curves for 20, 100, 200, 300 and 400 users are also available in
Appendix B.

P5: Aggregation window size

When reporting their results, many studies [17, 19, 20, 32, 44] con-
sider the performance of a group of consecutive swipes instead of a
single one as we have done so far. Figure 10 shows the performance
of our pipeline when we use an aggregation of consecutive swipes
as described in Section 6. The procedure was repeated 10 times
and shaded areas show the 95% confidence interval across the ten
repetitions. As expected, increasing the aggregation window size
leads to lower EERs: an EER of 8.2% obtained on single swipes
drops more than a quarter (5.9%) when aggregating two swipes,
and drops to less than 3% at 12 swipes. Touch-based authentication
studies should be clear when and how they use such aggregations
as they evidently have an impact on performance. It should also
be noted that each swipe action takes time to perform which can
leave a system at risk. For instance, our dataset suggests that on
the tasks considered, performing 20 swipes would take 14 seconds
during which the system would be vulnerable. Therefore a balance
between usability and security should be sought.

Cumulative effects of evaluation choices

In this subsection, we quantify the difference between realistic
(pitfall-free) and unrealistic (with all pitfalls) evaluation choices
for touch authentication systems. We repeated the following two
procedures 100 times and report the mean of all runs and the confi-
dence interval at 95%. In the unrealistic methods experiment, we
combined phone models (combined), included the attacker into
the training data (includeAtk), used the random data selection
method and each round randomly subsampled our dataset to the
median of 𝑛=40 participants taken from Table 1 (to even out the
effect of P1). This resulted in a 4.9% EER with a confidence interval
of ±0.09. In the realistic method experiment, again we selected 𝑛=40
users from the most commonly used iPhone 7 phone model, used
excludeAtk and the dedicatedSessions training data selection.

Table 4: Impact of pitfalls on different classifiers. The table presents

the percentage-point difference in EER between using realistic and

unrealistic evaluation methods.

Pitfall SVM Random
Forest

Neural
Network kNN

P1 400 users vs 40 users 0.72 0.28 0.87 1.25
P2 iPhone 7 vs Combined 4.08 4.53 2.40 3.29
P3 Contiguous vs Randomized 2.27 2.62 2.06 2.35
P4 Exclude vs Include 2.55 2.69 3.41 3.96
Cumulative Impact 8.89 10.36 8.99 9.79

Each round we randomly select which users are selected as attack-
ers. This approach resulted in a much worse EER of 13.8% with a
confidence interval of±0.14. Figure 3d illustrates the overestimation
of performance throughout the ROC curves of these experiments.
The results clearly illustrate that flawedmethods have strong effects
on the resulting performance and can lead to an artificial boost to
performance by 8.9% EER.

Effects of classifiers on evaluation choices

In this subsection, we quantify the impact of pitfalls on performance
on four of the most widely used machine learning algorithms in the
field. Implementation details for each individual classifier can be
found in Appendix C. The results of our experiments are presented
in Table 4. All of the examined pitfalls introduce an overestimation
of performance regardless of the classifier chosen. However, there
are differences in individual performance across chosen classifiers.
For instance, the kNN classifier relies heavily on individual swipes
similar to the target one, hence the impact of including the attacker
data into training is much more pronounced. These results suggest
that the pitfalls apply to a wide range of touch dynamics system
implementations.

8 BEST PRACTICES

In order to facilitate better comparison between future studies and
achieve unbiased performance evaluation, we propose a standard
set of practices to follow when evaluating touch-based authentica-
tion systems, derived from our set of common evaluation pitfalls.
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P1: Small sample size. While it is hard to advocate for a specific
minimum number of users to be required by a study, we recom-
mend researchers to be aware of the effects of user sample sizes in
pipelines similar to the one analyzed in this paper. Based on the
findings in Section 7, we found that increasing sample size has two
important effects: it reduces the resulting mean EER and smooths
the variance of the per-user EER distribution. It is advisable that
an analysis of the effect of sample size is included in new studies,
and that results for a sample size of 𝑛=40 are also reported (when
applicable). This best practice must be accounted for at the study
design phase, to ensure enough data is initially collected.
P2: Phone model mixing. A single phone model should be used
to train and test a proposed system. While this might not always
be the final use case (e.g., in other scenarios, one might want to test
the generalization performance of a device-specific classifier on a
different device), this avoids the bias introduced by data collected on
a specific phone model. Isolating data belonging to different phone
models when training will produce more accurate performance
measurements. Care must be taken in data collection to ensure
there are enough samples for each phone model that will be studied.
P3:Non-contiguous training data selection.Randomized swipes
selection should not be used to separate training and testing data.
Test data must always have been collected at a time after the train-
ing data was collected, to mimic real-world usage, and to account
for behavior drift. For comparison between works, only an initial
training phase (enrollment) should be included, as training updates
increase the difficulty of comparing figures. Ideally, at least two
sessions should be used to collect training and test data, as the bulk
of real-world usage occurs with a time interval between enrollment
and authentication.
P4: Attacker data in training. Studies should always exclude the
attacker from the training set, as one shall never assume they have
information about the attacker in a deployed system. In particular,
care should be taken so that any attacker of a model was not in-
cluded as a negative example when training the model. Excluding
the attacker is particularly important with studies with a limited
number of users, where the effect of such an attacker modeling
approach greatly affects the resulting performance.
P5: Aggregation window size. Using aggregation of consecutive
swipes is beneficial to performance, particularly when using the
mean of their distances to the decision boundary as shown in Fig
10. However, researchers should report the performance of a single
swipe model in order to ensure comparability with other studies,
as well as other reasonable numbers of swipes that other similar
papers have proposed. Furthermore, information about the flight
time between swipes and their duration should also be shared, as
these directly relate to the time the system is vulnerable to an
attacker.
P6: Dataset and code availability. Historically, in this field, it has
been rare for authors to share their data – see Table 1 – and none
of the studies examined in the related work share their analysis
code. This leads to uncertainty when reproducing results, in fact,
for some studies, it was unclear from the paper alone whether the
study made certain choices regarding the experiments (e.g., we
could not clearly define whether 30% of studies fell into P3). The

code and datasets of touch authentication studies should be made
freely available. This ensures that results can be reproduced by
others, and reduces barriers to entry of those wishing to build upon
existing work.
Generality of results.Although this paper focuses on touch-based
authentication, we believe these best practices apply in similar ways
to other types of biometric systems such as facial recognition and
keystroke authentication. In particular, non-contiguous training
data selection (P3), and inclusion of attacker data in training (P4)
are fundamentally flawed and should be avoided in all biometric
system evaluations. However, the effect of mixing similar devices
(P2) may vary across different modalities. Similarly, the sample
size implications (P1) might differ in other systems from what we
found in our experimentation. Nevertheless, these points should be
examined with caution by the relevant literature.

Further work is required to examine to what extent these pitfalls
are prevalent in the study of other biometric authentication systems.

9 CONCLUSION

In this work, we explored the impacts of evaluation choices on
touch-based authentication methods. We investigated performance
differences in approaches related both to data gathering and choices
in the way classifiers are trained with a certain data split. For the
purpose of this study, we collected a large open-source dataset for
touch-based mobile authentication consisting of 470 users, which
we made publicly available. We confirmed large variations in per-
formance based on phone model mixing (up to 5.8% EER), training
data selection (up to 3.8% EER), user sample size (up to 4% EER),
and attacker modeling (up to 6.9% EER). Finally, combining all eval-
uation pitfalls results in overestimation of performance by 8.9%
EER. The results are largely similar regardless of the chosen classi-
fier. We also note that, aside from some extreme threshold settings,
these effects are observable throughout the ROC curve. Based on
these findings, we proposed a set of good practices to be consid-
ered in order to enable accurate reporting of results and to allow
comparability across studies.
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A PHONE MODEL MIXING ROC CURVES

Figure 11 shows the ROC curves for individual phone models com-
pared to mixing them. We found that our results are largely consis-
tent throughout the length of the ROC curve.
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Figure 11: ROC Curves for individual phone models compared to

COMBINED models which use the same number of users but merge

multiple phone models.

B ATTACKER DATA IN TRAINING ROC

CURVE

Figure 12 shows the ROC curves for models which include or ex-
clude attacker from the training data. We present our results for
samples of 20, 40, 100, 200, 300, and 400 users. We found that our
results are largely consistent throughout the length of the ROC
curve.
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Figure 12: ROC Curves for including or excluding attacker data into

the training set of a model at different sample sizes.

C CLASSIFIER IMPLEMENTATION DETAILS

Weuse the SVM, Random Forest, and kNN classifier implementation
of the widely used machine learning library scikit-learn. The
former two classifiers use the default parameters of the framework
and we choose n=18 for the kNN classifier based on preliminary
experimentation. Our neural network implementation uses the
machine learning libraries Tensorflow and Keras. The feed-forward
network consists of 3 hidden layers of sizes 30,30 and 15 with batch
normalization and dropout layer (0.3) between them. The optimizer
is Adam and the activation function is ReLU. Similarly, we chose
the set parameters based on preliminary experimentation.
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D DATASET DEMOGRAPHICS

The use of remote collection through the MTurk platform organi-
cally resulted in a relatively balanced dataset in terms of age, gender,
handedness, and iPhone model. The gender distribution of all users
was 47% females (229), 51% males (252), and 1% other (5). Only 14%
(67) of the participants reported being left-handed which is roughly
comparable to 10% in the general population. The age distribution
of participants is shown in Figure 13.
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Figure 13: Age of participants in the experiment. Remote collection

through Amazon Mechanical Turk allows for more diverse partici-

pants compared to traditional university lab studies.
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Figure 14: Cumulative distribution function (CDF) of participation

retention for seven-day (left) and 31-day (right) user batches.

E DEVICES USED FOR DATA COLLECTION

Table 5 presents the 9 iPhone models we used for our experiments
in order of their release dates.

Table 5: Specification sheet details for iPhone models used.

Model Screen size (in) Resolution Pixel density (ppi)

6S 4.7 1334x750 326
6S Plus 5.5 1920x1080 401
7 4.7 1334x750 326
7 Plus 5.5 1920x1080 401
8 4.7 1334x750 326
8 Plus 5.5 1920x1080 401
X 5.8 2436x1125 458
XS 5.8 2436x1125 458
XS Max 6.5 2688x1242 458

F GENERAL SYSTEM RESULTS

The per-user EER distribution of our baseline model is shown in
Figure 15. We repeat our baseline model for each swipe direction
and report the result in Table 6 together with the amount of data
available for each swipe direction. Down and right swipes are un-
derrepresented as these interactions are performed rarely in our
application, leading to much higher mean EERs of up to 19% and
16.2%, respectively.
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Figure 15: Per-user EER distribution using all users in our dataset

(𝑛=470). The performance results in a positively skewed distribution.

Table 6: Model performance for varying swipe directions.

Direction Count Mean EER (%) Std. Dev.

Scroll Up 376,236 10.1 7.2
Scroll Down 45,737 19.0 11.9
Swipe Left 718,036 8.4 5.6
Swipe Right 26,083 16.2 10.5

G PHONE MODEL IDENTIFIABILITY
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Figure 16: Confusion matrices of phone model prediction for the

nine iPhone models in our study. The model prediction errors are

concentrated in phones with similar dimensions and resolutions.
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