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ABSTRACT

The classification service over a stream of data is becoming an im-
portant offering for cloud providers, but users may encounter ob-
stacles in providing sensitive data due to privacy concerns. While
Trusted Execution Environments (TEEs) are promising solutions
for protecting private data, they remain vulnerable to side-channel
attacks induced by data-dependent access patterns. We propose a
Privacy-preserving Data Stream Training and Inference scheme,
called EnclaveTree, that provides confidentiality for user’s data and
the target models against a compromised cloud service provider.
We design amatrix-based training and inference procedure to train
the Hoeffding Tree (HT) model and perform inference with the
trained model inside the trusted area of TEEs, which provably pre-
vent the exploitation of access-pattern-based attacks. The perfor-
mance evaluation shows that EnclaveTree is practical for process-
ing the data streams with small or medium number of features.
When there are less than 63 binary features, EnclaveTree is up to
∼10× and ∼9× faster than naïve oblivious solution on training and
inference, respectively.

CCS CONCEPTS

• Security and privacy→ Software and application security.
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1 INTRODUCTION

Machine learning (ML) applications such as remote healthcare and
activity recognition, have attracted a lot of attention as a major
breakthrough in the practice of ML. These specific applications of
ML are characterized by data streams: data is generated by various
devices and usually arrive in a timely manner. For either training
the ML model or inferring (i.e., predicting or evaluating) an unla-
belled instance by the model, the data stream should be processed
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efficiently on-the-fly as data might arrive rapidly. The Hoeffding
Tree (HT) model [15], a variation of the decision tree model, has
become the standard for processing data streams.

To process data streams efficiently, a promising solution is to
outsource theHT training and inference to cloud platforms [38, 55].
However, this poses a severe threat to data privacy andmodel confi-
dentiality. For privacy-sensitive applications, such as in the health-
care domain, all the data samples, the model, the inference output,
and any intermediate data generated during the model training
and inference should be protected from the Cloud Service Provider
(CSP). In particular, when training a HT, the main operation is to
classify each newly arriving data sample with the current tree and
to count the frequency of different feature values. The access path
over the tree and the statistical information generated when train-
ing the model, should be protected as they can be leveraged by an
adversary to construct a near-equivalent HT [51].

Privacy-preserving data mining (PPDM) aims to protect the pri-
vacy of outsourced ML tasks by employing cryptographic primi-
tives, such as Secure Multi-Party Computation (SMC) [13, 17, 32,
52, 59, 63] or Homomorphic Encryption (HE) [3, 6, 33, 58]. Never-
theless, most of the existing PPDM approaches cannot be adopted
to process data streams, because they: ❶ cannot process compli-
cated functions such as logarithm and exponential operations in
an efficient way, which are fundamental to the HT model training;
❷ impose too heavy computation and communication overheads
on the clients;. ❸ leak statistical information and tree structures.

Table 1 summarizes the related work in this area. First of all,
note that most of the existing approaches focus on generic decision
trees and none of them can securely process data streams (column
DS in Table 1). The approaches given in [14, 17, 18, 32, 47, 52, 59] are
impractical for data streams because they require multiple rounds
of interactions between client and server. While the approaches
proposed in [6, 13, 58, 63] leak information about the model, such
as the structure and the number of nodes of the tree. To the best of
our knowledge, [55, 61] are the only approaches that focus on data
streams and can provide some level of protection for the data, the
target model and the inference results. The reason these works are
not included in the table is because they do not focus on decision
trees. Moreover, the main idea of these approaches is to randomly
perturb the data distribution with noise. This approach is usually
efficient but at the cost of accuracy loss due to a large amount of
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Table 1: Comparison of decision tree training and inference protocols

Scheme
Support Communication

Complexity on Client
Privacy

DS Training Inference Rounds Bandwidth Data IR Model AP

Du et al. [17], Vaidya et al. [52], Samet et al. [47]
% X % Ω (C3 ) Ω (C<;>6= + =) Ω ( (C< + 1)=)

  # #

Xiao et al. [59], Emekci et al. [18]  G#   

Hoogh et al. [14], Lindell et al. [32]     

Bost et al. [6], Wu et al. [58], Tai et al. [50],
Kiss et al. [27] % % X

2≥2
Ω (C< + =) Ω (C< + =)   G#  

Cock et al. [13] C1 + 3
Akavia et al. [3] % X X C3 $ (C< + =) $ (C< + =)     

Liu et al. [33] % X X 1 $ (=) $ (=)   G# #

EnclaveTree X X X 1 $ (=) $ (=)     

DS denotes data stream. Privacy of data, intermediate results, model and access patterns are denoted by Data, IR,Model and AP, respectively. Ω ( ·) and$ ( ·) denote the
computation complexity of each party in the distributed setting and client, respectively. ,G#, and# denote the target is protected, part of the parameters of the target are
leaked, and fails to protect the target, respectively. C3 , C< , C1 , 2 and = represents the tree’s depth, the number of nodes, the binary representation length of data samples,

constants and the number of data samples, respectively.

perturbations. Furthermore, since only part of information is per-
turbed, the attacker can still compromise the user’s privacy by re-
trieving the features through inference attacks [1].
Our goals. In this work, we aim to design an outsourced approach
to train and infer data streams with HT model in a secure and ef-
ficient manner. Specifically, our approach should not only protect
all the data samples and the model from the CSP but also any in-
termediate data generated during the training and inference, such
as the frequency of different feature values and the access pattern.
Challenges.To achieve the goals, we propose a privacy-preserving
data stream classification scheme called EnclaveTree. The basic idea
of EnclaveTree is to employ the Intel Software Guard Extension
(SGX) [11] to process privacy-sensitive operations on the CSP. In-
tel SGX is an extension of the x86 instruction set architecture that
allows a user process to create trusted execution environments
called enclaves on the CSP. Recent work [29, 40, 44, 48] has demon-
strated that SGX-based PPDM is orders of magnitude faster than
cryptography-based approaches. Moreover, within an enclave, one
can process any kind of operations securely and efficiently, includ-
ing logarithm and exponentiation. However, using Intel SGX is
non-trivial because it suffers from side-channel attacks, which en-
able an adversary to obtain the access pattern over HT and then
infer secrets [29, 40, 46], e.g., the tree structure. For instance, with
controlled-channel attack [60], the adversary can learnwhich pages
are accessed when classifying a data sample. By injecting enough
malicious data samples, the adversary could recover the tree struc-
ture. Thus, the challenge of using Intel SGX is to protect the en-
clave access pattern.

The traditional method for data classification with tree models
is to traverse the tree from the root to a leaf node by comparing a
node with the corresponding feature value level by level. To pro-
tect the access pattern, a naïve solution can be implemented by
accessing the node in each level obliviously. For instance, using a
solution as proposed by [29] we could store the nodes at each level
of the tree as an array and then obliviously access the target node
in the array to update the statistical information. However, this
approach is costly.
Our Contributions. The contributions of this paper are threefold.

First of all, we are the first to propose a secure and efficient
scheme to process data streams for decision tree models in out-
sourced environments. As shown in Table 1, compared with exist-
ing PPDM schemes for the decision tree model, EnclaveTree not
only achieves better communication and computation overhead,
but also achieves better security guarantees. To the best of our
knowledge, EnclaveTree is the first scheme that can efficiently and
securely process data streams with protection for data samples, the
model, statistical information, and tree access pattern. Moreover,
EnclaveTree imposes a very light overhead on client devices, where
only standard encryption operations are required for outsourcing
data samples for processing and decrypting the results after infer-
ence.

Our second contribution is a novel approach for tree classifica-
tion based on matrix multiplications. Inspired by the approach in
[44], EnclaveTree performs the HT training by periodically read-
ing a batch of data samples, converting them into a matrix M3 ,
transforms the current model into a matrixM@ , and updates the
frequency of different feature values by computingM3 ×M@ . The
main advantage of our approach is that inherently it does not leak
any access pattern and is more efficient than traversing the tree us-
ing oblivious operations. Similarly, EnclaveTree also classifies unla-
belled instances with a matrix multiplication.

We implemented the prototype of EnclaveTree with OpenEn-
clave [35] and evaluated its performance. The results show that,
EnclaveTree takes about 6.73, 29.4, and 134 seconds to process 5×104
data samples with 15, 31, 63 features respectively, which is 10.4×,
4.2×, 1.1× faster than the naïve oblivious solution. As for HT in-
ference, EnclaveTree takes 1.89, 2.80, and 4.72 milliseconds for in-
ferring 100 unlabelled instances with a tree of depth 9, and outper-
forms the naïve oblivious solution by 9.2×, 7.2×, 6.5× when there
are 15, 31, 63 features, respectively.

2 BACKGROUND

In this section, we provide background information on Intel SGX,
side-channel attacks, and the oblivious primitives we use in the
rest of this paper.



2.1 Intel SGX

A Trusted Execution Environment (TEE), such as the Intel Soft-
ware Guard Extensions (Intel SGX) [11], protects sensitive data
and code from privileged attackers who may control all the soft-
ware, including the operating system and hypervisor. In Intel SGX-
enabledmachines, theCPUprotects the confidentiality and integrity
of code and data by storing them in an isolated memory region,
called enclave. Intel SGX also supports remote attestation of an
initialized enclave. It enables a remote party to verify an enclave
identity and the integrity of the code and data inside the enclave.

2.2 Side-channel Attacks on Intel SGX

One issue of Intel SGX is that it still shares many resources with un-
trusted programs, e.g., CPU cache and branch prediction units, and
relies on the underlying OS for resource management. As a result,
Intel SGX is susceptible to side-channel attacks. In recent years,
various side channels have been extensively exploited to infer se-
crets from enclaves, such as L1 cache [22, 36], page tables [7, 60],
branch predictor [19, 25, 30], and the transient execution mecha-
nism [28, 53, 54]. They infer secrets by mainly exploiting the data-
dependent enclave access pattern at different granularity. For in-
stance, with cache-timing attacks, the adversary can learn the en-
clave access pattern at cache line granularity.

Existing countermeasures are either hardware-based [42, 49]
or software-based [2, 9, 41]. Hardware-based solutions, such as
cache partitioning [62] and enclave self-paging [42], are efficient
yet they require hardware modifications, which take a long period
to be applied and cannot be retrofitted to existing hardware. In
contrast, software-based solutions aremore flexible. However, they
generally leverage expensive normalisation or randomisation tech-
niques, making them impractical. For instance, OBFUSCURO [2]
leverages ORAM operations to perform secure code execution and
data access, which adds about 51× overhead to enclaves. It is de-
sirable to protect sensitive data and operations from side-channel
attacks with techniques that are specific to the enclave.

2.3 Oblivious Primitives

A library of general-purpose oblivious primitives, operating solely
on registers whose contents are restricted to the code outside the
enclave, has been introduced in previous work [29, 40, 46] and ex-
perimentally demonstrated that it is several orders of magnitude
faster than previous ORAM-based approaches. In this work, we
will use the following oblivious primitives:

• Oblivious comparison. ogreater and oequal, are used
to compare variables and implemented with x86 instruction
cmp.
• Oblivious selection. oselect, allows to conditionally se-
lect an element.
• Oblivious assignment. oassign, allows to conditionally
assign variables. It specifically uses CMOVZ for equality com-
parisons and subsequently combine it with oassign to as-
sign a value to the destination register.
• Oblivious array access. oaccess scans the array at cache-
line granularity and obliviously load one element based on
oassign, and then is optimized with AVX2 vector instruc-
tions [10].
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Figure 1: The architecture of EnclaveTree.

3 OVERVIEW OF OUR APPROACH

In this section, wewill describe the systemmodel and design overview.
We will conclude the section with discussing the threat model.

3.1 System Model

As shown in Fig. 1, EnclaveTree consists of 2 entities: the Data
Owner (DO) and the Cloud Service Provider (CSP).

• The DO continuously receives data from devices, encrypts
them, and outsources them to the CSP. The data samples
could be labelled samples or unlabelled instances. In partic-
ular, labelled samples are used to train the model, while the
unlabelled instances will be inferred with a label value by
the model. The inference results are sent from the CSP to
the DO.
• The CSP considered in EnclaveTree should have Intel SGX
support, (e.g., Microsoft Azure [34] and Alibaba Cloud [4]).
The CSP consists of a trusted and an untrusted component.
The trusted component is represented by the SGX enclave

(as shown in Fig. 1). This is where the models are trained
and where the inference is performed. The untrusted com-
ponent is any computational resources in the CSP Host that
is outside the SGXEnclave. With the assistance of an enclave,
the CSP trains the model with the data samples outsourced
from the DO and classify them with the model.

3.2 Design Overview

The architecture of EnclaveTree is shown in Fig. 1. It consists of
two sub-components within the enclave: Oblivious Training and
Oblivious Inference, and two buffers: Training Buffer and In-

ference Buffer outside the enclave. The two buffers outside the
enclave receive encrypted labelled and unlabelled data from the
DO for training and inference, respectively. Each sub-component
reads data from the corresponding buffer periodically for subse-
quent processing. Oblivious Training outputs the HTmodel which
will be the input of the Oblivious Inference. For unlabelled data in-
stances, Oblivious Inference returns the predication results to the
DO.

To protect the access pattern for both training and inference, the
two tasks are converted into matrix multiplications. Moreover, we
use oblivious primitives, such as ogreater, oassign and oaccess,



Table 2: Notations

Notation Description

� A data sample
3 Number of features
( A sequence of 3 features, ( = (B1, B2, · · ·, B3 )
<8 Number of values of feature B8 , where 8 ∈ [1, 3 ]
+B8 Values of B8 ,+B8 = (E8,1, E8,2, · · ·, E8,<8 )
" Length of the bit-representation of �

� ( ·) Heuristic measure, i.e., Information Gain (IG)
%A40; /%3D<<~ Number of real/dummy paths in the tree
M3/M8 Labelled/Unlabelled data matrix
MC Matrix representation of the model
MC [;? ] The ?-th column ofMC

D? Number of unassigned features forMC [;? ]
g? Number of assigned feature values forMC [;? ]
M?

@ Query matrix ofMC [;? ]
! Number of all possible (E0;D4, ;014; )
!′

Number of all possible (E0;D4, ;014; )
of unassigned features in a leaf

2 (E0;D4,;014; ) Frequency of each (E0;D4, ;014; )

to process the remaining operations in order to hide the enclave
memory access pattern.

3.3 Threat Model

We assume the DO and the SGX enclave are fully trusted. The CSP
host is untrusted and attempts to infer secrets, such as the tree
structure and statistical information, by observing and analysing
memory access pattern of the enclave. Moreover, the CSP can eaves-
drop on the communication between the DO and the enclave. Note
that rollback attacks [43], denial-of-service attacks [23] and other
attacks based on physical information, such as electromagnetic,
power consumption and acoustic are out of our scope.

The security analysis of EnclaveTree is given in Appendix A.

4 DATA AND MODEL REPRESENTATION

In this section, we provide some details on how a Hoeffding Tree
(HT) is originally built and used for inference. Then, we will de-
scribe how the data and theHT are represented in our approach. To
make things more concrete, we will use a simple running example
throughout this paper. The example consists of building aHT to de-
cide whether it is suitable to play tennis based on a weather dataset
[18]. The example tree consists of 4 features and each feature has 2
or 3 possible values listed as follows:$DC;>>: ((D==~,$E4A20BC, '08=),
,8=3~ ()AD4, �0;B4),�D<838C~ (�86ℎ,#>A<0;), and)4<?4A0CDA4

(�>C,�>>;). Each internal node of the tree is assigned with a fea-
ture, and its possible values determine the branches of the node.
The leaf nodes represent the label that has 2 values: either .4B or
#>. Fig. 2 shows how a HT is built for this example. In the rest of
this paper we will use the notation shown in Table 2.

4.1 Hoeffding Tree

A decision tree consists of internal nodes (including the root) and
leaves, where each internal node is associated with a test on a fea-
ture, each branch represents the outcome of the test, and each leaf
represents a class label which is the decision taken after testing all
the features on the corresponding path.
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Figure 2: A HT example and its extension after one round of

training. The orange nodes are internal nodes which have

been assigned with features. The green nodes are leaves.

Each leaf has a label value for inference, and it stores statisti-

cal information for the features that have not been assigned

to the path for training. Each branch is assigned with a fea-

ture value.

Building a decision tree is a process of assigning features to its
internal nodes. The distribution of features among the nodes deter-
mines the structure of the tree which affects the inference accuracy
of the model. Thus, the key operation of tree building is to find the
best feature for each leaf, so that we can achieve a high inference
accuracy.

The HT [15] algorithm builds a decision tree incrementally in a
top-down manner, by continually converting leaves into internal
nodes with the data stream. Converting a leaf to an internal node
requires assigning a feature to the node. HT training uses tradi-
tional Information Gain (IG) in ID3 [45] and Hoeffding Bound [15]
to evaluate which feature is the best to be assigned to a leaf for
data streams. Specifically, when data samples are classified into a
leaf, we compute the IG of the features that have not been assigned
to any internal node on the path to the leaf, and check if the differ-
ence between the top two IGs is greater than the Hoeffding Bound.
If yes, the feature with the highest IG will be used to covert the
leaf to an internal node. Otherwise, we just update the statistical
information stored for the leaf. For instance, in the tree shown in
Fig. 2a, when there are samples classified into the left-most leaf,
only the IGs of ,8=3~ and )4<? will be computed as $DC;>>:
and �D<838C~ have already been assigned to internal nodes on the
left-most path. We use � ( 5 40CDA4) to represent the feature’s IG.
Assume � ()4<?) > � (,8=3~), )4<? will be chosen as the best
feature for the leaf when � ()4<?) − � (,8=3~) > n, where n is
the Hoeffding Bound. The tree in Fig. 2b shows how the leaf is
converted into an internal node with feature )4<? . The new in-
ternal node generates 2 branches and 2 new leaves as )4<? has
2 possible values: �>C and �>>; . The two new leaves just need to
compute the IG of the last unassigned feature,8=3~ for upcoming
data samples.

Formally, theHoeffding Bound is defined as n =

√

log2 2 ∗ ;= (1/X)
2=

[15], where = is the number of samples classified into the leaf, 2 is
the number of total label values, and 1−X represents the probability
of choosing the correct feature for the leaf node. Both 2 and X are
constant.

For HT training, each leaf of the current tree keeps receiving la-
belled data samples, and the samplesmight contain different values



for each feature and label. The IG of a feature is derived from the
frequencies of its possible (E0;D4, ;014;) pairs. For instance, for the
left-most leaf of the tree in Fig. 2a, to compute� ()4<?) we need
to count how many samples have been classified into the left-most
leaf. These samples might contain the following pairs: (Hot, Yes),
(Hot, No), (Cold, Yes), (Cold, No). Similarly, to compute � (,8=3~),
we need to count how many samples have got the following pairs:
(True, No), (True, Yes), (False, No), and (False, Yes). Each leaf records
the frequencies of the pairs for unassigned features and updates
them when receiving new samples.

Computing IG values is expensive due to the complex logarithm
and exponentiation operations. Therefore, feature’ IGs of each leaf
are computed when the leaf receives every =<8= samples, where
=<8= is a pre-defined parameter.

Overall, we can summarize the main operations of building a
HT model with the following steps:

(1) classifying new arrivals into leaves with current HT model;
and performing steps 2 and 3 for each leaf that gets new data
samples;

(2) updating the frequency of each (E0;D4, ;014;) pair for unas-
signed features;

(3) checking if the leaf has received =<8= data samples, and per-
forming steps 4-6 if true;

(4) computing the IG value for each unassigned feature;
(5) checking if the top two highest IG values satisfy the Hoeffd-

ing Bound;
(6) if true, converting the leaf node into an internal one using

the feature with the highest IG value.

Inference operations start from the root of the tree. An unla-
belled instance is tested with the feature at each internal node and
then moved down the tree along the edge corresponding to the in-
stance’s value for that feature. When a leaf node is reached on the
path, the label associated with it is assigned to the instance.

4.2 Data Representation

We assume that ( = (B1, B2, · · ·, B3 ) represents a sequence of 3
features, with each feature B8 having <8 possible values: +B8 =

(E8,1, E8,2, · · ·, E8,<8 ), where 1 ≤ 8 ≤ 3 . We use the one-hot encoding
technique [24] to encode each value E8, 9 into a bit string, where
1 ≤ 9 ≤ <8 . More precisely, a <8-bit string is used to represent
a value E8, 9 , where the 9-th bit of the string is 1 and all the other
bits are 0. For labelled data samples, the last feature B3 is the label,
and we will use the same bit representation for possible label val-
ues. Therefore, a data sample � is represented as a bit string with
" =

∑8=3
8=1<8 bits.

Fig. 3a shows a concrete example for the encoding of 5 features.
In the example, 3 = 5 and ( = ($DC;>>: ,,8=3~, �D<838C~,)4<? ,
!014;). The first feature B1 = $DC;>>: has 3 values (i.e., <1 = 3):
E1,1 = (D==~, E1,2 = $E4A20BC and E1,3 = '08=, and they will be
encoded to: 001, 010, and 100, respectively. The last feature B5 =

!014; has 2 values (i.e., <5 = 2): E5,1 = .4B and E5,2 = #>, and
they will be encoded to 01 and 10, respectively. A data sample � =

((D==~,)AD4 , �86ℎ,�>C , #>) will be encoded into (00101010110),
consisting of 11 bits (i.e., " = 11).

Based on the bit-wise representation, we can query if a data
sample contains G given feature values by calculating the inner
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Figure 3: The HT representation in EnclaveTree. The

columns and the arrays in blue are dummy ones.

product between its encoding and a "-bit mask. Specifically, for
each value E8, 9 to be queried, we set its corresponding bits in the
mask to its encoding and set all the other bits to 0. In this way,
the inner product should be equal to G if the sample contains all
the G values. In our example, if we want to check that a sample �
contains ((D==~,.4B), the mask will be set to (00100000001), the
inner product will be equal to 2 if both values are contained in � .

Here, we stress that our work focuses on training categorical
features. Numerical features can be converted into categorical ones
using methods such as discretization [16]. Specifically, numerical
values of a feature can be grouped into discrete bins. For example,
if we wanted to group the values for Temp 2 categories this could
be a possible discretization: Cool for temperatures below 25◦� ,Hot
for temperatures equal or above 25◦� .

4.3 Model Representation

One of the main contributions of EnclaveTree is the novel way in
which we represent the model as a matrix, and perform the HT
training and inference as a matrix multiplication to hide the ac-
cess pattern. Fig. 3b shows a simplified matrix representation of
the model with the value expressed as strings of characters and its
corresponding tree representation. Columns in the matrix map to
paths of the tree. Each column contains 3 − 1 elements where the



8-th element is the value of feature B8 assigned to the correspond-
ing path1. In particular, if a feature B8 has not been assigned to
the specific path, the 8-th element of the column is set to ‘∗’. This
will be converted into specific feature values with the subsequent
training.

The last two columns in the matrix are dummy columns. In or-
der to hide the number of tree paths from side-channel attacks, i.e.,
the number of columns in the matrix, we add a number of dummy
columns into the matrix. The elements in dummy columns can be
of any value. More details on how dummy columns are generated
will be provided in Section 5.2.

To make things more concrete, let’s look at the example in
Fig. 3b. The matrix representing our model consists of 4 real
columns and 2 dummy columns. The first column contains the
elements ((D==~,∗, �86ℎ, ∗). This indicates that the value (D==~

for feature B1 (i.e., $DC;>>:) and value �86ℎ for feature B3 (i.e.,
�D<838C~) are assigned to the first path of the tree. Likewise,
the third column ($E4A20BC, ∗, ∗, ∗) indicates that only the value
$E4A20BC has been assigned to the third path for feature B1, while
the remaining 3 features have not been assigned. The right-hand
side of Fig. 3b depicts the model currently stored in the matrix if it
were represented as a tree.

As we said, the matrix in Fig. 3b is a simplified representation of
how the model is stored in EnclaveTree. Fig. 3c shows how the ma-
trix is actually stored in the enclave as a collection of bit strings.
Using the one-hot encoding technique, the matrix MC only con-
tains 0 and 1 bit. For instance, looking at the first column in the
matrix, the values (D==~ and �86ℎ are encoded into 001 and 01, re-
spectively; while the value ‘∗’ for feature is encoded into a string
with 0 bits.

Each column of matrix only contains 3 − 1 values: these are
the values that could be assigned to features excluding the val-
ues for the labels. Thus each column of MC has " − <3 bits,
where<3 is the number of values for labels. Assuming the model
has %A40; real columns and EnclaveTree inserts %3D<<~ dummy
columns into MC , the total number of columns in the matrix is
% = %A40; + %3D<<~ . Therefore, the size ofMC is (" −<3 ) × % .

For HT training, EnclaveTree also stores the statistical informa-
tion for each leaf, which is required for computing the IG value. In
EnclaveTree, the statistical information of each leaf is stored in a 2d
array !405 . Because the number of leaves of the model should also
be protected, we store in !405 some dummy values representing
dummy leaves. Considering that each column in the model could
represent a HT path with a leaf, then !405 contains % 1d arrays:
%A40; arrays for real leaves and %3D<<~ arrays for dummy leaves.
Precisely, the ?-th array, !405 [?], contains all features for the ?-th
leaf, where ? ∈ [1, %]. The actual values stored in !405 are the fre-
quency values defined as 2 (E0;D4,;014; ) , for each (E0;D4, ;014;) pair.
Note that only the (E0;D4, ;014;) pair of the features that have not
been assigned to a path will be updated and used for computing
IG. Storing the pairs of all features for all leaves ensures |!405 [?] |
is the same for all leaves, which is ! =

∑8=3−1
8=1 <8 ∗<3 . In this way,

the entire model structure is protected from side-channel attacks.
BothMC and !405 are stored within the enclave in plaintext.

1Note that the order of features in each column is fixed and same to the order defined
in ( , i.e., the 8-th value of each column must be a value of feature B8 .

5 HT TRAINING AND INFERENCE IN
ENCLAVETREE

In this section, we explain how EnclaveTree obliviously trains the
HT model and securely inferences unlabelled data instances.

Although the main focus of this section is about training and in-
ference for a single HT model, EnclaveTree can be easily extended
to support a RandomForest (RF)model by performing theHT train-
ing and inference over several trees. We give the details of this ex-
tension for RF in Appendix B.2.

5.1 Setup

As the first step in the setup, the DO establishes a secure channel
with an enclave instance in the CSP to share a secret key B: . For
HT training and inference, all the data transmitted between theDO
and the enclave will be encrypted with B: and a semantically se-
cure symmetric encryption primitive, e.g., AES-GCM. During the
setup, DO also securely shares the features ( and the values +B8 of
each feature to the enclave.

5.2 Oblivious HT Training

In Section 4.1, we have summarised the 6 steps for performing the
HT training. In order to hide the tree structure during the training,
the 6 steps are modified in EnclaveTree as below:

(1) classifying new arrivals into leaves with current HT model;
(2) updating the frequency of each (E0;D4, ;014;) pair of each

feature for all leaves, not only for the leaves that receive
new data samples;

(3) checking if each leaf has received =<8= data samples, and
performing steps 4-6 if true;

(4) computing the IG value for all features, not just for unas-
signed features;

(5) checking if the top two highest IG values satisfy the Hoeffd-
ing Bound;

(6) if true, converting the leaf node into an internal node using
the feature with the highest IG value; Otherwise, perform-
ing indistinguishable dummy operations.

Here we present how each step is performed obliviously in
EnclaveTree in details. We will use as an example the case illus-
trated in Fig. 4.

To protect the access pattern from side-channel attacks,
EnclaveTree performs the first two steps with a matrix multiplica-
tion. Basically, EnclaveTree converts a batch of data samples to a
matrix M3 , generates a query matrix M?

@ for each column ? in

matrixMC , and computesM?
A ←M3 ×M

?
@ . The elements of the

resulting matrixM?
A will be used to update the frequency informa-

tion in the !405 [?] array.
In the following, we take the first column of MC , denoted as

MC [; 1], as an example. The different steps are shown in Fig. 4.
Data Samples Matrix. To improve efficiency, we perform the 6
steps of HT training when a batch of # data samples has been
stored in theTraining Buffer on the CSP. TheTraining Buffer stores
the data samples outside the enclave. Note that the buffer size could
be larger than # . When # data samples are cached in the Train-
ing Buffer, EnclaveTree loads these samples into the enclave, and
for each round of training, converts them into a matrixM3 . Recall
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Figure 4: HT training with matrix multiplication.M3 is the matrix of the data samples to be trained in encoded.M@ is the

querymatrix of the selected path in encoded.MA =M3 ×M@ shows the query result.MA [=, :] = 4means the =-th data samples

contains the 4 values queried by the :-th mask inM@ , where 1 ≤ = ≤ 4 and 1 ≤ : ≤ 8.

that EnclaveTree represents the data sample as an"-bit string. Af-
ter the # data samples are imported in the enclave and decrypted,
EnclaveTree packs them into a #×" matrixM3 , where each row
ofM3 is a data sample encoded as a bit string. Fig. 4a shows an
example where # = 4, and each data sample is represented as a
11-bit string. Thus, the resulting size of the matrixM3 is 4×11.
Query Matrix. Assume columnMC [; ?] contains g? assigned fea-
ture values and D? unassigned features. Our next step is to query
whether any data sample in the current batch contains (i) the g? fea-
ture values assigned in the columnMC [; ?], and (ii) a (E0;D4, ;014;)
pair for any of the D? features that are not still assigned.

We perform this query by means of a matrix multiplication and
the result of this multiplication will be another matrix M?

A . The
elements in M?

A are then used to update the frequencies of the
queried (E0;D4, ;014;) pairs in the array !405 [?].

The process of generating a query matrixM?
@ for a given col-

umnMC [; ?] is then reduced to define a set of"-bit masks which
form the columns inM?

@ . Eachmask can only check one case. Thus

the number of masks, i.e., the number of columns of matrixM?
@ , is

determined by the possible values of unassigned features and the
possible values of the label. In more detail, forMC [; ?], M?

@ are
determined by (i) the g? assigned feature values (these will be the
same across all the column of the query matrix); and (ii) all the pos-
sible combinations of the (E0;D4, ;014;) pairs for theD? unassigned
features.

To make things more concrete, let us look at Fig. 4b, where both
themodelmatrixMC and the querymatrixM1

@ for columnMC [; 1]
are presented in human-readable and bit-string forms. As we can
see from the figure,MC [; 1] includes 2 assigned feature values (i.e.,
(D==~ and�86ℎ), and 2 unassigned features (i.e.,,8=3~ and)4<?).
This means that g1 = 2 and A1 = 2.

The number of columns (i.e., masks) inM?
@ is defined as !′ =

∑8=D?
8=1 <8 ∗<3 where<8 are the possible values of each unassigned

feature and<3 are the possible values of the!014; . Thismeans that
the size ofM@ is" × !′.

In the example in Fig. 4b, as both the unassigned features,
,8=3~ and )4<? , and the label !014; have 2 possible values (i.e.,
+,8=3~ = ()AD4, �0;B4), +)4<? = (�>C,�>>;), and +!014; =

(.4B,#>)), the total number of masks that we need to query is
given by the following: |+,8=3~ | ∗ |+;014; | + |+)4<? | ∗ |+;014; | = 8.

In other words, for columnMC [; 1] we need a query matrixM1
@

of 8 columns with the values for each column shown in Fig. 4b.
Matrix multiplication. By computingM3 ×M

?
@ , we get a # ×

!′ result matrix "
?
A . We use "

?
A [=,:] to represent its element at

the =-th row and :-th column, where = ∈ [1, # ] and : ∈ [1, !′].
"

?
A [=, :] is the inner product between the =-th data sample and

the :-th mask. This value represents the number of values in =-
th data sample that match the values in the :-th column of the
query matrix. We are interested in finding the data samples that
fully match the values defined inM?

@ [;:]: the g? assigned feature
values inMC [; ?] and the (E0;D4, ;014;) pair that we are querying
for. In other words, ifMA [=, :] = g? + 2 the =-th sample matches

the mask M?
@ [;:]. To be more concrete, let us look at a specific

case presented in Fig. 4c. Recall that we are querying forMC [; 1]:
this column has two fixed values (D==~ and �86ℎ. Thus we are
looking for a matching value of g1 + 2 = 4. In Fig. 4c, we can see all
the elementsM1

A [=,:] = 4 highlighted in red boxes.
The next step is to update the frequency information of each

(E0;D4, ;014;) pair contained in the !405 arrays. This is performed
by scanning each column of the result matrix "

?
A and checking

how many elements in each column is equal to g? +2. For instance,
in Fig. 4c, the first column ofM1

A contains two matches. The cor-
responding frequency value 2 ()AD4,#>) in !405 [1] is increased by



2. Here the enclave uses a mapping f to map the columns ofM@
A

to the elements in !405 [?].
EnclaveTree executes these operations obliviously, otherwise an

adversary could use side-channel attacks to learn which data sam-
ple contains which pair. Precisely, EnclaveTree linearly scans each
column of "

?
A , using oequal to check how many elements in

"
?
A [;:] equal to g? + 2. At the last step, the frequency counts are

added to the corresponding 2 (E0;D4,;014; ) value in the relevant leaf
array using oassign.

During the training, EnclaveTree requires to access all the
columns ofMC and generate a query matrix for each column. Even
if this operation is executed in the enclave, with side-channel at-
tacks, an adversary could infer information about the model (e.g.,
the number of columns, which maps to the number of HT paths).
Likewise, when accesses are made to !405 for updating the fre-
quency information, the adversary could also infer the number
of leaves. To prevent such a leakage, EnclaveTree inserts dummy
columns and dummy arrays into "C and !405 during the setup.
EnclaveTree uses a %-bit string 8B�D<<~ to mark if MC [; ?] and
!405 [?] is real or dummy.
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Figure 5: The model after one round training. The parts set

in red are those modified after one round of training.

Oblivious model construction. Once the frequency of each pair
has been updated, the IGs of those leaves that have received =<8=

data samples can be securely computed within the enclave. How-
ever, the last 2 steps should be performed obliviously as they in-
volve memory access.

For step 5, the enclave uses ogreater and oequal to obliviously
find out the two features with the highest IG values for each leaf.
Assume the two features are B0 and B1 for !405 [?], where� (B0) >
� (B1). The enclave uses ogreater to check if� (B0) −� (B1) > n. If
true, the enclave selects the feature B0 using oselect and performs
the last step, i.e., converting !405 [?] into an internal node with B0 .

In terms of the tree structure, converting a leaf into an internal
node means assigning B0 to the leaf, outputting<0 branches with
<0 new leaves, and assigning the<0 values of feature B0 to the new
branches. In terms of the matrix model in EnclaveTree, the enclave
modifiesMC and !405 with the following extensions.
MC extension: To hide whether the model is extended af-

ter each round of training, EnclaveTree converts <0 − 1 dummy
columns into real ones by resetting 8B�D<<~, rather than adding
new columns intoMC . In more details, EnclaveTree first copies the
values ofMC [; ?] to<0 − 1 dummy columns, and then assigns the
<0 values of feature B0 toMC [; ?] and the<0 − 1 dummy columns
with oassign. Fig. 5 shows howMC is changed when !405 [?] is
converted into an internal node with feature)4<? . In the example,
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Figure 6: HT inference with matrix multiplication.

<)4<? = 2, thus only one dummy column,MC [; 5], is converted
into a real one. The last 2 bits ofMC [; 1] andMC [; 5]are changed
to 01 and 10, respectively (the encoding for �>C and �>>; , respec-
tively).

!405 extension: As <0 new leaves are added, the leaf array
!405 should also be updated. Similarly, EnclaveTree first converts
<0 − 1 dummy arrays into real ones by initializing all the possible
2 (E0;D4,;014; ) of unassigned features to 0. The original leaf !405 [?]
will be used to store the statistical information of the new ?-th leaf,
and its each 2 (E0;D4,;014; ) is set to 0.

During the setup, the enclave generates a number of dummy
columns and leaves inMC and !405 , respectively. As dummy val-
ues in both the model and the !405 arrays are processed as real
values, a large number of dummies will degrade the performance.
To balance efficiency with security, EnclaveTree periodically gener-
ates new dummies. In detail, afterW extensions, EnclaveTree checks
the number of remaining dummy values, and if this value is be-
low a given threshold) , EnclaveTree generates new dummies. The
threshold ) should ensure there are enough dummies for W exten-
sions. In the worst case, all of the W leaves are split and generate
W ∗ (<<0G − 1) new leaves, where<<0G = max{<1, ...,<3−1}. We
thus set ) = W ∗ (<<0G − 1).

5.3 Oblivious HT Inference

One of the features of data stream classifications is that unlabelled
data instances can be received for inference at any time. In other
words, there is not a clear separation between a training and an
inference phase. As such, EnclaveTree has to be able to support in-
ference operations while the model is being trained.

The target of HT inference is to return a classifying label value
for each data instance to the DO. Before classifying any data in-
stance, EnclaveTree has to define the label values in the current
model. Data samples with different label values could be classified
into the same leaf during the training. The label value with the
highest frequency will be used as the label value of the leaf. For
the ?-th leaf, the label value that has the highest frequency can be
obtained by checking the 2 (E0;D4,;014; ) in !405 [?] with oblivious
primitives.

To protect the enclave access pattern, EnclaveTree also performs
the HT inference with a matrix multiplication. In more detail,
the Oblivious Inference sub-component of EnclaveTree processes



a batch of instances each time. Assume the batch size for HT in-
ference is # ′. After loading and decrypting # ′ data instances,
EnclaveTree converts the instances into a matrixM8 . EnclaveTree
also represents each data instance with a bag of bits. Compared
with data samples, the bit string of a data instance only has"−<3

bits as the data instance does not have label values. Thus, the size
ofM8 is # ′× (" −<3 ). For instance, in Fig 6, each column ofM8

has 9 bits.
EnclaveTree performs the inference by computingM ′A ←M8×

MC . Since the size ofM8 andMC are# ′×("−<3 ) and ("−<3 )×%
respectively, the size of M ′A is # ′ × % . The element M ′A [=, ?]
indicates whether the =-th data instance belongs to the ?-th path,
where = ∈ [1, # ′]. If this is the case, thenM ′A [=, ?] = g? . g? can
be easily obtained by checking how many 1 bits2 are in the ?-th
column ofMC .

To check which path the =-th data instance belongs to, the en-
clave scans the =-th row ofM ′A and checks ifMC [=, ?] = g? with
oequal. If this is true, then the label value of the ?-th leaf will be
the inference result for the =-th data instance. Finally, the enclave
encrypts the # ′ labels with B: and sends them to the DO.

6 IMPLEMENTATION AND EVALUATION
RESULTS

In this section, we first describe the implementation of EnclaveTree.
We then describe the evaluation test-bed we used for running our
experiments. Finally, we conclude this section with a detailed per-
formance analysis.

6.1 Implementation

The prototype of EnclaveTree is implemented in C++ based on the
machine learning librarymlpack [12]. Mlpack implements the orig-
inal HT algorithm (also known as Very Fast Decision Tree, VFDT)
given in [15]. We modify both the training and inference into
matrix-based processes according to our approach. To make the
algorithm oblivious, we implemented oblivious primitives with in-
line assembly code (as done in [29, 40, 44]).

6.2 Experiment Setup

Testbed.We evaluated the prototype of EnclaveTree on a desktop
with AVX2 and SGX support, where AVX2 feature is required for
oaccess. The desktop contains 8 Intel i9-9900 3.1GHZ cores and
32GB of memory (∼93 MB EPC memory), and runs Ubuntu 18.04.5
LTS and OpenEnclave 0.16.0.
Baselines. To the best of our knowledge, there is no other ap-
proach in the wild that can be used for a performance compari-
son with EnclaveTree. Therefore, to better show the performance
of EnclaveTree, we implemented and evaluated 3 baseline cases
named Insecure, SGX, and Oblivious SGX. Insecure baseline
does not provide any protection and performs the traditional HT
training and inference in plaintext where each data sample is clas-
sified level by level from the root to a leaf node [15]. Note that
this baseline is performed without using SGX enclaves and in
plaintext therefore it does not provide any security. SGX baseline

2The one-hot encoding ensure that the encoded value for each feature has only one
bit set 1.

Table 3: Datasets

Dataset #Features #Labels #Samples

Adult 14 2 32,561
REC 9 2 5,749,132

Covertype 54 7 581,012

Table 4: Training runtime on real datasets (s)

Scheme Adult REC Covertype

Insecure 0.09 16.06 118.29
SGX 0.87 98.11 773.50

Oblivious SGX 33.04 909.24 1772.77
EnclaveTree 19.05 128.28 6930.51

performs the traditional HT training and inference within an en-
clave but without protecting the access pattern. By comparing
the performance of the first two baselines, we can see the over-
head incurred by using SGX. To protect the enclave access pat-
tern, Oblivious SGX baseline obviously performs the traditional
HT training and inference within the enclave with oblivious prim-
itives. We leverage the strategy used in [29] for implementing
Oblivious SGX, where the nodes of each level are stored in an
array and the target node is obliviously accessed with oaccess.
Moreover, dummy nodes are generated to hide the real number of
nodes in each level.

When outside the enclave, the data samples are encrypted with
128-bit AES-GCM in SGX, Oblivious SGX, and EnclaveTree.

All the experiment results presented in the following are aver-
age over 100 runs.
Batch size. The batch size # affects the performance of HT
training and also the inference accuracy. As shown in Fig. 7,
the performance of HT training improves at the increase of # ,
whereas the accuracy of the model decreases with the increase of
# . EnclaveTree processes each batch of data samples in one step,
which means the 6 steps of the HT training are performed once
every # data samples. As a result, less computation is required
when# gets larger, yet the best moment to covert leaves to internal
nodes could be missed. From Fig. 7, we can also notice that when
# < 128 the accuracy of the model decreases very slightly (Fig. 7a)
but the decrease in runtime overhead is much more dramatic es-
pecially when considering 63 features (Fig. 7b). For # = 100, the
accuracy of the model is almost the same as for # = 1. Thus, in the
following experiments, we set # = 100.

6.3 Evaluation on Real Datasets

We first evaluated the performance of HT training with 3 real
datasets that are widely used in the literature: Adult dataset,
Record Linkage Comparison Patterns (REC) dataset, and Cover-
type dataset. They are obtained fromUCIMachine Learning Repos-
itory 3. The details of each dataset are shown in Table 3. In partic-
ular, we use the Adult and REC datasets to evaluate the perfor-
mance of HT training, and use the REC dataset to test the perfor-
mance of RF training, where 100 trees are trained and each tree
consists of 7 features. The results are shown in Table 4. For Adult
and REC, EnclaveTree outperforms Oblivious SGX by ∼1.7× and

3https://archive.ics.uci.edu/ml/
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Figure 7: The performance of HT training with different batch size
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Figure 8: The performance of HT training under different settings
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Figure 9: HT inference across different number of features

∼7.1×, respectively. When training with Covertype, EnclaveTree’s
performance is worse than Oblivious SGX. This is because a large
query matrixM@ is required to process the 54 features in Cover-
type.

6.4 Performance of HT Training and Inference

We also evaluated the performance of EnclaveTree with synthetic
datasets which allow us the flexibility to change the number of
data samples and features to better show the performance of
EnclaveTree under different conditions. Themachine learning pack-
age, scikit-multiflow [37], is employed to generate the stream-
ing data samples in our test. The main operation involved in
EnclaveTree is matrix multiplication, the performance of which is
affected by the matrix size and determined by the number of fea-
tures and number of values of each feature. In the following test,
we set the number of values to 2 for all features and modify the
matrix size by changing the number of features. From the above 3

Table 5: The performance of HT inference.

#Data samples HT inference runtime (ms)
Insecure SGX Oblivious SGX EnclaveTree

1×104 0.05 2.79 9.78 2.36
2×104 0.05 2.89 10.56 2.43
3×104 0.05 2.86 14.34 2.59
4×104 0.05 2.85 15.19 2.62
5×104 0.05 2.89 20.24 2.80

datasets, we can see that the datasets usual contain dozens of fea-
tures. The observation presented in [39, 57] also shows that dozens
of features, e.g., 10, 20, or 30, are usually enough to reflect the distri-
bution of the dataset. However, to better analyze the performance
of EnclaveTree, in our tests we set the number of features to range
between 3 and 127.
Performance of HT training. To measure the training perfor-
mance of EnclaveTree, we performed two sets of experiments: 1)
first we fixed the number of features while we changed the num-
ber of data samples; and 2) we fixed the number of data samples
while we changed the number of features.

In the first set of experiments, we set the number of features to
31, which is large enough to cover most of the data stream scenar-
ios, and changed the number of data samples from 1×104 to 5×104
samples. In the second test, we fixed the number of data samples to
5×104 and increased the number of features from 3 to 127. For the
same settings, we compare the performance of EnclaveTree with
the other three baselines and the results are presented in Fig. 8.

Fig. 8a shows the execution time in seconds to perform the
training with fixed features. From the results we can see that



EnclaveTree needs less time than Oblivious SGX but more time
than SGX. Precisely, EnclaveTree outperforms Oblivious SGX by
4.03×, 3.02×, 2.86×, 2.58×, 2.29×, but incurs∼6×,∼9×,∼10×,∼11×,
∼13× overhead for protecting the access pattern when compared
to SGX for the five cases, respectively.

Fig. 8b shows the results when we fix the data sample size and
vary the number of features. As expected, the training time in-
creases with the increase of the number of features. It is inter-
esting to note that for less than 63 feature, EnclaveTree execution
time is better than Oblivious SGX. However, with more than 63
features, Oblivious SGX outperforms EnclaveTree in terms of exe-
cution times. The main reason of this increase in execution time
is the increase in size for the matrices M?

@ , M3 and M?
A . These

matrices become larger at the increase of the number of features,
and this increases the running time for performing the matrix mul-
tiplication to getMA .
Performance of HT inference. To evaluate the performance of
inference, we also conducted two sets of experiments: 1) first, we
fixed the number of features to 31 and changed the number of data
samples from 1×104 to 5×104; and 2) then we fixed the data sam-
ples to 5×104 and changed the number of features from 3 to 127. In
both sets of experiments, we set the batch size # ′ = 100, i.e., 100
data instances are classified with one matrix multiplication. The
results for both experiment sets are shown in Table 5 and Fig. 9,
respectively 4.

From both Table 5 and Fig. 9, we can see that despite being
the most secure of all the other baselines, the HT inference in
EnclaveTree is very comparable to that of SGX (EnclaveTree perfor-
mance is even better than SGX in some cases). The results also show
that EnclaveTree is faster than Oblivious SGX (up to ∼7.23× times).

7 RELATED WORK

In this section, we review existing privacy-preserving approaches
for general ML algorithms and for data stream classification.

7.1 Privacy-preserving Machine Learning

Cryptography-based Solutions. Most of the existing privacy-
preserving works [3, 3, 14, 17, 18, 32, 33, 33, 47, 52, 56, 59] rely
on cryptographic techniques, such as SMC and HE. Compared
with EnclaveTree, these schemes require multiple rounds of inter-
action between different participants. The schemes proposed in
[17, 18, 32, 47, 52, 59] leak the statistical information and/or tree
structures to the CSP. Moreover, as shown in [40], these crypto-
graphic solutions incur heavy computational overheads. None of
these works is suitable for data stream classification.
TEE-based Solutions. In recent years, advances in TEE technol-
ogy have enabled a set of exciting ML applications such as Haven
[5] and VC3 [48]. However, TEE solutions (e.g., Intel SGX) are
vulnerable to a large number of side-channel attacks. Decision
tree is vulnerable to those attacks as it induces data-dependent ac-
cess patterns when performing training and inference tasks inside
the enclave. Raccoon [46] proposes several mechanisms for data-
oblivious execution for TEE to prevent these attacks. Ohrimenko
et al. [40] propose to make the decision tree inference oblivious
with oblivious primitives. Motivated by [40], Secure XGBoost [29]

4We also provide the results with 15 and 63 features in Appendix B.

makes both the XGBoost model (a variant of the decision tree)
training and inference oblivious with oblivious primitives. Comb-
ing TEEwith oblivious primitives can prevent side-channel attacks
and achieve better performance than cryptographic-based solu-
tions. However, the use of oblivious primitives still leads to pro-
hibitive performance overheads. EnclaveTree significantly reduces
the need of using oblivious primitives because the access pattern
to the model is hidden by the use of matrix multiplication.We only
use oblivious primitives to process the results of the result matrices
(i.e.,MA andM ′A ) and to access to the !405 array. Another issue
is that both these approaches have not been designed to process
data streams. Ohrimenko et al.’ solution only focuses on inferences.
Secure XGBoost supports generic decision tree models and is not
designed for HT.

7.2 Privacy-preserving Data Stream Mining

In the literature, several works have focused on protecting data
stream privacy [8, 26, 31, 64]. However, they mainly focus on pro-
tecting the data distribution by adding noise. In more detail, these
works leverage anonymization and data perturbation techniques
to perturb the data and thus defend against attacks exploring the
relationships across many features in data stream.

Few works have considered protecting the training process and
the generated model in data stream classification. For instance, the
solution proposed in [61] works on multiple stream sources to
build a Naïve Bayesian model. They minimize the privacy leakage
that could be incurred in the data exchange among data owners
and do not consider the model privacy. [55] provides privacy pro-
tection for CNN inference with data stream but similarly the pri-
vacy of model and training process is not their focus. While these
two works focus on data streams, neither of these two schemes
focus on data stream classification using HT. Moreover, the main
drawback of both approaches is that frequently adding noise re-
duces the model accuracy which may require frequent reconstruc-
tions of themodel. Another issue is that an attacker could infer sen-
sitive information from the data stream, such as the user’s identity,
the locations a commuter visits and the type of illness a patient suf-
fers from, by deploying various inference-based attacks [1, 8, 26].

8 CONCLUSION AND FUTUREWORK

We presented EnclaveTree, a practical, the first privacy-preserving
data stream classification framework, which protects user’s private
information and the target model against access-pattern-based at-
tacks. EnclaveTree adopts novel matrix-based data-oblivious algo-
rithms for the SGX enclave and uses x86 assembly oblivious primi-
tives. EnclaveTree supports strong privacy guarantees while achiev-
ing acceptable performance overhead in privacy-preserving train-
ing and inference over data streams. As future work to improve
EnclaveTree performance, we will investigate two potential solu-
tions: (a) distribute the computation across multiple enclaves on
different machines to perform matrix multiplications in parallel,
and (b) securely outsource the matrix multiplication to GPUs.



ACKNOWLEDGMENTS

Russello would like to acknowledge the MBIE-funded programme
STRATUS (UOWX1503) for its support and inspiration for this re-
search.

REFERENCES
[1] Charu C Aggarwal. 2005. On k-anonymity and the curse of dimensionality. In

VLDB, Vol. 5. 901–909.
[2] Adil Ahmad, Byunggill Joe, Yuan Xiao, Yinqian Zhang, Insik Shin, and Byoungy-

oung Lee. 2019. OBFUSCURO: A Commodity Obfuscation Engine on Intel SGX.
In 26th Annual Network and Distributed System Security Symposium, NDSS 2019,
San Diego, California, USA, February 24-27, 2019. The Internet Society.

[3] Adi Akavia, Max Leibovich, Yehezkel S Resheff, Roey Ron, Moni Shahar, and
Margarita Vald. 2019. Privacy-PreservingDecision Tree Training and Prediction
against Malicious Server. IACR Cryptol. ePrint Arch. 2019 (2019), 1282.

[4] Alibaba. 2020. Alibaba Cloud Security White Paper.
https://www.alibabacloud.com/.

[5] Andrew Baumann, Marcus Peinado, and Galen Hunt. 2015. Shielding applica-
tions from an untrusted cloud with haven. ACM Transactions on Computer Sys-
tems (TOCS) 33, 3 (2015), 1–26.

[6] Raphael Bost, Raluca Ada Popa, Stephen Tu, and Shafi Goldwasser. 2015. Ma-
chine learning classification over encrypted data.. In NDSS, Vol. 4324. 4325.

[7] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens, and Raoul
Strackx. 2017. Telling Your Secrets without Page Faults: Stealthy Page Table-
Based Attacks on Enclaved Execution. In USENIX Security 2017. USENIX Associ-
ation, 1041–1056.

[8] Mahawaga Arachchige Pathum Chamikara, Peter Bertók, Dongxi Liu, Seyit
Camtepe, and Ibrahim Khalil. 2019. An efficient and scalable privacy preserv-
ing algorithm for big data and data streams. Computers & Security 87 (2019),
101570.

[9] Guoxing Chen, Wenhao Wang, Tianyu Chen, Sanchuan Chen, Yinqian Zhang,
XiaoFeng Wang, Ten-Hwang Lai, and Dongdai Lin. 2018. Racing in Hyperspace:
Closing Hyper-Threading Side Channels on SGX with Contrived Data Races. In
2018 IEEE Symposium on Security and Privacy, SP. 178–194.

[10] Intel Corparation. 2016. Intel (r) 64 and ia-32 architectures software developer’s
manual. Combined Volumes, Dec (2016).

[11] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR Cryptol.
ePrint Arch. 2016, 86 (2016), 1–118.

[12] Ryan R. Curtin, Marcus Edel, Mikhail Lozhnikov, Yannis Mentekidis, Sumedh
Ghaisas, and Shangtong Zhang. 2018. mlpack 3: a fast, flexible machine learning
library. Journal of Open Source Software 3 (2018), 726. Issue 26.

[13] Martine De Cock, Rafael Dowsley, Caleb Horst, Raj Katti, Anderson CA Nasci-
mento, Wing-Sea Poon, and Stacey Truex. 2017. Efficient and private scoring of
decision trees, support vector machines and logistic regressionmodels based on
pre-computation. IEEE Transactions on Dependable and Secure Computing 16, 2
(2017), 217–230.

[14] Sebastiaan de Hoogh, Berry Schoenmakers, Ping Chen, and Harm op den Akker.
2014. Practical secure decision tree learning in a teletreatment application. In
International Conference on Financial Cryptography and Data Security. Springer,
179–194.

[15] Pedro Domingos and Geoff Hulten. 2000. Mining high-speed data streams. In
Proceedings of the sixth ACM SIGKDD international conference on Knowledge dis-
covery and data mining. 71–80.

[16] James Dougherty, Ron Kohavi, and Mehran Sahami. 1995. Supervised and unsu-
pervised discretization of continuous features. In Machine learning proceedings
1995. Elsevier, 194–202.

[17] Wenliang Du and Zhijun Zhan. 2002. Building decision tree classifier on private
data. (2002).

[18] Fatih Emekçi, Ozgur D Sahin, Divyakant Agrawal, and Amr El Abbadi. 2007. Pri-
vacy preserving decision tree learning over multiple parties. Data & Knowledge
Engineering 63, 2 (2007), 348–361.

[19] Dmitry Evtyushkin, Ryan Riley, Nael B. Abu-Ghazaleh, and Dmitry Ponomarev.
2018. BranchScope: A New Side-Channel Attack on Directional Branch Predic-
tor. In ASPLOS 2018. ACM, 693–707.
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A SECURITY ANALYSIS

In this section, we analyse how EnclaveTree protects the enclave
access pattern along with detailed pseudocode.

Definition A.1 (Data-oblivious). As defined in [44], we say that
an algorithm is data-oblivious if an adversary that observes its
interaction with memory, disk or network during the executions
learns only the public information.

In the following, we prove both the HT training and HT infer-
ence in EnclaveTree is data-oblivious.

A.1 Oblivious HT Training

Algorithm 1 provides the pseudocode of oblivious HT training.

Algorithm 1: Oblivious HT Training
Input: # encrypted data samples �=2.� , ( ,+ ,<8 ,"

1 Initialize the model matrixMC and leaves array !405 with % dummy
objects. Initialize the bit string 8B�D<<~. Initialize a list =>34 , where
=>34 [? ] = (5 �3G, g? ) for ? ∈ [1, % ]. =>34 [? ] .5 �3G stores the indices
of the features that have not assigned onMC [;? ]; and =>34 [? ] .g? stores
the number of feature values assigned to MC [;? ]

% Generate data sample matrixM3

2 Decrypt �=2.� and pack them into a #×" matrixM3

% Generate query matrixM@

3 foreach ? ∈ [1, % ] do
4 )? = oaccess(=>34 [? ] .5 �3G, (,+ ), where+ = (+B1 , ...,+B3 )
5 M?

@ = GenerateMasks(MC [;? ] , 8B�D<<~,)? )

6 M@ = M1
@ | | · · · | |M%

@

% Update =>34 , !405 , andMC usingMA

7 MA = MatMul(M3 ,M@)

8 >DC?DC=[]
9 foreach ? ∈ [1, % ] do
10 >DC?DC = RecordStat(MA ,=>34 [? ] .g?)
11 UpdateStat(8B�D<<~, >DC?DC , !405 )

% Check for a split

12 splitIdx = SplitCheck(8B�D<<~, ( , !405 )

% Generate new leaf nodes, update ; , !405 , andMC

13 8B(?;8C = (splitIdx == (-1))
14 CreateChildren(8B(?;8C,=>34,MC , !405 )

Theorem A.2. The oblivious HT training of EnclaveTree (Algo-

rithm 1) is data-oblivious with public parameters: # , % , 3 and" .

Proof. Here we analyse what the adversary can learn from
each operation in Algorithm 1.

The memory access occurred due to the initialization (line 1)
andM3 generation (line 2) is independent of the data, from which
the adversary could only learn the size information % , # and " ,
which are public.

The loop from line 3 to line 5 aims to traverse MC and =>34

and generate the query matrix for each column ofMC . This loop
always runs % times, which means all the columns and elements
ofMC and =>34 respectively are always accessed for each round
of training, resulting the same access pattern no matter what the
input is. Recall that the query matrix is generated based on the fea-
ture values assigned and those unassigned to the column. Within
the loop, the enclave first fetches the values of unassigned features
indexed by =>34 [?] .5 �3G from ( and + using oaccess and stores
them into)? (line 4). Although =>34 [?] .5 �3G is different for differ-
ent columns, the access patterns over ( and+ occurred by oaccess
are oblivious and are independent of =>34 [?] .5 �3G . The function
GenerateMasks in line 5 generates the query matrix based on the
values in)? andMC [; ?].MC [; ?] is obtained with oaccess, which
is also oblivious. Here the enclave generates query matrix in the
same way for real and dummy columns. The difference is that the
enclave assigns null to the masks for dummy columns, but the val-
ues in )? for real columns, however there is no way for the adver-
sary to learn that. After the loop, the querymatrixM@ of thewhole
tree is generated by combining the matrix of each path together.

https://arxiv.org/abs/1712.08519
http://arxiv.org/abs/1712.08519
https://arxiv.org/abs/2006.13353
https://arxiv.org/abs/2006.13353


OnceM3 andM@ are ready, the next step is to perform the ma-
trix multiplication, which is inherently oblivious, and obliviously
access the result matrixMA with oblivious primitives.

The second loop (line 10-line 14) is used to update the statis-
tic information stored in !405 and update MC and !405 if they
are leaves that need to be converted. The function RecordStat in
line 10 checks the elements in each column ofMA with =>34 [?] .g?
and records the counts into a vector >DC?DC . This process is per-
formed obliviously with oequal and oselect, resulting the access
pattern overMA and >DC?DC independent of any value. In line 11,
the enclave uses oassign to update!405 based on >DC?DC . Here no
matter whether the array is real or dummy, the enclave processes
it with oassign. The difference is that dummy arrays are assigned
with 0, but real arrays are assigned with the values recorded in
>DC?DC . What the adversary observes from this process is all the
same.

In line 12, the enclave checks whether to split the ?-th leaf based
on the updated !405 . Precisely, the enclave first calculates the
IG for all unassigned features. The enclave next uses ogreater,
oequal and oselect to select the feature with the highest and
second-highest IG, return a value B?;8C�3G that indicates if ?-th
leaf is split by comparing with Hoeffding Bound (using oselect).
Its access patterns are thus independent of ( .

If =>34 [?] is real and its IG values satisfy the Hoeffding Bound,
line 14 converts the ?-th leaf into internal nodes by updating =>34 ,
MC and !405 accordingly. The main idea is to convert =>34 [?],
MC [; ?], and !405 [?] into dummies by resetting 8B�D<<~. More-
over, assume the best feature selected for converting the ?-th leaf
has < values, < dummies in =>34 , MC and !405 are converted
into real ones by setting their values based on the new leaves and
paths with oblivious primitives. If either =>34 [?] is dummy or it is
not ready to be converted, the enclave similarly performs dummy
write operations on =>34 , MC and !405 , which is indistinguish-
able from the operations performed for the former case due to the
oblivious primitives.

Overall, from Algorithm 1 the adversary can only learn the pub-
lic information # , % , 3 and " . �

A.2 Oblivious HT Inference

In this section, we provide pseudocode along with proofs of secu-
rity for the oblivious HT inference in Algorithm 2.

Algorithm 2: Oblivious HT Inference

Input: # ′ encrypted data instances �=2.� ,<8 ," , 3 ,MC , !405
1 Decrypt the unlabelled instances and pack them into a # ′×(" −<3 )

matrixM8

2 Initialize label array�;014; of size % for storing labels
% Store labels in an array

3 foreach ? ∈ [1, % ] do
4 �;014; = MajorityLabel(!405 [? ])
% Record counts for each instance usingM′A

5 M′A = MatMul(M8 ,MC)

6 >DC?DC=[]
7 >DC?DC = RecordStat(MA )

% Compare values in >DC?DC and assign labels to instances

8 '4BD;C=[]
9 '4BD;C = Predict(>DC?DC ,�;014; )

10 return '4BD;C

Theorem A.3. The oblivious HT inference of EnclaveTree (Algo-

rithm 2) is data-oblivious, with public parameters # ′, % and" .

Proof. The access patterns of line 1 depend only on the number
of instances # ′ and " −<3 . Line 2 depends on % .

The loop in line3 and line 4 is used to determine each leaf’s
label of the current tree, which executes % times. Within function
MajorityLabel, the enclave only uses oblivious primitives, which
does not leak any access patterns. Thus, the adversary could only
learn % .

In line 5, the access patterns occurred by the matrix multiplica-
tion is inherently oblivious.

The function RecordStat in line 7 checks the elements of
each column inM ′A and records the counts into >DC?DC . Similarly,
the two operations are both performed with oblivious primitives,
which do not leak access patterns. The function Predict in line 9
first compares the values in >DC?DC using oequal. It then accesses
the �;014; to get the target label and assigns it to the correspond-
ing instances using oassign. In this process, the adversary could
only learn # ′ and % .

�

B PERFORMANCE OF ENCLAVETREE

B.1 More Results for HT Training and
Inference

Here we show the performance of HT training and inference with
15 features in Fig. 10 and 63 features in Fig. 11. It is indicated that
HT training performs better with less number of features, which is
close to SGX when there are 15 features. However, when the num-
ber of features increases to 63, the runtime of HT training is close
to Oblivious SGX. The fact is that EnclaveTree is efficient to pro-
cess the data streams in most scenarios as they generally involve
about a dozen of features. Regarding the inference, as shown in
Fig. 11, our solution always outperforms Oblivious SGX baseline
by several orders of magnitude.

B.2 RF Training and Inference

One concern of training data streams with HT is that the underly-
ing data distribution of the stream might change over time, which
leads to the accuracy degradation of the model, known as concept
drift [20]. Ensemble models such as Random Forest (RF) with adap-

tive mechanisms [21] is a promising way to cope with the problem
of concept drifts.

RF consists of a set of trees, and each tree is trained over a
√
3

subset of ( features. EnclaveTree uses the HT training component
to train each tree in the RF. The features used to train a tree is ran-
domly selected from ( . Tomake the selection oblivious, the enclave
accesses ( using oaccess. Assigning a label to a data instance with
RF inference means classifying the instance with each tree and get-
ting a set of labels. The final result is the label that is output by the
majority of trees.

EnclaveTree performs the RF inference in a way similar to the
HT inference using matrix multiplication. In particular, the data
instances can be classified by multiple trees with one matrix mul-
tiplication by combining the matrices of the trees together.
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Figure 10: The Comparison of HT Training and Inference with 15 features
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Figure 11: The Comparison of HT Training and Inference with 63 features
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Figure 12: RF training and inference with the increase of trees

We also evaluated the performance of RF training and inference,
and the results are shown in Fig. 12. Fig. 12a shows the runtime in
seconds to perform the RF trainingwith 31 features and 5×104 sam-
ples. For all the test cases, every tree of the RF is trained with 6 fea-
tures. The results show that, with the increase of trees, EnclaveTree
is much faster than Oblivious SGX, which is up to ∼3.2×. We also
see that the performance of EnclaveTree is close to SGX.

With the same setting, we compare the inference performance
of EnclaveTree with the other three baselines and the result is

shown in Fig. 12b. We can see that EnclaveTree also performs
better than Oblivious SGX by roughly 3.8×. Compared with SGX,
EnclaveTree inference incurs more overhead when there are less
than about 150 trees but is better when there are more than 150
trees. The reason is that the inference process requires EPC mem-
ory to store data, and it causes EPC paging when the EPC is ex-
hausted. EnclaveTree simply performs matrix multiplication, and
this operation involves much less memory access than SGX, which
means less EPC paging occurred than SGX.
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