
Scalable Private Decision Tree Evaluation with Sublinear
Communication

Jianli Bai

University of Auckland

Auckland, New Zealand

jbai795@aucklanduni.ac.nz

Xiangfu Song

National University of Singapore

Singapore

songxf@comp.nus.edu.sg

Shujie Cui

Monash University

Melbourne, Australia

shujie.cui@monash.edu

Ee-Chien Chang

National University of Singapore

Singapore

changec@comp.nus.edu.sg

Giovanni Russello

University of Auckland

Auckland, New Zealand

g.russello@auckland.ac.nz

ABSTRACT
Private decision tree evaluation (PDTE) allows a decision tree holder

to run a secure protocol with a feature provider. By running the pro-

tocol, the feature provider will learn a classification result. Nothing

more is revealed to either party. In most existing PDTE protocols,

the required communication grows exponentially with the tree’s

depth𝑑 , which is highly inefficient for large trees. This shortcoming

motivated us to design a sublinear PDTE protocol with 𝑂 (𝑑) com-

munication complexity. The core of our construction is a shared

oblivious selection (SOS) functionality, allowing two parties to per-

form a secret-shared oblivious read operation from an array. We

provide two SOS protocols, both of which achieve sublinear com-

munication and propose optimizations to further improve their

efficiency. Our sublinear PDTE protocol is based on the proposed

SOS functionality and we prove its security under a semi-honest

adversary. We compare our protocol with the state-of-the-art, in

terms of communication and computation, under various network

settings. The performance evaluation shows that our protocol is

practical and more scalable over large trees than existing solutions.

CCS CONCEPTS
• Security andprivacy→Privacy-preserving protocols; •Com-
puting methodologies→ Classification and regression trees.

KEYWORDS
decision tree, secure computation, sublinear communication

ACM Reference Format:
Jianli Bai, Xiangfu Song, Shujie Cui, Ee-Chien Chang, and Giovanni Russello.

2022. Scalable Private Decision Tree Evaluation with Sublinear Communica-

tion. In Proceedings of the 2022 ACM Asia Conference on Computer and Com-
munications Security (ASIA CCS ’22), May 30–June 3, 2022, Nagasaki, Japan.
ACM,NewYork, NY, USA, 15 pages. https://doi.org/10.1145/3488932.3517413

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan.
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9140-5/22/05. . . $15.00

https://doi.org/10.1145/3488932.3517413

1 INTRODUCTION
Decision trees are popular machine learning techniques for data

classification. Due to their effectiveness and simplicity, decision

trees have been widely adopted in various applications, such as

spam filtering [8], credit risk assessment [22] and disease diagno-

sis [31]. Typically, there are two parties: a tree holder holding a

tree model; and a feature provider holding a feature vector that

needs to be classified. However, performing the evaluation pro-

cessed in such a two-party setting can lead to privacy issues. On

the one hand, if the feature vectors is sent in plaintext to the model

provider it might reveal individuals’ information that are privacy

sensitive. This might be the case in healthcare and credit risk assess-

ment applications. On the other hand, the model is a valuable asset

for the model provider. If freely accessible, it may leak sensitive

information about the training data.

Private Decision Tree Evaluation (PDTE) protocols [21, 32, 35]

address the above privacy issues. A PDTE protocol enables two

reciprocal-distrustful parties to collaboratively perform the tree

evaluation without revealing any sensitive information to each

other.

There are several crucial aspects when dealing with decision

trees under privacy settings. For instance, in non-private decision

tree evaluations, the tree is traversed from root to leaf along one

path. Ideally, PDTE should also traverse the tree along on path. In

this case, the total number of comparisons is linear to the depth 𝑑

of the tree and sublinear to the size of the tree. However, revealing

the evaluation path can leak sensitive information even when the

tree and the feature vector are well protected (e.g., by encryption).

For instance, given the evaluation path, the tree holder can learn

whether two feature vectors have the same range of attributes by

comparing two evaluation paths; the feature provider can learn

information about the tree structure during evaluation. In addition,

even the length of a decision path can reveal significant information.

For example, if the length is unique among all decision paths, it

will immediately reveal the path being evaluated.

To protect the evaluation path, previous PDTE protocols [5, 21,

32, 35] pad the tree to be complete or near-complete and run com-

parisons for all internal nodes to conceal the decision path informa-

tion. As a consequence, these protocols suffer from (super) linear

computation/communication complexity and are inefficient when

evaluating large trees, e.g., trees containing millions of nodes [10].

ar
X

iv
:2

20
5.

01
28

4v
1

 [
cs

.C
R

]
 3

 M
ay

 2
02

2

https://doi.org/10.1145/3488932.3517413
https://doi.org/10.1145/3488932.3517413

Table 1: Summary of Existing Two-party PDTE Protocols.

Protocol Comparison Communication Round Leakage SC One-time Setup Primitives

Bost et al. [5] ⌈𝑚/2⌉ 𝑂 (𝑛 +𝑚) ≥ 6 𝑚 # Leveled-FHE

Wu et al. [35] 2
𝑑 𝑂 (2𝑑 + (𝑛 +𝑚)ℓ) 6 𝑚,𝑑 # AHE,OT

Tai et al. [32] ⌈𝑚/2⌉ 𝑂 ((𝑛 +𝑚)ℓ) 4 𝑚 # AHE

Kiss et al. [21](GGG) 𝑑 𝑂 (𝑚ℓ) 2 𝑚,𝑑 # # GC,OT

Kiss et al. [21](HHH) ⌈𝑚/2⌉ 𝑂 ((𝑛 +𝑚)ℓ) 4 𝑚 # AHE

Brickell et al. [9] 𝑑 𝑂 ((𝑛 +𝑚)ℓ) 2 𝑚 # # AHE,GC,OT

Joye et al. [20] 𝑑 𝑂 (𝑑 (ℓ + 𝑛) + 2
𝑑) 2𝑑 𝑑 # AHE, OT

Tueno et al. [33](OT) 𝑑 𝑂 ((𝑚 + 𝑛)ℓ) 4𝑑 𝑑 # SS,OT

Tueno et al. [33](GC) 𝑑 𝑂 ((𝑚 + 𝑛)ℓ) 4𝑑 𝑑 # SS,GC,OT

Tueno et al. [33](ORAM) 𝑑 𝑂 (𝑑4ℓ) 𝑑2 + 3𝑑 𝑑 SS,ORAM,GC

Ma et al. [26] 𝑑 𝑂 (𝑑𝑛ℓ) 2𝑑 − 1 𝑚,𝑑 G# G# SS,GC,OT

Our PRF-based 𝑑 𝑂 (𝑑𝑛ℓ) (3𝑟𝐹 + 5)𝑑 𝑚,𝑑 SS,OT,PRF

Our HE-based 𝑑 𝑂 (𝑑𝑛) 8𝑑 𝑚,𝑑 SS,OT,AHE

SC represents sublinear communication, One-time Setup denotes the tree holder is not required to re-send the tree to the feature provider.𝑚:

the number of tree nodes,𝑚: the number of tree nodes in a depth-padded tree, see [21], 𝑛: the dimension of a feature vector, 𝑑 : the longest depth

of a tree, ℓ : the bit size of feature values, 𝑟𝐹 : the number of rounds required for securely evaluating PRF 𝐹 . : yes,#: no,G#: partially support.

Techniques. This paper proposes a PDTE protocol to obliviously

perform decision tree evaluation without leaking the tree model,

the feature values or the evaluation path. More importantly, our

protocol has a sublinear communication complexity without relying

on generic RAM-based secure computation [33].

To hide which node is being accessed during decision tree evalu-

ation, we formalize a functionality called Shared Oblivious Selec-

tion (SOS). The functionality allows two parties to obliviously read

an element from an array, meanwhile hiding the location and the

selected value with secret sharing. We design two efficient SOS

protocols based on different techniques. Our first PRF-based SOS

protocol adapts Floram [14], which is a communication-efficient

Oblivious RAM (ORAM) protocol, for read-only mode. We propose

a new preprocessing technique, moving most of its communication

overhead to the offline phase. We also design optimized masking

mechanisms to make the SOS protocol more efficient. Our sec-

ond HE-based SOS protocol explores the additive homomorphic

property of Paillier encryption [29] to eliminate two-party PRF eval-

uation. This is done by a share conversion protocol from additive

arithmetic sharing to multiplicative arithmetic sharing. Notably,

both SOS protocols achieve sublinear offline communication and

constant online communication.

We design our PDTE protocols by combining a tree encoding

method, the SOS functionality and secure computation. By initial-

izing SOS functionality with either PRF-based or HE-based SOS

protocols, we obtain two PDTE protocols with different trade-offs.

Our PDTE protocols enjoy sublinear communication with the best

security properties of existing PDTE protocols. We prove the se-

curity against a semi-honest adversary and analyze its complexity.

As shown in Table 1: although many existing PDTE protocols can

support sublinear comparisons, only the ORAM-based PDTE proto-

col [33] requires sublinear communication both in the online and

offline phases. We also observe that the two-party PDTE protocol

from Ma et al. [26] only supports one single classification under

standard PDTE security definition. It is unclear how to enhance [26]

to support multiple invocations without re-sending new permuted

encrypted trees, which essentially incurs linear (offline) communi-

cation. However, in some real applications like disease diagnosis,

the feature provider (patient) may frequently or periodically inter-

act with the tree holder (health center) to monitor his/her health.

Our protocols fully support multiple PDTE queries but only need

one-time setup. The setup still needs linear communication, but the

overhead will be amortized across queries.

We implemented our PDTE protocols and performed experi-

ments to evaluate the communication and computation perfor-

mance for different trees under different network conditions. We

also compared the performance of our PDTE with the protocols

proposed in [21, 27, 33]. The results show that our PRF-based pro-

tocol reduces communication around 62× for large trees when

compared to [21] and 0.2× than [26]. In the WAN setting with high

network latency, our HE-based protocol outperforms the state-of-

the-art [21] by 83× in terms of online computation.When compared

with [33], our PRF-based protocol requires approximately 40× less

total running time while our HE-based protocol saves around 5.5×
total running time. Experiments show that our PDTE protocols are

practical and scalable, especially for the evaluation of large trees.

Contributions. Our contributions can be summarized as below:

• We propose two SOS protocols that enable two parties to

collaboratively and obliviously share an element from an

array using only sublinear communication.

• We propose two sublinear-communication PDTE protocols

by carefully combining a modified tree encoding method,

the SOS functionality and efficient secure computation tech-

niques. We also propose various optimization techniques to

make our protocols even more efficient.

• We implemented our PDTE protocols and evaluate their per-

formance. The experimental results show that our protocols

are practical: in particular, our PDTE protocols are scalable

when evaluating large trees.

Paper organization. We introduce background information in

Section 2, and provide an overview of our techniques in Section 3.

We construct our primitives and protocols in Section 4, and report

Table 2: Description of Symbols & Notations

Symbols Descriptions
^ computational security parameter

_ statistical security parameter

𝑚 the number of nodes in a decision tree

𝑑 the length of the longest path in a decision tree

𝑑′ a pre-defined depth satisfying 𝑑′ ≥ 𝑑

T the decision tree

X = (𝑥1, ..., 𝑥𝑛) feature vector of length 𝑛

AT the encoded array for a decision tree T
𝑡/𝑙/𝑟/𝑣/𝑐 the threshold/left child index/right child index/

feature ID/label of a tree node (some non-existing

items will be given during tree encoding)

ℓ the default boolean sharing bit length, i.e., ℓ = |𝑡 | =
|𝑙 | = |𝑟 | = |𝑣 | = |𝑐 | = |𝑥𝑖 |

ℓv the bit length of array elements

ℓb the bit length of PRF outputs, e.g., 64, 128, or 256
𝐵 = ⌈ ℓv

ℓb
⌉ the number of blocks for ℓv-bit element

experiments and evaluation results in Section 5. We summarize

related work in Section 6 and conclude the paper in Section 7.

2 BACKGROUND
In this section, we introduce background information of decision

tree evaluation, cryptographic primitives and definitions used in

this paper. Table 2 shows notations used throughout this paper.

2.1 Decision Tree Evaluation
In a decision tree T , each non-leaf node, also called decision node,
has a threshold 𝑡 ∈ Z

2
ℓ and each leaf node, also known as classifi-

cation label, has a label value 𝑐 ∈ Z
2
ℓ . A feature vector, i.e., a query,

is the data to be classified and is denoted as X = (𝑥1, ..., 𝑥𝑛) ∈ Z𝑛
2
ℓ

with 𝑛 feature values.

Decision tree evaluation takes a tree and a feature vector as input

and outputs a label as the classification result. The evaluation starts

from the root, and it compares the threshold 𝑡1 with 𝑥𝑣 (1) where 𝑣 :

𝑖 ∈ {1, 2, ...,𝑚} → 𝑗 ∈ {1, 2, ..., 𝑛} is a map that determines which

feature value in X should be compared with the threshold of 𝑖-th

node. We will simply use 𝑥𝑣𝑖 and 𝑥𝑣 (𝑖) interchangeably throughout

the paper. Depending on whether the comparison results in 1 (𝑥𝑣𝑖 <

𝑡𝑖) or 0 (𝑥𝑣𝑖 ≥ 𝑡𝑖), the evaluation goes either to the left or to the right

child and continues the comparison until reaching a leaf. We call

this path from the root to a leaf as the decision path or evaluation
path for input X. The depth for a decision tree is the length of

the longest path. Without ambiguity, we use T (X) to denote the
classification result when using T over feature vector X.

2.2 Cryptographic Primitives
Oblivious Transfer (OT). OT allows a receiver to obliviously

choose one out of many values from a sender [16]. The security of

OT guarantees that the receiver only learns the chosen message,

and the sender has no idea which value is chosen by the receiver.

OT is generally computationally expensive since it requires public-

key operations. With OT extension protocols [18], it is efficient to

generate (polynomially) many OTs from a small number of OTs.

Boolean Sharing. We denote boolean sharing ⟨𝑥⟩ as sharing of

𝑥 ∈ Z2. For a two-party case, ⟨𝑥⟩ denotes 𝑃0 holds ⟨𝑥⟩0 and 𝑃1

holds ⟨𝑥⟩1, such that 𝑥 = ⟨𝑥⟩0 ⊕ ⟨𝑥⟩1, where ⊕ represents bitwise

XOR. For boolean sharing ⟨𝑥⟩ and ⟨𝑦⟩, 𝑃0 and 𝑃1 can compute the

following operations over shares without interaction. Here ⊕ and ·
denotes addition and multiplication over Z2.

• ⟨𝑧⟩ ← ⟨𝑥⟩ ⊕ ⟨𝑦⟩: Given ⟨𝑥⟩ and ⟨𝑦⟩, to compute boolean

sharing of 𝑧 = 𝑥 ⊕ 𝑦, 𝑃0 just computes ⟨𝑧⟩0 ← ⟨𝑥⟩0 ⊕ ⟨𝑦⟩0
and 𝑃1 computes ⟨𝑧⟩1 ← ⟨𝑥⟩1 ⊕ ⟨𝑦⟩1.
• ⟨𝑧⟩ ← ⟨𝑥⟩ ⊕ 𝑐: Given ⟨𝑥⟩ and a constant 𝑐 , to compute

boolean sharing of 𝑧 = 𝑥⊕𝑐 , 𝑃0 just computes ⟨𝑧⟩0 ← ⟨𝑥⟩0⊕𝑐
and 𝑃1 computes ⟨𝑧⟩1 ← ⟨𝑥⟩1.
• ⟨𝑧⟩ ← 𝑐 · ⟨𝑥⟩: Given a constant 𝑐 ∈ Z2 and a boolean sharing

⟨𝑥⟩, to compute boolean sharing of 𝑧 = 𝑐 ·𝑥 , 𝑃0 just computes

⟨𝑧⟩0 ← 𝑐 · ⟨𝑥⟩0 and 𝑃1 computes ⟨𝑧⟩1 ← 𝑐 · ⟨𝑥⟩1.
𝑃0 and 𝑃1 need to perform an interactive protocol to compute

⟨𝑧⟩ ← ⟨𝑥⟩ · ⟨𝑦⟩. One of efficient approaches is using a Beaver

Multiplication Triple (BMT) [4]. A BMT (⟨𝑎⟩, ⟨𝑏⟩, ⟨𝑐⟩) satisfies𝑎 ·𝑏 =

𝑐 . Suppose 𝑃0 and 𝑃1 have pre-shared a BMT (⟨𝑎⟩, ⟨𝑏⟩, ⟨𝑐⟩), then
they can compute ⟨𝑧⟩ ← ⟨𝑥⟩ · ⟨𝑦⟩ efficiently. Specifically, 𝑃0 and 𝑃1

first compute ⟨𝑒⟩ ← ⟨𝑥⟩⊕ ⟨𝑎⟩ and ⟨𝑓 ⟩ ← ⟨𝑦⟩⊕ ⟨𝑏⟩, and reveal 𝑒 and
𝑓 . In the end, they compute ⟨𝑧⟩ ← ⟨𝑐⟩ ⊕ (𝑒 · ⟨𝑏⟩) ⊕ (𝑓 · ⟨𝑎⟩) ⊕ (𝑒 · 𝑓),
which can be done by local computation. BMTs over Z2 can be

efficient prepossessed by OT extension [23].

In this paper, we will mainly use boolean sharing over Zℓ
2
for

secure computation. The parties share each bit of 𝑥 using boolean

sharing, and computation is done bit-by-bit.

Arithmetic Sharing. We denote sharing a secret 𝑥 ∈ Z𝑛 with

arithmetic sharing as J𝑥K, such that 𝑃0 holds J𝑥K0 ∈ Z𝑛 and 𝑃1 holds

J𝑥K1 ∈ Z𝑛 satisfying 𝑥 = J𝑥K0 + J𝑥K1 (mod 𝑛). Arithmetic sharing

is an ideal sharing semantic for computing arithmetic operations

such as addition, subtraction and multiplication. Adding arithmetic-

shared J𝑥K with J𝑦K or adding J𝑥K with a constant 𝑐 ∈ Z𝑛 can be

efficiently done by local computation, and multiplication between

two shared data can be done with the help of a BMT over Z𝑛 .
Share Conversion. Different sharing methods have their advan-

tages/disadvantages for different kinds of computation. In particular,

boolean sharing is friendly to the boolean circuit, including XOR,

AND, etc., while arithmetic sharing is friendly to arithmetic com-

putation such as addition and multiplication. Typical computation

usually contains different types of computation, thus it is better to

mix-use different types of sharing forms for better efficiency. Share

conversion techniques can be used for converting between boolean

sharing and arithmetic sharing:

• Boolean to Arithmetic (B2A) conversion : Given ⟨𝑥⟩ over Zℓ
2
,

B2A conversion transforms ⟨𝑥⟩ to its arithmetic sharing J𝑥K
over Z

2
ℓ . B2A can be done with ℓ OT [13] in 𝑂 (1) round.

• Arithmetic to Boolean (A2B) conversion : Given J𝑥K over Z
2
ℓ ,

A2B conversion transforms J𝑥K to its boolean sharing ⟨𝑥⟩
over Zℓ

2
. A2B can be done by computing an addition circuit

over J𝑥K0 and J𝑥K1 using boolean sharing [13, 30] in𝑂 (log ℓ)
rounds.

For efficiency reason, we mainly use boolean sharing in this

paper, and deploy B2A and A2B conversion whenever necessary.

Distributed Oblivious RAM. A similar primitives related to our

paper is called Distributed Oblivious RAM (DORAM) for oblivious

data access. A famous DORAM protocol is Floram [14] proposed by

Doerner and Shelat, which supports both read and write over secret-

shared data. Since we only care about read operation in our setting,

we show the following two read-related protocols of Floram:

• (sks, skr,C) ← Init(1^ ,M): the protocol initializes a masked

array C from an arrayM of length𝑚. S obtains sks and R
obtains skr, and both parties locally store C. In details, S
holds ⟨M[𝑖]⟩s, chooses a PRF key sks

$←− {0, 1}^ , and sends

⟨M[𝑖]⟩s ⊕ 𝐹 (sks, 𝑖) for 𝑖 ∈ [0,𝑚) to R, where 𝐹 represents

a PRF function. Similarly, R holds ⟨M[𝑖]⟩r, chooses skr

$←−
{0, 1}^ , and sends ⟨M[𝑖]⟩r ⊕ 𝐹 (skr, 𝑖) for 𝑖 ∈ [0,𝑚) to S.
In the end, both parties can locally compute and store C
such that C[𝑖] = ⟨M[𝑖]⟩s ⊕ ⟨M[𝑖]⟩r ⊕ 𝐹 (sks, 𝑖) ⊕ 𝐹 (skr, 𝑖) =
M[𝑖] ⊕ 𝐹 (sks, 𝑖) ⊕ 𝐹 (skr, 𝑖) for 𝑖 ∈ [0,𝑚).
• (⟨M[idx]⟩) ← Read(sks, skr, ⟨idx⟩,C): the protocol takes (sks,

⟨idx⟩s) from S, (skr, ⟨idx⟩r) from R, and C locally stored by

both parties. In the end, the parties boolean-share M[idx],
i.e., S receives ⟨M[idx]⟩s and R receives ⟨M[idx]⟩r. In de-

tails, the parties use function secret sharing (FSS) [6] to share

a weight-1 bit vector S of size𝑚 that satisfies S[idx] = 1 and

S[𝑖] = 0 for all 𝑖 ≠ idx. S computes 𝑐s ←
⊕

𝑖∈[0,𝑚) ⟨S[𝑖]⟩s ·
C[𝑖] and R computes 𝑐r ←

⊕
𝑖∈[0,𝑚) ⟨S[𝑖]⟩r ·C[𝑖]. It is easy

to check C[idx] = 𝑐s ⊕ 𝑐r. The parties then perform two

invocations of two-party PRF evaluation to boolean-share

⟨𝐹 (sks, idx)⟩s and ⟨𝐹 (skr, idx)⟩r, thus the parties can share

M[idx] by taking off two masks.

Paillier Encryption. Paillier encryption scheme is a public key

scheme based on Decisional Composite Residuosity problem [29].

The scheme PE = (Gen, Enc,Dec) is defined as follows:

• Gen(1^) : Take as input a security parameter ^, generate

two primes 𝑝 , 𝑞 (size determined by ^). Compute 𝑁 = 𝑝 · 𝑞.
The public key pk = 𝑁 and the private key sk = (𝑁, 𝑝, 𝑞).
• Encpk (𝑥, 𝑟): Take as input a message 𝑥 ∈ Z𝑁 and a public

key pk, with a uniform 𝑟
$←− Z∗

𝑁
, the ciphertext is 𝑐 := (1 +

𝑁)𝑥 · 𝑟𝑁 mod 𝑁 2
. We also use Enc(𝑥) if we do not care 𝑟 .

• Decsk (𝑐): Take as a ciphertext 𝑐 ∈ Z𝑁 2 and a private key sk,

the decrypted plaintext is𝑥 :=
(𝑐𝜙 (𝑁) mod 𝑁 2)−1

𝑁
·𝜙 (𝑁)−1

mod

𝑁 , where 𝜙 (𝑁) = (𝑝 − 1) (𝑞 − 1).
Paillier encryption is an additively homomorphic encryption (AHE)

scheme. At a high level, we can express the homomorphic opera-

tions as the following:

• Homomorphic addition: Given two ciphertexts 𝑐 = Enc𝑝𝑘 (𝑥, 𝑟)
and 𝑐 ′ = Enc𝑝𝑘 (𝑥 ′, 𝑟 ′), then 𝑐add

= 𝑐 · 𝑐 ′ = ((1 + 𝑁)𝑥 · 𝑟𝑁) ·
((1+𝑁)𝑥 ′ · 𝑟 ′𝑁) = (1+𝑁)𝑥+𝑥 ′ · (𝑟𝑟 ′)𝑁 = Enc𝑝𝑘 (𝑥 +𝑥 ′, 𝑟𝑟 ′).
• Homomorphic multiplication with a constant: Given a ci-

phertext 𝑐 = Enc𝑝𝑘 (𝑥, 𝑟) and a constant 𝑎, then 𝑐
mult

= 𝑐𝑎 =

((1 + 𝑁)𝑥 · 𝑟𝑁)𝑎 = (1 + 𝑁)𝑎𝑥 · (𝑟𝑎)𝑁 = Enc𝑝𝑘 (𝑎 · 𝑥, 𝑟𝑎).

2.3 Semi-honest Security
We design our protocols and prove their security under semi-honest

security model [16, 17]. A protocol Π securely computes a function

𝑓 under semi-honest adversary if the adversary cannot learn more

information beyond what can be computed from his input and

output. A protocol may allow the parties to learn certain leakages

after execution, and we treat such leakages as a part of the output.

Formally, let 𝑓 (𝑥,𝑦) = (𝑓0 (𝑥,𝑦), 𝑓1 (𝑥,𝑦)) be a function with inputs

𝑥,𝑦 and outputs (𝑓0 (𝑥,𝑦), 𝑓1 (𝑥,𝑦)). For a two-party protocol Π com-

puting function 𝑓 (𝑥,𝑦), we use ViewΠ
𝑖
(1_, 𝑥,𝑦) = (𝜔, 𝑟 𝑖 ;𝑚𝑖

1
, ...,𝑚𝑖

𝑡)
to denote the view of the 𝑖-th party (𝑖 ∈ {0, 1}) during protocol exe-
cution where 𝜔 ∈ {𝑥,𝑦} depends on 𝑖 , 𝑟 𝑖 represents the contents

of its random values, and𝑚𝑖
1
, ...,𝑚𝑖

𝑡 denotes the messages received

by the 𝑖-th party.

Definition 1. The protocol Π securely computes 𝑓 for any inputs

(𝑥,𝑦) if for any party 𝑃𝑖 (𝑖 ∈ {0, 1}) corrupted by a semi-honest

adversaryA, there exists a probabilistic polynomial time (PPT) simu-

lator Sim𝑖 that can produce a simulated view that is computationally

indistinguishable from ViewΠ
𝑖
(1_, 𝑥,𝑦):

{Sim𝑖 (1_, 𝑥, 𝑓𝑖 (𝑥,𝑦))}
𝑐≡ {ViewΠ

𝑖 (1
_, 𝑥,𝑦)}.

3 OVERVIEW OF OUR APPROACH
In this section, we show our protocol setting, security requirement

and techniques overview for our PDTE protocol.

3.1 Protocol Setting and Security Guarantee
Our PDTE protocol is in the two-party setting in which a tree

holder 𝑃0 owns a decision tree model T and a feature provider

𝑃1 provides a feature vector X = (𝑥1, · · · , 𝑥𝑛). At the end of the

protocol, 𝑃1 receives a prediction T (X). We assume both parties

have sufficient storage to store T orX locally. In our protocol, there

is no third-party involved in the computation.

We assume an adversary is static semi-honest. A corrupted

party will strictly follow the protocol but may attempt to learn as

much information as possible. Formally, let FDT (T ,X) → (F0 (T ,
X), F1 (T ,X)) be the decision tree functionality where a decision

tree model T and a feature vector X is provided by 𝑃0 and 𝑃1 re-

spectively. In the end, the output of FDT is that 𝑃𝑖 obtains F𝑖 (T ,X)
for 𝑖 ∈ {0, 1}. A PDTE protocol Π securely computes FDT if there

exist PPT simulators Sim0 and Sim1 such that for any T and X:

{Sim0 (1_,T , F0 (T ,X))}
𝑐≡ {ViewΠ

0
(1_,T ,X)},

{Sim1 (1_,X, F1 (T ,X))}
𝑐≡ {ViewΠ

1
(1_,T ,X)}.

For our setting,F0 (T ,X) = {⊥,L0 (X)} andF1 (T ,X) = {T (X),
L1 (T)}. L0 and L1 denote two stateless leakage functions where

L0 (X) = {𝑛} and L1 (T) = {𝑚,𝑑}, i.e., 𝑃0 obtains no output but

only the number of features 𝑛 in the query whereas the output of

𝑃1 contains classification result T (X), the number of tree nodes𝑚,

and the length of longest decision path 𝑑 .

3.2 Design Goals
• We aim to achieve a high security standard for our PDTE

protocol. The protocol should only output the classification

result to the feature provider. Besides that, the parties only

learn minimal leakages as we defined.

• We aim to design PDTE protocol with sublinear communica-

tion, and with concretely practical efficiency than construc-

tion from generic ORAM-based secure computation.

1 0

1 0

1 0

1 0
0/1

0/1 0/1

Figure 1: A Modified Decision Tree

• We aim to design our PDTE protocol in a modular manner.

This allows us to optimize each component for the whole

PDTE protocol, which also allows us to argue the security

of our PDTE protocol easily.

3.3 Technique Overview
Encoding Decision Trees and Feature Vectors. We follow the

OAI approach [33] to encode decision trees. The difference is that

we modify a traditional decision tree as shown in Fig. 1. We redirect

each leaf node by setting its left and right children indexing to

the leaf itself. The modified decision tree is encoded as an array

AT shown in Fig. 2. A node in the tree is stored in AT in Depth

First Search (DFS) order, and we use AT [𝑖] to store all necessary

information of the 𝑖-th node. Specifically, AT [𝑖] is constructed by

five values: 1) threshold, 𝑡 ; 2) left child index, 𝑙 ; 3) right child index,

𝑟 ; 4) feature ID, 𝑣 and 5) classification label, 𝑐 . For example, the right

most leaf in Fig. 2 can be represented as AT [4] = 𝑎 | |4| |4| |𝑏 | |𝑐3,

where 𝑎
$←− 𝑅 and 𝑏 ∈ [0, 𝑛 − 1]. Similarly, a feature vector from

the feature provider can be naturally represented as an array X of

length 𝑛.

Algorithm 1 rst← DT(AT ,X)
1: idx← 0, rst←⊥
2: for 0 ≤ 𝑖 < 𝑑 do
3: 𝑡 | |𝑙 | |𝑟 | |𝑣 | |𝑐 ← AT [idx]
4: 𝑏 ← X[𝑣] < 𝑡

5: idx← 𝑟 ⊕ 𝑏 · (𝑙 ⊕ 𝑟) ⊲ if 𝑏 = 1, idx = 𝑙 ; else idx = 𝑟

6: rst← 𝑐

7: end for
8: return rst

The Proposed Decision Tree Algorithm. Given a decision tree

array AT and a feature array X, we can perform decision tree

evaluation over the two arrays. Algorithm 1 shows the algorithm,

notably, it always runs 𝑑 iterations to output a correct classification

result, independent of which path is taken.

The algorithm starts from the root node, i.e., idx = 0, and it

allocates a value rst for classification result. In each iteration, the

algorithm first selects a node 𝑡 | |𝑙 | |𝑟 | |𝑣 | |𝑐 ← AT [idx] according to
idx. From the feature ID 𝑣 , the algorithm can select X[𝑣], and do

a comparison 𝑏 ← X[𝑣] < 𝑡 . If 𝑏 = 1, then set idx← 𝑙 , otherwise

idx ← 𝑟 . In the end of each iteration, update rst ← 𝑐 . Due to

our modification to decision tree, we can ensure that rst will hold
a correct classification result once the evaluation reaches a leaf.

1 0

1 0
0/1

0/1 0/1

idx

0
1
2
3
4

idx = 0

idx = 2

idx = 3 idx = 4

idx = 1

Figure 2: Encoding A Decision Tree as an Array: ‘▲’ repre-
sents the value can set as any value, and ‘⋆’ represents the
value can be randomly selected from [0, 1, . . . , 𝑛 − 1], where 𝑛
is the dimension of corresponding feature vector

Functionality F (M)
sos

Parameters: Two parties denoted as S and R.
• Setup: upon receiving (Setup, M, ℓv) from S and

(Setup) from R, store M.

• Select: upon receiving (Select, ⟨idx⟩s) from S and

(Select, ⟨idx⟩r) from R:
– recover idx← ⟨idx⟩s ⊕ ⟨idx⟩r
– 𝑒

$←− Zℓv
2
, send 𝑒 to S and 𝑒 ⊕M[idx] to R

Figure 3: The Shared Oblivious Selection Functionality F (M)
sos

Indeed, this also ensures us to hide the length of the longest path

by setting iteration number as 𝑑 ′ where 𝑑 ′ ≥ 𝑑 . Note that setting

𝑑 ′ ≥ 𝑑 also hides 𝑑 . For simplicity, in this paper, we take 𝑑 ′ = 𝑑 .

Challenges and Solutions. Things are tricky when evaluating

Algorithm 1 in the secret domain. A basic requirement is to seal

all values from both parties. For this part, we observe that the

involved computation including comparison (line.4, Algorithm 1)

and 1-out-of-2 MUX operation (line.5, Algorithm 1). We choose

boolean sharing for the underlying secret-sharing scheme because

it matches well with performing bite-level secure computation.

For secure comparison and secure MUX protocol, we use existing

protocols [13] directly.

However, hiding intermediate values is not sufficient to get rid

of all the leakages. Taking node selection as an example (line.3,

Algorithm 1), if the secure computation leaks the memory access

pattern during each iteration, the client can learn idx directly, then
the client learns decision path, which is not allowed from our se-

curity requirement. The goal here is to obliviously share AT [idx]
between parties where AT is provided by the tree holder and idx is
also secret-shared, but neither party learns idx or AT [idx]1.

In Fig. 3, we formalize the above task as a Shared Oblivious Se-

lection (SOS) functionality. A possible way to realize F (M)
sos

is via

generic ORAM-based secure computation. Tueno et al. [33] use
Circuit ORAM [34] to design a sublinear-communication PDTE

protocol. However, this approach requires the parties to evaluate

1
In our protocol, idx is secret-shared from previous secure computation, which means

neither party learns the underlying value. Our definition of SOS functionality also

ensuresM[idx] is inherently randomly shared.

ORAM circuit inside secure computation, causing massive com-

putation and communication overhead in practice. Our goal is to

minimize the overhead by designing specialized SOS protocols.

Our design follows from the observation that ORAM is overkill

since PDTE protocols only need read operations. Therefore, what

we need is a secure computation protocol over Oblivious Read-

Only-Memory (OROM). Such simplification allows us to design

specialized SOS protocols to compute F (M)
sos

more efficiently. We

also propose many optimizations to improve efficiency both asymp-

totically and concretely, some of them are of independent interests.

Put All Together. We will use both SOS protocol and boolean-

sharing based secure computation to evaluate our modified decision

tree evaluation algorithm. Intuitively, when performing decision

tree evaluation using secure computation, all intermediate values

are secret-shared between the parties, and the parties run secure

computation to traverse the decision tree obliviously. Note that the

algorithm itself does not leak length information. We further use

oblivious selection to conceal access pattern leakage. The parties

cannot learn which decision path is taken since everything is evalu-

ated in the secret domain. We also propose concrete optimizations

in our PDTE protocol. We will discuss our techniques in detail in

the next section.

4 PRIVATE DECISION TREE EVALUATION
WITH SUBLINEAR COMMUNICATION

In this section, we give our PDTE protocol with sublinear communi-

cation.We first propose two SOS protocols with sublinear communi-

cation under different trade-offs. Leveraging the SOS functionality,

we design our sublinear PDTE protocol.

Parameters: Two parties denoted as S and R; array length𝑚;

index bit length ℓ ; array element bit length ℓv.

[Setup] Upon receiving (Setup,M, ℓv) from S and (Setup,⊥)
from R, S stores M locally.

[Select] Upon receiving (Select, ⟨idx⟩s) from S and

(Select, ⟨idx⟩r) from R:
(1) S and R run a B2A conversion [13], transforming ⟨idx⟩

to its arithmetic form JidxK over Z𝑚 .

(2) S samples 𝑟
$←− Zℓv

2
, computes𝑚 messages {𝐸𝑖 }𝑖∈[0,𝑚)

such that 𝐸𝑖 = 𝑟 ⊕M[𝑖 + JidxKs (mod𝑚)].
(3) S andR invoke 1-out-of-𝑚OT functionalityFot.S inputs

{𝐸𝑖 }𝑖∈[0,𝑚) and R provides JidxKr as choice input. By

definition of OT, R receives 𝑟 ⊕M[idx].
(4) S outputs 𝑟 and R outputs 𝑟 ⊕M[idx].

Figure 4: Linear-communication SOS Protocol from OT [33]

4.1 Shared Oblivious Selection Protocol
In Fig. 4, we first show an SOS protocol from 1-out-of-𝑚 OT as

previously done in [33]. We will use OT-based SOS protocol over

feature vectors that are usually with low dimension. Despite being

conceptually efficient and straightforward for small arrays, OT-

based construction requires 𝑂 (𝑚) online communication; this is

prohibitively high when 𝑚 is large. For oblivious selection over

tree nodes, we need communication-efficient SOS protocols since,

usually, a tree contains thousands to millions of nodes [10].

Functionality Fpre

Parameters: Two parties denoted as S and R; weight-1 bit

vector length𝑚; BMT arithmetic module 𝑛; index bit length ℓ .

• GenWBV: upon receiving (GenWBV, ℓ,𝑚) from all par-

ties:

– sample rdx
$←− Zℓ , compute S such that S[rdx] = 1 and

S[𝑗] = 0 for all 𝑗 ≠ rdx.

– sample 𝑒
$←− Zℓ

2
, 𝑟

$←− Z𝑚
2
, send (𝑒, 𝑟) to S and (𝑒 ⊕

rdx, S ⊕ 𝑟) to R.
• GenBMT: upon receiving (GenBMT, 𝑛, J𝑎Ks, J𝑏Ks) from
S and (GenBMT, 𝑛, J𝑎Kr, J𝑏Kr) from R:
– compute 𝑐 ← (J𝑎Ks + J𝑎Kr) · (J𝑏Ks + J𝑏Kr) (mod 𝑛).
– sample 𝑟

$←− Z𝑛 , send−𝑟 (mod𝑛) toS and 𝑟+𝑐 (mod𝑛)
to R.

Figure 5: The Pre-processing Functionality Fpre

Functionality F
sprf

Parameters: Two parties denoted as S and R; PRF 𝐹 : {0, 1}^ ×
{0, 1}ℓ → {0, 1}ℓb .
• Eval: upon receiving (Eval, sk, ⟨idx⟩s) from S and (Eval,

⟨idx⟩r) from R, compute:

– reconstruct idx← ⟨idx⟩s ⊕ ⟨idx⟩r, compute 𝐹 (sk, idx)
– sample 𝑟

$←− Zℓb
2
, send 𝑟 to S and 𝑟 ⊕ 𝐹 (sk, idx) to R

Figure 6: The Shared PRF Functionality F
sprf

4.1.1 Available Ideal Functionalities. Before describing our pro-
tocol, we introduce two ideal functionalities. One is called prepro-

cessing functionality Fpre defined in Fig. 5 that generates useful cor-
related randomnesses, including shared weight-1 bit vector (WBV)

and Beaver multiplication triple (BMT). Another is called two-party

shared PRF functionality Fsprf in Fig. 6. In particular, WBVs can be

constructed from Function Secret Sharing (FSS) [6, 7] with sublinear

communication, and BMTs can be generated from AHE or OT [13].

We summarize how to generate these correlated randomnesses in

Appendix B. One can initialize Fsprf by evaluating a block cipher

circuit using secure two-party computation. In the following, we

will use these ideal functionalities directly; such approach, which

is known as hybrid-model, is commonly used in designing secure

computation protocols [16, 17].

4.1.2 The PRF-based SOS Protocol. Our PRF-based SOS proto-

col in Fig. 7 only needs a single two-party PRF invocation regardless

of the array length. The protocol is inspired by Floram, but we pro-

pose new techniques to improve efficiency.

New Pre-processing Technique. We propose a new preprocess-

ing technique for WBVs inspired by Beaver’s circuit derandomiza-

tion technique [3], moving all its generation work to the offline

phase. Let S be a WBV over a random index rdx, the parties can
use S during the online phase to share an element at location idx.
Specifically, the parties simply reveal 𝛿 = rdx − idx (mod𝑚) and
compute:

⟨C[idx]⟩ =
⊕

𝑖∈[0,𝑚)
⟨S[𝛿 + 𝑖 (mod𝑚)]⟩ · C[𝑖],

then C[idx] is shared between parties as required.
2
This deran-

domization technique enables the parties to pre-generate sufficient

weight-1 bit vectors to trade an efficient online protocol.

Note that idx and rdx are shared in boolean form, for better

efficiency, the parties first perform B2A conversion [13] before

performing subtraction; this can be efficiently done by ℓ OTs in

𝑂 (1) round for ℓ-bit boolean sharing [13]. Indeed, we can get rid

of B2A conversion using a slightly different technique. Specifically,

when 𝑚 = 2
𝑘
, the parties can simply reveal 𝛿 = idx ⊕ rdx and

compute:

⟨C[idx]⟩ =
⊕

𝑖∈[0,𝑚)
⟨S[𝛿 ⊕ 𝑖]⟩ · C[𝑖] .

For generic cases where 2
𝑘−1 ≤ 𝑚 ≤ 2

𝑘
, S has to pad M of size 2

𝑘

and randomly places elements in the padded array before encryp-

tion; this certainly needs more storage space but only doubles the

storage cost at most.

Reduce Overhead of Two-party PRF Evaluation. Our protocol
only needs a single mask to hide the underlying message, instead of

two used in Floram (see section 2). In short, Floramworks for secret-

shared data; it is necessary to use two masks, each for protecting a

share from one party. For our setting, double-masking is overkill

sinceS already knowsM. We only need onemask to protectM from

R. As such, we change the original masking mechanism to C[𝑖] ←
M[𝑖] ⊕ 𝐹 (sks, 𝑖) for 𝑖 ∈ [0,𝑚). Our optimization reduces half of

the two-party PRF evaluations, which can significantly improve

efficiency in practice since two-party PRF evaluation contributes

the main overhead to the PRF-based protocol.

In addition, we provide implementation-level optimizations. In

particular, Floram uses AES for instantiating 𝐹 . However, AES con-

tains many AND gates, e.g., AES-128 needs 6,400 AND-gates per
evaluation

3
, which incurs significant overhead when evaluated by

secure computation. We provide an optimized implementation from

LowMC block cipher [1]. LowMC is MPC-friendly, designed with

much fewer AND-gates. It provides tunable options between block

size, evaluation round and security level; this allows us to choose

the best parameters for different scenarios.

OptimizedMulti-blockMasking Strategy. We propose anMPC-

friendly masking method forM with large-size elements. Specifi-

cally, suppose each element has a size of ℓv, and the PRF output is

of size ℓb. Note that when ℓb < ℓv, a single PRF output cannot mask

the whole element. To handle the issue, we divide the element into

multiple blocks and generate a mask for each. In addition, we de-

sign a fixed-key masking strategy, which turns to be MPC-friendly.

Specifically, denoteM[𝑖] [𝑗] asM[𝑖]’s 𝑗-th block,S simply encrypts

2 ⟨S[𝛿 +𝑖 (mod𝑚)] ⟩ ·C[𝑖] is computed in the secret-shared fashion, i.e., S computes

⟨C[idx] ⟩s =
⊕

𝑖∈[0,𝑚) ⟨S[𝛿 + 𝑖 (mod𝑚)] ⟩s · C[𝑖], and R computes ⟨C[idx] ⟩r =⊕
𝑖∈[0,𝑚) ⟨S[𝛿 + 𝑖 (mod𝑚)] ⟩r · C[𝑖].

3
https://homes.esat.kuleuven.be/~nsmart/MPC/

Parameters: PRF 𝐹 : {0, 1}^ × {0, 1}ℓ → {0, 1}ℓb ; index bit

length ℓ ; bit length of PRF output ℓb; bit length of array element

ℓv; number of PRF output for an element 𝐵 = ⌈ ℓvℓb ⌉; array length

𝑚 = |M|.
[Setup] Upon receiving (Setup,M, ℓv) from S and (Setup,⊥)
from R:

(1) S samples a secret key sks

$←− {0, 1}^ for 𝐹 , and encrypts

M to obtain ciphertext C such that C[𝑖] [𝑗] = M[𝑖] [𝑗] ⊕
𝐹 (sks, 𝑖 | | 𝑗) for 𝑖 ∈ [0,𝑚) and 𝑗 ∈ [0, 𝐵).

(2) S sends C to R. S stores (sks,C) and R stores C.

[Select] Upon receiving (Select, ⟨idx⟩s) from S and

(Select, ⟨idx⟩r) from R:
(1) S and R send (GenWBV, ℓ,𝑚) to Fpre, obtain

(⟨rdx⟩, ⟨S⟩).
(2) S and R convert ⟨idx⟩ and ⟨rdx⟩ to arithmetic share form

JidxK and JrdxK by B2A conversion [13].

(3) S and R compute J𝛿K = JrdxK − JidxK (mod 𝑚), and
reveal 𝛿 in clear. Then they compute ⟨𝑒⟩ =

⊕𝑚−1

𝑖=0
⟨S[𝑖 +

𝛿 (mod𝑚)]⟩ · C[𝑖].
(4) S and R compute 𝐵 shared indexes ⟨idx| | 𝑗⟩ = ⟨idx <<

⌈log𝐵⌉⟩ + 𝑗 for 𝑗 ∈ [0, 𝐵), locally.
(5) S and R call Fsprf for each of 𝐵 blocks. For 𝑗 ∈ [0, 𝐵), S

inputs (Eval, sks, ⟨idx| | 𝑗⟩s) and R inputs (Eval, ⟨idx| | 𝑗⟩r)
to Fsprf, Fsprf sends ⟨𝑓𝑗 ⟩s to S and ⟨𝑓𝑗 ⟩r to R such that

⟨𝑓𝑗 ⟩s ⊕ ⟨𝑓𝑗 ⟩r = 𝐹 (sks, idx| | 𝑗).
(6) Let ⟨𝑓 ⟩ be ⟨𝑓0⟩| | · · · | |⟨𝑓𝐵−1⟩, S and R locally compute

⟨𝑚⟩ = ⟨𝑒⟩ ⊕ ⟨𝑓 ⟩.

Figure 7: The PRF-based SOS Protocol

the block as:

C[𝑖] [𝑗] ← M[𝑖] [𝑗] ⊕ 𝐹 (sks, 𝑖 | | 𝑗),
where 𝑖 | | 𝑗 = 𝑖 · 2 ⌈log

2
𝐵⌉ + 𝑗 , 𝐵 = ⌈ ℓvℓb ⌉. Since 𝐹 : {0, 1}^ × {0, 1}ℓ →

{0, 1}ℓb is defined over ℓ-bits inputs, one should note that ℓ should be
large enough, i.e., 𝑖 ·2 ⌈log

2
𝐵⌉ + 𝑗 < 2

ℓ
for all 𝑖 ∈ [0,𝑚) and 𝑗 ∈ [0, 𝐵),

otherwise it is possible to encounter a wrap-around issue incurring

𝑖1 | | 𝑗1 = 𝑖2 | | 𝑗2 and 𝐹 (sks, 𝑖1 | | 𝑗1) = 𝐹 (sks, 𝑖2 | | 𝑗2), then R can easily

learn:

M[𝑖1] [𝑗1] ⊕M[𝑖2] [𝑗2] = C[𝑖1] [𝑗1] ⊕ C[𝑖2] [𝑗2] .
As such, we require all 𝑖 | | 𝑗 are unique for 𝑖 ∈ [0, 𝑛) and 𝑗 ∈ [0, 𝐵).
Indeed, setting ⌈log

2
𝑛⌉ + ⌈log

2
𝐵⌉ ≤ ℓ suffices for the goal. Taking

a concrete example, when ℓ = 64, 𝐵 = 5, our indexing method

can support oblivious selection on 2
61

elements, which is already

sufficient in practice.

Two benefits follow from the design. First, since 𝑖 is boolean-

shared bit-by-bit and 𝑗 is public, sharing 𝑖 | | 𝑗 is essentially free:

each party just cyclically left-shifts its share of 𝑖 by ⌈log
2
𝐵⌉ bits,

and sets the lower ⌈log
2
𝐵⌉ bits to be the share of 𝑗 , i.e., 𝑖 | | 𝑗 =

(𝑖 << ⌈log
2
𝐵⌉) + 𝑗 . Note that 𝑗 is publicly known to both parties,

hence sharing 𝑗 is easy, e.g., 𝑗 = 0 ⊕ 𝑗 . As a result, the parties can

non-interactively share 𝑖 | | 𝑗 for all 𝑗 ∈ [0, 𝐵) from the sharing of 𝑖 .

Second, since 𝐹 uses a fixed key sks, we can implement two-party

PRF evaluation in a SIMDmode, allowing the parties to perform PRF

https://homes.esat.kuleuven.be/~nsmart/MPC/

evaluation in parallel during oblivious selection, which improves

efficiency by reducing rounds.

Complexity Analysis. Same as Floram, the parties need to per-

form linear memory scan over all encrypted array elements; this

is relatively cheap given highly efficient hardware nowadays. Be-

sides, our protocol requires both parties to store the encrypted array

locally. We believe the price is desirable to trade a better online com-

munication in scenarios where multiple invocations are frequently

performed between the parties. However, concretely, the overhead

for two-party PRF evaluation can be relatively high. In particular,

even using LowMC PRF, the parties still have to evaluate thousands

of AND gates using secure computation, which can cause massive

time consumption over a high-latency network; this motivates us

to design a round-efficient SOS protocol.

Security. We have Theorem 2 to capture security of the PRF-based

SOS protocol. The proof can be found in Appendices A.1.

Theorem 2. Let 𝐹 be a secure PRF, the oblivious selection protocol
in Fig. 7 securely computes the functionality F (M)sos in (Fsprf, Fpre)-
hybrid model under a semi-honest adversary.

4.1.3 The HE-based SOS protocol. The prior PRF-based SOS

protocol has sublinear communication, but the parties must perform

a two-party PRF evaluation per oblivious selection. Though we

provide optimizations to reduce the overhead, its round complexity

is relatively high given the intrinsic complexity of PRFs; this can

incur considerable time consumption over a high-latency network.

New Solution. We design a sublinear SOS protocol with better

round complexity by using Paillier’s AHE [29]. The idea is similar

to the PRF-based SOS protocol, but we explore the additive homo-

morphic property of Paillier encryption to eliminate two-party PRF

evaluation. Our key technique is a new share conversion protocol

between additive arithmetic sharing and multiplicative arithmetic

sharing over Z𝑁 2 , which is of independent interest.

Like the PRF-based SOS protocol, S encrypts M, but uses its

public key pk and sends ciphertext C to R. When selecting an

element indexed by a shared index idx amongM, the parties still

use the shared weight-1 bit vector to obliviously share ⟨C[idx]⟩ in
boolean fashion, and then convert ⟨C[idx]⟩ to arithmetic sharing

JC[idx]K over Z𝑁 2 by B2A conversion. However, one should note

that such operation can only additively share C[idx]:

JC[idx]Ks + JC[idx]Kr = C[idx] (mod 𝑁 2) .

In order to facilitate homomorphic property of Paillier encryption,

we need the ciphertext to be shared multiplicatively over Z∗
𝑁 2

:

JC[idx]K∗
s
· JC[idx]K∗

r
= C[idx] (mod 𝑁 2).

With such conversion, the parties can explore a shared decryption

technique to share the encrypted message. Therefore, our first chal-

lenge is designing an efficient protocol to perform such conversion.

Additive toMultiplicative SharingConversion overZ𝑁 2 . Given

an additive sharing J𝑥K over Z𝑁 2 where S holding J𝑥Ks and R hold-

ing J𝑥Kr, we want to convert it to its multiplicative sharing form

J𝑥K∗ satisfying 𝑥 = J𝑥K∗
s
· J𝑥K∗

r
(mod 𝑁 2).

The idea is S can sample a random value 𝛾
$←− Z∗

𝑁 2
, and R can

recover 𝑥 ·𝛾−1 (mod 𝑁 2) by running a secure protocol with S. Now
the question is how to securely compute 𝑥 · 𝛾−1 (mod 𝑁 2). It is

Parameters: index bit length ℓ ; array element bit size ℓv ≪ |𝑁 |;
array length 𝑚 = |M|; computational security parameter ^;

statistical security parameter _.

[Setup] Upon receiving (Setup,M, ℓv) from S and (Setup,⊥)
from R. Then:

(1) S generates Paillier public/secret key pair (pk, sk) ←
Gen(1^).

(2) S encryptsM to obtain C such that C[𝑖] ← Encpk (M[𝑖])
for 𝑖 ∈ [0,𝑚).

(3) S sends (pk,C) to R. Both S and R store C locally.

[Select] Upon receiving (Select, ⟨idx⟩s) from S and

(Select, ⟨idx⟩r) from R. Then:
(1) S andR send (GenWBV, 𝜎 = ⌈log

2
𝑚⌉,𝑚) toFpre, obtain

(⟨rdx⟩, ⟨S⟩).
(2) S and R convert ⟨idx⟩ and ⟨rdx⟩ to arithmetic share form

JidxK and JrdxK by B2A conversion [13].

(3) S andR compute J𝛿K = JrdxK−JidxK, and reveal 𝛿 in clear.
They can share ⟨𝑥⟩ = ⟨C[idx]⟩ =

⊕𝑚−1

𝑖=0
⟨S[𝑖 + 𝛿]⟩ · C[𝑖].

(4) S and R convert ⟨𝑥⟩ to J𝑥K by B2A conversion.

(5) The parties convert J𝑥K to its multiplicative sharing form

J𝑥K∗ over Z𝑁 2 as follows:

(a) S samples 𝑎
$←− Z𝑁 2 and sends (GenBMT, 𝑁 2, 𝑎, 0)

to Fpre. R samples 𝑏
$←− Z𝑁 2 and sends

(GenBMT, 𝑁 2, 0, 𝑏) to Fpre. In the end, the par-

ties obtain sharing J𝑐K where 𝑐 = 𝑎 · 𝑏 (mod 𝑁 2).
(b) S samples 𝛾

$←− Z∗
𝑁 2

and sends 𝑒 ← 𝛾−1 −𝑎 (mod 𝑁 2)
to R. R sends 𝑓 ← J𝑥Kr − 𝑏 (mod 𝑁 2) to S.

(c) S computes JJ𝑥Kr ·𝛾−1Ks ← 𝑎 · 𝑓 + J𝑐Ks (mod 𝑁 2) and
R computes JJ𝑥Kr ·𝛾−1Kr ← 𝑒 · 𝑓 +𝑏 ·𝑒 +J𝑐Kr (mod 𝑁 2).
S sends J𝑥Ks · 𝛾−1 + JJ𝑥Kr · 𝛾−1Ks (mod 𝑁 2) to R.

(d) S sets J𝑥K∗
s
← 𝛾 (mod 𝑁 2). R sets J𝑥K∗

r
← J𝑥Ks ·𝛾−1 +

J𝑥 · 𝛾−1Ks + J𝑥 · 𝛾−1Kr (mod 𝑁 2).
(6) R samples 𝛽

$←− Z
2
ℓv , 𝜌

$←− [0, 2_) and computes 𝑥𝛽 ←
J𝑥K∗

r
· Encpk (𝛽 + 𝜌 · 2ℓv) (mod 𝑁 2).

(7) S computes J𝑚Ks = Decsk (J𝑥K∗
s
· 𝑥𝛽) (mod 2

ℓv), and R
sets J𝑚Kr ← −𝛽 (mod 2

ℓv).
(8) S and R run A2B conversion protocol to transform J𝑚K

over Z
2
ℓv to its boolean sharing form ⟨𝑚⟩ over Zℓv

2
.

Figure 8: The HE-based SOS Protocol

easy to see that:

𝑥 · 𝛾−1 = J𝑥Ks · 𝛾−1 + J𝑥Kr · 𝛾−1 (mod 𝑁 2) .
Since S can compute J𝑥Ks ·𝛾−1 (mod 𝑁 2) by itself, the only issue is
how to share the cross term J𝑥Kr · 𝛾−1 (mod 𝑁 2) securely. Indeed,
this can be done with the help of a BMT of special form 𝑎 · 𝑏 =

𝑐 (mod 𝑁 2) where S holds 𝑎, R holds 𝑏, and the parties share 𝑐 .4

With the BMT, S reveals 𝑒 ← 𝛾−1 − 𝑎 (mod 𝑁 2) and R reveals

𝑓 ← J𝑥Kr − 𝑏 (mod 𝑁 2), then S computes JJ𝑥Kr · 𝛾−1Ks ← 𝑎 ·
4
Any BMT (J𝑎K, J𝑏K, J𝑐K) can be easily transformed to a special BMT by revealing

𝑎 to S and 𝑏 to R, respectively. In Fpre , this can be simply done by letting S input

(𝑎, 0) and R input (0, 𝑏) .

𝑓 + J𝑐Ks (mod 𝑁 2) and R computes JJ𝑥Kr · 𝛾−1Kr ← 𝑒 · 𝑓 + 𝑏 · 𝑒 +
J𝑐Kr (mod 𝑁 2). S sends J𝑥Ks · 𝛾−1 + JJ𝑥Kr · 𝛾−1Ks (mod 𝑁 2) to R.
In the end, S holds 𝛾 and R recovers 𝑥 · 𝛾−1 (mod 𝑁 2) by setting

𝑥 · 𝛾−1 = J𝑥Ks · 𝛾−1 + JJ𝑥Kr · 𝛾−1Ks + JJ𝑥Kr · 𝛾−1Kr (mod 𝑁 2) .

Now 𝑥 is multiplicatively shared between parties over Z∗
𝑁 2

.

Remark. Note that additive sharing is over Z𝑁 2 whereas multiplica-

tive sharing is over Z∗
𝑁 2

, we show our conversion still works and

give explanation. Specifically, Z∗
𝑁 2

includes all elements in Z𝑁 2

except {0, 𝑝, 2𝑝, · · · , (𝑝 ·𝑞2 − 2) ·𝑝, (𝑝 ·𝑞2 − 1) ·𝑝, 𝑞, 2𝑞, · · · , (𝑞 ·𝑝2 −
2) · 𝑞, (𝑞 · 𝑝2 − 1) · 𝑞}. It is clear that if 𝛾 is accidentally sampled

from Z𝑁 2\Z∗
𝑁 2

, there will be no way to compute 𝛾−1
. However, the

bad probability of this accident is only

|Z
𝑁 2\Z∗

𝑁 2
|

|Z
𝑁 2 | <

𝑝 ·𝑞2+𝑞 ·𝑝2−1

𝑁 2
<

𝑝 ·𝑞2+𝑞 ·𝑝2

𝑁 2
= 1

𝑝 +
1

𝑞 , which is negligible. In our protocol, S knows

𝑝 and 𝑞 so can always select 𝛾 with inverse from Z∗
𝑁 2

. This intro-

duces indistinguishable difference following our prior argument.

Therefore, our conversion works over Z𝑁 2 correctly and securely

except with negligible failing/distinguishable probability. Besides

that, we do not differentiate Z𝑁 2 and Z∗
𝑁 2

.

Sharing Encrypted Message over Z
2
ℓv Additively. For a cipher-

text 𝑥 = Encpk (𝑚) that is multiplicatively shared over Z𝑁 2 , i.e., S
has J𝑥K∗

s
and R has J𝑥K∗

r
such that 𝑥 = J𝑥K∗

s
· J𝑥K∗

r
(mod 𝑁 2), the

parties can explore homomorphic property of Paillier encryption

to additively share𝑚 ∈ Z
2
ℓv . Note that S has Paillier public/secret

key pair (pk, sk). Specifically, R computes and sends a randomized

ciphertext 𝑥𝛽 ← J𝑥K∗
r
· Encpk (𝛽 + 𝜌 · 2ℓv) (mod 𝑁 2) to S, where

𝛽
$←− Z

2
ℓv and 𝜌

$←− [0, 2_) are randomly sampled by R.5 S can

compute J𝑥K∗
s
· 𝑥𝛽 = Encpk (𝑚 + 𝛽 + 𝜌 · 2ℓv) and decrypt it to learn

𝑚+𝛽 (mod 2
ℓv). R has −𝛽 (mod 2

ℓv). Obviously,S and R finally ad-

ditively share𝑚 over Z
2
ℓv . The parties can perform A2B conversion

to transform J𝑚K over Z
2
ℓv to boolean sharing ⟨𝑚⟩ over Zℓv

2
.

Security. We have Theorem 3 for the security of our HE-based SOS

protocol. The proof can be found in Appendices A.2.

Theorem 3. If Paillier encryption is semantically secure and 𝑁

is computationally hard to factorize, the oblivious selection protocol
in Fig. 8 securely computes the functionality F (M)sos in (Fpre)-hybrid
model under a semi-honest adversary.

4.2 The Proposed PDTE Protocol
With our data structure, decision tree algorithm and SOS proto-

cols, it is straightforward to design our PDTE protocol modularly.

We show the protocol in Fig. 9 built on the top of an ideal SOS

functionality.

PDTE Setup. 𝑃0 and 𝑃1 perform necessary work to setup SOS

functionality for tree array AT and feature array X. Moreover, 𝑃0

shares AT [0] (i.e., the root node) with 𝑃1 as the evaluation starting

node. From the property of boolean sharing, the parties can parse

the root bit-by-bit to get the sharing of all attributes ⟨𝑡⟩, ⟨𝑙⟩, ⟨𝑟 ⟩, ⟨𝑣⟩,
and ⟨𝑐⟩.

5
We use Paillier’s plaintext domainZ𝑁 to hold messages of length ℓv where 2

ℓv ≪ |𝑁 |.
Here 𝜌 · 2ℓv is used for statically hiding𝑚 + 𝛽 , meanwhile still allows S to compute

𝑚 + 𝛽 (mod 2
ℓv) correctly.

Parameters: Computational security parameter ^; 𝑃0 provides

a tree T ; 𝑃1 provides a feature vector X; the longest tree depth
𝑑 .

[Setup]
(1) 𝑃0 encodes its decision tree T to an array AT .
(2) 𝑃0 and 𝑃1 invoke functionality F (AT)

SOS
. 𝑃0 sends

(Setup,AT , ℓv) to F (AT)
SOS

and 𝑃1 sends (Setup) to F (AT)
SOS

.

(3) 𝑃0 and 𝑃1 invoke functionality F (X)
SOS

. 𝑃1 sends

(Setup,X, ℓ) to F (X)
SOS

, and 𝑃0 sends (Setup) to F (X)
SOS

.

(4) 𝑃0 shares root node AT [0] with 𝑃1. Both parties parse

⟨AT [0]⟩ as ⟨𝑡⟩| |⟨𝑙⟩| |⟨𝑟 ⟩| |⟨𝑣⟩| |⟨𝑐⟩.
[Evaluation]

(1) For 𝑖 ∈ [1, 𝑑]
(a) 𝑃0 sends (Eval, ⟨𝑣⟩s) and 𝑃1 sends (Eval, ⟨𝑣⟩r) to
F (X)

SOS
. In the end, 𝑃0 and 𝑃1 share ⟨X[𝑣]⟩.

(b) 𝑃0 and 𝑃1 run secure comparison protocol to compute

⟨𝑏⟩ ← ⟨X[𝑣]⟩ > ⟨𝑡⟩.
(c) 𝑃0 and 𝑃1 compute index of next tree node ⟨idx⟩ ←
⟨𝑙⟩ ⊕ ⟨𝑏⟩ · (⟨𝑙⟩ ⊕ ⟨𝑟 ⟩).

(d) 𝑃0 sends (Eval⟨idx⟩0), and 𝑃1 sends (Eval, ⟨idx⟩1) to
F (AT)

SOS
. In the end, 𝑃0 and 𝑃1 share ⟨AT [idx]⟩.

(e) parse ⟨𝑡⟩| |⟨𝑙⟩| |⟨𝑟 ⟩| |⟨𝑣⟩| |⟨𝑐⟩ ← ⟨AT [idx]⟩.
(f) set ⟨rst⟩ ← ⟨𝑐⟩.

(2) 𝑃0 and 𝑃1 reveal rst to 𝑃1 as output.

Figure 9: Our PDTE Protocol

PDTE Evaluation. In each iteration, 𝑃0 and 𝑃1 first call SOS func-

tionality F (X)
SOS

to share X[𝑣]. The parties then perform a secure

comparison between ⟨X[𝑣]⟩ and ⟨𝑡⟩ to compute a comparison re-

sult ⟨𝑏⟩. The evaluation can then decide which child becomes the

next evaluation node by employing a MUX computation: ⟨idx⟩ ←
⟨𝑙⟩ ⊕ ⟨𝑏⟩ · (⟨𝑙⟩ ⊕ ⟨𝑟 ⟩). That is, the parties share ⟨idx⟩ = ⟨𝑙⟩ if 𝑏 = 1,

otherwise ⟨idx⟩ = ⟨𝑟 ⟩.
From the shared index idx, the parities invoke F (X)

SOS
to share

AT [idx]. ⟨𝑡⟩, ⟨𝑙⟩, ⟨𝑟 ⟩, ⟨𝑣⟩, ⟨𝑐⟩ are then updated correspondingly. Be-

sides, ⟨𝑐⟩ is stored in ⟨rst⟩ where the final classification label will

stay in. Note that we encode a self-loop for each leaf node, thus ⟨rst⟩
will always hold a correct classification label once the evaluation

reaches a leaf node. Moreover, it is easy to hide length information:

𝑃0 and 𝑃1 just run 𝑑 iterations of evaluation. In the end, 𝑃0 sends

⟨rst⟩0 to 𝑃1, and 𝑃1 recovers rst as classification result.

The protocol runs in 𝑂 (𝑑) iterations with 𝑑 secure comparison

and MUX operations. If the OT-based SOS protocol is used over

X and a sublinear SOS protocol is used over AT , then the total

communication complexity is 𝑂 (𝑛ℓ𝑑).
Optimization 1 - Reduce SOS Invocations. We can reduce the

number of SOS invocations by exploring a data locality property

in decision tree evaluation. Our observation is that tree evaluation

will only go from a parent to one of its children. Therefore, we can

pack the parent with its children together as a bigger node to reduce

invocations of oblivious selection. We call the packed node as a

cluster. If the parent node is a leaf, S needs to allocate two dummy

nodes to make the cluster’s size indistinguishable from others. The

parties then use oblivious selection to share the desired cluster

between parties. Since our SOS protocol supports SIMD mode,

the parties can share a cluster by only one invocation, whereas it

requires two in the original protocol. In this way, we reduce PDTE

evaluation invocation from 𝑑 to ⌈𝑑/2⌉. We can generalize the idea

to pack a parent node with its descendants in the following 𝑞 layers,

reducing invocations from 𝑑 to ⌈𝑑/𝑞⌉.
The remaining issue is how to traverse within a cluster oblivi-

ously. This can be done by 𝑞 MUX operations, and each is over two

smaller sub-trees. However, the total communication for traversing

within a cluster will be 𝑂 (2𝑞). In practice, we can set 𝑞 = 2 or 3 to

reduce 50% or 67% rounds from SOS protocol while not increasing

communication too much.

Optimization 2 - Reduce Local Computation. In our PDTE pro-

tocol, each oblivious selection causes a linear scan over the whole

decision tree, incurring 𝑂 (𝑑 ·𝑚) computation in total. We can re-

duce the overhead when T is a complete tree. That is, instead of

performing the scan over all nodes, the parties only need to run

oblivious selection over 𝑖-th layer of T for the 𝑖-th iteration of eval-

uation. Therefore, the total local computation from SOS will only

be 𝑂 (𝑚). Note that we can not use this optimization directly over

sparse trees; otherwise, R can learn the tree structure of each layer,

e.g., number of nodes of each layer. Nevertheless, we can always

transform a non-complete tree into a complete one by padding

dummy nodes and then we can optimize the padded tree. In prac-

tice, padding is cost-effective for those near-complete trees but not

for sparse trees.

Security. We have Theorem 4 towards security of our PDTE pro-

tocol. The proof can be found in Appendices A.3.

Theorem 4. The PDTE protocol in Fig. 9 securely computes the
functionality FDT in (F (AT)

SOS
, F (X)

SOS
)-hybrid model against semi-

honest adversary.

5 EXPERIMENT
In this section, we report the concrete efficiency of our PDTE proto-

col. We implement the protocol in C++ under ABY framework [13].

5.1 Experiment Setup
We run our experiment on a desktop PC equipped with Intel(R)

Core™ i9-9900 CPU at 3.10 GHz × 16 running Ubuntu 20.04 LTS and

32 GB of memory. We use Linux tc tool to simulate local-area net-

work (LAN, RTT: 0.1 ms, 1 Gbps), metropolitan-area network (MAN,

RTT: 6 ms, 100 Mbps) and wide-area network (WAN, RTT: 80 ms,

40 Mbps). We set the computational security parameter ^ = 128 and

statistical security parameter _ = 40. As in prior work, we set the

bit length to ℓ = 64. For AHE, the plaintext module is |𝑁 | = 2048.

We implement the involved secure computation using GMW [28]

protocol over boolean sharing as default. The times reported are

averaged over ten trials.

5.2 Tree Parameters
We evaluate our protocols on 8 representative datasets from UCI

repository
6
as listed in Table 3. To compare with [21, 26], we directly

6
https://archive.ics.uci.edu/ml

wine
Linnerud breast digits

spambase
diabetes

Boston
MNIST

102

103

104

O
nl

in
e

C
om

m
un

ic
at

io
n

(K
B

yt
es

)

Ma et.al.[26]
Kiss et.al.(HHH)[21]
Kiss et.al.(GGG)[21]
Our PRF-based
Our HE-based

(a) Online Communication

wine
Linnerud breast digits

spambase
diabetes

Boston
MNIST

102

103

104

105

106

O
ff

lin
e

C
om

m
un

ic
at

io
n

(K
B

yt
es

) Ma et.al.[26]
Kiss et.al.(GGG)[21]
Our PRF-based
Our HE-based

(b) Offline Communication

Figure 10: Online and Offline Communication Cost. Note
that the 𝑦-axis is in logarithm scale.

use their used decision trees wine, Linnerud, breast, digits, diabetes
and Bostonwhich are trained using codes from [21]. We additionally

train two trees, one is a deep-but-sparse tree spmabase and another
is a density tree MNIST with a high-dimensional vector.

Table 3: Tree Parameters

Decision Tree Feature Dimension 𝑛 Depth 𝑑 #(Nodes)𝑚
wine 7 5 23

Linnerud 3 6 39

breast 12 7 43

digits 47 15 337

spambase 57 17 171

diabetes 10 28 787

Boston 13 30 851

MNIST 784 20 4179

5.3 Performance Evaluation
In this section, we report the efficiency of our protocol. We first

test PDTE protocols in communication and running time under

different network settings and compare them with state-of-the-

art PDTE protocols. Then we discuss trade-off by exploring the

modular design of our PDTE design and give recommendations

for different scenarios. Last we report performances over large

synthetic deep trees to show the scalability of our PDTE protocols.

We mainly compare our protocols with three representative

PDTE works [21, 26, 33]. Kiss et al. [21] divide a PDTE protocol

into three sub-protocols: feature selection, comparison and path

evaluation and use either Garbled Circuit (GC) or AHE to instantiate

them. We select [21] because this work is the most summative in

linear-cost PDTE protocols. We compare our work with their GGG

and HHH since the former is computation-friendly and the latter is

communication-friendly. Other two PDTEworks are both sublinear-

cost [26, 33] protocols, similar to ours. But only the ORAM-based

PDTE protocol in [33] is truly sublinear-communication.

PDTE Communication. Fig. 10 details the communication con-

sumption of our two PDTE protocols, and the comparison with [21,

26]. As we can see, our PRF-based construction (with LowMC as the

PRF instantiation) requires the least communication among these

PDTE protocols and is slightly better than [26]. Our HE-based PDTE

protocol requires more communication than PRF-based one. The

main reason is that the ciphertext size evaluated in each round

https://archive.ics.uci.edu/ml

wine
Linnerud breast digits

spambase
diabetes

Boston
MNIST

101

102

103

104

O
nl

in
e

T
im

e
(m

s)

Ma et.al.[26]
Kiss et.al.(HHH)[21]
Kiss et.al.(GGG)[21]
Our PRF-based
Our HE-based

(a) UCI datasets on LAN (1Gbps/0.1ms)

wine
Linnerud breast digits

spambase
diabetes

Boston
MNIST

102

103

104

O
nl

in
e

T
im

e
(m

s)

Ma et.al.[26]
Kiss et.al.(HHH)[21]
Kiss et.al.(GGG)[21]
Our PRF-based
Our HE-based

(b) UCI datasets on MAN (100Mbps/6ms)

wine
Linnerud breast digits

spambase
diabetes

Boston
MNIST

103

104

105

O
nl

in
e

T
im

e
(m

s)

Ma et.al.[26]
Kiss et.al.(HHH)[21]
Kiss et.al.(GGG)[21]
Our PRF-based
Our HE-based

(c) UCI datasets on WAN (40Mbps/80ms)

Figure 11: Online Runtime in LAN/MAN/WAN Setting. Note that the 𝑦-axis is in logarithm scale.

in our PRF-based protocol is smaller than that in our HE-based

protocol. In the latter, for example, the ciphertext size is set to

be |𝑁 2 | = 4096. Although they all enjoy constant communication

complexity per selection, the constant factor is much higher in

HE-based protocol. GGG also shows better online communication

performance than our HE-based protocol when trees are small. It

is reasonable because GGG shifts all GC generation to the offline

phase, resulting in efficient online efficiency independent of the

tree size. However, GGG needs 𝑛ℓ 1-out-of-2 OT to perform obliv-

ious feature selection. Thus, compared with GGG, our HE-based

protocol shows less online communication cost when it comes to

trees with a high-dimensional feature vector, like MNIST.

Towards offline communication, our two constructions both lie

between GGG and the construction of Ma et al. [26]. The protocol
in [26] enjoys the lowest offline communication cost for small

trees. However, their offline communication cost increases with the

size of the tree since the tree in their protocol should be re-sent

before each evaluation. Thus, as the tree size𝑚 increases, our offline

communication overhead will be outpaced by [26]. GGG costs the

most even when the tree is medium-sized in Table 3, i.e., digits. As
we discussed before, GGG can enjoy a better online communication

cost by moving major communication to offline. However, as shown

in Fig. 10(b), the price is high, referring to big trees.

PDTE Running Time. We report the online running time of

our PDTE protocols under different network settings (LAN, MAN,

WAN) in Fig. 11. The reported runtimes of protocol [26] are read

from their paper. In this test, we use LowMC to instantiate the

involved PRF in our PRF-based protocol.

In the LAN setting, our HE-based protocol needs the most run-

ning time except for MNIST. It is clear to see that the running time

of GGG and HHH grow with the tree size. Our HE-based protocol

shows less computation when treating MNIST (𝑚 = 4179) than

Boston (𝑚 = 851). This is because the depth of MNIST is smaller

than Boston. Our PRF-based protocol lies between Ma et al. [26]
protocol and HHH protocol. There is no doubt that protocol in [26]

is the most efficient protocol to date under the LAN setting. This

is because the most expensive operations in their protocol are OT

and GC. Yet, in our PRF-based protocol, the most costly are secure

LowMC evaluation. However, our PRF-based protocol still outruns

linear protocols GGG and HHH by 24× to 65×, respectively, for
MNIST.

Our two protocols are slightly less efficient than HHH and re-

quire around 100× costs than GGG [26], especially when the tree is

tiny. One reason is that our work is based on GMW who is highly

influenced by latency. Thus our PRF-based protocol runs an order

slower when the latency increases from 0.1ms to 6ms. This “neg-

ative" property appears on our HE-based protocol as well but in

a mild influence since our HE-based protocol removes the costly

LowMC operation. One should notice that our two protocols be-

come slightly better than GGG and save at least 5× running times

than HHH, for MNIST. With the increase of size/depth of the tree,

our sublinear protocols will be more competitive.

We can also observe that as the network latency increases, our

HE-based PDTE protocol gradually surpasses PRF-based one, i.e.,
6× to 7× faster in the WAN setting. The reason is that two-party

PRF evaluation in the PRF-based protocol involves higher rounds

than the HE-based construction, which causes significant time

consumption over the high-latency network.

Trade-off.We report the concrete trade-off between our PRF-based

protocol and HE-based protocol. Since OT/PRF/HE can be used to

instantiate SOS protocol, we investigate the differences when using

different SOS protocols and give the corresponding experiments.

To thoroughly examine the PRF-based protocol, we also implement

AES as the underlying PRF. Specifically, we use A+B to denote the

tree node is selected by A-based SOS protocol, and the attribute is

obliviously shared by B-based SOS protocol.

We remove wine, breast, spambase and diabetes, which share

similar parameters as the selected trees. Fig. 12 shows the trade-off

in three different network settings. In the scenarios with low net-

work latency (e.g., IoT), LowMC+OT can efficiently handle small

trees like Linnerud. In the cases of deep trees with thousands of

nodes, LowMC+LowMC shows less communication cost while

LowMC+OT saves roughly 50% runtime. Thus, in the situation

where the computation performance matters more, LowMC+OT

can be adopted to provide reasonable online computation overhead

and communication cost. The reported runtime/communication

of HE+OT under the LAN setting is significantly high than other

PRF-based protocols. With latency increasing, AES-based proto-

cols suffer more than LowMC involved protocols, while HE+OT

shows its advantages in runtime, as seen from Fig. 12(b). Under

WAN with 80ms high network latency, the online running time for

small trees by LowMC+LowMC is around 50% higher than LowMC

combining OT. This gap becomes progressively smaller as the tree

depth increases. Under this setting, HE+OT is the first choice when

considering time-consuming.

102
103

Communication in KBytes

102

103

R
un

ti
m

e
in

 m
s

AES+AES
AES+OT
LowMC+LOWMC
LowMC+OT
HE+OT

(a) Trade-off under LAN (1Gbps/0.1ms)

102
103

Communication in KBytes

103

104

R
un

ti
m

e
in

 m
s

AES+AES
AES+OT
LowMC+LOWMC
LowMC+OT
HE+OT

(b) Trade-off under MAN (100Mbps/6ms)

102
103

Communication in KBytes

104

105

R
un

ti
m

e
in

 m
s

AES+AES
AES+OT
LowMC+LOWMC
LowMC+OT
HE+OT

(c) Trade-off under WAN (40Mbps/80ms)

Figure 12: Trade-offs between Online Communication (x-axis) and Online Runtime (y-axis). Each figure shows the online
complexities including communication and runtime. Note that diamond, square, triangle, round and six-pointed star represent
AES+AES, AES+OT, LowMC+LowMC, LowMC+OT and HE+OT protocol, respectively. The shape filled by red, blue, yellow and
green are Linnerud, digits, Boston and MNIST, respectively. Both 𝑥-axis and 𝑦-axis are in logarithm scale.

20 25 30 35 40 45 50
Depth of Decision Tree

104

105

T
ot

al
 C

om
m

un
ic

at
io

n
(K

B
yt

es
)

Tueno et.al.[33]
PRF-based
HE-based

(a) Total Communication

20 25 30 35 40 45 50
Depth of Decision Tree

102

103

104

T
ot

al
 T

im
e

(m
s)

Tueno et.al.[33]
PRF-based
HE-based

(b) Total Running Time

Figure 13: Total Communication and Runtime Cost (LAN
setting). Note that 𝑦-axis is in logarithm scale.

Scalability for High-depth Trees. We report the scalability of

our PDTE protocols and compare themwith the ORAM-based PDTE

protocol [33] in LAN setting. Unfortunately, Tueno et al. [33] only
report results for trees with depth up to 23 since their experiments

ran out of memory. The experiments of our protocols are done

for trees with the depth ranging from 18 to 50. For tree’s size, we

follow the same setting of [33] by letting 𝑚 = 25𝑑 . We perform

the evaluation in the LAN setting as shown in Fig. 13. As we can

see, our HE-based protocol requires 9× to 16× less communication

and 4× to 7× less running time compared with [33]. Our PRF-

based protocol requires 43× to 60× less communication and 26× to

54× less running time compared with [33]. Therefore, our PDTE

protocols are more scalable for evaluation over large trees.

6 RELATEDWORK
There are many two-party PDTE protocols in the literature [2, 5, 9,

21, 32, 35]. Among them, a few works [20, 26, 33] achieve sublinear

cost. In the following, we summarize these works separately.

Linear-cost Protocols. Brickell et al. [9] pack each tree node into

a GC circuit and then transmit the encrypted tree itself to the

feature provider. With the help of HE and OT, the feature provider

can perform oblivious evaluation by herself. However, the security

requires that the encrypted tree should be refreshed for each tree

evaluation, incurring linear costs. This work was later optimized by

Barni et al. [2]. The communication cost is saved by only sending

encrypted internal nodes rather than the whole tree. However, it

is still linear to the tree size. Bost et al. [5] express the decision

tree as a high-degree polynomial and encrypt it using an expensive

Leveled Fully Homomorphic Encryption (Leveled-FHE) scheme.

Wu et al. [35] propose a cheaper protocol by only relying on OT

and AHE. Yet, the construction requires the tree holder to pad

the tree to be complete in order to hide the tree structure. This

padding strategy incurs massive communication and computation

overhead, especially for deep-but-sparse trees. Subsequent PDTE

protocols [12, 21, 25] follow the same approach. To avoid padding,

Tai et al. [32] propose a novel path cost mechanism using AHE. This

protocol performs better for sparse trees but still runs at linear cost.

Kiss et al. [21] systematically compare existing PDTE protocols.

They mix HE and GC in different evaluation phases and report their

concrete efficiency. Same as previous works, they trade efficiency

for privacy by doing comparisons for all decision nodes, resulting

in linear computation/communication. Ideally, the best solution is

to perform only the necessary comparisons meanwhile hiding the

decision path.

Sublinear-cost Protocols. Three up-to-date work [20, 26, 33] con-
sider sub-linear decision tree protocols. Joye and Salehi [20] reduce

the number of secure comparisons to 𝑑 . The comparison is based on

DGK protocol [11] using AHE. In tree level 𝑙 , they employ 1-out-of-

2
𝑙
OT to obliviously select an AHE encrypted tree node. In the end,

the involved OT incurs𝑂 (2𝑑 −1) communication in total. Thus, this

PDTE protocol is only sublinear in computation. Tueno et al. [33]
organize a decision tree as an array and build an oblivious array

indexing (OAI). Such an interactive OAI allows the participants to

pick the desired tree node and its corresponding attribute oblivi-

ously. OAI can be instantiated utilizing GC, OT or Oblivious RAM

(ORAM). The first two OAIs can only realize sublinear complexity

on the feature provider side since they also require OT to transfer

among 2
𝑑
nodes, same as [20]. If employing ORAM, it takes 𝑂 (𝑑4)

communication cost and requires 𝑑2
(e.g., complete tree) rounds.

In order to further reduce communication cost, in protocol [26],

the tree holder encrypts the tree and sends it to the feature provider.

In each tree level, there is an OT and a comparison between both

parties. The feature provider searches local encrypted tree for the

next node after comparison. Since the authors move the most ex-

pensive oblivious selection operations to feature provider’s local

computation, their protocol is very efficient in terms of computation.

Nevertheless, we notice that this searching property means this tree

cannot be reused across evaluations because the feature provider

can learn some information from memory access patterns during

different evaluations. Accordingly, to reach the genuine PDTEwhen

using [26], toward every evaluation, the decision tree model should

be re-randomized and transmitted to the feature provider, causing

linear complexity in terms of communication and computation.

Outsourced Protocols. Some also try to gain more efficiency with

the help of cloud servers, which is called outsourced PDTE pro-

tocols [19, 24, 26, 36]. They aim to use outsourced cloud servers

to release the heavy burden from the tree holder and the feature

provider. However, most of them suffer linear complexities [24, 36]

or leak more information [24] than prior two-party protocols.

7 CONCLUSION
In this paper, we study how to design sublinear-communication

PDTE protocols with improved efficiency. We first propose two

communication-efficient shared oblivious selection (SOS) protocols

with different trade-offs. By combining these SOS protocols with

secure computation and a tree encoding strategy, we propose two

PDTE protocols both with sublinear communication efficiency. Our

experiments show our protocols are efficient and practical. As future

research, we will extend our techniques to other privacy-preserving

machine learning protocols.

ACKNOWLEDGMENT
We thank the anonymous reviewers for insightful comments and

suggestions. Bai and Russello would like to acknowledge the MBIE-

funded programme STRATUS (UOWX1503) for its support and

inspiration for this research. This research is supported by the

National Research Foundation, Singapore under its Strategic Capa-

bility Research Centres Funding Initiative. Any opinions, findings

and conclusions or recommendations expressed in this material

are those of the author(s) and do not reflect the views of National

Research Foundation, Singapore.

REFERENCES
[1] Martin R Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen, and

Michael Zohner. 2015. Ciphers for MPC and FHE. In Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques. Springer,
430–454.

[2] Mauro Barni, Pierluigi Failla, Vladimir Kolesnikov, Riccardo Lazzeretti, Ahmad-

Reza Sadeghi, and Thomas Schneider. 2009. Secure evaluation of private linear

branching programs with medical applications. In European symposium on re-
search in computer security. Springer, 424–439.

[3] Donald Beaver. 1991. Efficient multiparty protocols using circuit randomization.

In Annual International Cryptology Conference. Springer, 420–432.
[4] Donald Beaver. 1995. Precomputing oblivious transfer. In Annual International

Cryptology Conference. Springer, 97–109.
[5] Raphael Bost, Raluca Ada Popa, Stephen Tu, and Shafi Goldwasser. 2015. Machine

learning classification over encrypted data. In Network and Distributed System
Security Symposium (NDSS), Vol. 4324. 4325.

[6] Elette Boyle, Niv Gilboa, and Yuval Ishai. 2015. Function secret sharing. In Annual
international conference on the theory and applications of cryptographic techniques.
Springer, 337–367.

[7] Elette Boyle, Niv Gilboa, and Yuval Ishai. 2016. Function secret sharing: Improve-

ments and extensions. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security. 1292–1303.

[8] Andrej Bratko, Bogdan Filipič, Gordon V Cormack, Thomas R Lynam, and Blaž

Zupan. 2006. Spam filtering using statistical data compression models. The
Journal of Machine Learning Research 7 (2006), 2673–2698.

[9] Justin Brickell, Donald E Porter, Vitaly Shmatikov, and Emmett Witchel. 2007.

Privacy-preserving remote diagnostics. In Proceedings of the 14th ACM conference

on Computer and communications security. 498–507.
[10] Jason Catlett. 1991. Overprvning Large Decision Trees.. In International Joint

Conferences on Artificial Intelligence. Citeseer, 764–769.
[11] Ivan Damgård, Martin Geisler, and Mikkel Krøigaard. 2007. Efficient and secure

comparison for on-line auctions. InAustralasian conference on information security
and privacy. Springer, 416–430.

[12] Martine De Cock, Rafael Dowsley, Caleb Horst, Raj Katti, Anderson CA Nasci-

mento, Wing-Sea Poon, and Stacey Truex. 2017. Efficient and private scoring of

decision trees, support vector machines and logistic regression models based on

pre-computation. IEEE Transactions on Dependable and Secure Computing 16, 2

(2017), 217–230.

[13] Daniel Demmler, Thomas Schneider, and Michael Zohner. 2015. ABY-A frame-

work for efficient mixed-protocol secure two-party computation.. In Network and
Distributed System Security Symposium (NDSS).

[14] Jack Doerner and Abhi Shelat. 2017. Scaling ORAM for secure computation. In

Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. 523–535.

[15] Niv Gilboa and Yuval Ishai. 2014. Distributed point functions and their appli-

cations. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 640–658.

[16] Oded Goldreich. 2009. Foundations of cryptography: volume 2, basic applications.
Cambridge university press.

[17] Carmit Hazay and Yehuda Lindell. 2010. Efficient secure two-party protocols:
Techniques and constructions. Springer Science & Business Media.

[18] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. 2003. Extending oblivious

transfers efficiently. In Annual International Cryptology Conference. Springer, 145–
161.

[19] Keyu Ji, Bingsheng Zhang, Tianpei Lu, Lichun Li, and Kui Ren. 2021. UC Secure

Private Branching Program and Decision Tree Evaluation. Cryptology ePrint
Archive (2021).

[20] Marc Joye and Fariborz Salehi. 2018. Private yet efficient decision tree evaluation.

In IFIP Annual Conference on Data and Applications Security and Privacy. Springer,
243–259.

[21] Ágnes Kiss, Masoud Naderpour, Jian Liu, N Asokan, and Thomas Schneider. 2019.

Sok: Modular and efficient private decision tree evaluation. Proceedings on Privacy
Enhancing Technologies 2019, 2 (2019), 187–208.

[22] Hian Chye Koh, Wei Chin Tan, and Chwee Peng Goh. 2006. A two-step method

to construct credit scoring models with data mining techniques. International
Journal of Business and Information 1, 1 (2006), 96–118.

[23] Vladimir Kolesnikov and Ranjit Kumaresan. 2013. Improved OT extension for

transferring short secrets. In Annual Cryptology Conference. Springer, 54–70.
[24] Jinwen Liang, Zheng Qin, Sheng Xiao, Lu Ou, and Xiaodong Lin. 2019. Efficient

and secure decision tree classification for cloud-assisted online diagnosis services.

IEEE Transactions on Dependable and Secure Computing 18, 4 (2019), 1632–1644.

[25] Lin Liu, Jinshu Su, Rongmao Chen, Jinrong Chen, Guangliang Sun, and Jie Li. 2019.

Secure and fast decision tree evaluation on outsourced cloud data. In International
Conference on Machine Learning for Cyber Security. Springer, 361–377.

[26] Jack PK Ma, Raymond KH Tai, Yongjun Zhao, and Sherman SM Chow. 2021. Let’s

stride blindfolded in a forest: Sublinear multi-client decision trees evaluation. In

Network and Distributed System Security Symposium (NDSS).
[27] ZhuoranMa, JianfengMa, YinbinMiao, and Ximeng Liu. 2019. Privacy-preserving

and high-accurate outsourced disease predictor on random forest. Information
Sciences 496 (2019), 225–241.

[28] Silvio Micali, Oded Goldreich, and Avi Wigderson. 1987. How to play any mental

game. In Proceedings of the Nineteenth ACM Symp. on Theory of Computing, STOC.
ACM, 218–229.

[29] Pascal Paillier. 1999. Public-key cryptosystems based on composite degree resid-

uosity classes. In International conference on the theory and applications of crypto-
graphic techniques. Springer, 223–238.

[30] Arpita Patra, Thomas Schneider, Ajith Suresh, and Hossein Yalame. 2021. ABY2.0:

Improved Mixed-Protocol Secure Two-Party Computation. In 30th USENIX Secu-
rity Symposium (USENIX Security 21). 2165–2182.

[31] Vili Podgorelec, Peter Kokol, Bruno Stiglic, and Ivan Rozman. 2002. Decision

trees: an overview and their use in medicine. Journal of medical systems 26, 5
(2002), 445–463.

[32] Raymond KH Tai, Jack PK Ma, Yongjun Zhao, and Sherman SM Chow. 2017.

Privacy-preserving decision trees evaluation via linear functions. In European
Symposium on Research in Computer Security. Springer, 494–512.

[33] Anselme Tueno, Florian Kerschbaum, and Stefan Katzenbeisser. 2019. Private

Evaluation of Decision Trees using Sublinear Cost. Proc. Priv. Enhancing Technol.
2019, 1 (2019), 266–286.

[34] Xiao Wang, Hubert Chan, and Elaine Shi. 2015. Circuit oram: On tightness of

the goldreich-ostrovsky lower bound. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. 850–861.

[35] David J Wu, Tony Feng, Michael Naehrig, and Kristin E Lauter. 2016. Privately

Evaluating Decision Trees and Random Forests. Proc. Priv. Enhancing Technol.
2016, 4 (2016), 335–355.

[36] Yifeng Zheng, Huayi Duan, and Cong Wang. 2019. Towards secure and effi-

cient outsourcing of machine learning classification. In European Symposium on
Research in Computer Security. Springer, 22–40.

A SECURITY PROOFS
A.1 Proof of Theorem 2
Security against corrupted S. We construct a simulator Sims as

follows. During setup, Sims runs S’s setup protocol except with the

following exception: Sims randomly samples C[𝑖] $←− {0, 1}ℓv for
all 𝑖 ∈ [0,𝑚). As for selection protocol, Sims is provided with input

⟨idx⟩s and output 𝑒 (i.e., a PRF output share). It runs S’s selection
protocol except with the following exceptions: Sims runs simulator

for Fpre to simulate the view of weight-1 bit vector generation. Also,

Sims runs simulator for Fpre to simulate the view of shared PRF

protocol. Finally, Sims outputs S’s view. We prove the simulated

view is indistinguishable from real-world execution via a sequence

of hybrid games.

• H0: Outputs S’s view in the real-world protocol.

• H1: Same as H0 except Sims randomly samples C[𝑖] $←−
{0, 1}ℓv for all 𝑖 ∈ [0,𝑚). By the security of 𝐹 , H1 is compu-

tationally indistinguishable from H0.

• H2: Same as H1 except that Sims runs simulator for Fpre to
generate S’s view in the shared weight-1 bit vector protocol.

In particular, the simulator for Fpre is provided with input

𝑛 and output ⟨S⟩s, ⟨idx⟩s, and in the end it generates a sim-

ulated view. By the security of shared weight-1 bit vector

protocol, H2 and H1 are indistinguishable.

• H3: Same as H2 except that Sims runs simulator to generate

S’s view in shared PRF protocol. Note that for all other

view from running secret-shared computation, Sims can

simulate it by randomly sampling shares, which is identi-

cally distributed in both worlds. However, Sims must ensure

all prior simulated view be consistent with the final out-

put, which is ⟨M[idx] [𝑗]⟩s. As such, Sims computes 𝑓 ∗
𝑗
←

⟨M[idx] [𝑗]⟩⊕ ⟨C[idx] [𝑗]⟩∗ for 𝑗 ∈ [0, 𝐵), it then invokes the
simulator for Fpre over (⟨{idx| | 𝑗⟩∗s } 𝑗 ∈[0,𝐵−1) , {𝑓 ∗𝑗 } 𝑗 ∈[0,𝐵)) to
simulateS’s view in shared PRF protocol. Since we are work-

ing in a hybrid model, such simulator must exist
7
.H3 andH2

are indistinguishable by the security of shared PRF protocol.

Security against corrupted R. Operations of S and R are almost

symmetric during the protocol, so our strategy for proving a cor-

rupted R is almost same as the one we construct against corrupted

S. The proof for corrupted R is thus omitted.

A.2 Proof of Theorem 3
Security against corrupted S. We construct a simulator Sim for

corrupted S as follows. During setup, Sim runs S’s setup protocol

except with the following exception: Sim randomly samplesC[𝑖] $←−
Z𝑁 2 for all 𝑖 ∈ [0,𝑚). Given semantic security of Paillier encryption,

the simulated ciphertexts are indistinguishable from the ones in

real-world protocol.

7
A simulator who can simulate secret-shared XOR and AND computation will suffice

to simulate any secure computation task.

In the selection protocol, for the view from generating weight-1

bit vector, Sim calls the simulator for Fpre to simulate correspond-

ing view over randomly sampled ⟨S⟩s and ⟨rdx⟩s8; the simulation

is perfect in hybrid mode. The view of B2A conversion can also be

simulated using existing simulator for secure computation, such a

simulator always exists given the security of B2A protocol. Next,

Sim picks a random 𝛿
$←− Z𝑚 , the simulation is also indistinguish-

able: in the real-world protocol, idx and rdx are all random, then

𝛿 = rdx− idx (mod𝑚) is also a random number in Z𝑚 . The simula-

tor Sim performs simulation for the next B2A conversion protocol,

similarly as it previously does for idx and rdx. The simulated view

of B2A is indistinguishable from real-world protocol. For the view

of share conversion from additive sharing to multiplicative sharing,

Sim first invokes the simulator for BMT generation in F
sprf

over a

randomly sampled 𝑎
$←− Z𝑁 2 and the share J𝑐K

$←− Z𝑁 2 . Next, Sim
samples𝛾, 𝑒, 𝑓 and J𝑥 ·𝛾−1K randomly fromZ𝑁 2 . Note that in the real-

world protocol, 𝑒 ← 𝛾−1−𝑎 (mod 𝑁 2) and 𝑓 ← J𝑥Kr−𝑏 (mod 𝑁 2).
Given that 𝑎, 𝑏,𝛾 and J𝑥Kr are all random, then 𝑒 and 𝑓 are random

elements in Z𝑁 2 as well. However, there is a difference since the

simulator samples 𝛾 from Z𝑁 2 rather from Z∗
𝑁 2

, the simulated 𝛾

can be accidentally sampled from Z𝑁 2\Z∗
𝑁 2

. However, this bad

probability can only happens with probability of
1

𝑝 +
1

𝑞 , which is

negligible in ^ . Next, Sim randomly samples 𝑥𝛽
$←− Z𝑁 2 rather than

𝑥𝛽
$←− Z∗

𝑁 2
, the probability to distinguish is negligible as we argued

before. For J𝑚Ks, Simwill randomly sample it from [0, 2ℓv+_+1], this
is statically closed to the real-world view for statistical parameter

_.

Security against corrupted R. Simulator for a corrupted R can

be constructed using the similar strategy as we constructed for S
since all operations are symmetric between S and R. Therefore, we
omit the simulation for corrupted R in our proof.

A.3 Proof of Theorem 4
Simulator for corrupted 𝑃0. The simulator Sim invokes the sim-

ulator of SOS setup protocol over AT . Similarly, Sim invokes the

simulator of SOS setup protocol over X. The simulation is perfect

in the hybrid model. Sim randomly samples ⟨𝑡⟩0, ⟨𝑙⟩0⟨𝑟 ⟩0, ⟨𝑣⟩0 and

⟨𝑐⟩0 from Z2
ℓ . It is straightforward to see that the simulated view

is indistinguishable from the real-world execution.

As for evaluation protocol, the simulator in the beginning does

not need to simulate ⟨idx⟩ since it shares 0, which is locally done

by the parties. Then Sim randomly samples ⟨rst⟩0. The above sim-

ulation is indistinguishable from the real-world view. Then Sim
calls the simulator of SOS selection protocol over X. In particular,

Sim samples ⟨𝑣⟩0 and ⟨X[𝑣]⟩ randomly, and invokes F (X)sos where

⟨𝑣⟩0 and ⟨X[𝑣]⟩ are the input and the output, respectively. After-

wards, Sim simulates the view of secure comparison, the view can

be simulated as the secure computation is well-studied in existing

work [13]. Then Sim randomly samples ⟨idx⟩ ∈ Z
2
ℓ , the simulation

is perfect since the share is randomly computed from secure com-

putation. Sim invokes the simulator for SOS selection protocol over

8
Note that a secret share can be regards as a random number over its sharing domain.

Then, the sampled random numbers as the simulated shares are indistinguishable from

the real-world protocol.

Parameters: BMT module 𝑛, computational security parameter

^; statistical security parameter _; Paillier plaintext module 𝑁 =

𝑝 · 𝑞, where 𝑝 and 𝑞 are primes.

(1) 𝑃0 generates a pair of Paillier public/private key pair

(pk, sk) ← Gen(1^) and sends pk to 𝑃1.

(2) 𝑃0 chooses 𝑎
$←− Z𝑛 and sends 𝑥 ← Encpk (𝑎) to 𝑃1.

(3) 𝑃1 chooses 𝑏
$←− Z𝑛 and 𝜌

$←− [0, 2_), sends 𝑥 ′ ← 𝑥𝑏 ·
Encpk (𝑟 + 𝜌 · 𝑛) (mod 𝑁 2) to 𝑃0.

(4) 𝑃0 decrypts to get J𝑐K0 ← Decsk (𝑥 ′) (mod 𝑛).
(5) 𝑃1 sets J𝑐K1 ← −𝑟 (mod 𝑛).

Figure 14: BMT from AHE [13]

AT with ⟨idx⟩s as the input and a random number 𝑟
$←− (Z

2
ℓv)5 as

the output. In particular, 𝑟 is used to simulate S’s share of AT [idx].
The simulated view is indistinguishable from real-world view due

to the security of SOS protocol. For all other operations that can be

done locally, Sim can simulate trivially (since no view involves in

these operations).

Simulator for corrupted 𝑃1. The idea of simulating view for a

corrupted 𝑃1 is almost the same as the simulation for 𝑃0 because

the PDTE protocol is essentially symmetric for the two parties.

Therefore, we omit the proof for the corrupted 𝑃1.

B CORRELATED RANDOMNESS
GENERATION

B.1 BMT Generation
For a normal BMT (J𝑎K, J𝑏K, J𝑐K), 𝑎, 𝑏 and 𝑐 are all secret-shared

among the parties. In our setting, wewant to generate BMT (𝑎, 𝑏, J𝑐K)
where 𝑃0 holds (𝑎, J𝑐K0) and 𝑃1 holds (𝑏, J𝑐K1). In the following, we

summarize two ways for generating such special BMTs using either

AHE or OT.

AHE-based approach [13]. BMTs can be generated from AHE,

e.g., Paillier encryption. The parties can explore the additive ho-

momorphic property to share the multiplication result over Z𝑛 .
In Fig. 14, we give a protocol for generating BMTs from Paillier

encryption.

OT-based approach [13] A BMT (𝑎, 𝑏, J𝑐K) can be generated by

using OTs as shown in Fig. 15.

B.2 WBV Generation from FSS
Boyle et al. [6, 7, 15] formalize a new cryptographic primitive called

Function Secret Sharing (FSS), and gave concrete constructions for

useful functions. We begin with formally defining Function Secret
Sharing for two parties.

Definition 5 (Function Secret Sharing). A two-party FSS scheme

Π
fss

= (Gen, Eval) consists of a pair PPT algorithms as follows:

• Gen(1^ , 𝑓) is a key generation algorithm, which takes as

input a security parameter 1
^
and a function description 𝑓 ,

outputs a tuple of keys (𝑘 fss

0
, 𝑘fss

1
), each for one party.

• Eval(𝑘 fss

𝑖
, 𝑥) is an evaluation algorithm, which on input a

key 𝑘 fss

𝑖
for party 𝑃𝑖 (𝑖 ∈ {0, 1}), and an evaluation point

Parameters: BMT module 𝑛, 𝑛’s bit size ℓ ; computational secu-

rity parameter ^.

(1) 𝑃0 chooses 𝑎
$←− Z𝑛 and decomposes 𝑎 to its boolean form

(𝑎ℓ−1, · · · , 𝑎1, 𝑎0) such that 𝑎 =
∑ℓ−1

𝑖=0
2
𝑖 · 𝑎𝑖 .

(2) For 0 ≤ 𝑖 < ℓ :

(a) 𝑃1 chooses 𝑟𝑖
$←− Z𝑛 and computes twomessages (𝑚0

𝑖
=

𝑟𝑖 ,𝑚
1

𝑖
= 𝑟𝑖 + 2

𝑖 · 𝑏 (mod 𝑛));
(b) 𝑃0 and 𝑃1 invoke 1-out-of-2 OT functionality FOT

where 𝑃1 sends (𝑚0

𝑖
,𝑚1

𝑖
) and 𝑃0 sends 𝑎𝑖 . In the end,

𝑃0 receives𝑚
𝑎𝑖
𝑖
.

(3) 𝑃0 sets J𝑐K0 ←
∑ℓ−1

𝑖=0
𝑚
𝑎𝑖
𝑖
(mod 𝑛), and 𝑃1 sets J𝑐K1 ←∑ℓ−1

𝑖=0
−𝑟𝑖 (mod 𝑛).

Figure 15: BMT from OT [13]

𝑥 ∈ {0, 1}ℓ , outputs a group element 𝑦𝑖 ∈ G as the share of

𝑓 (𝑥) for 𝑃𝑖 .

Definition 6 (Security of FSS). A secure two-party FSS satisfies

the following requirements:

• Correctness: for all function 𝑓 : {0, 1}ℓ → G and every 𝑥 ∈
{0, 1}𝑛 , if (𝑘fss

0
, 𝑘fss

1
) ← Gen(1^ , 𝑓) then Pr[Eval(𝑘fss

0
, 𝑥) +

Eval(𝑘 fss

1
, 𝑥) = 𝑓 (𝑥)] = 1.

• Secrecy: For every corrupted 𝑃𝑖 and every sequence of func-

tion 𝑓1, 𝑓2, ..., there exists a PPT simulator Sim such that for

𝑖 ∈ {0, 1}:

{𝑘fss

𝑖 : (𝑘 fss

0
, 𝑘fss

1
) ← Gen(1^ , 𝑓^)}^∈N

𝑐≡ {Sim𝑖 (1^ , 𝑖,G)}^∈N
Definition 7 (Point Function). A point function is a function

𝑓𝛼,𝛽 (𝑥) : {0, 1}ℓ → G where G is an abelian group such that

𝑓𝛼,𝛽 (𝑥) =
{

𝛽, if 𝑥 = 𝛼

0, otherwize

(1)

Our WBV is based on a point function defined in Definition 7,

which can be shared using FSS with the key size of 𝑂 (^ log𝑚).
A trusted dealer can generate the keys for a point function with

𝑂 (log𝑚) PRG evaluations. In [14], they use two-party computation

to generate FSS keys, removing the trusted-dealer assumption. In-

deed, the technique in [14] can be directly used for pre-processing

WBV. Specifically, each party 𝑃𝑖 just locally sample a random share

⟨rdx⟩𝑖 ∈ Zℓ
2
, and then run the two-party FSS key generation pro-

tocol of [14] to compute the keys. Each party will hold a FSS key

after secure computation, and then each party can evaluate his key

over 𝑖 ∈ [0,𝑚) to generate his own share of a WBV. By definition

of point function, the parties will only share 1 at rdx, and 0 for any

𝑖 ≠ rdx.

	Abstract
	1 Introduction
	2 Background
	2.1 Decision Tree Evaluation
	2.2 Cryptographic Primitives
	2.3 Semi-honest Security

	3 Overview of Our Approach
	3.1 Protocol Setting and Security Guarantee
	3.2 Design Goals
	3.3 Technique Overview

	4 Private Decision Tree Evaluation with Sublinear Communication
	4.1 Shared Oblivious Selection Protocol
	4.2 The Proposed PDTE Protocol

	5 Experiment
	5.1 Experiment Setup
	5.2 Tree Parameters
	5.3 Performance Evaluation

	6 Related Work
	7 Conclusion
	References
	A Security Proofs
	A.1 Proof of Theorem 2
	A.2 Proof of Theorem 3
	A.3 Proof of Theorem 4

	B Correlated randomness generation
	B.1 BMT Generation
	B.2 WBV Generation from FSS

