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ABSTRACT
EPID systems are anonymous authentication mechanisms which

are standardized by ISO/IEC and massively deployed in Intel pro-

cessors. They are related to the large family of privacy-preserving

signatures but differ in that they provide a very pragmatic way of

revoking members. Concretely, a member P can be revoked by sim-

ply placing one of its signatures in a so-called signature revocation

list SRL. Once this is done, every signer will have to include in its

future signatures a proof that it has not generated any element of

SRL, which implicitly revokes P.
This proof of non-revocation generated by each signer is thus the

core component of EPID systems and largely dominates the overall

complexity. Yet, it appears that it has been a secondary concern for

existing constructions that usually implement it using some costly

modular zero-knowledge proofs.

In this paper, we reconsider this problem by proposing a new

EPID system with a much more efficient proof of non-revocation.

The latter is no longer zero-knowledge but its combination with the

other components of the EPID system still results in an anonymous

signature. Proving the latter point is actually quite complex and

requires to tweak these other components but in the end it leads to

EPID signatures that are up to three times smaller than previous

ones and that can be generated and verified with two times less

computations.
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1 INTRODUCTION
Related Works. Introduced by Brickell and Li in 2007 [7], En-

hanced Privacy ID (EPID) is an anonymous authentication mech-

anism that quickly gained traction in the real-world. It is today
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embedded in billion of devices [17] and included in the ISO/IEC

20008-2 standard [18].

Technically speaking, it is a spin-off of group signature [12]

and, as such, is a centralized system managed by a so-called issuer
which can enrol platforms. Once a platform has been accepted by

the issuer, it can generate EPID signatures that anyone can verify

using the issuer’s public key but that cannot be traced back to the

platform. So far, this is exactly a group signature. The fundamental

difference between these two primitives lies in the safeguards they

implement to prevent bad behaviour.

In group signatures, an opener (that may be merged with the

issuer) has the ability to lift anonymity of any signature using some

secret knowledge. This is a very powerful feature, which places

heavy responsibilities on this entity that must be trusted by all the

actors involved in the system. Moreover, once the issuer of a given

group signature has been identified, it is not very clear what the

next step should be as revocation is usually not considered by group

signature models (e.g. [2, 3]) and is quite hard to add in practice.

In an EPID system, there is no trusted entity able to lift anonymity.

This feature is replaced by two revocation mechanisms that are

quite different. The first one is a key revocation mechanism that

allows to trace all EPID signatures generated with a given secret

key. It is very powerful but assumes knowledge of the secret key

of the platform to revoke, which is rather unlikely, unless in very

specific scenarios where this secret key would leak. The second one

is a signature revocation mechanism which constitutes the main

specificity of EPID. Concretely, a signature revocation list SRL is

generated from a given set of EPID signatures {𝜇𝑖 }𝑛𝑖=1 and can then

be used as an input for future EPID signatures. When generating

the latter, the platforms have to additionally provide a proof that

they have not generated any of the signatures 𝜇𝑖 . This excludes all

the platforms that have generated at least one of the 𝜇𝑖 which are

de facto revoked. This calls for several comments.

Firstly, signature revocation is an inherently decentralized sys-

tem in the sense that every entity can technically1 generate a valid
signature revocation list SRL from a set of signatures. In other

words, the generation of SRL is a public process that does not re-

quire knowledge of a secret value. Secondly, the status (active or

revoked) of each platform is linked to a given SRL. Concretely, a
platform implicitly revoked by SRL may still be able to generate

EPID signatures for a different list SRL′. Finally, signature revo-

cation cannot be done a posteriori: once an EPID signature has

been generated for some list SRL it is not possible to check if it is

still valid for another list SRL′. This is one of the main differences

with the related notion of verifier-local revocation [5] for group

signatures.

1
We emphasize this word as somemodels require SRL to be generated by a trusted entity
but do not implement countermeasures to prevent another entity from generating a

valid SRL (see discussion in [22]).
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In practice, all EPID systems use the same framework, yielding

signature that can be split into two parts. The first part is inher-

ited from group signature and consists in proving knowledge of

a certificate generated by the issuer on the platform secret key 𝑠 .

The second part is dedicated to the proof of non-revocation and

essentially consists in a proof that 𝑠 was not used to generate any

element of the signature revocation list SRL. In all existing systems

(e.g. [7, 8, 19, 22]) this latter part is by far the largest as its size grows
linearly with the number 𝑛 of revoked signatures. For example, as

illustrated in Section 5, in both [8] and [22] the first part amounts

to roughly 2000 bits whereas the latter represents 894𝑛 bits, which

quickly dominates the overall size.

Yet, we note that the literature on EPID has always been focused

on the first part, trying to leverage advances in the group signature

area. In particular, the proof of non-revocation (the second part)

clearly appears as a secondary concern that is usually addressed

by using (or just mentioning) some modular zero-knowledge proof

(e.g., the one from [11]) without trying to optimize it for the EPID

context.

Our Contributions. In this paper, we depart from previous works

by focusing on the second part of EPID systems, namely the proof

of non-revocation, and explain how we can significantly improve

it by using a very different strategy.

But first, let us recall some elements on existing constructions in

cyclic groups. As all EPID signatures can potentially be used in a

revocation list, any signature 𝜇 generated with a secret 𝑠 contains

some pair (ℎ,ℎ𝑠 ) ∈ G2
1
whose only purpose is to facilitate future

proofs of non-revocation. This approach, which is reminiscent of

Direct Anonymous Attestation [10], does not harm privacy as the

platform uses a new ℎ for each signature. Thanks to this random-

looking pair, any platform can prove that it has not generated 𝜇 by

essentially proving that its own secret key 𝑠∗ would yield a different
element ℎ𝑠

∗
.

However, this is easier said than done as the most straightfor-

ward solutions (such as providing ℎ𝑠
∗
in clear) would clearly break

anonymity (the same element ℎ𝑠
∗
will appear in all signatures gen-

erated by this platform for signature revocation lists containing the

pair (ℎ,ℎ𝑠 )). This is where zero-knowledge proof proves convenient.
By using a modular zero-knowledge proof that 𝑠∗ is different from
all the secret keys used to generate the pairs (ℎ𝑖 , ℎ𝑠𝑖𝑖 ) contained
in revoked signatures, one ensures that anonymity is preserved

(thanks to the zero-knowledge property) and that revocation is en-

forced (thanks to the soundness property) without having to write

a new security proof. Typically, in the anonymity analysis, one

simply runs the zero-knowledge simulator and then has no longer

to care for this part of the signature. Unfortunately, this modularity

has a cost. Even the efficient zero-knowledge proof system from

[11] requires to send 1 element of G1 and two scalars per revoked

signature. This also affects the computational cost of both the sig-

nature and the verification algorithms which are augmented by 6

group exponentiations per revoked signature.

Our goal in this paper is to propose a middle-way which is

cheaper than a full-fledged zero-knowledge proof but which still

retains anonymity of the construction. Let us consider a platform P
owning some secret scalar 𝑠∗ which needs to prove that it has not

generated any of the pairs (ℎ𝑖 , ℎ𝑠𝑖𝑖 ) contained in some revocation

list SRL. Logically, for each 𝑖 , this proof will be a function of 𝑠∗, ℎ𝑖
and ℎ

𝑠𝑖
𝑖
. However, it must also depend on other values. Otherwise,

if P produced a new signature for a list SRL′ that would contain

one these pairs, then it would generate the same proof and could

be traced. More generally, this proof of non-revocation must look

random to prove anonymity of the resulting construction.

In zero-knowledge proofs used by previous works this problem is

dealt with by adding random values that essentially re-randomizes

all the group elements. Unfortunately, this requires to prove knowl-

edge of these values so as to ensure soundness, which increases

the proof size. Moreover, one cannot use the same random values

for two different pairs (ℎ𝑖 , ℎ𝑠𝑖𝑖 ) and (ℎ 𝑗 , ℎ
𝑠 𝑗
𝑗
) contained in SRL as

the adversary may have generated the latter and thus know some

relations between these elements, which it could use to distinguish

valid proofs from simulated ones. Therefore, fresh random values

must be used for each pair, hence the linear number of scalars

included in all existing EPID systems.

In our construction, we then need to avoid the use of random

scalars but still need to generate random looking proofs of non-

revocation. In this regard, pseudo-random function seems to be the

right tool to use but we need to evaluate it on the inputs mentioned

above (in particular (ℎ𝑖 , ℎ𝑠𝑖𝑖 )), which is not usual. Fortunately, we

note that the Dodis-Yampolskiy PRF [13] is very well-suited to our

case. Indeed, for any scalar 𝑎𝑖 , the element 𝐶𝑖 = (ℎ𝑎𝑖𝑖 · ℎ
𝑠𝑖
𝑖
)

1

𝑠∗+𝑎𝑖 is

ℎ𝑖 if, and only if, 𝑠𝑖 = 𝑠
∗
, which allows to quickly detect revoked

platform. Moreover, in the case where 𝑠𝑖 ≠ 𝑠
∗
,𝐶𝑖 looks random even

when 𝑎𝑖 is known as it is essentially the output of a PRF function.

The scalars 𝑎𝑖 are not even required to be random, which allows us

to generate them deterministically using a hash function. Our proof

of non-revocation thus contains only one element (𝐶𝑖 ) per revoked
signature which is roughly a three-fold decrease in size compared to

the state-of-the-art. This also affects the computational cost of the

signature and the verification algorithms which is roughly halved.

Surprisingly, this is not the end of the story. The proof of non-

revocation we obtain this way is indeed correct and looks random

but formally proving this fact is quite difficult and requires some

additional modifications of the signature. This is where we pay the

price of using a proof that is not zero-knowledge. As there is no

simulator that we can run to generate the proof of non-revocation

in the anonymity analysis, we need to construct each of these

elements 𝐶𝑖 without knowing 𝑠∗.
Here again, someone familiar with the result in [13] might un-

derestimate the problem. Dodis and Yampolskyi indeed showed in

their paper how to generate 𝑔
1

𝑠∗+𝑎𝑖 without knowing 𝑠∗ but for a
fixed basis 𝑔, generated by the reduction. Here, we need to evaluate

this function over random basis (ℎ𝑖 , ℎ𝑠𝑖𝑖 ) that can be chosen by the

adversary. Of course, we can (and do) leverage some common tech-

niques such as setting ℎ𝑖 as a hash output that will be programmed

in the security proof but we have no way of controlling the secret

𝑠𝑖 .

We deal with this issue in two complementary ways. Firstly, we

enable the reduction to extract the value 𝑠𝑖 from the signature itself

by relying on the techniques introduced by Fischlin [15]. This adds

some constant overhead to the signature but it is fortunately quickly

amortized by what we gain with our new proof of non-revocation.

We provide more technical details in Section 4. Secondly, we need



to revisit (slightly) the requirements placed on signature revocation

lists by the model. Sanders and Traoré [22] recently pointed out that

this is the weak point of previous EPID models and then proposed

a new model where the adversary has full control of the signature

revocation list SRL that can even contain fully random elements.

This was a significant step forward compared to previous models

that require SRL to be generated by a trusted entity which decided

which signature can be added. However we cannot prove security

in the strong model of [22]. Instead, we rely on an intermediate

model, stronger than the one of all EPID systems before [22], where

the adversary is free to decide which signatures must be added

to SRL as long as the signatures are valid, which can be publicly

verified. We discuss this point in Section 3 but, intuitively, we need

to deal with valid signatures so as to be sure that our reduction will

be able to extract all the elements necessary to compute 𝐶𝑖 .

Thanks to these slight modifications, we manage to prove secu-

rity of our scheme without significantly changing the performance.

We indeed show in Section 5 that our construction overperforms

the most efficient ones from the state-of-the-art as soon as the num-

ber of revoked signatures is larger than 5, a threshold that should

easily be met in practice.

2 PRELIMINARIES
Bilinear groups. Our construction requires bilinear groups which

are constituted of a set of three groups G1, G2, and G𝑇 of order 𝑝

along with a map, called pairing, 𝑒 : G1 × G2 → G𝑇 that is

(1) bilinear: for any 𝑔 ∈ G1, 𝑔 ∈ G2, and 𝑎, 𝑏 ∈ Z𝑝 , 𝑒 (𝑔𝑎, 𝑔𝑏 ) =
𝑒 (𝑔,𝑔)𝑎𝑏 ;

(2) non-degenerate: for any 𝑔 ∈ G∗
1
and 𝑔 ∈ G∗

2
, 𝑒 (𝑔,𝑔) ≠ 1G𝑇 ;

(3) efficient: for any 𝑔 ∈ G1 and 𝑔 ∈ G2, 𝑒 (𝑔,𝑔) can be efficiently

computed.

As most recent cryptographic papers, we only consider bilinear

groups of prime order with type 3 pairings [16], meaning that no

efficiently computable homomorphism is known between G1 and
G2, in either direction.

Computational assumptions. The security analysis of our proto-

col will make use of the following assumptions.

• 𝑞-DL assumption: Given (𝑔,𝑔𝑥 , . . . , 𝑔𝑥𝑞 ) ∈ G𝑞+1
1

and (𝑔,𝑔𝑥 ) ∈
G2
1
, it is hard to recover 𝑥 .

It has been used in several papers (e.g. [1, 20]) and is implied

by many other assumptions such as, for example, the 𝑞-SDH
one [4]. In the case 𝑞 = 1, we simply say the DL assumption.

• 𝑞-DHI assumption: Given (𝑔,𝑔𝑥 , . . . , 𝑔𝑥𝑞 ) ∈ G𝑞+1
1

in a type

3 bilinear group, it is hard to distinguish 𝑔
1

𝑥 from a random
element in G1.
This assumption is adapted from the 𝑞-DBDHI in [13] that

states the hardness of distinguishing 𝑒 (𝑔,𝑔)
1

𝑥 from a ran-

dom element in G𝑇 , given the same input but in a type
1 bilinear group. In the latter case, the element 𝑔

1

𝑥 ∈ G1
could indeed be trivially distinguished by testing whether

𝑒 (𝑔
1

𝑥 , 𝑔𝑥 ) = 𝑒 (𝑔,𝑔). Fortunately, this is no longer possible

in type 3 bilinear group (because no element involving 𝑥 is

provided in G2) and we can then simplify this assumption

by defining a challenge element in G1 instead of G𝑇 .

• DDH assumption: Given (𝑔,𝑔𝑥 , 𝑔𝑦, 𝑔𝑧) ∈ G4, it is hard to
decide whether 𝑧 = 𝑥 · 𝑦 or 𝑧 is random.

3 SPECIFICATION OF EPID
In a recent paper [22], Sanders and Traoré propose a new security

model for EPID which fixes some issues of previous definitions

but also allows the adversary to request signatures generated with

malicious revocation lists, contrarily to all previous models which

assume that revocation lists are generated by a trusted entity. Al-

though this is a very desirable feature, our scheme cannot be proven

secure in this strong model as our reduction can only handle well-

formed revocation lists. To generalise the model from [22], we will

then simply define a new oracle OSigRevoke that the adversary

can query on any set of signatures to generate the corresponding

signature revocation list. The only task of this oracle is to check

validity of the revoked signatures, which makes our model stronger

than previous ones, except the one from [22].

Indeed, in the first security models for EPID (e.g. [8]) the signa-
ture revocation list SRL had to be generated by a trusted entity (the

revocation manager) to ensure that SRL only contains signatures

generated by the challenger during experiments (see, e.g., [8]). Con-
cretely, this means a very centralised system where the revocation

manager has full control on the revocation list. We do not need

such an entity in our case and we allow the adversary to revoke any
signature 𝜇𝑖 as long as 𝜇𝑖 is valid. In practice, this means that the

signer should check validity of the revoked signatures or trust some

entities to perform these verifications. This is thus an intermediate

situation between initial EPID security models and the one from

[22]. To sum up:

• In existing security models (except [22]), a trusted entity con-

trols the revocation list. In particular, the adversary cannot

place signatures it has generated on the latter.

• In [22], the adversary has full control of the revocation list

that may even contain random elements.

• In our model, the adversary chooses the set of signatures that

constitutes the signature revocation list as long as the signa-

tures are valid. In particular, it can place its own signatures

on this list.

3.1 Syntax
An EPID system is defined by the following algorithms that involve

three types of entities: an issuer I, platforms P and verifiersV .

• Setup(1𝑘 ): on input a security parameter 1
𝑘
, this algorithm

returns the public parameters 𝑝𝑝 of the system.

• GKeygen(𝑝𝑝): on input the public parameters 𝑝𝑝 , this algo-

rithm generates the issuer’s key pair (isk, ipk). We assume

that ipk contains 𝑝𝑝 and so we remove 𝑝𝑝 from the inputs

of all following algorithms.

• Join: this is an interactive protocol between a platform P,
taking as inputs ipk, and the issuer I owning isk. At the end
of the protocol, the platform returns either ⊥ or a signing

key sk whereas the issuer does not return anything.

• KeyRevoke({sk𝑖 }𝑚𝑖=1): this algorithm takes as input a set of

𝑚 platform secret keys sk𝑖 and returns a corresponding key

revocation list KRL containing𝑚 elements.



• SigRevoke(ipk, {(𝜇𝑖 ,m𝑖 )}𝑛𝑖=1): this algorithm takes as input

ipk and a set of𝑛 EPID (signature,message) pairs {(𝜇𝑖 ,m𝑖 )}𝑛𝑖=1
and returns a corresponding signature revocation list SRL
containing 𝑛 elements.

• Sign(ipk, sk,m, SRL): this algorithm takes as input the is-

suer’s public key ipk, a platform secret key sk a message

m and a signature revocation list SRL and returns an EPID

signature 𝜇.

• Identify(sk, 𝑡): given a platform secret key and an element

𝑡 from a revocation list SRL (i.e. there exists some 𝑖 such that

𝑡 = SRL[𝑖]), this algorithm returns either 1 (𝑡 was generated

using sk) or 0.
• Verify(ipk, KRL, SRL, 𝜇,m): given an issuer public key ipk,
a key revocation list KRL, a signature revocation list SRL, a
signature 𝜇 and a message m, this algorithms returns 1 (the

signature is valid on m for the corresponding revocation

lists) or 0.

3.2 Security Model
As all previous works, we expect an EPID system to be correct,

unforgeable and anonymous. However, the formal definitions of

the latter two properties differ according to the papers. In our paper,

we will make use of the security properties defined in [22] that we

slightly adapt, as discussed at the beginning of this section.

Correctness. An EPID system is correct if, for all signing key sk𝑖
generated using Join, KRL generated using KeyRevoke and SRL
generated using SigRevoke:

Verify(ipk, KRL, SRL, Sign(ipk, sk𝑖 ,𝑚, SRL),𝑚) = 1

⇔ sk𝑖 ∉ KRL ∧ ∀𝑗 : Identify(sk𝑖 , SRL[ 𝑗]) = 0

Honest Revocation List. The security properties from [22] do

not place any restriction on the signature revocation lists SRL. The
adversary is indeed free to construct them as it wants, for exam-

ple by placing random group elements in SRL, hence the term of

malicious revocation lists used in the original paper. As discussed

above, this is not possible for our construction and we then define

a new oracle that the adversary can query to revoke signatures of

its choice.

• OSigRevoke({(𝜇𝑖 ,m𝑖 )}𝑛𝑖=1) is an oracle used by A to re-

voke a set of signatures {𝜇𝑖 } on messages m𝑖 . The oracle

checks the validity of each signature by running the Verify
algorithm and outputs ⊥ if one of the signatures is not valid.

Else, it runs SigRevoke(ipk, {(𝜇𝑖 ,m𝑖 )}𝑛𝑖=1) and outputs SRL.

Unforgeability. The unforgeability experiment is defined in Figure

1, where 𝑐 (resp. 𝑑) is a counter indicating the number of corrupt

users created by A (resp. of signatures issued by the adversary A)

at the current time and where A may query the following oracles:

• OAdd(𝑘) is an oracle that is used by the adversary to add a

new honest platform 𝑘 . A signing key sk𝑘 is then generated

for this platform using the Join protocol but nothing is

returned to A.

• OJoin𝑐 () is an oracle playing the issuer’s side of the Join
protocol. It is used byA to add a new corrupt platform. Each

call to this oracle increases by 1 the current value of 𝑐 (i.e.
𝑐 = 𝑐 + 1).

• OCor(𝑘) is an oracle that returns the signing key sk𝑘 of an

honest platform 𝑘 and also adds it to a list K that is initially

set as empty.

• OSign(𝑘, SRL,𝑚) is an oracle that is used by A to query

a signature from the platform 𝑘 on a message 𝑚 with a

signature revocation list SRL. If SRL has not been output by

OSigRevoke then this oracle returns ⊥. We define S as the

set of all signatures returned by this oracle.

Exp
unf
A (1

𝑘 ) – Unforgeability Security Game

(1) 𝑐, 𝑑 ← 0

(2) SA ← ∅
(3) 𝑝𝑝 ← Setup(1𝑘 )
(4) (isk, ipk) ← GKeygen(𝑝𝑝)
(5) while 𝑑 ≤ 𝑐:
• SRL← SigRevoke(S𝐴)
• (𝜇,𝑚) ← AOAdd,OJoin𝑐 ,OCor,OSigRevoke,OSign (SRL, ipk)
• KRL← KeyRevoke(K)
• if 1 = Verify(ipk, KRL, SRL, 𝜇,𝑚) ∧ 𝜇 ∉ SA ∪ S
then 𝑑 = 𝑑 + 1 ∧ SA ← SA ∪ {𝜇}

(6) Return 1

Figure 1: Unforgeability Game for EPID Signature

An EPID system is unforgeable if Advunf (A) = Pr[ExpunfA (1
𝑘 ) =

1] is negligible for anyA. The core idea of this unforgeability notion

is that revocation of a signature generated using some secret key sk
must force the owner of sk to use a different secret key to produce

a new signature. Therefore, an adversary owning 𝑑 − 1 keys should
not be able to produce 𝑑 valid and distinct signatures {𝜇𝑖 }𝑑𝑖=1 if 𝜇 𝑗
was generated for a revocation list SRL constructed from {𝜇𝑖 } 𝑗−1𝑖=1

,

for all 𝑗 ∈ [1, 𝑑].

Anonymity. The anonymity property introduced in [22] is pre-

sented in Figure 2 and makes use of the following oracles.

• OJoinℎ () is an oracle playing the user’s side of the Join
protocol and is then used by A, playing the issuer, to add a

new honest platform. Each call generates a platform secret

key sk that is kept secret by the challenger.

• OSign∗ (SRL,𝑚) is an oracle used by A to query a signa-

ture on 𝑚 from an honest platform that is not implicitly

revoked by SRL. If SRL has not been output by OSigRevoke,
then this oracle returns ⊥. Else, the challenger of the exper-
iment randomly selects a signing key sk among those that

are not revoked by SRL (that is, the secret keys sk𝑖 such that

Identify(sk𝑖 , SRL[ 𝑗]) = 0 for every element SRL[ 𝑗] of SRL)
and then returns the output of Sign(ipk, sk,𝑚, SRL). We de-

fine S as the set of all signatures returned by this oracle

concatenated with the key sk used to generate them.

• OCor∗ (𝜇) is an oracle that returns the signing key sk𝑘 used

to generate the signature 𝜇 if there is some pair (𝜇 | |sk𝑘 ) in
S. Else, it returns ⊥. Once the adversary has returned the

two challenge signatures 𝜇0 and 𝜇1 (step 3 of the anonymity

game), we slightly modify the behaviour of this oracle to

prevent unintentional failure of the adversary. Indeed, the

adversary could inadvertently query OCor∗ on a signature 𝜇



generated using the same key as 𝜇0 or 𝜇1, making it lose the

game at step 8. After step 3, this oracle therefore returns ⊥
if queried on a signature 𝜇 generated using sk𝑖 , for 𝑖 ∈ {0, 1}.
We note that we nevertheless still need the success condition

of step 8 as the adversary could have queried OCor∗ on such

a signature 𝜇 before outputting 𝜇0 and 𝜇1. However, in such

a case, the adversary knows that 𝜇0 and 𝜇1 are illicit choices

before returning them and its failure will then no longer be

unintended.

Expan−𝑏A (1𝑘 ) – Anonymity Security Game

(1) 𝑝𝑝 ← Setup(1𝑘 )
(2) (isk, ipk) ← GKeygen(𝑝𝑝)
(3) (𝜇0, 𝜇1,𝑚, SRL) ← AOJoinℎ,OCor

∗,OSign∗ (isk)
(4) if SRL is not an output of OSigRevoke, then return 0

(5) if no entry (𝜇𝑖 , sk𝑖 ) in S for 𝑖 ∈ {0, 1}, then return 0

(6) if ∃𝑖, 𝑗 ∈ {0, 1}: Identify(sk𝑖 , SRL[ 𝑗]) = 1, then return 0

(7) 𝜇∗ ← Sign(ipk, sk𝑏 ,𝑚, SRL)
(8) 𝑏′ ← AOJoinℎ,OCor∗,OSign∗ (isk, 𝜇∗)
(9) if ∃𝑖 ∈ {0, 1}: sk𝑖 leaked by OCor∗, then return 0

(10) Return (𝑏 = 𝑏′)

Figure 2: Anonymity Game for EPID Signature

AnEPID system is anonymous if Advan (A) = | Pr[Expan−1A (1𝑘 ) =
1] − Pr[Expan−0A (1𝑘 ) = 1] | is negligible for any A.

4 OUR CONSTRUCTION
4.1 Intuition
As explained in Section 1, EPID signatures of all previous papers

(e.g. [7, 8, 22]) can be divided into two parts.

In the first part, the signer anonymously proves that it is a legiti-

mate platform that has been enrolled by the issuer I. In practice,

this is done by proving possession of a certificate issued by I on

the platform secret key, which roughly corresponds to a group

signature. In this paper, we instantiate this part using PS signatures

[21] that have proved very suitable for this kind of proofs. This is a

very common approach and we do not claim any novelty here.

In the second part, the platform proves that it is not implicitly

revoked by the signature revocation list SRL. To make this proof

easier, each signature generated with a secret key 𝑠 contains a pair

(ℎ,ℎ𝑠 ) ∈ G2
1
. This way, a platform with a key 𝑠∗ can prove that it

is not revoked by essentially showing that raising ℎ to the power

𝑠∗ would not yield ℎ𝑠 . In current systems, this is done by using

zero-knowledge proofs that require to send several elements per

revoked signatures, as explained in Section 1.

The novelty of our EPID scheme is the way it implements this

second part. It makes use of a new proof of non-revocation which

is rather generic and could actually be used in previous schemes

provided that (1) ℎ is generated as a hash output of some string 𝑠𝑡𝑟 ,

that is, ℎ = 𝐻 (𝑠𝑡𝑟 ) for some hash function 𝐻 and (2) the revocation

lists SRL are well-formed, that is, they only contain pairs (ℎ,ℎ𝑠 )
originating from valid signatures. The first requirement (met by

our scheme) is quite classical as it allows to reduce the size of the

EPID signature. The second requirement was actually implicit for

all previous constructions until the very recent work by Sanders

and Traoré [22].

The difference with all previous works is that we no longer prove

non-revocation by relying on a modular zero-knowledge proof. In-

stead, we use a proof of non-revocation that is not zero-knowledge

but whose combination with the other part of the EPID signature

still yields an anonymous system under a reasonable computa-

tional assumption. The first rationale behind our construction is

that we want to avoid the re-randomization approach common

to previous strategies where the elements ℎ𝑠𝑖 from SRL are raised

to some random powers 𝑟𝑖 so as to be compared to (ℎ𝑟𝑖 )𝑠∗ . This
approach indeed allows to easily retain anonymity but requires

to provide these re-randomized elements along with a proof of

well-formedness, which is rather costly as the random scalars 𝑟𝑖
must obviously remain secret.

To reduce the proof size, we need to use much less secret ele-

mentswhile still generating random-looking proofs of non-revocation.

To this end, we note that the Dodis-Yampolskiy pseudo-random

function [13] has an interesting feature: it roughly acts as the in-

verse function of the PRF: (𝑥, 𝑠𝑡𝑟 ) ↦→ 𝐻 (𝑠𝑡𝑟 )𝑠 that is used to gener-

ate the pair (ℎ = 𝐻 (𝑠𝑡𝑟 ), ℎ𝑠 ) included in each EPID signature. More

specifically, for any scalar 𝑎 ∈ Z𝑝 , we note that𝐶 = (ℎ𝑎 ·ℎ𝑠 )1/(𝑠∗+𝑎)
is either ℎ if 𝑠 = 𝑠∗ or some pseudo-random element otherwise. In

particular, we stress that, in the latter case,𝐶 looks random even to

an entity that knows 𝑎 and 𝑠 and that has access to other elements

𝐶 generated with the same 𝑠∗ but a different (still public) 𝑎′. This
means that we can safely include 𝐶 in the signature and use it as a

proof of non-revocation. Actually, this property would hold even

in the case where ℎ would not be generated as a hash output but

this would prevent us from relying on a reasonable computational

assumption.

In all cases, this has two consequences. Firstly, each element 𝑎𝑖

used to construct𝐶𝑖 (one per pair (ℎ (𝑖 )
1
, ℎ
(𝑖 )
2

= (ℎ (𝑖 )
1
)𝑠𝑖 ) in SRL) can

be revealed. Better still, it can be derived deterministically from the

signature itself, for example by setting 𝑎𝑖 = 𝐻𝑝 (𝜎 | |𝑖) where 𝐻𝑝 is

some hash function mapping bitstrings to Z𝑝 and 𝜎 is the first part

of the EPID signature (namely, a randomized PS signature). The

only condition on 𝑎𝑖 is indeed that this scalar must be fresh, that is,

a platform should never use the same 𝑎𝑖 twice. This way, the scalars

𝑎𝑖 have no impact on the proof size. Secondly, it means that the

elements 𝐶𝑖 along with a proof of well-formedness are sufficient to

prove non-revocation: a platform is revoked if, and only if,𝐶𝑖 = ℎ
(𝑖 )
1

for some 𝑖 . Regarding the proof of well-formedness, we note that the

signer must prove that 𝐶𝑠
𝑖
= (ℎ (𝑖 )

1
/𝐶𝑖 )𝑎𝑖 · ℎ (𝑖 )

2
, which only requires

to send a constant number of elements if one uses the Schnorr’s

proof of knowledge [23]. Actually, this proof of well-formedness

does not even increase the size of the signature as the platform

already proves knowledge of 𝑠 in the first part of the signature.

At this stage, our EPID signature generated with 𝑠∗ contains a
re-randomized PS certificate on 𝑠∗ (proving that the platform has

been enrolled), a pair (ℎ,ℎ𝑠∗ ) that can be used to revoke 𝑠∗ and a list

of elements (one per revoked signature)𝐶𝑖 = (ℎ𝑎𝑖𝑖 ·ℎ
𝑠𝑖
𝑖
)

1

𝑠∗+𝑎𝑖 (where

{𝑠𝑖 }𝑖 are the secret keys used to generate the revoked signatures)

attesting non-revocation along with a zero-knowledge proof 𝜋1
that all the elements are well-formed. At first sight, we are done:



by verifying 𝜋1 and testing whether 𝐶𝑖 = ℎ𝑖 anyone can decide if

the signature is valid and if it has been generated with a revoked

key. Unfortunately, this is not true for a purely technical reason.

Indeed, let us recall that every existing EPID system makes use

of a zero-knowledge proof of non-revocation. Generating the latter,

even when one uses an unknown secret value 𝑠∗, is then not a

problem as one can simply generate a simulated proof. In our case,

we do not have such a zero-knowledge property. This is the reason

behind efficiency of our system but it forces us to find a way to

generate the elements 𝐶𝑖 above even when our reduction does

not know the value 𝑠∗. As we are essentially evaluating the Dodis-

Yampolskyi PRF [13] with an unknown seed 𝑠∗, we would like

to use the original strategy from [13] which astutely combines

elements 𝑔𝑠
∗
, . . . , 𝑔 (𝑠

∗ )𝑞
from a 𝑞-DHI instance to handle further

PRF evaluation queries. But this strategy does not readily work here

because we evaluate the PRF on pairs (ℎ𝑖 , ℎ𝑠𝑖𝑖 ) potentially generated
by the adversary and not on some basis controlled by the security

reduction. Of course, we can leverage the random oracle model

to retain some control on these pairs, because ℎ𝑖 is some output

of a hash function, but this is not sufficient as the values 𝑠𝑖 can

be unknown to our reduction. We indeed recall that the security

model allows the adversary to control the issuer and some users in

the anonymity game so nothing prevents the adversary from using

a fresh 𝑠𝑖 that the reduction has never seen.

There are essentially three ways of dealing with this problem.

The first one is to fall back on the original EPID model where

revocation lists only contain signatures generated by the reduction

itself. This way, every pair (ℎ𝑖 , ℎ𝑠𝑖𝑖 ) placed on SRL involves a scalar

𝑠𝑖 known to the reduction and we can easily adapt the strategy

from [13]. The price for this simple solution is a weaker security

model. The second one is to alter the model so as to ensure that

the reduction will know all secret keys, even corrupt ones. For

example, one could assume a honest but curious issuer that would

honestly perform registration, which would allow to extract all

platforms secret keys. Technically, this would be a simple solution

as it would not require any change in our EPID signature. However,

the resulting model would be, at best, contrived so we favour the

third solution where the reduction will extract the secret key 𝑠𝑖
directly from the revoked signature. As 𝑠𝑖 is a scalar involved in

proofs of knowledge of discrete logarithms, encrypting it would

not be convenient. We therefore prefer to extract it directly from

the proof of knowledge, which has practical consequences: we now

need a proof of knowledge supporting online extraction [15], which

excludes the sole use of the classical (and very efficient) combination

of Schnorr’s protocol [23] with Fiat-Shamir methodology [14].

Concretely, our signature will still contain the proof 𝜋1 of well-

formedness, generated using [23] and [14] as usual, but will addi-

tionally
2
contain a Fischlin’s proof of knowledge 𝜋2 of 𝑠𝑖 whose

only purpose is to allow extraction of the latter value during the

anonymity proof. This looks somewhat artificial, in particular be-

cause the statement proven by 𝜋2 is already included in the ones

proven by 𝜋1, but it seems to be the simplest solution in our setting

to avoid ad-hoc interactive assumptions. Regarding efficiency, this

2
Actually, we could have used the Fischlin’s protocol for all the statements proved in

the signature but this would have significantly increased the computational cost of

the signing process.

increases the complexity of our signature but the overhead is con-

stant and so quickly amortized by what we gain with the proof of

non-revocation itself. Indeed, our protocol essentially requires to

send one element of G1 per revoked signature whereas the most

efficient alternatives, based on the zero-knowledge proof in [11],

require 1 element of G1 and 2 scalars per revoked signature.

4.2 Construction.
• Setup(1𝑘 ): this algorithm returns the public parameters

𝑝𝑝 containing the description of a type-3 bilinear group

(𝑒,G1,G2,G𝑇 ) and of two hash functions 𝐻𝑝 : {0, 1} → Z∗𝑝
and 𝐻1 : {0, 1} → G1 along with two generators 𝑔 ∈ G1 and
𝑔 ∈ G2.
• GKeygen(𝑝𝑝): this algorithm generates a key pair (isk, ipk)
for the PS signature scheme by setting isk = (𝑥,𝑦) $← Z2𝑝
and ipk = (𝑝𝑝,𝑋 ← 𝑔𝑥 , 𝑌 ← 𝑔𝑦).
• Join: this protocol starts when a platformP, taking as inputs
ipk, contacts the issuer I for enrolment. It first generates a

random 𝑠
$← Z𝑝 and sends 𝑔𝑠 to I. P then engages in an

interactive proof of knowledge of 𝑠 withI, using for example

the Schnorr’s protocol [23]. Once the latter is complete, I
selects a random 𝑟

$← Z𝑝 and computes a PS signature

𝜎 = (𝜎1, 𝜎2) ← (𝑔𝑟 , 𝑔𝑟 ·𝑥 · (𝑔𝑠 )𝑟 ·𝑦) on 𝑠 that it returns to P.
The platform then verifies this signature and stores (𝑠, 𝜎) as
its secret key sk.
• KeyRevoke({sk𝑖 }𝑚𝑖=1): this algorithm takes as input a set of

𝑚 platform secret keys sk𝑖 = (𝑠 (𝑖 ) , 𝜎 (𝑖 ) ) and returns a cor-

responding key revocation list KRL with KRL[𝑖] = sk𝑖 , for
𝑖 ∈ [1,𝑚].
• SigRevoke({(𝜇𝑖 )}𝑛𝑖=1): this algorithm takes as input a set

of 𝑛 EPID signatures {(𝜇𝑖 )}𝑛𝑖=1 and parses each of them as

((𝜎 (𝑖 )
1
, 𝜎
(𝑖 )
2
), ℎ (𝑖 )

2
, {𝐶 𝑗 }𝑛

(𝑖 )
𝑗=1

,Π (𝑖 ) ). It then returns a signature

revocation list SRL such that SRL[𝑖] = (𝜎 (𝑖 )
1
, ℎ
(𝑖 )
2
), for 𝑖 ∈

[1, 𝑛].
• Sign(ipk, SRL, sk,m): To sign a message m while proving

that it has not been implicitly revoked by SRL, a platform P
owning sk = (𝑠, (𝜎1, 𝜎2)) generates a random 𝑟

$← Z∗𝑝 and

(1) re-randomizes the PS signature (𝜎′
1
, 𝜎′

2
) ← (𝜎𝑟

1
, 𝜎𝑟

2
);

(2) computes (ℎ1, ℎ2) ← (𝐻1 (𝜎′
1
), ℎ𝑠

1
);

(3) for all 𝑖 ∈ [1, 𝑛],
– it parses SRL[𝑖] as (𝜎 (𝑖 )

1
, ℎ
(𝑖 )
2
) and computes ℎ

(𝑖 )
1
←

𝐻1 (𝜎 (𝑖 )
1
);

– it computes 𝑎𝑖 ← 𝐻𝑝 (𝜎′
1
| |𝑖);

– it computes 𝐶𝑖 = ((ℎ (𝑖 )
1
)𝑎𝑖 · ℎ (𝑖 )

2
)

1

𝑠+𝑎𝑖 ;

(4) it produces, using the Schnorr’s protocol [23], a non-interactive

zero-knowledge proof 𝜋1 that (𝜎′
1
, 𝜎′

2
) is a valid PS signa-

ture on 𝑠 and that the elements ℎ2 and𝐶𝑖 are well-formed.

More specifically,

– it selects a random 𝑘
$← Z𝑝 ;

– it computes 𝐾 = ℎ𝑘
1

– it computes 𝐾 ′ = 𝑒 ((𝜎′
1
)𝑘 , 𝑌 );

– it computes, for all 𝑖 ∈ [1, 𝑛], 𝐾𝑖 ← 𝐶𝑘
𝑖
;

– it computes 𝑐 = 𝐻𝑝 (𝜎′
1
, 𝜎′

2
, ℎ1, ℎ2, {𝐶𝑖 , 𝐾𝑖 }𝑛𝑖=1, 𝐾, 𝐾

′,m);



– it computes 𝑧 = 𝑘 + 𝑐 · 𝑠;
– it sets 𝜋1 = {𝑐, 𝑧}

(5) it produces an extractable proof of knowledge 𝜋2 of 𝑠 such

that ℎ2 = ℎ
𝑠
1
using Fischlin’s protocol [15] (see Section 5).

(6) it returns the signature 𝜇 = ((𝜎′
1
, 𝜎′

2
), ℎ2, {𝐶𝑖 }𝑛𝑖=1,Π)where

Π = {𝜋1, 𝜋2}.
• Identify(sk, 𝑡): this algorithm parses sk as (𝑠, (𝜎1, 𝜎2)) and
𝑡 as (𝜎1, ℎ2), and returns 1 if ℎ2 = 𝐻

′ (𝜎1)𝑠 and 0 otherwise.

• Verify(ipk, SRL, KRL, 𝜇,m): to verify an EPID signature 𝜇,

the verifier parses it as ((𝜎1, 𝜎2), ℎ2, {𝐶𝑖 }𝑛𝑖=1,Π) and each

SRL[𝑖] as (𝜎 (𝑖 )
1
, ℎ
(𝑖 )
2
), for 𝑖 ∈ [1, 𝑛]. It then computes 𝑎𝑖 ←

𝐻𝑝 (𝜎1 | |𝑖) ∀𝑖 ∈ [1, 𝑛] and returns 1 if all the following condi-

tions hold and 0 otherwise.

(1) 𝜎1 ≠ 1G1
;

(2) ∀𝑖 ∈ [1,𝑚], Identify(KRL[𝑖], (𝜎1, ℎ2)) = 0;

(3) ∀𝑖 ∈ [1, 𝑛], 𝐶𝑖 ≠ 𝐻1 (𝜎 (𝑖 )
1
);

(4) 𝑐 = 𝐻𝑝 (𝜎1, 𝜎2, ℎ2, {𝐶𝑖 , 𝐾𝑖 }𝑛𝑖=1, 𝐾, 𝐾
′,m), whereℎ1 ← 𝐻1 (𝜎1),

𝐾 ← ℎ𝑧
1
· ℎ−𝑐

2
, 𝐾 ′ ← 𝑒 (𝜎1, 𝑌 )𝑧 · [𝑒 (𝜎−1

1
, 𝑋 ) · 𝑒 (𝜎2, 𝑔)]−𝑐

and 𝐾𝑖 ← 𝐶𝑧
𝑖
· [(𝐻1 (𝜎 (𝑖 )

1
)/𝐶𝑖 )𝑎𝑖 · ℎ (𝑖 )

2
]−𝑐 .

(5) 𝜋2 is valid.

Correctness. The second step of the verification process checks

that 𝜇 has not been generated with one of the keys sk𝑖 = (𝑠 (𝑖 ) ,
(𝜎 (𝑖 )

1
, 𝜎
(𝑖 )
2
))) placed on KRL. If this is true, then 𝑠 ≠ 𝑠 (𝑖 ) and we have

ℎ2 ≠ 𝐻 ′ (𝜎1)𝑠
(𝑖 )

for all 𝑖 ∈ [1,𝑚]. Similarly, the third step checks

that 𝜇 has not been generated with a value 𝑠 implicitly revoked

by SRL. For a non-revoked 𝑠 , we have 𝐶𝑖 = ((ℎ (𝑖 )
1
)𝑎𝑖 · ℎ (𝑖 )

2
)

1

𝑠+𝑎𝑖 =

((ℎ (𝑖 )
1
)𝑎𝑖 · (ℎ (𝑖 )

1
)𝑠 (𝑖 ) )

1

𝑠+𝑎𝑖 with 𝑠 (𝑖 ) ≠ 𝑠 for all 𝑖 ∈ [1, 𝑛]. Hence,
𝐶𝑖 ≠ ℎ

(𝑖 )
1

= 𝐻1 (𝜎 (𝑖 )
1
) and a valid signature passes this test. Finally,

step 4 checks the validity of the Schnorr’s proof. For a honestly

generated signature, we have 𝑧 = 𝑘 + 𝑐 · 𝑠 and 𝜎2 = 𝜎𝑥+𝑦 ·𝑠
1

, which

means that:

• 𝐾 = ℎ𝑧
1
· ℎ−𝑐

2
= ℎ𝑘

𝑖

• 𝐾 ′ = 𝑒 (𝜎1, 𝑌 )𝑧 · [𝑒 (𝜎−1
1
, 𝑋 ) · 𝑒 (𝜎2, 𝑔)]−𝑐 = 𝑒 (𝜎1, 𝑌𝑘+𝑐 ·𝑠 ) ·

𝑒 (𝜎1, 𝑌 𝑠 )−𝑐 = 𝑒 (𝜎1, 𝑌𝑘 )
• 𝐾𝑖 = 𝐶𝑧𝑖 ·[(𝐻1 (𝜎 (𝑖 )

1
)/𝐶𝑖 )𝑎𝑖 ·ℎ (𝑖 )

2
]−𝑐 = 𝐶𝑘+𝑐 ·𝑠

𝑖
·[(𝐻1 (𝜎 (𝑖 )

1
)/𝐶𝑖 )𝑎𝑖 ·

ℎ
(𝑖 )
2
]−𝑐 = 𝐶𝑘

𝑖
· [𝐶𝑎𝑖+𝑠

𝑖
]𝑐 · (𝐻1 (𝜎 (𝑖 )

1
))𝑎𝑖 · ℎ (𝑖 )

2
)−𝑐 = 𝐶𝑘

𝑖
·

((ℎ (𝑖 )
1
)𝑎𝑖 · ℎ (𝑖 )

2
)𝑐 · (𝐻1 (𝜎 (𝑖 )

1
))𝑎𝑖 · ℎ (𝑖 )

2
)−𝑐 = 𝐶𝑘

𝑖

Therefore, the hash value generated during the last step of the

verification process is exactly 𝑐 .

Remark. In our proof of correctness, we have implicitly used the

fact that the revocation list SRL is well-formedwhenwe have proved

that a valid signature always passes the third step of the verification

process. We indeed assumed that ℎ
(𝑖 )
2

= (ℎ (𝑖 )
1
)𝑠 (𝑖 ) for some revoked

secret 𝑠 (𝑖 ) , which might not be true for a malicious revocation list.

However, even in the latter case, we could still prove correctness

by showing that an adversary is unlikely to revoke an honest user

with an ill-formed SRL, as it is done in [22].

Our point here is that our scheme still works with malicious

revocation lists. The only reason why we rule out the latter is

that we cannot formally prove anonymity under a non-interactive

assumption otherwise.

Theorem 4.1. Let 𝑞 be a bound on the number of OSign or
OSign∗ queries. In the random oracle model, our EPID system is
• unforgeable under the (𝑞 + 1)-DL assumption and the EUF-
CMA security of the PS signature if 𝜋1 and 𝜋2 are sound zero-
knowledge proof systems;
• anonymous under the DDH and (𝑞 + 1)-DHI assumptions if
𝜋1 and 𝜋2 are zero-knowledge proof systems and 𝜋2 supports
online extraction.

4.3 Security Proofs
Unforgeability. An adversary A succeeding in the unforgeability

game is able to produce 𝑐 + 1 valid signatures {𝜇𝑖 }𝑐+1𝑖=1
with only

𝑐 corrupt keys, despite systematic revocation of its signature. We

distinguish two cases.

• (type 1) Among all the signatures output by A during the

game (that is, among the set {𝜇𝑖 }𝑐+1𝑖=1
extended with the

signatures submitted to OSigRevoke), there is one signa-

ture 𝜇 = ((𝜎1, 𝜎2), ℎ2, {𝐶𝑖 }𝑛𝑖=1,Π) such that Identify(sk,
(𝜎1, ℎ2)) = 0 for all keys sk (honest or corrupt) generated

during the experiment.

• (type 2) the previous situation does not occur.

In the first case, we will show that the adversary must have

forged a certificate on a new secret key, which would imply an

attack against PS signatures as stated by the following lemma.

Lemma 4.2. Any type 1 adversary succeeding with probability 𝜖
can be converted into an adversary against the EUF-CMA security of
PS signature.

Proof. Let C be the challenger of the EUF-CMA security game

for PS signatures, we construct a reduction R using A to win the

latter game. At the beginning of the game, R receives a key pair for

the PS signature scheme that it sets as the issuer’s key pair (isk, ipk).
Thanks to the signing oracle provided by C, it can trivially handle

OAdd query. It can also deals with OJoin𝑐 () by first extracting the

secret value 𝑠 from the interactive proof of knowledge and then

querying 𝑠 to its signing oracle. As it knows every honest platform

secret keys, it can answer any OCor or OSign queries. Actually,

R knows the secret value 𝑠 of all platforms (honest or corrupt),

which means that it can detect (using Identify) if the signatures
output byA are legitimate (i.e. they have been produced by enrolled
platforms) or not.

As we here consider type 1 adversary, we know that, at some

point, A will output, either in a OSigRevoke query or in the list

{𝜇𝑖 }𝑐+1𝑖=1
, a signature 𝜇 that cannot be associated with any platform

secret key. This means that 𝜇 = ((𝜎1, 𝜎2), ℎ2, {𝐶𝑖 }𝑛𝑖=1,Π) is such
that Identify(sk, (𝜎1, ℎ2)) = 0 for every platform secret key sk.
Let 𝑠 be the secret value contained in sk. The latter equation means

that ℎ2 ≠ 𝐻1 (𝜎1)𝑠 for every 𝑠 submitted to the PS signing oracle.

Thanks to the soundness of 𝜋1, this means that there is some 𝑠∗ ≠ 𝑠
∀𝑠 such that

𝑒 (𝜎1, 𝑌 )𝑠
∗
= 𝑒 (𝜎−1

1
, 𝑋 ) · 𝑒 (𝜎2, 𝑔).

Therefore, (𝜎1, 𝜎2) is a valid PS signature on 𝑠∗, which has never

been queried to C. R can then extract 𝑠∗ from Π and return 𝑠∗ and
(𝜎1, 𝜎2) as a valid forgery, which concludes the proof.

□



We now show that a type 2 adversary must have produced a

signature on behalf of some honest platform and can thus be used

to perform discrete logarithm computations.

Lemma 4.3. Let 𝑞𝑎 be a bound on the number of OAdd queries.
Any type 2 adversary succeeding with probability 𝜖 can be converted
into an adversary against the (𝑞 + 1)-DL assumption succeeding with
probability at least 𝜖

𝑞𝑎
.

Proof. Let (𝑔,𝑔𝑥 , . . . , 𝑔𝑥𝑞+1 ) ∈ G𝑞+2
1

and (𝑔,𝑔𝑥 ) ∈ G2
1
be a

(𝑞 + 1)-DL instance. As we here consider a type-2 adversary, any

signature output by the adversary must be associated with some

secret keys sk, either honest or corrupt. If we more specifically

consider the set {𝜇𝑖 }𝑐+1𝑖=1
, we note that one of them must have been

generated on behalf of some honest platform. Indeed, let {𝑠𝑘𝑖 }𝑐+1𝑖=1

be the secret keys associated with the signatures {𝜇𝑖 }𝑐+1𝑖=1
. As the

adversary only owns 𝑐 secret keys, there is at least two indices 𝑖 ≠ 𝑗

such that sk𝑖 = sk𝑗 or ∃𝑖 such that sk𝑖 is honest (since we consider
type 2 adversary). In the former case, let us assume without loss of

generality that 𝑖 < 𝑗 . Then, 𝜇 𝑗 must contain an element 𝐶𝑖 proving

that sk𝑗 is not implicitly revoked by (𝜎 (𝑖 )
1
, ℎ
(𝑖 )
2
). However, this can

work only if ℎ
(𝑖 )
2

or 𝐶𝑖 is ill-formed, which in both case implies an

attack against the soundness of the Schnorr’s protocol. We can then

assume that only the latter case occurs. The reduction R therefore

makes a guess on the identifier 𝑘∗ of the corresponding honest

platform and then generates the issuer key pair (isk, ipk). It can
then answer the oracle queries as follows.

• 𝐻𝑝 : Let 𝑠𝑡𝑟 be the string queried to 𝐻𝑝 . R returns a random

𝑎
$← Z𝑝 if this is the first query on 𝑠𝑡𝑟 or returns the original

answer otherwise.

• 𝐻1: Let 𝑠𝑡𝑟 be the string queried to 𝐻1. If this is the first time

that 𝑠𝑡𝑟 is requested, then R generates 𝑞 random scalars

𝑎1, . . . , 𝑎𝑞 along with some 𝑢
$← Z𝑝 and computes ℎ =

𝑔𝑢
∏𝑞

𝑖=1
(𝑥+𝑎𝑖 )

using the elements from the 𝑞 + 1-DL instance.

The tuple (ℎ,𝑢, 𝑎1, . . . , 𝑎𝑞) is then stored by R whereas ℎ is

returned to A. For any further query on 𝑠𝑡𝑟 , R returns the

same element ℎ.

• OAdd: R proceeds normally for any query on 𝑘 ≠ 𝑘∗ thanks
to its knowledge of isk. For 𝑘∗, it proceeds as if the platform
secret key was 𝑥 . This is possible since 𝑔𝑥 is sufficient to

issue a PS signature on 𝑥 .

• OJoin𝑐 (): R proceeds normally thanks to its knowledge of

isk but extracts the corrupt secret value 𝑠 from the interactive

proof of knowledge.

• OCor(): R hands over the requested platform secret key

except if this oracle is queried on 𝑘∗, in which case R aborts.

The latter case never occurs if the guess on 𝑘∗ was right.
• OSigRevoke: given a list of signatures {𝜇𝑖 }𝑛𝑖=1,R first checks

their validity and rejects this list if one of these signatures

does not pass verification. Else, it parses 𝜇𝑖 as ((𝜎 (𝑖 )
1
, 𝜎
(𝑖 )
2
), ℎ (𝑖 )

2
,

Π (𝑖 ) ) and uses 𝑔𝑥 to test if Identify(sk𝑘∗ , (𝜎
(𝑖 )
1
, ℎ
(𝑖 )
2
)) = 1

for all 𝑖 ∈ [1, 𝑛]. Indeed:

Identify(sk𝑘∗ , (𝜎
(𝑖 )
1
, ℎ
(𝑖 )
2
)) = 1

⇔𝐻1 (𝜎 (𝑖 )
1
)𝑥 = ℎ

(𝑖 )
2

⇔𝑒 (𝐻1 (𝜎 (𝑖 )
1
), 𝑔𝑥 ) = 𝑒 (ℎ (𝑖 )

2
, 𝑔),

which means that the output of Identify(sk𝑘∗ , .) can be

computed without the knowledge of 𝑥 . In the case where

Identify returns 1 on some signature 𝜇 and yet 𝜇 has never

been produced by R, then one can extract 𝑥 from the proof of

knowledge Π contained in 𝜇. Else, R outputs SRL = {(𝜎 (𝑖 )
1
,

ℎ
(𝑖 )
2
)}𝑛
𝑖=1

.

• OSign: if this oracle is queried on 𝑘 ≠ 𝑘∗, then R can gener-

ate a signature as usual as it knows the corresponding secret

key sk. Else, It proceeds as follows to generate the signature:
(1) it re-randomizes the PS signature on 𝑥 , yielding (𝜎′

1
, 𝜎′

2
)

(2) it queries 𝜎′
1
to 𝐻1 and thus receives ℎ = 𝑔𝑢

∏𝑞

𝑖=1
(𝑥+𝑎𝑖 )

for

some random 𝑢 and {𝑎𝑖 }𝑞𝑖=1 that it knows.
(3) it computes ℎ2 = ℎ𝑥 = 𝑔𝑢 ·𝑥

∏𝑞

𝑖=1
(𝑥+𝑎𝑖 )

, which is possible

from the 𝑞 + 1-DL instance as 𝑥
∏𝑞

𝑖=1
(𝑥 + 𝑎𝑖 ) is of degree

𝑞 + 1.
(4) For every 𝑖 ∈ [1, 𝑛], we have SRL[𝑖] = (𝜎 (𝑖 )

1
, ℎ
(𝑖 )
2
) where

the latter pair has been extracted from a valid signature

during a previous OSigRevoke query. Let 𝑗 ≤ 𝑞 be the

number of times that this pair has been involved in a

signature query so far and 𝑎
(𝑖 )
1
, . . . , 𝑎

(𝑖 )
𝑞 be the scalars

used to generate 𝐻1 (𝜎 (𝑖 )
1
). The reduction programs 𝐻𝑝

to return 𝑎
(𝑖 )
𝑗

on input (𝜎′
1
| |𝑖). In the very unlikely case

where (𝜎′
1
| |𝑖) has already been queried to 𝐻𝑝 , R simply

returns to step 1. Now we note that

𝐶𝑖 = (𝐻1 (𝜎 (𝑖 )
1
))𝑎
(𝑖 )
𝑗 · (𝐻1 (𝜎 (𝑖 )

1
))𝑠 )

1

𝑥+𝑎 (𝑖 )
𝑗

for some secret 𝑠 . In the case where 𝑠 = 𝑥 , then 𝐶𝑖 =

𝐻1 (𝜎 (𝑖 )
1
) and we can move to the next step. In the other

cases, we know that 𝑠 is some value certified by the issuer

during a OJoin𝑐 () or a OAdd query as we here consider

type 2 adversary. In both cases, R knows 𝑠 so it can com-

pute:

𝐶𝑖 = (𝑔𝑢
(𝑖 ) ∏𝑞

ℓ=1
(𝑥+𝑎 (𝑖 )ℓ ) )

𝑎
(𝑖 )
𝑗
+𝑠

𝑎
(𝑖 )
𝑗
+𝑥

= 𝑔
𝑢 (𝑖 ) (𝑎 (𝑖 )

𝑗
+𝑠 )∏𝑞

ℓ=1,ℓ≠𝑗
(𝑥+𝑎 (𝑖 )ℓ )

(5) R simulates the proof of knowledge of 𝑥 to sign m, thus

completing Π.
(6) Finally, it returns 𝜇 = ((𝜎′

1
, 𝜎′

2
), ℎ2, {𝐶𝑖 }𝑛𝑖=1,Π), which is a

valid signature on m on behalf of the platform 𝑘∗.
At some point, assuming that R has not already succeeded

in OSigRevoke, A outputs a set of signature {𝜇𝑖 }𝑐+1𝑖=1
such

that there is 𝑖∗ ∈ [1, 𝑐 + 1] and an honest sk𝑘 satisfying

Identify(sk𝑘 , (𝜎
(𝑖 )
1
, ℎ
(𝑖 )
2
)) = 1, as we have explained at

the beginning of this proof. If 𝑘 = 𝑘∗, which occurs with

probability at least
1

𝑞𝑎
, then R can extract 𝑥 from the proof

of knowledge contained in 𝜇𝑖∗ , which concludes the proof.

□



Anonymity. LetA be an adversary succeeding against anonymity

with advantage 𝜖 ,𝑞 be a bound on the number of OSign∗ queries,𝑞′
be a bound on the size of the revocations lists SRL and 𝑞𝑎 be a bound
on the number of OJoinℎ queries. We prove anonymity by using

a sequence of games where Game 1,𝑏 is exactly the experiment

Expan−𝑏A . For each 𝑖 , we define Adv𝑖 as the advantage of A playing

Game 𝑖, 0 and Game 𝑖, 1. In the following, wewill omit the parameter

𝑏 as both games are identical (except the parameter itself).

Game 1. By definition, this is exactly experiment Expan−𝑏A and

we thus have Adv1 = 𝜖 .

Game 2. Here, the reduction R proceeds as in the previous game

except that it randomly selects 𝑘0, 𝑘1 ∈ [1, 𝑞𝑎] and aborts if the two
signatures 𝜇0 and 𝜇1 returned by A in the challenge phase were

not generated by the platforms 𝑘0 and 𝑘1. For valid guesses on 𝑘0
and 𝑘1, this does not affect the behaviour of R, which means that

Adv2 ≥ Adv1
𝑞2𝑎

.

Game 3. In this game, R proceeds as previously except that it

aborts if A queries OSigRevoke with a list containing a signature

𝜇 = ((𝜎1, 𝜎2), ℎ2, {𝐶𝑖 }𝑛𝑖=1, (𝜋1, 𝜋2)) such that R cannot extract the

secret value 𝑠 from the proof 𝜋2. We note that Games 2 and 3 are

indistinguishable unless A manages to break extractability of 𝜋2.

We thus have Adv3 ≥ Adv2 − Advext (A).

Game 4. In this game, R proceeds as in Game 3 except that

each enrolled platform simulates the proof of knowledge during

registration. We then have Adv4 ≥ Adv3 − Adv𝑍𝐾 ′ where Adv𝑍𝐾 ′ is
the advantage of an adversary against the zero-knowledge property

of the proof system used in Join.

Game 5. In this game, R proceeds as previously except that

it simulates the zero-knowledge proofs for all the signatures it

generates. We then have Adv5 ≥ Adv4 − Adv𝑍𝐾1
− Adv𝑍𝐾2

where

Adv𝑍𝐾𝑖
is the advantage of an adversary against the zero-knowledge

property of the system used to generate 𝜋𝑖 , for 𝑖 ∈ {1, 2}.

Game 6, 𝑗, 𝑖 . In this game, defined for all 𝑗 ∈ [1, 𝑞] and 𝑖 ∈ [1, 𝑞′],
the reduction proceeds as in Game 5 except that:

• the first 𝑗 − 1 signatures generated by 𝑘𝑏 during a OSign∗
query are answered by returning a signature 𝜇 containing

{𝐶ℓ }𝑛ℓ=1 where all the elements 𝐶ℓ are replaced by random

elements of G1.
• the 𝑗-th signature generated by 𝑘𝑏 during a OSign∗ query is
answered by returning a signature 𝜇 whose 𝑖 first elements

𝐶ℓ are replaced by random elements of G1.

We prove below that∀𝑗 ∈ [1, 𝑞−1] and 𝑖 ∈ [1, 𝑞′−1], Adv6, 𝑗,𝑖+1 ≥
Adv6, 𝑗,𝑖−Adv(𝑞+1)−DHI and that Adv6, 𝑗+1,1 ≥ Adv6, 𝑗,𝑞′−Adv(𝑞+1)−DHI.

Game 7, 𝑖 . In this game, defined for all 𝑖 ∈ [1, 𝑞′], the reduction
proceeds as in Game 6, 𝑞, 𝑞′ except that the 𝑖 first elements 𝐶ℓ
contained in 𝜇∗ are now replaced by random elements of G1. We

prove below that Adv7,𝑖+1 ≥ Adv7,𝑖 − Adv(𝑞+1)−DHI

Game 8. In this game, R proceeds as in Game 7, 𝑞′ except that
the element ℎ2 from 𝜇∗ is replaced by a random element of G1. We

prove below that Adv8 ≥ Adv7,𝑞′ − AdvDDH.

Game 9. In this last game, R proceeds as in Game 8 except that

the PS signature (𝜎1, 𝜎2) from 𝜇∗ is replaced by a PS signature

on some random secret key. We prove below that Adv9 ≥ Adv8 −
AdvDDH.

In the end, we thus have:

Adv9 ≥
𝜖

𝑞2𝑎
− (𝑞 + 1)𝑞′Adv(𝑞+1)−DHI − 2AdvDDH − Adv𝑍𝐾1

− Adv𝑍𝐾2

− Adv𝑍𝐾 ′ − Advext (A)

In the last game, we note that 𝜇∗ only contains random elements,

a signature on a random key and a simulated proof of knowledge.

The advantage Adv9 is then at most negligible, which concludes the

proof.

Proof related to Game 6 and Game 7. We note that the proofs

that Adv6, 𝑗,𝑖+1 ≥ Adv6, 𝑗,𝑖 − Adv(𝑞+1)−DHI, Adv6, 𝑗+1,1 ≥ Adv6, 𝑗,𝑞′ −
Adv(𝑞+1)−DHI and Adv7,𝑖+1 ≥ Adv7,𝑖 −Adv(𝑞+1)−DHI are exactly the
same as they all consist in replacing one element 𝐶𝑖 by a random

one. We here specifically describe the proof that Adv7,𝑖+1 ≥ Adv7,𝑖 −
Adv(𝑞+1)−DHI, which readily adapts to the other games.

Let (𝑔,𝑔𝑥 , . . . , 𝑔𝑥𝑞 ) ∈ G𝑞+1
1

along with 𝑔𝑧 ∈ G1 be a (𝑞 + 1)-DHI
instance, the goal is to decide whether 𝑧 = 1

𝑥 or not. We select some

random 𝑎
$← Z𝑝 and set𝑦 = 𝑥 −𝑎. We stress that any element 𝑔𝑓 (𝑦)

can be computed from the 𝑞 + 1-DHI instance for every polynomial

𝑓 of degree smaller than 𝑞 + 1. The reduction then generates the

issuer key pair (isk, ipk) and answers the oracle queries as follows.

• 𝐻𝑝 : Let 𝑠𝑡𝑟 be the string queried to 𝐻𝑝 . R returns a random

𝑎′
$← Z𝑝 if this is the first query on 𝑠𝑡𝑟 or returns the original

answer otherwise.

• 𝐻1: Let 𝑠𝑡𝑟 be the string queried to 𝐻1. If this is the first time

that 𝑠𝑡𝑟 is requested, then R generates 𝑞 random scalars

𝑎1, . . . , 𝑎𝑞 along with some 𝑢
$← Z𝑝 and computes ℎ =

𝑔
𝑢
∏𝑞

𝑗=1
(𝑦+𝑎 𝑗 )

using the elements from the 𝑞 + 1-DL instance.

The tuple (𝑠𝑡𝑟, ℎ,𝑢, 𝑎1, . . . , 𝑎𝑞) is then stored by R whereas

ℎ is returned to A. For any further query on 𝑠𝑡𝑟 , R returns

the same element ℎ.

• OAdd: R proceeds normally for any query on 𝑘 ≠ 𝑘𝑏 thanks

to its knowledge of the platform secret key. For 𝑘𝑏 , it pro-

ceeds as if the platform secret key was 𝑦. This is possible

since 𝑔𝑦 = 𝑔𝑥 · 𝑔−𝑎 is sufficient to issue a PS signature on

𝑦 and since R simulates the zero-knowledge proof during

registration (Game 4).

• OCor(): R hands over the requested platform secret key.

Since Game 2, we are indeed ensured that A will not query

this oracle on 𝑘0 or 𝑘1.

• OSigRevoke: given a list of signatures {𝜇 𝑗 }𝑛𝑗=1 and corre-

sponding messages {m𝑗 }𝑛𝑗=1, R first checks their validity

and rejects this list if one of these signatures does not pass

verification. Since Game 3, R knows the secret values 𝑠 𝑗
used to generate 𝜇 𝑗 and so is able to determine the set of

honest users that are not revoked by {𝜇 𝑗 }𝑛𝑗=1, which will

be useful to handle the following queries. R then returns

SRL← SigRevoke(ipk, (𝜇 𝑗 ,m𝑗 )) to A.

• OSign∗: As we here consider honest revocation lists, we are

ensured that:



(1) each element (𝜎 ( 𝑗 )
1
, ℎ
( 𝑗 )
2
) in SRL[ 𝑗] is such that ℎ

( 𝑗 )
2

=

𝐻1 (𝜎 ( 𝑗 )
1
)𝑠 for some scalar 𝑠 that is known since Game 3.

(2) R knows the exact set of honest users that are not revoked

by SRL, as explained above. It can then select some random

identifier 𝑘 among them.

If 𝑘 ≠ 𝑘𝑏 , then R can generate a signature as usual as it

knows the corresponding secret key sk. Else, It proceeds as
follows to generate the signature.

(1) It re-randomizes the PS signature on 𝑦, yielding (𝜎′
1
, 𝜎′

2
).

(2) it queries 𝜎′
1
to 𝐻1 and thus receives ℎ = 𝑔

𝑢
∏𝑞

𝑗=1
(𝑦+𝑎 𝑗 )

for

some random 𝑢 and {𝑎 𝑗 }𝑞𝑗=1 that it knows.

(3) it computes ℎ2 = ℎ
𝑦 = 𝑔

𝑢 ·𝑦∏𝑞

𝑗=1
(𝑦+𝑎 𝑗 )

, which is possible

from the 𝑞 + 1-DL instance as 𝑦
∏𝑞

𝑗=1
(𝑦 + 𝑎 𝑗 ) is of degree

𝑞 + 1.
(4) As we are here considering Games 7, 𝑖 and 7, 𝑖 + 1 the

elements 𝐶ℓ are random elements of G1. In the case of

proofs of Games 6, 𝑗, 𝑖 , one can use the strategy described

below for 𝜇∗ to generate non-random 𝐶ℓ .

(5) R simulates the proof of knowledge of 𝑦 to sign m, thus

completing Π.
(6) Finally, it returns 𝜇 = ((𝜎′

1
, 𝜎′

2
), ℎ2, {𝐶ℓ }𝑛ℓ=1,Π), as a signa-

ture on m on behalf of the platform 𝑘∗.

Eventually,A outputs during the challenge phase two signatures

𝜇0 and 𝜇1 along with a message and a signature revocation list SRL
that has been output by R during a previous OSigRevoke query. At
this stage, we know since Game 2 that R must produce a signature

on behalf of 𝑘𝑏 . We then proceed exactly as in OSign∗ except that:

(1) the 𝑖 first elements 𝐶 𝑗 are replaced by random elements of

G1 as specified in Game 7, 𝑖 .

(2) the elements {𝐶 𝑗 }𝑛𝑗=𝑖+2 are generated as follows. First we

recall that, for every 𝑗 ∈ [1, 𝑛], we have SRL[ 𝑗] = (𝜎 ( 𝑗 )
1
,

𝐻1 (𝜎 ( 𝑗 )
1
)𝑠 ) for some 𝑠 that has been extracted by R, as

explained above. Let ℓ ≤ 𝑞 be the number of times that

this pair has been involved in a signature query so far and

𝑎
( 𝑗 )
1
, . . . , 𝑎

( 𝑗 )
𝑞 be the scalars used to generate 𝐻1 (𝜎 ( 𝑗 )

1
). The

reduction programs𝐻𝑝 to return 𝑎
( 𝑗 )
ℓ

on input (𝜎′
1
| | 𝑗). In the

very unlikely case where (𝜎′
1
| | 𝑗) has already been queried

to 𝐻𝑝 , R simply returns to step 1. Now we note that

𝐶 𝑗 = ((𝐻1 (𝜎 ( 𝑗 )
1
))𝑎
( 𝑗 )
ℓ · (𝐻1 (𝜎 ( 𝑗 )

1
))𝑠 )

1

𝑦+𝑎 ( 𝑗 )
ℓ .

As R knows 𝑠 , it can compute:

𝐶 𝑗 = (𝑔𝑢
( 𝑗 ) ∏𝑞

𝑡=1
(𝑦+𝑎 ( 𝑗 )𝑡 ) )

𝑎
( 𝑗 )
ℓ
+𝑠

𝑎
( 𝑗 )
ℓ
+𝑦 = (𝑔𝑢

( 𝑗 ) ∏𝑞

𝑡=1,𝑡≠ℓ
(𝑦+𝑎 ( 𝑗 )ℓ ) )𝑎

( 𝑗 )
ℓ +𝑠

(3) To generate 𝐶𝑖+1, the reduction programs 𝐻𝑝 to return 𝑎 on

input (𝜎′
1
| |𝑖 + 1) and must then compute

𝐶𝑖+1 = ((𝐻1 (𝜎 (𝑖+1)
1
))𝑎 · (𝐻1 (𝜎 (𝑖+1)

1
))𝑠 )

1

𝑦+𝑎

= ((𝐻1 (𝜎 (𝑖+1)
1
))𝑎 · (𝐻1 (𝜎 (𝑖+1)

1
))𝑠 )

1

𝑥

where 𝐻1 (𝜎 (𝑖+1)
1
) = 𝑔𝑢 (𝑖+1)

∏𝑞

𝑡=1
(𝑦+𝑎 (𝑖+1)𝑡 )

. We note that

𝑞∏
𝑡=1

(𝑦 + 𝑎 (𝑖+1)𝑡 ) = 𝑥 · 𝑓 (𝑥) + 𝛼

where 𝑓 (𝑥) is some (known) polynomial in 𝑥 and 𝛼 is a

known scalar. Therefore 𝐶𝑖+1 is supposed to be equal to:

(𝑔𝑓 (𝑥 ) · 𝑔
𝛼
𝑥 )𝑢 (𝑎+𝑠 ) .

R then sets 𝐶𝑖+1 = (𝑔𝑓 (𝑥 ) · (𝑔𝑧)𝛼 )𝑢 (𝑎+𝑠 ) and includes it in

the signature. If 𝑧 = 1

𝑥 , then this is exactly Game 7, 𝑖 . Else

𝐶𝑖+1 is a random element of G1 and we are playing Game

7, 𝑖 + 1. Any adversary able to distinguish these two games

can then succeed against the 𝑞 + 1-DHI assumption.

Proof related to Game 8. Let (𝑔,𝑔𝑥 , 𝑔𝑦, 𝑔𝑧) ∈ G4 be a DDH in-

stance. Our reduction R proceeds as follows to answer oracle

queries. We recall that, since Game 7, 𝑞′, every element𝐶𝑖 involved

in a signature generated by 𝑘𝑏 has been replaced by a random

element.

• 𝐻𝑝 : in this proof, we do not need to program 𝐻𝑝 and so can

treat it as a standard hash function.

• 𝐻1: Let 𝑠𝑡𝑟 be the string queried to 𝐻1. If this is the first time

that 𝑠𝑡𝑟 is requested, then R generates a random scalar 𝑎

and computes ℎ = 𝑔𝑎 . The pair (𝑠𝑡𝑟, 𝑎) is then stored by R
whereas ℎ is returned to A. For any further query on 𝑠𝑡𝑟 , R
returns the same element ℎ.

• OAdd: R proceeds normally for any query on 𝑘 ≠ 𝑘𝑏 thanks

to its knowledge of the platform secret key. For 𝑘𝑏 , it pro-

ceeds as if the platform secret key was 𝑥 . This is possible

since 𝑔𝑥 is sufficient to issue a PS signature on 𝑥 and since

ZK proofs are simulated during registration (Game 4).

• OCor(): R hands over the requested platform secret key.

Since Game 2, we are indeed ensured that A will not query

this oracle on 𝑘0 or 𝑘1.

• OSigRevoke: given a list of signatures {𝜇 𝑗 }𝑛𝑗=1 and corre-

sponding messages {m𝑗 }𝑛𝑗=1, R first checks their validity

and rejects this list if one of these signatures does not pass

verification. Since Game 3, R knows the secret values 𝑠 𝑗
used to generate 𝜇 𝑗 and so is able to determine the set of

honest users that are not revoked by {𝜇 𝑗 }𝑛𝑗=1, which will

be useful to handle the following queries. R then returns

SRL← SigRevoke(ipk, (𝜇 𝑗 ,m𝑗 )) to A.

• OSign∗: As we here consider honest revocation lists, we are

ensured that R knows the exact set of honest users that are

not revoked by SRL, as explained above. It can then select

some random identifier 𝑘 among them.

If 𝑘 ≠ 𝑘𝑏 , then R can generate a signature as usual as it

knows the corresponding secret key sk. Else, It proceeds as
follows to generate the signature.

(1) It re-randomizes the PS signature on 𝑥 , yielding (𝜎′
1
, 𝜎′

2
).

(2) it queries 𝜎′
1
to 𝐻1 and thus receives ℎ = 𝑔𝑎 for some

random 𝑎 that it knows.

(3) it computes ℎ2 = ℎ
𝑥 = (𝑔𝑥 )𝑎 using 𝑔𝑥 and 𝑎.

(4) As we are here considering Game 8, the elements 𝐶ℓ are

random elements of G1.



(5) R simulates the proofs of knowledge of 𝑦 to sign m, thus

completing Π.
(6) Finally, it returns 𝜇 = ((𝜎′

1
, 𝜎′

2
), ℎ2, {𝐶ℓ }𝑛ℓ=1,Π), as a signa-

ture on m on behalf of the platform 𝑘∗.

Eventually,A outputs during the challenge phase two signatures

𝜇0 and 𝜇1 along with a message and a signature revocation list SRL
that has been output by R during a previous OSigRevoke query. At
this stage, we know since Game 2 that R must produce a signature

on behalf of 𝑘𝑏 . We then proceed exactly as in OSign∗ except that:
• R programs 𝐻1 to return 𝑔𝑦 on input 𝜎′

1
. In the very un-

likely case where 𝜎′
1
has already been queried to 𝐻1, R re-

randomizes differently the PS signature on 𝑥 .

• R sets ℎ2 = 𝑔
𝑧
.

If 𝑧 = 𝑥 ·𝑦, then this is exactly Game 7, 𝑞′. Conversely, a random
𝑧 corresponds to Game 8. Any adversary able to distinguish these

two games is thus able to break the DDH assumption.

Proof related to Game 9. Let (𝑔,𝑔𝑥 , 𝑔𝑦, 𝑔𝑧) ∈ G4 be a DDH in-

stance. Our reduction R proceeds as follows to answer oracle

queries.

• 𝐻𝑝 : in this proof, we do not need to program 𝐻𝑝 and so can

treat it as a standard hash function.

• 𝐻1: Let 𝑠𝑡𝑟 be the string queried to 𝐻1. If this is the first time

that 𝑠𝑡𝑟 is requested, then R generates a random scalar 𝑎

and computes ℎ = 𝑔𝑎 . The pair (𝑠𝑡𝑟, 𝑎) is then stored by R
whereas ℎ is returned to A. For any further query on 𝑠𝑡𝑟 , R
returns the same element ℎ.

• OAdd: R proceeds normally for any query on 𝑘 ≠ 𝑘𝑏 thanks

to its knowledge of the platform secret key. For 𝑘𝑏 , it pro-

ceeds as if the platform secret key was 𝑥 . This is possible

since 𝑔𝑥 is sufficient to issue a PS signature on 𝑥 and since

ZK proofs are simulated during registration (Game 4).

• OCor(): R hands over the requested platform secret key.

Since Game 2, we are indeed ensured that A will not query

this oracle on 𝑘0 or 𝑘1.

• OSigRevoke: given a list of signatures {𝜇 𝑗 }𝑛𝑗=1 and corre-

sponding messages {m𝑗 }𝑛𝑗=1, R first checks their validity

and rejects this list if one of these signatures does not pass

verification. Since Game 3, R knows the secret values 𝑠 𝑗
used to generate 𝜇 𝑗 and so is able to determine the set of

honest users that are not revoked by {𝜇 𝑗 }𝑛𝑗=1, which will

be useful to handle the following queries. R then returns

SRL← SigRevoke(ipk, (𝜇 𝑗 ,m𝑗 )) to A.

• OSign∗: As we here consider honest revocation lists, we are

ensured that R knows the exact set of honest users that are

not revoked by SRL, as explained above. It can then select

some random identifier 𝑘 among them.

If 𝑘 ≠ 𝑘𝑏 , then R can generate a signature as usual as it

knows the corresponding secret key sk. Else, It proceeds as
follows to generate the signature.

(1) It re-randomizes the PS signature on 𝑥 , yielding (𝜎′
1
, 𝜎′

2
).

(2) it queries 𝜎′
1
to 𝐻1 and thus receives ℎ = 𝑔𝑎 for some

random 𝑎 that it knows.

(3) it computes ℎ2 = ℎ
𝑥 = (𝑔𝑥 )𝑎 using 𝑔𝑥 and 𝑎.

(4) As we are here considering Game 9, the elements 𝐶ℓ are

random elements of G1.

(5) R simulates the proofs of knowledge of 𝑦 to sign m, thus

completing Π.
(6) Finally, it returns 𝜇 = ((𝜎′

1
, 𝜎′

2
), ℎ2, {𝐶ℓ }𝑛ℓ=1,Π), as a signa-

ture on m on behalf of the platform 𝑘∗.

Eventually,A outputs during the challenge phase two signatures

𝜇0 and 𝜇1 along with a message and a signature revocation list SRL
that has been output by R during a previous OSigRevoke query. At
this stage, we know since Game 2 that R must produce a signature

on behalf of 𝑘𝑏 . R then proceeds as follows.

• it sets 𝜎′
1
= 𝑔𝑦 and 𝜎′

2
= (𝑔𝑦)𝛼 · (𝑔𝑧)𝛽 where (𝛼, 𝛽) is the

issuer’s secret key isk.
• it selects a random ℎ2, which is possible since Game 8.

• As we are here considering Game 9, the elements 𝐶ℓ are

random elements of G1.
• R simulates the proofs of knowledge of 𝑦 to sign m, thus

completing Π.
• Finally, it returns 𝜇 = ((𝜎′

1
, 𝜎′

2
), ℎ2, {𝐶ℓ }𝑛ℓ=1,Π), as a signature

on m on behalf of the platform 𝑘∗.

If 𝑧 = 𝑥 · 𝑦, then (𝜎′
1
, 𝜎′

2
) is a valid PS signature on 𝑥 and we are

playing Game 8. Conversely, a random 𝑧 implies that (𝜎′
1
, 𝜎′

2
) is a

certificate on some random key and we are playing Game 9. Any

adversary able to distinguish these two games is thus able to break

the DDH assumption.

5 EFFICIENCY
Before comparing the efficiency of our scheme with the state-of-

the-art, we first need to recall some elements on the Fischlin’s proof

of knowledge with online extractor [15] that we use to instantiate

𝜋2 in Section 4.

Fischlin’s proof of knowledge. In our construction, each signa-

ture contains an extractable proof 𝜋2 that ℎ2 = ℎ𝑠
1
, where 𝑠 is the

platform secret key. We use the protocol from [15] that depends on

some parameters 𝑟, 𝑏, 𝑡, 𝑆 and that makes use of a hash function 𝐻

outputting 𝑏-bits strings seen as integers in [0,2
𝑏 − 1]. It essentially

works as follows.

[Prover]
(1) compute 𝑟 commitments ℎ

𝑘𝑖
1

for random scalars 𝑘𝑖 ∈ Z𝑝
(2) for each 𝑖 ∈ [1, 𝑟 ]:
• for each 𝑐𝑖 ∈ [0, 2𝑡 − 1], compute 𝑧𝑖 = 𝑘𝑖 + 𝑐𝑖 · 𝑠 and
𝐻 ({ℎ𝑘𝑖

1
}𝑟
𝑖=1
, 𝑖, 𝑐𝑖 , 𝑧𝑖 )

• select the value 𝑐∗
𝑖
yielding the smallest hash value among

the 2
𝑡
hash values above

(3) output 𝜋 = {ℎ𝑘𝑖
1
, 𝑐∗
𝑖
, 𝑧∗
𝑖
}𝑟
𝑖=1

[Verifier]
(1) parse 𝜋 as {ℎ𝑘𝑖

1
, 𝑐𝑖 , 𝑧𝑖 }𝑟𝑖=1

(2) if

∑𝑟
𝑖=1 𝐻 ({ℎ

𝑘𝑖
1
}𝑟
𝑖=1
, 𝑖, 𝑐𝑖 , 𝑧𝑖 ) > 𝑆 , then return 0.

(3) for each 𝑖 ∈ [1, 𝑟 ]:
• if ℎ

𝑘𝑖
1
· ℎ𝑐𝑖

2
≠ ℎ

𝑧𝑖
1
, then return 0

(4) return 1

Intuitively, the core idea of this protocol is that the prover must

try several values (𝑐𝑖 , 𝑧𝑖 ) to get a sufficiently small hash output.

Otherwise, the verifier will reject the proof at step 2 with over-

whelming probability. Since these (challenge,response) pairs are



𝜎 Sign Verify

[8]

(2 + 𝑛)G1 + (2𝑛 + 5)Z𝑝
= 2044 + 894𝑛 bits

(6𝑛+7)e1+1p4+(𝑛+2)H
(𝑚 + 𝑛 + 2)H + (𝑚 +

6𝑛 + 8)e1 + 1p6
[22], Sec. 5

(4 + 𝑛)G1 + (2𝑛 + 2)Z𝑝
= 2040 + 894𝑛 bits

(6𝑛 + 5)e1 + (𝑛 + 2)H
(𝑚 + 𝑛 + 2)H + (𝑚 +

6𝑛 + 4)e1 + 1p3
Our construction

(3+𝑛)G1+(2+𝑟 )Z𝑝+𝑟 ·𝑡
= 4338 + 382𝑛 bits

(5 + 3𝑛 + 𝑟 )e1 + 1p1 +
(2 + 2𝑛 + 𝑟 · 2𝑡 )H

(2 + 2𝑛 +𝑚 + 𝑟 )H + (5 +
𝑚 + 2𝑟 + 3𝑛)e1 + 1p3

Table 1: Complexity of our construction and the ones from [8] and [22]. We consider a signature revocation list SRL (resp. a key
revocation list KRL) containing 𝑛 elements (resp.𝑚 elements). Here, H denotes the evaluation of a hash function, e𝑖 denotes an
exponentiation in G𝑖 , for 𝑖 ∈ {1, 2}, and p𝑘 denotes the batch computation of 𝑘 pairings.

generated and submitted to the random oracle for the same com-

mitment ℎ
𝑘𝑖
1
, one can extract the secret value 𝑠 without rewinding

by computing

𝑧𝑖−𝑧′𝑖
𝑐𝑖−𝑐′𝑖

. However, this only works if:

(1) the protocol remains complete: an honest prover should be

able to output a convincing proof with high probability;

(2) no adversary querying the random oracle 𝐻 only once for

each 𝑖 ∈ [1, 𝑟 ] is able to output a valid proof with non-

negligible probability.

By carefully selecting the parameters 𝑟, 𝑏, 𝑡, 𝑆 , one can ensure that

both conditions are satisfied. We here follow the recommendations

from [15] and thus define 𝑟 = 𝑆 = 10, 𝑏 = 9 and 𝑡 = 12 which

ensures a completeness error of only 2
−83

while assuring that no

adversary can foil the extraction procedure with probability greater

than 2
−78

for each proof. By slightly increasing 𝑟 or 𝑏, one can

significantly reduce the latter probability, if necessary. However,

this would require to also increase 𝑡 (in particular in the case where

𝑏 is increased) to retain completeness.

As noted in Section 4 of [15], there is actually no need to include

the elements {ℎ𝑘𝑖
1
}𝑟
𝑖=1

in the proof since they can be recovered by

computing ℎ
𝑧𝑖
1
·ℎ−𝑐𝑖

2
so the proof size is 𝑟 (𝑡 + |𝑝 |). In our case where

|𝑝 | = 256, this leads to a proof of size 2680 bits, which is quickly

amortized for sufficiently large revocation list SRL.

Complexity Comparison.We compare in Table 1 our construc-

tion with [8] and [22] on the most relevant metrics, namely the

signature size and the computational cost for both the signer and

the verifier. Obviously, this comparison has some limitations as the

constructions do not target the same security model but the table at

least shows that our scheme is the most efficient one even for quite

small 𝑛. We note that [9] uses a different strategy for proving non-

revocation but it is much less efficient than the one (based on [11])

used in [22] and [8] so there is no point in including this scheme in

our table. To provide a fair comparison, we assume that the element

𝐵 in the EPID signature from [8] is now generated as a hash output,

which allows to remove this element from the signature and hence

decreases the size of the latter. For the signature size, the bit size

is provided by implementing the bilinear groups with the BLS12-

381 curve used by ZCash [6]. It yields 256-bit elements of Z𝑝 and

382-bit elements of G1. We follow the Fischlin’s recommendations

above for the parameters 𝑟 and 𝑡 related to the extractable proof

𝜋2, namely 𝑟 = 10 and 𝑡 = 12.

Table 1 highlights the main difference between our work and

previous ones. Whereas the latter have focused on improving the

efficiency of the first, constant-size, part of the EPID signature, ours

improves the latter at the cost of a slight overhead due to the use

of online extractor. Our signature size grows roughly three times

slower than those from [8] and [22], whichmeans that our signature

is the shortest one as soon as 𝑛 ≥ 5. Similarly, the computational

cost of both Sign and Verify is dominated by 3𝑛 e1 in our case,

against 6𝑛 e1 for previous works, meaning that our algorithms are

roughly two times faster.

6 CONCLUSION
In this paper, we have proposed a newway for proving non-revocation

in an EPID system which significantly improves performance. Con-

cretely, we have replaced the zero-knowledge proof commonly used

in previous works by a new proof implicitly based on a pseudo-

random function, thereby reducing the number of secret scalars

to hide. Although not fully generic, our techniques are designed

to work with all existing EPID systems in cyclic groups and could

then also be used to improve the latter.

Our strategy, which leads to a rather simple protocol, however

gives rise to several issues when it comes to formally proving se-

curity. The second contribution of this paper is then to show how

to deal with such issues while relying on common computational

assumptions. In the end, our work thus shows that we can signifi-

cantly improve efficiency of EPID systems without compromising

security.
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