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Abstract

We consider the problem of controlling a Linear Quadratic Regulator (LQR) system over a finite

horizon T with fixed and known cost matrices Q,R, but unknown and non-stationary dynamics

{At, Bt}. The sequence of dynamics matrices can be arbitrary, but with a total variation, VT ,

assumed to be o(T ) and unknown to the controller. Under the assumption that a sequence of

stabilizing, but potentially sub-optimal controllers is available for all t, we present an algorithm

that achieves the optimal dynamic regret of Õ
(
V

2/5
T T 3/5

)
. With piecewise constant dynamics, our

algorithm achieves the optimal regret of Õ(
√
ST ) where S is the number of switches. The crux of our

algorithm is an adaptive non-stationarity detection strategy, which builds on an approach recently

developed for contextual Multi-armed Bandit problems. We also argue that non-adaptive forgetting

(e.g., restarting or using sliding window learning with a static window size) may not be regret optimal

for the LQR problem, even when the window size is optimally tuned with the knowledge of VT . The

main technical challenge in the analysis of our algorithm is to prove that the ordinary least squares

(OLS) estimator has a small bias when the parameter to be estimated is non-stationary. Our analysis

also highlights that the key motif driving the regret is that the LQR problem is in spirit a bandit

problem with linear feedback and locally quadratic cost. This motif is more universal than the LQR

problem itself, and therefore we believe our results should find wider application.
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1 Introduction

We look at the control of a Linear Quadratic Regulator (LQR) system with unknown and time-varying

linear dynamics:

xt+1 = Atxt +Btut + wt,

with state xt ∈ Rn and control ut ∈ Rd, stochastic i.i.d. sub-Gaussian noise process {wt}, and a time-

invariant known quadratic cost function c(x, u) = x>Qx + u>Ru over a horizon of T periods. LQR

systems are perhaps the simplest Markov Decision Processes (MDPs) and one of the most fundamental

problems studied in control theory. To quote [Tedrake, 2009, Chapter 8], “one of the most powerful

applications of time-varying LQR involves linearizing around a nominal trajectory of a nonlinear system

and using LQR to provide a trajectory controller.” More precisely, given a desired trajectory x0
t , u

0
t

that one desires to track for a system with non-linear dynamics:

E[xt+1 | xt, ut] = xt + f(xt, ut),

we define the centered trajectories x̄t = xt − x0
t , ūt = ut − u0

t , so that:

E[x̄t+1 | x̄t, ūt] = x̄t + f(xt, ut)− f(x0
t , u

0
t )

≈ x̄t +
∂f(x0

t , u
0
t )

∂x0
t

(xt − x0
t ) +

∂f(x0
t , u

0
t )

∂u0
t

(ut − u0
t ) =: Atx̄t +Btūt.

See also [Athans, 1971] for a tutorial treatment of use of LQR in engineering design. LQR systems, and

linear dynamical systems more broadly, have been used to model diverse applications, such as controlling

robots [Levine et al., 2016], cooling data centers [Cohen et al., 2018], control of brand dynamics in

marketing ?, and macroeconomic policy [Chow, 1976] to name a few. As a result, LQR systems have

also been the subject of a lot of research on reinforcement learning: from model-free vs. model-based

approaches in episodic learning setting, to learning and control under unknown stationary dynamics,

to robust control in the presence of an adversarial (non-stochastic) noise process. See related work

in Section 2. The ability to adapt to changing dynamics lends another, arguably stronger, robustness

to the control policy. However, to the best of our knowledge, the problem of learning non-stationary

dynamics while controlling an LQR system has not been studied yet. We take the first steps towards

this problem.

We quantify the non-stationarity of the sequence {Θt = [At Bt]} by the total variation VT =
∑T−1

t=1 ∆t

with ∆t := ‖Θt+1 −Θt‖F denoting the Frobenius norm of change of dynamics matrix A and input matrix

B from time t to t+ 1. In the case of piecewise constant dynamics, we measure the non-stationarity by

the number of pieces ST ≥ 1.
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We measure the performance of a control (and learning) policy π via dynamic regret metric:

Rπ(T ) =

T∑
t=1

c(xt, ut)− J∗t , (1)

where ut denotes the action taken by policy π, and J∗t denotes the optimal average steady-state cost

of the stationary LQR system with dynamics fixed as Θt. We also show that
∑

t J
∗
t is at most O(VT )

larger than the expected cost of the dynamic optimal policy. A fundamental result in the theory of LQR

systems states that the optimal policy for an LQR system is a linear feedback control policy ut = Ktxt

for some sequence of matrices Kt (see, e.g., [Bertsekas, 2012]). If the LQR system is stationary, then

the infinite horizon optimal policy satisfies Kt = K∗. Our central result states that, given access to

a nominal sequence of controllers that are potentially sub-optimal but are guaranteed to stabilize the

non-stationary LQR dynamics, the proposed algorithm Dyn-LQR guarantees:

E
[
RDyn-LQR(T )

]
= Õ

(
V

2/5
T T 3/5

)
,

without the knowledge of VT upfront. We also demonstrate an instance showing that this regret rate is

tight for any online learner/controller. The same algorithm guarantees E
[
RDyn-LQR(T )

]
= Õ

(√
ST
)

when the dynamics are piece-wise constant with at most S switches. The dependence of the regret on

the dimensions n, d for our algorithm and analysis is n2d2, but we believe this can be improved with a

better choice of the tuning parameters in our algorithm.1

The design philosophy behind our algorithm Dyn-LQR is of using certainty equivalent controllers, that

is, using the controller based on a point estimate of the model parameter (as opposed to confidence

ellipsoids, for example). At a typical time t, Dyn-LQR employs a linear feedback control K̂t based on

an estimate Θ̂t of the current dynamics, with some extra exploration noise: ut = K̂txt + σtηt. Here

ηt ∼ N (0, Id), and σt denotes the “exploration energy.” A fairly simple regret decomposition lemma

shows that if the policies K̂t do not change very often, then the regret is dominated by (i) the total

exploration energy
∑

t σ
2
t , and (ii)

∑
t Jt(K̂t)−J∗t , where Jt(K̂t) denotes the average steady-state cost of

the stationary LQR system with time-invariant dynamics Θt and control K̂t. A result of Simchowitz and

Foster [2020] shows that Jt(K̂t)− J∗t / C ·
∥∥∥Θ̂t −Θt

∥∥∥2

F
, if the estimation error is small enough. Thus,

if we strip away the complexity introduced due to the dynamics itself, the essence of the non-stationary

LQR problem is that of tracking Θt, which boils down to a bandit problem with linear feedback and a

locally quadratic loss function. In Section 9 we give an example of a queueing system which also exhibits

this motif, and for which we believe a similar algorithm as Dyn-LQR can give optimal dynamic regret.

Under non-stationary dynamics, it is important to forget the distant history when constructing an

estimate of the current dynamics. Our approach for doing so is to adaptively restart the learning

1For stationary LQR, Simchowitz and Foster [2020] prove that the optimal dependence is d
√
n, we leave the task of

achieving the same dependence in non-stationary LQR as a question for subsequent research.
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problem when “sufficient” change in the dynamics has accumulated, using a scheme motivated by

the algorithm of Chen et al. [2019] developed for contextual multi-armed bandits. The algorithm of

Chen et al. [2019] runs multiple tests in parallel, each tailored to detect changes of a different scale, by

replaying (with carefully tailored probabilities) an older strategy and then comparing the new estimated

reward distribution with the older reward distribution. As a result, Chen et al. [2019] were the first to

obtain the optimal dynamic regret for contextual bandit problems as a function of the total variation

of the reward distribution without the knowledge of the variation budget. For the LQR problem, we

modify this procedure in at least two directions. First, we keep using the current controller but inject

a higher exploration noise. This change is critical for our regret analysis at two places: our current

analysis includes a term involving the number of policy switches and minimizing the number of policy

switches impacts the regret guarantee; and, we mention below, our analysis of the estimation error of

dynamics crucially relies on the linear feedback control matrix being fixed throughout the interval of

estimation. Second, the probabilities with which the exploration is carried out are different for the LQR

problem owing to the quadratic cost. More recently, the authors in Wei and Luo [2021] outline that for

many classes of episodic reinforcement learning problems, a similar strategy can be used to convert any

Upper Confidence Bound (UCB) type stationary reinforcement learning algorithm to a dynamic regret

minimizing algorithm. There are quite a few differences between Wei and Luo [2021] and our work: the

LQR problem is not covered by the classes of MDPs they consider, we look at a non-episodic version of

the LQR problem, and our algorithm is certainty equivalent controller-based and not a UCB-type.

Technical challenges and novelty: We next point out three areas where the analysis in the current

paper contributes to the existing literature on online learning and control.

1. Ordinary Least Squares (OLS) under non-stationarity: The biggest challenge we overcome is to

prove a bound on the error of the estimated parameters Θ̂t. In particular, based on the observations

in some interval I, the OLS estimate Θ̂I of the dynamics is given by:

Θ̂I = argmin
Θ

∑
t∈I

∥∥∥xt+1 −Θ(x>t u>t )>
∥∥∥2

= argmin
Θ

∑
t∈I

∥∥∥(Θt −Θ) · (x>t u>t )> + wt

∥∥∥2
.

A linear feedback controller ut = KIxt, with KI fixed during the interval I, allows estimating the

component of Θt parallel to the n-dimensional column space of [x>t u>t ] = [In K
>
I ]>xt, but not in

the orthogonal subspace. This problem shows up even in stationary LQR, and is the reason we

use the exploration noise σtηt in ut. However, for stationary LQR, this is only a mild problem –

the estimate is unbiased by default and the condition number of the (ill-conditioned) Hessian is

sufficient to bound the variance of the OLS estimator. Under non-stationary Θt, even proving that

the OLS estimate Θ̂I is “unbiased,” i.e., close to Θt for t ∈ I even when all the Θt in I are close

to each other, is not trivial. Naively using the condition number of the Hessian would require

a larger σt, and, thus, result in a suboptimal regret. A major chunk of the technical analysis

is to show that a small exploration cost is sufficient to guarantee that Θ̂I has small bias. This
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requires quite a delicate analysis of the geometry of the Hessian, as well as an interplay with the

algorithm itself where we need to keep the policy KI fixed so that the column space of [In K
>
I ]> is

fixed. This is where we crucially take advantage of the fact that instead of replaying an old policy

as in Chen et al. [2019] to detect non-stationarity, we continue playing the same linear feedback

controller and only increase the exploration noise.

2. Continuous and unbounded state space: The second challenge comes from the fact that the LQR

system has unbounded state space. A particular complication this creates is that the certainty

equivalent controller need not stabilize the dynamics under non-stationarity, and therefore the

norm of the state can blow up. Algorithmically, we solve this problem by falling back on the

nominal sequence of controllers when the norm of the state crosses a threshold, and until it falls

below another threshold. Analytically, this requires some careful analysis to bound the total cost

incurred during such phases.

3. An impossibility result for non-adaptive restart algorithms: We prove a novel regret lower bound

that outlines a shortcoming of a popular strategy for non-stationary bandits/reinforcement learn-

ing. As we mentioned earlier, to forget distant history for non-stationary bandits and episodic

reinforcement learning, almost all existing algorithms restart learning at a fixed schedule, or use

sliding window based estimators with a fixed window size. For all the flavors of non-stationary

bandit or reinforcement learning problems studied in the literature, this strategy yields the op-

timal regret if the window size is tuned optimally with the knowledge of the variation budget, or

using a bandit-on-bandit technique. In Theorem 26 we prove that for the non-stationary LQR

problem, for a wide class of fixed window size based algorithms, this approach can not give the

optimal regret rate even with the knowledge of VT . This crucially uses the fact that the LQR

problem behaves like a bandit problem with non-linear (in particular quadratic) loss function. We

believe that the same lower bound should extend to non-linear bandit problems more generally.

Paper Outline: We survey some of the relevant literature in Section 2. In Section 3, we first present

some classical results on control of stationary LQR and recent results on learning and control. Then

in Section 4 we present the model assumptions for the non-stationary LQR problem that is the subject

of our study. In Section 5, we present our proposed algorithm Dyn-LQR. We devote Section 6 to

highlighting the technical challenge in studying the error of the OLS estimator for non-stationary LQR.

In Section 7 we present the regret upper bound for Dyn-LQR, and in Section 8 we present two lower

bound results.

Notation: All vectors are column vectors. For a matrix A, we use ‖A‖ = sup‖x‖=1 ‖Ax‖ to denote

the operator norm and ‖A‖F =
√∑

i,j a
2
ij to denote the Frobenius norm. For two square matrices

A,B, we use A 4 B to denote that the matrix B − A is positive semidefinite. The O() notation will

used to suppress problem dependent constants, including the dimensions d, n; the Õ() notation further

suppresses polylog T factors.
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2 Related Work

Our work touches on many themes in online learning and control. For each, we mention only a few

papers relevant to the present work and make no attempt to present an exhaustive survey.

Learning and control of stationary LQR: The study of learning and control of LQRs was initiated

in Abbasi-Yadkori and Szepesvári [2011], who presented an O(
√
T ) regret algorithm based on the

Optimism in the Face of Uncertainty (OFU) principle, but with an exponential dependence on the

dimensionality of the problem. Ibrahimi et al. [2012] improved dependence on the dimensionality to

polynomial. Cohen et al. [2019] was the first paper that provided a computationally efficient algorithm

with O(
√
T ) regret for the stationary LQR problem by solving for the optimal steady-state covariance

of [x>t u
>
t ] via a semi-definite program and extracting a controller from this covariance. Faradonbeh

et al. [2020] and Mania et al. [2019] proved that the certainty equivalent controller is efficient and yields

O(
√
T ) regret. Simchowitz and Foster [2020] proved a matching upper and lower bound on the regret

of the stationary LQR problem of Θ̃(
√
nd2T ), settling the open question of whether logarithmic regret

may be possible for LQR (due to the strongly convex loss function). Notably, the upper bound in

Simchowitz and Foster [2020] was achieved by a variant of the certainty equivalent controller. Cassel

et al. [2020] proved an Ω(
√
T ) lower bound and showed that naive exploration based algorithms can

indeed attain logarithmic regret when the problem is sufficiently non-degenerate. Jedra and Proutiere

[2021] developed a certainty equivalent controller based strategy for stationary LQR, but allow the

controller to change arbitrarily quickly, rather than according to a fixed doubling schedule as in prior

work.

Dynamic regret minimization for experts and bandits: Due to the weakness of static regret as

a metric for environments with non-stationary or adversarial losses/rewards, numerous stronger notions

of regret have been proposed and studied. One of the first such results was in the seminal paper of

Zinkevich [2003], where a regret parameterized by the total variation of the comparator sequence of

actions was proved. Herbster and Warmuth [1998] proposed the FixedShare algorithm for prediction

with expert advice problem, where the best expert may switch during the time horizon. Hazan and

Seshadhri [2009] looked at online convex optimization with changing loss functions, and proposed a

metric for adaptive regret, defined to be the maximum over all windows of the regret of the algorithm

on that window compared to the best fixed action for that window. Daniely et al. [2015] introduced a

metric of strongly adaptive regret and proved that no algorithm can be strongly adaptive in the bandit

feedback setting. For the bandit setting, the most common approach towards dynamic regret is to

assume that the non-stationary sequence has bounded total variation, and providing min-max regret

guarantees as a function of the variation, e.g., Besbes et al. [2014]. The common design technique is

to use periodic restarts or discounting with the knowledge of the variation of rewards, e.g., [Garivier

and Moulines, 2011, Russac et al., 2019], or a bandit-on-bandit technique to learn the optimal window

size as in Cheung et al. [2019a], but with a suboptimal regret guarantee. A recent breakthrough was
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achieved by the algorithm of Chen et al. [2019], which performs a very delicate exploration and uses an

adaptive restart argument to attain the optimal regret rate for contextual multi-armed bandits without

any prior knowledge of the variation.

Reinforcement learning for non-stationary MDPs: While there is some literature on regret

minimization for MDPs with fixed transition kernel, but a changing sequence of cost functions [Yu

et al., 2009, Ortner et al., 2020], the work on unknown non-stationary dynamics is much more recent

[Gajane et al., 2018, Cheung et al., 2019b]. The main idea is to use sliding window based estimators

of the transition kernel and design a policy based on an optimistic model of the transition dynamics

within the confidence set. As we mentioned earlier, sliding window based algorithms are provably regret-

suboptimal for the LQR problem due to the quadratic cost function. In parallel with this work, Wei

and Luo [2021] proposed an adaptive restart approach for non-stationary reinforcement learning that

uses any UCB-type algorithm for stationary reinforcement learning as a black box. The authors show

that for many tabular or linear MDP settings, their approach gives the state-of-the-art regret without

knowledge of variation of the input instance. While the LQR problem is neither tabular nor linear, our

approach is similar in its spirit to Wei and Luo [2021] – however, we use point estimates and explicit

exploration instead of using a UCB-like approach.

Robust control of LQR under adversarial noise: While we consider the robust control of LQR

systems from the perspective of changing transition dynamics, there have been some recent results on

robust control of LQR when the noise wt is adversarial. Hazan et al. [2020] considered a “stationary”

LQR system with known A,B, but with adversarial noise, and proposed an algorithm with O(T 2/3)

regret against the best linear controller in hindsight. Simchowitz et al. [2020] looked at the same

problem when the A,B matrices may or may not be known, and proposed a Disturbance Feedback

Control based online control policy with sublinear regret against all stabilizing policies. Finally, Goel

and Hassibi [2021], Gradu et al. [2020] looked at non-stationary LQR problems with adversarial noise.

Goel and Hassibi [2021] assumed that the sequence At, Bt is known upfront and proposed a controller

with optimal dependence of regret on the total noise. Gradu et al. [2020] assumed that the dynamics

matrices At, Bt are observed after the action ut is taken and proposed a policy with strongly adaptive

regret guarantee. Finally, we would like to point to Boffi et al. [2021] as a recent example of a work

on learning and control of non-stationary non-linear dynamical systems, although in this work the non-

stationary dynamics are linearly parameterized by a known non-stationary sequence of basis matrices

and an unknown stationary parameter.

3 Preliminaries – Stationary LQR

In this section, we give a brief summary of the classical theory of stationary LQR systems and some

recent work on learning and control for stationary LQR systems that lays the groundwork for our work
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on non-stationary LQR. The stationary dynamics, parameterized by Θ = [A B], are given by:

xt+1 = Axt +But + wt, t ∈ [T ],

and the cost function by:

c(xt, ut) = x>t Qxt + u>t Rut,

where xt ∈ Rn denotes the state, ut ∈ Rd the control (or input), wt are i.i.d. stochastic noise (distur-

bance) with covariance matrix W , and Q,R are positive-definite matrices.

A classical result in the theory of LQR problems is that the value function of the LQR problem is a

quadratic function of the state. This is true even for non-stationary dynamics and can be most easily

seen by solving for the optimal control for a finite horizon problem via backward Dynamic Programming.

As a consequence, the optimal controller turns out to be a linear feedback controller ut = Ktxt, for some

sequence of control matrices {Kt}. In the special case of infinite horizon average cost minimization, the

control is stationary with Kt = K∗. For an arbitrary linear feedback controller K that is stabilizing, i.e.,

the spectral radius of A+BK is upper bounded away from 1, we denote by J(Θ,K) the infinite horizon

average cost and by the symmetric positive definite matrix P (Θ,K) we denote the quadratic relative

value function (also called the bias function) for the infinite horizon average cost problem, satisfying

the following Bellman equation:

x>P (Θ,K)x = c(x,Kx)− J(Θ,K) + E
[
x>1 P (Θ,K)x1|x0 = x

]
= x>(Q+K>RK)x− J(Θ,K) + x>(A+BK)>P (Θ,K)(A+BK)x+ E

[
w>P (Θ,K)w

]
.

Matching the quadratic and the constant terms, we get that P (Θ,K) solves the following equation

P = Q+K>RK + (A+BK)>P (A+BK)

and J(Θ,K) = Tr(P (Θ,K)W ). Let the optimal bias function be denoted by P ∗(Θ) and the optimal

linear feedback controller by K∗(Θ). Given P ∗(Θ) = P ∗, the optimal linear feedback controller K∗ =

K∗(Θ) can be obtained by solving for the cost minimizing action in the Bellman equation:

K∗ = −(R+B>P ∗B)−1B>P ∗A. (2)

Plugging the above in the equation for P (Θ,K) gives a fixed point equation (called the Discrete Algebraic

Ricatti Equation) for P ∗(Θ):

P ∗ = Q+A>P ∗A−A>P ∗B(R+B>P ∗B)B>P ∗A. (3)

While the explicit forms of K∗(Θ), P ∗(Θ) are not essential for following the results in the paper, we

would like to point out that neither of them depend on the covariance of the noise process, even though
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the optimal cost J∗(Θ) does.

Finally, consider the policy ut = Kxt + σηt, where ηt are i.i.d. with covariance Id and σ > 0. Denote

the average cost for this policy by J(Θ,K, σ) and the relative value function by P (Θ,K, σ). Then,

P (Θ,K, σ) = P (Θ,K),

J(Θ,K, σ) = J(Θ,K) + σ2 Tr
(
R+B>P (Θ,K)B

)
. (4)

That is, the effect of additive noise in the controller completely decouples from the cost of the noiseless

control Kxt.

Cost of model estimation error: The following lemma from Simchowitz and Foster [2020] will be

central for the intuition and analysis behind learning and control of LQR.

Lemma 1 (Simchowitz and Foster [2020, Theorem 5]). Let Θ = [A B] be a stabilizable system and

Θ̂ = [Â B̂] be an estimate of Θ. Then there exist constants C1, C2, depending on R,Q,W , such that if

max
{∥∥∥A− Â∥∥∥ ,∥∥∥B − B̂∥∥∥} ≤ C1 ‖P ∗(Θ)‖−5, then

J∗(Θ)− J(Θ,K∗(Θ̂)) ≤ C2 ‖P ∗(Θ)‖8
∥∥∥Θ− Θ̂

∥∥∥2

F
.

The lemma implies that the certainty equivalent controller K∗(Θ̂) based on the estimate Θ̂ with suffi-

ciently small error ε leads to a suboptimality of at most a problem-dependent constant times ε2. Note

that the closer the spectral norm of the closed loop A+BK∗(Θ) is to 1, the larger is ‖P ∗(Θ)‖, and the

harder it is to satisfy the condition in Lemma 1.

A naive exploration algorithm: To get some intuition on the fundamental exploration-exploitation

trade-off for the LQR problem, we describe a bare bones version of the algorithm from Simchowitz and

Foster [2020] for the stationary setting. The authors assume (as is common in the literature) access to

a stabilizing, but suboptimal controller K0. The algorithm begins by playing ut = K0xt + σ0ηt with

ηt
i.i.d.∼ N (0, Id) and σ2

0 = 1 for a sufficiently long warm-up period L. Based on this warm-up period,

an initial estimate Θ̂1 is constructed using the ordinary least squares (OLS) estimator. The quantity

σ2
0 denotes the exploration noise/energy. Even though the LQR dynamics adds i.i.d. noise wt to the

state, the exploration noise σ2
0ηt is necessary because the vector [x>t u>t ]> = [In K

>
0 ]>xt lives in an

n-dimensional subspace instead of the full (n+d)-dimensional subspace. The algorithm then proceeds in

blocks of doubling length, indexed by i = 1, 2, . . .. Block i is of length τi = L ·2i. In block 1, the control

is chosen as ut = K1xt + σ1ηt where K1 = K∗(Θ̂1) and σ2
1 = 1/

√
τ1. The observations from block 1 are

used to construct an estimate Θ̂2 and the control in block 2 is ut = K2xt + σ2η2 with K2 = K∗(Θ̂2)

and σ2
2 = 1/

√
τ2. More generally, observations from block (i− 1) are used to create an estimate Θ̂i and

controller Ki = K∗(Θ̂i). The control in block i is ut = Kixt + σiηt, with exploration noise σ2
i = 1/

√
τi.

The intuition behind the choice of exploration noise is the following. The total exploration energy
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invested in block i is τiσ
2
i , which, by (4), increases the cost by an order τiσ

2
i . Furthermore, the variance

of the OLS estimator Θ̂i+1 is inversely proportional to the exploration noise, and is therefore O(1/τiσ
2
i ).

Lemma 1 then says that the per step exploitation cost from using controller Ki+1 based on Θ̂i+1 is

of the order 1/τiσ
2
i . Therefore, the total regret is of order 1/σ2

i during block (i + 1). Balancing the

exploration cost τiσ
2
i during block i and the total exploitation cost 1/σ2

i during block i + 1 gives the

choice σ2
i ≈ τ

−1/2
i .

4 Model and Preliminaries – Non-stationary LQR

The non-stationary LQR problem has dynamics:

xt+1 = Atxt +Btut + wt, t ∈ [T ],

and time-invariant cost function:

c(xt, ut) = x>t Qxt + u>t Rut,

where xt ∈ Rn denotes the state, ut ∈ Rd the control (or input), wt
i.i.d.∼ N (0,W ) denotes the stochastic

noise (disturbance) with covariance matrix W = ψ2In (the assumption on wt is for exposition purposes;

our results readily extend to sub-Gaussian wt with ψ2In 4 W 4 Ψ2In for 0 < ψ < Ψ < ∞). We use

{Ft}t∈[T ] to denote the filtration generated by {w1, . . . , wT }. We will use Θt = [At Bt] to succinctly

denote the dynamics of the LQR at time period t. Cost matrices Q,R are assumed to be symmetric

positive definite with rminId 4 R 4 rmaxId, qminIn 4 Q 4 qmaxIn.

The learner/controller knows the cost matrices Q,R, but not the dynamics {Θt}t∈[T ]. For any interval

I = [s, e], we define the total variation of the model parameter within the interval as

∆I = ∆[s,e] :=
e−1∑
t=s

∆s =
e−1∑
t=s

‖Θs −Θs+1‖F ,

so that the total variation VT = ∆[1,T ]. In the case of piecewise constant dynamics, we use SI ≥ 1 to

denote the number of such constant dynamics pieces in interval I.

A common assumption in the literature on online learning and control of stationary LQR systems is

the availability of a baseline controller K0 that may be suboptimal, but stabilizes the system. Such a

controller can be played in an initial warm-up phase until a good initial estimate of the dynamics can be

learned. This assumption allows one to focus on the algorithmic challenge of minimizing regret and not

worry about the stability of the system. From the point of view of applications, often there are default

actions which guarantee this condition (e.g., shutting a data center will prevent over-heating of servers),

or crude forecasts of the dynamics may be enough to derive such controls. Theoretically, a stabilizing

controller can be found by following the strategy proposed in Faradonbeh et al. [2018]. Similarly, we

also assume that our algorithm is given a sequence of controllers {Kstab
t } that stabilizes the dynamics

12



given by {Θt}. More formally, Assumption 3 states that the exogenous sequence of controllers satisfies

a property called sequentially strong stability.

Definition 2 (Sequentially Strong Stability Cohen et al. [2018]). For the non-stationary LQR problem

with parameters {Θt} = {[At Bt]}, a sequence of controllers {K1, . . . ,KT } is called (κ, γ) sequen-

tially strongly-stabilizing (for κ ≥ 1 and 0 < γ ≤ 1) if there exist matrices H1, H2, . . . ,HT � 0 and

L1, L2, . . . , LT such that At +BtKt = HtLtH
−1
t for all t ∈ [T ], and the following properties hold:

(i) ‖Lt‖ ≤ 1− γ and ‖Kt‖ ≤ κ for t ∈ [T ];

(ii) ‖Ht‖ ≤ B0 and
∥∥H−1

t

∥∥ ≤ 1/b0 with κ = B0/b0 for t ∈ [T ];

(iii)
∥∥H−1

t+1Ht

∥∥ ≤ 1 + γ/2 for t ∈ [T − 1].

Assumption 3. The online algorithm has access to a sequence of (κ, γ) sequentially strongly-stabilizing

controllers {Kstab
1 ,Kstab

2 , . . . ,Kstab
T }, for constants κ ≥ 1 and 0 < γ ≤ 1.

A (κ′, γ′) sequentially strongly stabilizing sequence of controllers is also (κ, γ) strongly stabilizing for

κ ≥ κ′ and γ ≤ γ′. Therefore, we take κ ≥ 1 as a convenient convention. An intuitive explanation for

this assumption is the following. Denote

Φt := At +BtK
stab
t and Φb:a := ΦbΦb−1 · · ·Φa, for 1 ≤ a ≤ b ≤ T.

Then

‖Φb:a‖ =
∥∥HbLb(H

−1
b Hb−1)Lb−1 · · · (H−1

a+1Ha)LaH
−1
a

∥∥
≤ ‖Hb‖ · ‖Lb‖ ·

∥∥H−1
b Hb−1

∥∥ · ‖Lb−1‖ · · ·
∥∥H−1

a+1Ha

∥∥ · ‖La‖ · ∥∥H−1
a

∥∥
≤ κ

(
1 +

γ

2

)b−a
(1− γ)b−a+1 ≤ κ

(
1− γ

2

)b−a
. (5)

As a consequence of (5) and noting that

xb = Φb−1:axa + Φb−1:a+1wa + Φb−1:a+2wa+1 + · · ·+ Φb−1:b−1wb−2 + wb−1,

we can bound the norm of the state under the stabilizing controllers as:

‖xb‖ ≤ κe−γ(b−a)/2 ‖xa‖+
2κ

γ
max

a≤t≤b−1
‖wt‖ ,

and,

E
[
‖xb‖2

]
= ‖Φb−1:axa‖2 + E

[
‖Φb−1:a+1wa‖2

]
+ · · ·+ E

[
‖Φb−1:b−1wb−2‖2

]
+ E

[
‖wb−1‖2

]
≤ κ2e−γ(b−a) ‖xa‖2 +

2κ2

γ
E
[
‖w‖2

]
. (6)
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While assuming ‖Φt‖ < 1 − γ/2 also ensures (5), it is a much more restrictive condition. A weaker

condition is that the spectral radius is bounded: ρ(Φt) ≤ 1 − γ/2, but the spectral radius is not

submultiplicative and does not imply (5).

A second assumption we will make is on the stability of the controller derived from an accurate estimate

of the true dynamics.

Assumption 4. For any t ∈ [T ], let Θt be the true dynamics, Θ̂t be an estimate of the true dynamics,

and K̂ = K∗(Θ̂t) be the optimal closed-loop controller for the estimated dynamics. Then, there exist

constants C3, C4 such that
∥∥∥Θ̂t −Θt

∥∥∥2

F
≤ C3 implies J∗(Θt) − J(Θt, K̂) ≤ C4

∥∥∥Θt − Θ̂t

∥∥∥2

F
. For conve-

nience, we assume C3 ≤ 1, since the assumption continues to hold if we choose a smaller value of C3

than sufficient.

Assumption 4 is without loss of generality due to Lemma 1. As mentioned earlier, the constants C3, C4

depend on the maximum operator norm of P ∗t , which we assume to be bounded independent of T and

VT . The constants C3, C4 are only used in the analysis, not as a part of the algorithm.

Just like Assumption 3, under non-stationary dynamics, we need a stronger sequential stability property

for controllers K∗(Θ̂t) than in Assumption 4. Towards that end, we introduce a strengthening of the

(κ, γ) sequential strong stability criterion. The main difference is that condition (iii) involves the

variation ‖Θt+1 − Θt‖ and hence allows us to prove exponential stability for non-stationary dynamics

with small total variation.

Definition 5 ((κ, γ, ν)-Sequentially Strong Stability). For the non-stationary LQR problem and an

interval [a, b], a sequence of controllers {Ka, . . . ,Kb} is called (κ, γ, ν)-sequentially strongly-stabilizing

(for κ ≥ 1 and 0 < γ ≤ 1) if there exist matrices Ha, Ha+1, . . . ,Hb � 0 and La, La+1, . . . , Lb such that

At +BtKt = HtLtH
−1
t for all t ∈ [a, b], and the following properties hold:

(i) ‖Lt‖ ≤ 1− γ and ‖Kt‖ ≤ κ for t ∈ [a, b];

(ii) ‖Ht‖ ≤ B0 and
∥∥H−1

t

∥∥ ≤ 1/b0 with κ = B0/b0 for t ∈ [a, b];

(iii)
∥∥H−1

t+1Ht

∥∥ ≤ 1 + ν · ‖Θt+1 −Θt‖ for t ∈ [a, b− 1].

The next lemma states that if the provided estimate Θ̂ satisfies ‖Θ̂−Θt‖2F ≤ C3 for all t in an interval

I, then the controller K̂ = K(Θ̂) is (κ, γ, ν)-sequentially strongly stable for the dynamics in I.

Lemma 6. For an interval I, let Θ̂ be an estimate of the dynamics such that ‖Θ̂−Θt‖2F ≤ C3 for all

t ∈ I. Let K̂ = K∗(Θ̂) be the optimal linear feedback controller with respect to the estimate Θ̂. Define

ν =
2(1− γ)2

1− (1− γ)2
((1− γ) + (κ+ 1)) .
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Then K̂ is a (κ, γ, ν)-sequentially strongly stable control sequence for interval I with the following setting

of parameters: Ht = P
1/2
t and Lt = P

−1/2
t

(
At +BtK̂

)
P

1/2
t , where Pt := P (Θt, K̂), κ =

√
J̃∗I

ψ2rmin
,

γ = qminψ
2

2J∗I
, J∗I = maxt∈I J

∗(Θt), and J̃∗I = J∗I + C3C4.

As a corollary, similar to the calculations in (6), the following lemma bounds the norm of xt.

Lemma 7. Let the controller K̂ and interval I = [sI , eI ] satisfy the conditions in Lemma 6. Then for

an action sequence ut = K̂xt + σtηt, t ∈ I, there exists a constant Css such that

‖xt‖ ≤ κe−γ(t−1)+CssV[1,t−1]‖x1‖+
κe−γ(t−s)+CssV[s,t−1]

γ
max
1<s<t

‖ws + σsBsηs‖ , t ∈ I.

Later we will see that the controllers used in our proposed Algorithm 1 satisfy the conditions of Lemmas 6

and 7, and hence stabilize the dynamics and the state has bounded norm with high probability.

Finally, we introduce some constants that we will use as a parameterization of the input instance. We

assume that they are known to the learner/controller.

Additional Constants: Let the norm upper bounds for the parameters of the instance be given by:

Au = maxt∈[T ] ‖At‖, Bu = maxt∈[T ] ‖Bt‖, Θu = maxt∈[T ] ‖Θt‖, and Pu = maxt∈[T ] ‖P ∗t ‖. Define

β := max

{
ψ,max

i,t
βi,t

}
,

where βi,t are singular values of Bt. Define Ku as:

Ku = max
t

∥∥∥Kstab
t

∥∥∥ , max
Θ̂:‖Θ̂−Θt‖2

F
≤C3

∥∥∥K∗(Θ̂)
∥∥∥
 .

Finally, define ρ0 = 1− γmin/2 and κ = κmax, where γmin is the smaller of γ values from Assumptions 3

and Lemma 6, and similarly κmax is the larger of the κ values.

5 Algorithm Dyn-LQR

Our algorithm Dyn-LQR is presented as Algorithm 1. At a high level, the algorithm divides the time

horizon into epochs {E1, E2, . . .} where the squared total variation ∆2
Ei within epoch Ei is of the order√

1/|Ei|. This should be reminiscent of the trade-off described in the last paragraph of Section 3 where

the variance of the OLS estimator for a block was proportional to the inverse square root of the length

of the block. The end of an epoch signals that a sufficient change in Θt has accumulated and the

algorithm starts a new epoch, whereby it forgets the past history and restarts the procedure to estimate

the dynamics Θt. Since the length of an epoch is unknown to the online controller a priori, within
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Figure 1: Illustration of Regular epochs, blocks, and stabilization epochs for Algorithm Dyn-LQR.
Epoch i ends in block Bi,j when an EndOfExplorationTest fails. Epoch i + 1 ends because ‖xt‖
exceeds the threshold xu, indicating that the current controller Ki+1,3 is potentially unstable. This
triggers a stabilization epoch which ends the first time ‖xt‖ falls below x`, and starts epoch i+ 2.

each epoch we follow a doubling strategy (again similar to the naive algorithm in Section 3) by further

splitting it into non-overlapping blocks (indexed by j = 0, 1, . . .) of geometrically increasing duration.

We denote the j-th block of epoch i as Bi,j . During block 0, or the warm-up block, the algorithm plays

an action ut = Kstab
t xt + ν0ηt where ηt ∼ N (0, Id) are i.i.d. Gaussian random vectors, and ν0 = 1 is the

added exploration noise. We denote by {Gt}t∈[T ] the filtration generated by {η1, . . . , ηT }. The duration

of the warm-up blocks is L = O((n + d) log3 T ). The O(1) exploration noise reduces the estimation

error of the OLS estimate computed at the end of the block. Observations from block j are used to

create an estimate Θ̂i,j of the dynamics, which in turn gives the linear feedback controller for block

j + 1 as Ki,j+1 := K∗(Θ̂i,j), and action ut = Ki,j+1xt + νj+1ηt. For a block Bi,j with j ≥ 1, we choose

ν2
j ≈ 1√

|Bi,j |
as the exploration noise similar to the stationary LQR case. If the estimate based on a

block Bi,j “differs statistically” from the estimate from the previous block Bi,j−1 (Algorithm 3), epoch

Ei is ended and Ei+1 started. Figure 1 gives an illustration of epochs and blocks.

The vanilla policy mentioned above suffers from the problem that we could potentially commit to a

controller for a long block – and hence fail to detect a large change, which could in turn potentially

lead to O(T ) regret. This is where the crucial novelty of the scheme of Chen et al. [2019] (designed

for contextual multi-armed bandits) comes into play: to detect non-stationarity, which may happen

at different scales (few large or many small changes), at each time within the block Bi,j , the authors’

algorithm enters a replay phase where the policy from an earlier block in the same epoch (together

with the larger exploration noise) is played. If at the end of some replay phase, the estimate of reward

differs significantly from the history, the current epoch is ended. The algorithm could potentially be in

multiple replay phases simultaneously, in which case the policy to replay is picked uniformly at random

from active replays. Replay phases with different indexes are intended to detect changes of different

magnitudes.
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Algorithm 1: Dyn-LQR

Input: Horizon T , stabilizing controllers {Kstab
t }, input instance parameters ρ0, ψ, κ, β

1 Definition: ν0 = 1; ν2
j =

√
C0

2jL for j ≥ 1 where C0 = 4 log T , L = 16(n+d) log3 T
1−ρ0 ;

2 Bi,j = [τi + 2j−1L, τi + 2jL− 1], where τi is the start of exploration epoch Ei;

3 Bounds on ‖xt‖ for stabilization epochs: xu = 2κeCss

(√
8(n+d)β√

1−ρ0

√
log T + (n+d)B

1−ρ0

)
, x` = 2ψκ

√
n

1−ρ0 ;

4 ηt
i.i.d.∼ N (0, In);

5 Initialize: t = 1, i = 1;
6 τi ← t ; /* Start of exploration epoch Ei */

7 for t = τi, . . . , τi + L− 1 do /* Block 0 (warm-up) */

8 Play ut = Kstab
t xt + ν0ηt;

9 end
10 for j = 1, 2, . . . do

11 Let Θ̂i,j−1 be the OLS estimator based on Bi,j−1, and define Ki,j = K∗(Θ̂i,j−1);
12 M← ∅ ; /* Initialize the set of exploration phases */

13 while t ≤ τi + 2jL− 1 do

14 E ∼ Ber
(

1
L2−j/2

∑j−1
m=0 2−m/2

)
; /* Sample exploration indicator */

15 if E = 1 then
16 Sample exploration scale index m ∈ {0, 1, 2, . . . , j − 1} with probability Pr(m = b) ∝ 2−b/2;
17 M←M∪ {(m, t)};
18 end
19 Let Mt = {(m, s) ∈M | s ≤ t ≤ s+ 2mL− 1} ; /* Active exploration phases */

20 if Mt 6= ∅ then
21 Set mt = min{m | ∃(m, s) ∈Mt};
22 Play ut = Ki,jxt + νmt

ηt;

23 else
24 Play ut = Ki,jxt + νjηt;
25 end
26 Observe xt+1;
27 for (m, s) ∈M with t = s+ 2mL− 1 do
28 if EndOfExplorationTest(i, j,m, s) = Fail then
29 t← t+ 1, i← i+ 1 ; Go to line 6 ; /* Start a new epoch */

30 end

31 end
32 if t = τi + 2jL− 1 and EndOfBlockTest(i, j) = Fail then
33 t← t+ 1, i← i+ 1 ; Go to line 6 ; /* Start a new epoch */

34 end
35 t← t+ 1;
36 if ‖xt‖ ≥ xu then /* Instability detected */

37 while ‖xt‖ ≥ x` do
38 Play ut = Kstab

t xt, observe xt+1;
39 t← t+ 1;

40 end
41 i← i+ 1 ; Go to line 6 ; /* Start a new epoch */

42 end

43 end

44 end
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Algorithm 2: EndOfExplorationTest(i, j,m, s)

Construct OLS estimator Θ̂i,j,(m,s);

Θ̂i,j,(m,s) = argminΘ

∑s+2mL−1
t=s

∥∥xt+1 −Θ[x>t u
>
t ]>

∥∥2

F
;

if
∥∥∥Θ̂i,j−1 − Θ̂i,j,(m,s)

∥∥∥2

F
≥ (1 + C̄bias + 2C̄var)

2(2mL)−1/2 then /* See (7) */

Return Fail ;
end
Return Pass;

Algorithm 3: EndOfBlockTest(i, j)

Construct OLS estimator Θ̂i,j ;

Θ̂i,j = argminΘ

∑
t∈Bi,j

∥∥xt+1 −Θ[x>t u
>
t ]>

∥∥2

F
;

if
∥∥∥Θ̂i,j−1 − Θ̂i,j

∥∥∥2

F
≥ (1 + C̄bias + 2C̄var)

2(2j−1L)−1/2 then /* See (7) */

Return Fail ;
else

Return Pass;
end

To adapt to the LQR setting, we simplify the above strategy. In particular, at any time t in a block Bi,j ,
we enter an exploration phase with probability proportional to 1/

√
|Bi,j | and given this event happens,

the ‘scale’ of the exploration phase is chosen to be m with probability proportional to 1/
√

2m. A scale m

exploration phase lasts for 2mL time steps, during which we play the action ut = Ki,jxt+σtηt. That is,

we keep playing the same linear feedback controller, but with exploration noise increased to σ2
t ≈ 1√

2m
.

Therefore, a scale m exploration phase allows us to detect variation in Θt of size
4
√

1/2m. There can

be multiple exploration phases active at any time t. We denote them by Mt = {(m1, t1), (m2, t2), . . .}
where mk denotes the scale and tk denotes the starting time of the k-th active exploration phase.

In this case, we play the most aggressive (i.e., the smallest m) exploration phase, with the feedback

used by all active exploration phases to improve their estimates. At the end of the exploration phase

(m, s), we first compute the OLS estimator Θi,j,(m,s), and declare non-stationarity and end the epoch if∥∥∥Θ̂i,j−1 − Θ̂i,j,(m,s)

∥∥∥2
' 1√

2m
(Algorithm 2).

One crucial difference between LQR and the contextual bandit setting off Chen et al. [2019] is that

LQR has a quadratic cost, while contextual bandit is a special case of a linear bandit problem, which

affects the choice of σt. Yet another crucial difference from the contextual bandit setting is that since

the LQR system has a state, the system could potentially become unstable through an inaccurate

estimate before the non-stationarity is detected. We thus create a third criterion for ending an epoch:

whenever ‖xt‖ ≥ xu = O
(√

(n+d) log T

1−ρ0

)
, we end the current epoch and enter a stabilization epoch. In a

stabilization epoch we keep playing the stabilizing controllers without any exploration noise until ‖xt‖
drops below x` = O

(
n

1−ρ0

)
. At this point, we begin a regular exploration epoch.
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6 Estimation error for OLS with non-stationary Θt

A central ingredient of our algorithm is the ordinary least squares estimator used to learn the approxi-

mate dynamics. While the study of the variance of the OLS estimator is a well-understood topic, when

the parameter sequence is non-stationary, the OLS estimator can be biased. Studying this bias is quite

non-trivial, especially for the LQR problem.

We state our results on the estimation error of the OLS estimator for non-stationary LQR at the end

of this section and devote Appendix C to the formal proofs of the results. However, we will highlight

in brief the reason that these results are challenging and non-trivial. For intuition, the reader should

keep the trade-off we pointed to at the end of Section 3 in mind: during an interval I of length |I|,
to balance the exploration-exploitation trade-off we would like to create an estimator that has error of

order |I|−1/4. With a non-stationary parameter sequence, this error comes from both the variance of

the estimator as well as the bias. Therefore, if the variation in Θt during this interval, ∆I , is of smaller

order than |I|−1/4, then we would like the bias of our estimator to be O(∆I).

Failure of a naive proof-strategy. We first show that an obvious first line of attack to bound the

estimation error of OLS does not work. Define zt = [x>t , u
>
t ]> and ΥI :=

∑
t∈I ztz

>
t for an interval

I = [s, e]. Then we can write the error in the OLS estimator compared to a ‘representative’ Θ̄ (e.g.,

Θ̄ = Θe) as:

Θ̂I − Θ̄ =

(∑
t∈I

(
Θt − Θ̄

)
ztz
>
t

)
Υ−1
I︸ ︷︷ ︸

“bias”

+

(∑
t∈I

wtz
>
t

)
Υ−1
I︸ ︷︷ ︸

“variance”

.

The above shows that if Θt is constant in I, then the estimator is unbiased. Lacking that, we may

try to bound the first term as follows (this proof strategy was followed in Cheung et al. [2019a]). Let

Θ̄ = Θe, then∥∥∥∥∥
(∑
t∈I

(Θt −Θe) ztz
>
t

)
Υ−1
I

∥∥∥∥∥
F

=

∥∥∥∥∥
(∑
t∈I

e−1∑
p=t

(Θp −Θp+1) ztz
>
t

)
Υ−1
I

∥∥∥∥∥
F

=

∥∥∥∥∥
e−1∑
p=s

(Θp −Θp+1)

(
p−1∑
t=s

zsz
>
s

)
Υ−1
I

∥∥∥∥∥
F

≤
e−1∑
p=s

‖(Θp −Θp+1)‖F λmax

((
p−1∑
t=s

zsz
>
s

)
Υ−1
I

)
.

If λmax

((∑p−1
t=s zsz

>
s

)
Υ−1
I

)
≤ 1, then the analysis above would bound the bias by ∆I . While this may

seem intuitive (e.g., it is true if zs are scalars), this was shown to be false for an arbitrary {zs} sequence

even for the case of zs ∈ R2 by Zhao and Zhang [2021].

An illustrative example. To further highlight why a technically challenging analysis is necessary

for the study of OLS with a non-stationary parameter sequence, we consider a simple example of OLS
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Figure 2: Illustration for the large bias of OLS estimator with non-stationary parameters.

estimation without noise. Consider a 2-dimensional example with two data points:

θ1 = [1 1], θ2 = [1− ε 1]; z1 = [cosα sinα], z2 = [1 0].

Figure 2 shows the geometric intuition behind the OLS estimator. In this specific example, the estimate

is given by the intersection of two (for t = 1, 2) lines: perpendicular to zt and passing through θt. The

bias of the OLS estimate θ̂ in this noiseless case is given as |θ̂ − θ2| = ε/ tanα. With α ≈ ε � 1, the

bias approaches 1 even though θ1, θ2 are ε-close to each other. The matrix Υ for this case is

Υ =

[
1 + cos2 α cosα · sinα

cosα · sinα sin2 α

]
,

which is ill-conditioned when α � 1. In particular, λmax(Υ)/λmin(Υ) ≈ 1/2α2. It might seem that

such an ill-conditioned Υ is an extreme case that is unlikely to bother our study. However, with the

exploration noise chosen in Algorithm 1, we give evidence in Lemma 40 that the condition number

of ΥI for intervals I of interest is concentrated around O(
√
|I|), while we are trying to get unbiased

estimates when the variation of Θt in interval I is ∆I = O(|I|−1/4). This precisely corresponds to the

problematic setting α ∼ ε� 1 in our toy example above.

Our proof approach. We begin by decomposing the problem into bounding the estimation error for

each row of the estimate Θ̂I . For a given row, θ̂I , the key obstacle in the analysis of the estimation

error
∥∥∥θ̂I − θ̄∥∥∥2

is that while zt lives in Rn+d, most of its variance is in the n-dimensional column

space of [In K>I ]>, where KI is the fixed linear feedback controller used during interval I. This is

because the LQR dynamics naturally adds the noise wt−1 to arrive at the state xt allowing efficient

exploration/estimation of the component of θ̄ lying in the column space of [In K
>
I ]>. In particular, the

total energy in this column space is O(|I|) through wt, while the energy in the orthogonal subspace

through the exploration noise ξt = σtηt is
∑

t∈I σ
2
t = O(

√
|I|). Therefore, as our toy example points
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out, a naive analysis based on a lower bound on the eigenvalues of the matrix
∑

t∈I ztz
>
t fails, because

it does not exploit the statistical independence between ξt and xt.

Our approach is to instead to look at one-dimensional OLS problems parameterized by directions v ∈
Sn+d := {v ∈ Rn+d, ‖v‖ = 1}:

λv = argmin
λ
L(θ̄ + λ · v),

where L is the quadratic loss function for OLS. We argue that |λv| are small for ‘enough’ directions v.

That is, in enough directions, the minimizer
(
θ̄ + λv · v

)
of the 1-dimensional quadratic defined above

is close to the candidate θ̄. Furthermore, since the loss function looks very different for v lying close to

the column space of [In K
>]> versus v lying close to its orthogonal subspace, we consider two cases: v

lying only in the column space or lying only in its orthogonal subspace, and prove that the geometry

of Hessian implies that it is sufficient to look at these two cases. The complete proof is presented in

Appendix C.

Results We state our lemmas for the estimation error for the OLS estimators used in Algorithm 1.

Lemma 8 states it for intervals within exploration blocks Bi,j , while Lemma 9 states it for warm-up

blocks Bi,0. The reason for the two separate results is that within a warm-up block, the controller

Kstab
t is changing, which does not allow a subspace decomposition we mentioned earlier, but the O(1)

exploration noise still allows us to bound the estimation error. Within an exploration block Bi,j , the

exploration noise is of a much smaller magnitude (to control regret due to exploration), but the controller

Kt is fixed, which allows the decomposition.

Lemma 8. Consider an interval I in block Bi,j for some epoch Ei in Algorithm 1, such that |I| ≥ L

and maxt∈I ‖xt‖ ≤ xu. Let Θ̂I be the corresponding OLS estimate from observations in I and Θ̄ = Θt

for some t ∈ I. Then, there exists a T0, such that for T ≥ T0, with probability at least 1− ε:∥∥∥Θ̂I − Θ̄
∥∥∥
F
≤ C̆1∆I + C̆2|I|−

1
4 ,

where

C̆1 = Cbias

√
ln

1

ε
+ lnT and C̆2 = Cvar

(
√

lnT +

√
ln

1

ε

)
,

for problem dependent constants Cbias, Cvar (precise expressions are shown in (43)).

Lemma 9. Consider a warm-up block Bi,0 in Algorithm 1 and let Θ̄ = Θt for some t ∈ Bi,0. There

exists a T0, such that for T ≥ T0 and the choice of L in Algorithm 1, the OLS estimate Θ̂Bi,0 of a

warm-up block Bi,0 satisfies ∥∥∥Θ̂Bi,0 − Θ̄
∥∥∥
F
≤ C̆1,stab∆Bi,0 + C̆2,stab|Bi,0|−

1
4 ,
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with probability at least 1− ε where

C̆1,stab = Cbias,stab

√
lnT and C̆2,stab = Cvar,stab

√
ln

1

ε
+ ln lnT ,

for problem dependent constants Cbias,stab, Cvar,stab (precise expressions are shown in (49)).

Applying Lemma 8 and Lemma 9 with ε = 1/T 3 to all the intervals (at most T 2) that may be considered

during the execution of Algorithm 1 and a union bound immediately gives the following result.

Lemma 10. Define Event 1 as the event that for each warm-up block Bi,0 in Algorithm 1 it holds that∥∥∥Θ̂Bi,0 − Θ̄
∥∥∥
F
≤ Cbias,stab

√
lnT∆Bi,0 + 3Cvar,stab

√
lnT |Bi,0|−

1
4 ,

and for each phase and non-warmup block, denoted by I = [s, e], it holds that∥∥∥Θ̂I − Θ̄
∥∥∥
F
≤ 3Cbias

√
lnT∆I + 3Cvar

√
lnT |I|−

1
4 .

Then we have that Pr[Event 1] ≥ 1− 1/T .

For succinctness, define

C̄bias =
√

lnT max{3Cbias, Cbias,stab} and C̄var =
√

lnT max{3Cvar, 3Cvar,stab}. (7)

7 Regret Upper Bound for Dyn-LQR

Our main regret upper bound for Dyn-LQR is shown below.

Theorem 11. Under Assumption 3, the expected regret of Dyn-LQR is upper bounded as:

E
[
RDyn-LQR(T )

]
= Õ

(
V

2/5
T T 3/5

)
.

If the dynamics {Θt} are piecewise constant with at most S switches, then the regret of Dyn-LQR is

upper bounded as:

E
[
RDyn-LQR(T )

]
= Õ

(√
ST
)
.

Our definition of RDyn-LQR(T ) in (1) measures the regret relative to the benchmark
∑T

t=1 J
∗
t . In the

next proposition, we prove that this benchmark is at most Õ(VT ) larger than the expected cost of

the dynamic optimal policy. This additive error is dominated by the regret Õ(V
2/5
T T 3/5) proved in

Theorem 11. Proposition 12 is proved in Appendix D.
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Proposition 12. Let {ut}Tt=1 be an arbitrary non-anticipative policy for the non-stationary LQR control

problem. Then,

E

[
T∑
t=1

x>t Qxt + u>t Rut

]
≥

T∑
t=1

J∗t −O(VT + log T ).

We will conduct our analysis under the assumption that Event 1 specified in Lemma 10 occurs. Since

Dyn-LQR uses Kstab
t whenever ‖xt‖ ≥ xu, outside this event, the total cost is bounded by Õ(T ). Note

that this happens with probability at most 1/T .

7.1 Regret Decomposition

We begin with an informal regret decomposition lemma which highlights the key exploration-exploitation

trade-off for non-stationary LQR.

Informal Lemma. The expected regret for a policy π with ut = Ktxt + σtηt where Kt, σt are adapted

to the filtration (F ,G) is given by:

E[Rπ(T )] = E

[
T∑
t=1

x>t Qxt + u>t Rut − J∗t

]

=
T∑
t=1

E[Jt(Kt)− J∗t ]︸ ︷︷ ︸
exploitation regret

+
T∑
t=1

E
[
σ2
t Tr

(
R+B>t Pt(Kt)Bt

)]
︸ ︷︷ ︸

exploration regret

+
T−1∑
t=1

E
[
x>t+1 (Pt+1(Kt+1)− Pt(Kt))xt+1

]
︸ ︷︷ ︸

policy/parameter variation

+E
[
x>1 P1(K1)x1 − x>T+1PT (KT )xT+1

]
. (8)

We term the lemma informal because it relies on Jt(Kt) and Pt(Kt) being defined for all t. This

need not always be true for Dyn-LQR since Kt is the certainty equivalent controller based on an

estimate of Θt, and therefore the stationary system corresponding to Θt and Kt need not even be

stable, and Jt(Kt) could be unbounded. We shortly address how we handle such time periods, but

their contribution to regret will be asymptotically of a smaller order. The decomposition points out

that the dominant terms in the analysis will be the exploitation regret and the exploration regret.

The policy/parameter variation depends on how much the pair (Θt,Kt) changes during non-warmup

blocks of an exploration epoch. By design, the policies {Kt} are piece-wise constant with at most log T

changes per epoch, and we will prove that the number of epochs is O(V
4/5
T T 1/5). Finally, for a fixed K,

‖P (Θt,K)− P (Θt+1,K)‖ = O(‖Θt −Θt+1‖), and hence this contributes at most O(VT ) to the regret

across the entire horizon.

To refine the regret decomposition, we recapitulate Algorithm 1, and in particular the classification of
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exploration epochs, stabilization epochs, blocks within exploration epochs, and another concept we define

for the purpose of analysis alone – bad intervals.

(i) Stabilization epochs – such epochs begin whenever ‖xt‖ exceeds the upper bound xu, indicating the

potential instability of the current controller. We use τ stabi to denote the start of the i-th stabilization

epoch. During a stabilization epoch, we use the controller Kt = Kstab
t . The i-th stabilization phase

ends at θstabi (inclusive) where

θstabi = min{t ≥ τ stabi + 1 : ‖xt+1‖ ≤ x`}.

We use Si to denote the interval [τ stabi , θstabi ] as well as the i-th stabilization epoch symbolically.

(ii) Exploration epochs – such epochs begin either at the end of a stabilization epoch, or at the end of

another exploration epoch if sufficient non-stationarity is detected through failure of EndOfExplo-

rationTest or EndOfBlockTest. We will denote the start and end of the i-th exploration epoch

by τi and θi respectively, and use Ei to denote the interval [τi, θi] as well as the epoch symbolically.

(iii) Blocks – The i-th exploration epoch Ei is partitioned into non-overlapping blocks of geometrically

increasing duration. Block 0 (also called the warm-up block) is the interval [τi, τi +L− 1], and the j-th

block (j = 1, . . .) is the interval [τi +L · 2j−1, τi +L · 2j − 1]∩Ei of maximum length L · 2j−1. We denote

by Bi,j both the interval as well as the block symbolically. The controller used at time t ∈ Bi,j (j ≥ 1)

is given by K∗(Θ̂i,j−1), where Θ̂i,j−1 is the OLS estimator based on the block j − 1 of epoch Ei. For

succinctness, we use the notation

Θ̂t := Θ̂i,j−1, for t ∈ Bi,j .

We will use Bi to denote the number of blocks in epoch Ei.

(iv) Bad/Good intervals – It can happen that for some time steps during an exploration epoch, the

controller is unstable and therefore Jt(Kt) is undefined, but the ‖xt‖ has not exceeded xu. To study

the regret due to such t, we define the notion of bad intervals within epochs. The k-th bad interval of

an epoch i begins at τbadi,k and ends at θbadi,k where these are defined recursively as:

τbadi,1 := min

{
t ∈ [τi + L, θi] :

∥∥∥Θ̂t −Θt

∥∥∥2

F
≥ C3

}
,

τbadi,k := min

{
t ∈ [θbadi,k−1, θi] :

∥∥∥Θ̂t −Θt

∥∥∥2

F
≥ C3

}
,

θbadi,k := min

{
t ∈ [τbadi,k + 1, θi] :

∥∥∥Θ̂t+1 −Θt+1

∥∥∥2

F
≤ C3

2

}
,

with the constant C3 defined in Assumption 4. Note that we do not create bad intervals during the

block Bi,0, which is analyzed separately. We denote the k-th bad interval of an epoch i as Ibadi,k . By

Ibadi , we denote the union of all bad intervals in Ei, and by Ibad, the union of all bad intervals. All time

periods that not in bad intervals, i.e., they are in Ei \ {Bi,0 ∪ Ibadi }, will be called good and split into
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good intervals. For analysis purposes, we further split the good time periods based on the blocks. That

is, a good interval can end at time t if (i) either a bad interval begins at time t+ 1, or (ii) a block ends

at time t in which case another good interval can begin at time t + 1. Using a similar notation Igoodi,j,k

denotes the k-th good interval of a block Bi,j (which must lie entirely inside [τi +L · 2j−1, τi+L · 2j − 1].

We will use Nbad
i to denote the total number of bad intervals in an epoch i and Ngood

i,j to denote the

number of good intervals in a block Bi,j . The advantage of defining the good intervals to lie within a

block is that for the purposes of analysis, the good intervals within a block Bi,j are completely defined

based on history before the start of the block Bi,j .

We will use E to denote the total number of exploration epochs and ES to denote the total number

of stabilization epochs. Finally, we come to the regret decomposition that we use in the subsequent

section:

RDyn-LQR(T ) =

T∑
t=1

ct − J∗t

≤
ES∑
i=1

∑
t∈Si

ct︸ ︷︷ ︸
T1: Stabilization

epochs

+
E∑
i=1

∑
t∈Bi,0

ct︸ ︷︷ ︸
T2: Warm-up

blocks

+
E∑
i=1

Nbad
i∑

k=1

∑
t∈Ibadi,k

ct

︸ ︷︷ ︸
T3: Bad
intervals

+

E∑
i=1

Bi∑
j=1

Ngood
i,j∑
k=1

∑
t∈Igoodi,j,k

(ct − J∗t )

︸ ︷︷ ︸
T4: Good
intervals

. (9)

7.2 Regret analysis for Dyn-LQR

The main result of this section is the following lemma, which provides an intermediate characterization

of E
[
RDyn-LQR(T )

]
based on (9). In particular, the characterization highlights that to bound the regret,

it is sufficient to bound (i) the number E of exploration epochs (Section 7.3) and (ii) the total squared

norm of the estimation error of dynamics Θt for the good periods (Section 7.4).

Lemma 13. The expected regret for Dyn-LQR is bounded as follows:

E
[
RDyn-LQR(T )

]
≤ Õ

E

 E∑
i=1

Bi∑
j=1

∑
t∈Bi,j

min

{∥∥∥Θ̂i,j−1 −Θt

∥∥∥2

F
, C3

}
+
√
|Bi,j |

+ Õ(E + VT ),

≤ Õ

E

 E∑
i=1

Bi∑
j=1

∑
t∈Bi,j

min

{∥∥∥Θ̂i,j−1 −Θt

∥∥∥2

F
, C3

}+ Õ(
√
E · T + VT ). (10)

Proof. We proceed by bounding the terms in (9).

Upper bound for Term 1. Since the controllers {Kstab
t } used in a stabilization epoch satisfy se-

quentially strong stability (Assumption 3), in Lemma 14 we prove that the expected total cost per

stabilization epoch is Õ(1). Since the number of stabilization epochs is bounded by the number of

exploration epochs E, the total contribution of Term 1 in (9) is Õ(E).
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Lemma 14. Let [τ stab, θstab] be a stabilization epoch. The expected total cost during the stabilization

epoch is bounded by

E

 θstab∑
t=τ stab

ct

∣∣∣∣∣∣Fτ stab−1,Gτ stab−1

 = O
(
κ2x2

u

1− ρ0

)
= O

(
κ2β2(n+ d+ log T )

(1− ρ0)2

)
.

Upper bound for Term 2. Similar to Lemma 14, the use of Kstab
t during warm-up blocks gives a

bound of Õ(1) per epoch in Lemma 15, which gives a Õ(E) contribution due to Term 2.

Lemma 15. Let [τi, τi +L− 1] denote the warm-up block Bi,0 of an exploration epoch Ei. The expected

total cost during Bi,0, for any i, is bounded by

E

[
τi+L−1∑
t=τi

ct

∣∣∣∣∣Fτi−1,Gτi−1

]
= O

(
κ2β2(n+ d) log3 T

(1− ρ0)2

)
.

Upper bound for Term 3. Since ‖xt‖ is bounded by xu = Õ(1) for any time period in a bad interval

by definition, the cost is bounded by Õ(1) per time step. We can bound the number of bad time periods

within an arbitrary interval I noting that for t ∈ Ibad,
∥∥∥Θ̂t −Θt

∥∥∥2

F
≥ C3/2 and thus:

∣∣∣Ibad ∩ I∣∣∣ =
∑

t∈Ibad∩I

1 ≤ 2

C3

∑
t∈I

min

{∥∥∥Θ̂t −Θt

∥∥∥2

F
, C3

}
. (11)

Then the total contribution of Term 3 is O
(

E

[∑E
i=1

∑Bi
j=1

∑
t∈Bi,j min

{∥∥∥Θ̂i,j−1 −Θt

∥∥∥2

F
, C3

}])
.

Upper bound for Term 4.

Lemma 16. For some epoch Ei, a block Bi,j in epoch Ei, and a good interval Igoodi,j,k = [τ, θ] in block Bi,j,
the expected regret is bounded as follows:

E
[
Rπ(Igoodi,j,k ) | Fτ−1,Gτ−1

]
≤

θ∑
t=τ

(Jt(Kt)− J∗t ) +
∣∣∣Igoodi,j,k

∣∣∣ C1/2
0

L3/2
· j√

2j
+O

(
n+ d+ log T

1− ρ0

(
1 + ∆Ii,j,k

))

≤
θ∑
t=τ

C4

∥∥∥Θ̂i,j−1 −Θt

∥∥∥2

F
+
∣∣∣Igoodi,j,k

∣∣∣ C1/2
0 C7

L3/2
· j√

2j
+O

(
n+ d+ log T

1− ρ0

(
1 + ∆Ii,j,k

))
,

where the constant C7 := maxt sup

{
Tr
(
R+B>t Pt(Kt)Bt

)
| Kt = K∗(Θ̂),

∥∥∥Θ̂−Θt

∥∥∥2

F
≤ C3

}
.

Combining the results above, we can bound the first term in (10) immediately from Term 3 and the
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first summand in Lemma 16 for Term 4. Summing the second term in Lemma 16 over all the good

intervals within a block Bi,j (which is of length at most 2j) contributes Õ(
√
|Bi,j |). Since the blocks

within an epoch are doubling in length,
∑

j

√
|Bi,j | ≤ 8

√
|Ei| and

∑
i

√
|Ei| ≤ E

√
T/E =

√
E · T . The

contribution of the third term in Lemma 16 is proportional to the number of good intervals, which is

bounded by Vt/
√
C3/2 +E log T . To see this, note that without any bad intervals, there would be one

good interval per block and there are at most log T blocks per epoch. For a good interval to begin due

to a bad interval ending, the bad interval must ‘eat up’
√
C3/2 of the variation due to the criterion

chosen for the end of a bad interval. Hence, there can be at most VT /
√
C3/2 good intervals created

because of the bad intervals. The last term in Lemma 16 contributes Õ(VT ) to (10).

7.3 Bounding the Number of Epochs

There are two ways of generating epochs in Algorithm 1: (1) epochs end due to the detection of non-

stationarity (lines 29 and 33), and (2) epochs end due to the detection of instability (line 41). This

section is devoted to bounding the number of epochs from these two sources separately.

Bounding the number of epochs generated by non-stationarity tests. In the subsequent

analysis, we will bound the number of epochs terminated due to the detection of non-stationarity

in Θt by O(T 1/5V
4/5
T ), which dominates O(VT ). Recall that an epoch ends if the non-stationarity

tests in Algorithms 2 or 3 fail, which happens if the distance between the new OLS estimate and

the estimate based on the previous block exceeds some threshold. The thresholds there are carefully

designed according to the concentration results proved in Section 6, which allow us to prove the following

lemma characterizing the variation budget needed for an epoch to fail the tests in Algorithms 2 and 3.

Lemma 17. Assume Event 1 holds. Let Ei be an epoch with total variation ∆[τi,t] ≤ (t− τi + 1)−1/4,

then the epoch does not end because of nonstationarity detection.

The following corollary bounds the number of restarts due to detection of non-stationarity.

Corollary 18. Assume Event 1 holds. The number of epochs that end due to detection of non-

stationarity is bounded by O(C
−2/5
0 T 1/5V

4/5
T ).

Bounding the number of epochs generated by instability tests. Lemma 19 characterizes

the variation budget needed to trigger the end of an epoch due to instability detection, which leads to

Corollary 20 bounding the number of epochs ended due to instability.

Lemma 19. Let Ei be an epoch with total variation ∆Ei ≤
(√

C3
4 − C̄varL

−1/4

)
/C̄bias. Then under

Event 1, with probability at least 1−O(1/T 3), the epoch does not end because of instability detection.

Corollary 20. The expected number of epochs that end due to the instability test is bounded by

O(VT
√

lnT ).
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Combining the two bounds, we get E = O(T 1/5V
4/5
T ). Therefore, we can bound the Õ(

√
E · T ) term in

(10) by Õ(T 3/5V
2/5
T ).

7.4 Bounding the Total Square Norm of the Estimation Error

In this section, we analyse the regret due to the estimation error, i.e., the first term in (10). For

succinctness, define the following loss function for an arbitrary interval I:

L(I) :=
∑
t∈I

min

{
C4

∥∥∥Θ̂i,j−1 −Θt

∥∥∥2

F
, C3

}
. (12)

In the sequel, we first focus on an exploration epoch Ei and bound L(Ei). We then combine the regret

of epochs to get the requisite regret bound of Theorem 11.

Our proof decomposes into three parts. First, we focus on one block, say block j, of epoch i, and prove

a lemma that provides an upper bound for L(I) for any interval I ⊆ Bi,j . Second, we partition a

block into intervals with small total variation within each interval. We use the just mentioned bound

to bound L(Bi,j) of each block j in an exploration epoch i in terms of the length of the block and the

total variation within the block. Finally, we upper bound the total number of blocks within an epoch i

and sum up the bound on L(Bi,j) for all the blocks in an epoch Ei to obtain a bound on L(Ei).

Lemma 21. For an arbitrary interval I = [s, e] that lies in block Bi,j, define εI :=
∥∥∥Θ̂i,j−1 −Θs

∥∥∥2

F
and

αI := log |I|√
I . Then, L(I) can be bounded as

L(I) = O
(
|I|αI + |I|∆2

I + |I|εI1{εI ≥ αI}
)
.

To get a bound for the regret for a block, we need to partition Bij into intervals with small variation.

Specifically, we have the following lemma adapted from Chen et al. [2019].

Lemma 22. There is a way to partition any block B into I1 ∪ I2 ∪ · · · ∪ IΓ such that

∆2
Ik ≤

log2 T√
|Ik|

= αIk , k ∈ [Γ],

and the number of blocks Γ satisfies Γ = O
(

min

{
SB, (log |B|)−

2
5 ∆

4
5
B |B|

1
5 + 1

})
.

The partition in Lemma 22 is for the analysis only. The intuition for this partition is to create small

enough intervals so that their regret can be shown to be small, while at the same time not creating too

many intervals. Applying Lemma 21 to each interval of the partition of block J :

L(B) ≤ Õ
( Γ−1∑
k=1

|Ik|αIk +
Γ−1∑
k=1

|Ik|εIk1{εIk ≥ αIk}
)

+ L(IΓ). (13)
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Plugging in the definition of αIk , we get |Ik|αIk =
√
Ik log |Ik|. Then by the Cauchy-Schwartz inequality

and the upper bound for Γ from Lemma 22, we have

Γ−1∑
k=1

√
|Ik| log |Ik| ≤

√√√√(Γ− 1)
Γ−1∑
k=1

|Ik| log2 |Ik| = Õ


√√√√(Γ− 1)

Γ−1∑
k=1

|Ik|

 = Õ
(
|B|

3
5 ∆

2
5
B

)
.

We defer the bound for the remaining terms of (13) to Appendix E.3. The following lemma presents

the resulting upper bound for the loss function of a block B.

Lemma 23. Let B = Bi,j be a block of some epoch i with j > 0. It holds with high probability that

Dyn-LQR guarantees

L(B) ≤ Õ
(
|B|

3
5 ∆

2
5
B +

√
|B|
)
.

From the geometrically increasing size of Bij , we get
∑

j

√
|Bij | = O(|Ei|). From the Hölder’s inequality,

we get

∑
j

|Bij |
3
5 ∆

2
5
Bi,j
≤

∑
j

|Bij |

 3
5
∑

j

∆Bi,j

 2
5

= |Ei|
3
5 ∆

2
5
Ei ;

so that L(Ei) = Õ(|Ei|3/5∆
2/5
Ei +

√
Ei). One more application of the Hölder’s inequality gives the bound

of Õ(T
3
5V

2
5
T ), proving Theorem 11.

8 Regret Lower bounds

In this section, we prove two lower bounds for the regret of the non-stationary LQR problem. First,

in Theorem 24 we prove that for any given VT = o(T ), no learning algorithm can guarantee a regret

o(V
3/5
T T 2/5), showing that the regret of Dyn-LQR is minimax optimal as a function of VT . Next, in

Theorem 26 we prove that a broad class of static-window based online learning algorithms are regret

suboptimal for non-stationary LQR – even if the algorithm has the knowledge of the variation VT .

This rules out several popular approaches that have been used in the literature for learning under non-

stationary such as UCB with static restart schedule or bandit-on-bandit approaches to optimize the

window size.

Theorem 24. There exists a T0 such that for any T ≥ T0, and a total variation VT of dynamics, for

any randomized online algorithm Alg (which knows T, VT ), there exists a non-stationary LQR instance

with regret lower bounded as

E
[
RAlg(T )

]
= Ω

(
V

3/5
T T 2/5

)
.
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Under switching dynamics with S switches, for any randomized algorithm Alg (which knows T, S),

there exists an instance with regret lower bounded as

E
[
RAlg(T )

]
= Ω

(√
ST
)
.

Proof. We build on the lower bound instance from Cassel et al. [2020]. Consider a randomly generated

one dimensional LQR problem instance with dynamics and cost:

xt+1 = axt + but + wt ,

ct = x2
t + u2

t , (14)

where wt ∼ N (0, 1). The dynamics are given by a = 1/
√

5 and b = χ
√
ε, with χ being a Rademacher

random variable that takes values ±1 with equal probability. Standard results show that the optimal

linear feedback controller for the above LQR system is:

k∗ = − abp∗

1 + b2p∗
(15)

where p∗ solves

p∗ = 1 +
a2p∗

1 + b2p∗
. (16)

In Cassel et al. [2020], the authors prove the following lower bound on the regret of any algorithm.

Theorem 25 (Cassel et al. [2020, Theorem 13]). For T ≥ 12000 and ε =
√
T/4, the expected regret of

any deterministic learning algorithm for system (14) satisfies

E[R(T )] ≥
√
T

3100
− 4.

By Yao’s theorem, the above implies that for any randomized learning algorithm, there is an LQR

instance with expected regret Ω(
√
T ).

We create a lower bound instance for a non-stationary LQR problem with the total variation VT by

pasting a sequence of these one-dimensional instances. In particular, we concatenate b VT
2
√
ε
c instances of

(14) with horizon b 1
4ε2
c each, where ε satisfies VT

2
√
ε

= T · 4ε2, or equivalently ε =
(
VT
8T

)2/5
. That is, we

re-randomize χ for every sub-instance. To demonstrate a lower bound, we further allow the learner the

knowledge of the time instants at which a new sub-instance begins, and the duration of the sub-instance.

Theorem 25 implies that the regret of the learner for each sub-instance is Ω
(

1
2ε

)
, for a total regret over

the entire time horizon of Ω
(
VT
ε3/2

)
= Ω

(
V

2/5
T T 3/5

)
.

If, instead of bounded total variation, the non-stationary LQR instance has a piecewise constant dy-
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namics with S switches, we create a lower bound instance similarly with S sub-instances of horizon

bT/Sc each, and ε =

√
T/S

4 . The regret per sub-instance for any learner is Ω(
√
T/S) for a total regret

lower bound of Ω(
√
ST ).

Necessity of Adaptive Restarts. A common technique to handle non-stationary learning envi-

ronments is to use random restarts or sliding window algorithms to forget the distant history. In

learning problems where the rewards are linear in the unknown parameters (e.g., in multi-armed ban-

dit problems), this gives the optimal regret rate in terms of the total variation of the instance if the

window size is chosen optimally – in the lower bound instance, the adversary changes the instance by

O
(
V

1/3
T T−1/3

)
at regularly spaced times. In the LQR problem, we instead have that the per-step regret

J∗(Θ) − J(Θ,K∗(Θ̂)) is quadratic in
∥∥∥Θ− Θ̂

∥∥∥
F

. Intuitively, the adversary can maximally penalize a

non-adaptive restart based algorithm by changing the instance by as much as Θ(1) at regularly spaced,

but randomly chosen times. This strategy fails against an adaptive restart algorithm such as Dyn-LQR

because big changes are easy to detect with less exploration effort. To give a little more formal intuition,

we consider the one-dimensional LQR problem (14) from Cassel et al. [2020], but with non-stationary

bt, and a fairly general static window based algorithm for this non-stationary LQR instance. We prove

that even with optimal tuning of the window size and an arbitrary exploration strategy, it can incur a

regret as large as Ω(V
1/3
T T 2/3).

We first describe the one-dimensional instance and the family of sliding window algorithms we consider.

Instance: The cost function is x2
t + u2

t and the dynamics are given by:

xt+1 = axt + btut + wt,

with x1 = 0 and wt
i.i.d.∼ N (0, 1). The dynamics parameter is time-invariant a = 1/

√
5 and known to the

algorithm (therefore, there is no learning needed for a). The sequence {bt} is random and generated as

follows. Let ε = 0.05 · (VT /T )1/6. We choose b1 = ε. For each subsequent t, with probability VT
2T , bt is

chosen to be ±0.05 with equal probability, or, with probability (VT /4T )5/6, bt is chosen to be ±ε with

equal probability, otherwise bt = bt−1. The key feature of the instance is that while most of the time bt

is small of size ε and most of the changes in bt are of order ε as well, there are much rarer changes in bt

of O(1) size. These two scales of changes make any fixed window size suboptimal for the regret.

Non-adaptive Restart with Exploration (RestartLQR(W )) Algorithm. We consider a family

of algorithms parametrized by a window size W . Let ηt
i.i.d.∼ N (0, 1). The algorithm splits the horizon

T into non-overlapping phases of duration W each, and for time t in phase i, the algorithm plays

ut = k̂(i)xt + σtηt, where k̂(i) is a linear feedback controller estimated by the algorithm based only on

the trajectory observed in phase (i − 1), and σt is an arbitrary adapted sequence of exploration noise

(energy) injected by the algorithm. To emphasize, the algorithm is restricted in two senses. First, it

is restricted to playing a fixed linear feedback controller within each phase with Gaussian exploration

noise. Second, at the beginning of each phase, the algorithm forgets the entire history and restarts the
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estimation of the dynamics.

Theorem 26. The expected regret of RestartLQR under optimally tuned window size W and exploration

strategy is at least Ω
(
V

1/3
T T 2/3

)
.

9 Concluding Thoughts

In this paper, we have tried to fill an obvious gap in the literature – the absence of any low dynamic

regret algorithm for the control of a non-stationary LQR system under stochastic noise. We discuss the

possibility of wider applicability of our results and some open questions.

A Queueing Application. While in the paper we focused on the LQR problem, the key motif of the

LQR problem that drove our results was that (i) given the state and action, the feedback we receive

was a linear function (i.e., linear feedback); and (ii) given an ε error in the parameter estimates, the

optimal controller for the estimated parameters has an O(ε2) additive suboptimality (i.e., quadratic

cost). Similar motif shows up in numerous other applications where we believe a similar regret trade-off

would show up. Here we mention a queueing example. Consider the following discrete time queueing

system with a configurable server: the arrivals per period are i.i.d. Bernoulli with a known mean λ < 1.

The server has two resources (say CPU and memory) and the operator can choose a configuration

(x, y) ∈ {x2 + y2 ≤ 1;x, y ≥ 0} of the two resources. Given the configuration, the number of departures

per period is also a Bernoulli random variable with mean,

µt = αtx+ βty,

where αt, βt ≥ 0, λ < α2
t + β2

t ≤ 1 represent the resource requirements of the jobs, are non-stationary,

and unknown to the operator. Assume a job that arrives in time step t can not be served before time

step t+ 1. The cost at time step t is Nt, the number of jobs in the system. This system fits the motif

of linear feedback and quadratic cost. The linear feedback can be seen by noting that the feedback

at time step t is the Bernoulli random variable for the number of departures, which can be written as

αtxt + βtyt + ηt, where ηt is a mean 0 bounded random variable (independent across time periods). To

see the quadratic cost part, consider the steady-state problem with stationary (α, β), and a stationary

action (x, y) giving µt = µ = αx + βy. The steady-state average cost would be N(µ, λ) = λ(1−λ)
µ−λ . In

this case, the optimal action is to choose (xt, yt) in the direction (α, β) under which µ∗ = α2 + β2 with

optimal cost N∗ = Nµ∗,λ. Consider an estimate (α̂, β̂) such that |α−α̂|+|β−β̂| = ε. If λ ≤ α2+β2− 1
100 ,

then the controller based on the estimated α̂, β̂ gives cost N∗ + Θ(ε2), which is what we mean by a

quadratic cost. We therefore expect that our results for the LQR problem would extend to the control

of such queueing systems.

Open Questions We believe both our algorithm and the regret analysis can be tightened, e.g., using

sequential hypothesis testing to detect instability instead of our current threshold based approach, and
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made parameter free. An algorithm with a bound on regret of the following flavor would be desirable:

There exist constant ε0, T0 such that for a non-stationary LQR problem with variation VT = εT , where

ε ≤ ε0 and T ≥ T0, the regret attained is at most ε2/5T +o(T ). It is also desirable to develop a notion of

instance-optimal regret – instead of using the summary VT and presenting minimax optimal guarantees.

Yet another challenging direction is that there seem to be two prevalent approaches to studying robust-

ness for online control of LQR systems – one with non-stochastic/adversarial noise and another with

unknown non-stationary dynamics. This leaves an open problem of finding a controller which achieves

both types of robustness simultaneously or proving the impossibility of doing so. A second open prob-

lem is to consider more general convex cost functions. Many of the elegant results in LQR theory, and

indeed the regret bounds in our paper, depend on the quadratic objective function. A starting point

would be to study a bandit problem with linear feedback, but a general convex cost function. Finally, a

notoriously hard problem is to study the robust control where the action set may depend on the state,

which touches upon the theme of safe exploration. Doing so in the context of LQR could be fruitful.
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A Basic lemmas

Lemma 27 (Laurent-Massart Bound Laurent and Massart [2000]). Let a1, . . . , an be non-negative, and

X1, . . . , Xn be i.i.d. χ2 random variables. Let

|a|∞ := max
i∈[n]

ai and |a|22 :=
∑
i∈[n]

a2
i .

Then,

Pr

∑
i∈[n]

ai(Xi − 1) ≥ 2|a|2
√
x+ 2|a|∞x

 ≤ e−x,
Pr

∑
i∈[n]

ai(Xi − 1) ≤ −2|a|2
√
x

 ≤ e−x.
Lemma 28. Let Y1, . . . , YT be i.i.d. χ2

k random variables. Then,

E

[
max
t∈T

Yt

]
≤ k + max{12k, 3 lnT}+ 3,

E

[
max
t∈T

√
Yt

]
≤
√
k +
√

8 lnT +

√
π

2
.

Proof. By Laurent-Massart bound (Lemma 27),

Pr
[
Yt ≥ k + 2

√
kx+ 2x

]
≤ e−x.

For y ≥ 12k, we have the following sequence of implications

Pr[Yt ≥ k + y] ≤ e−
y
3 ,

=⇒ Pr[Yt ≤ k + y] ≥ 1− e−
y
3

=⇒ Pr

[
max
t∈[T ]

Yt ≤ k + y

]
≥
(

1− e−
y
3

)T
=⇒ Pr

[
max
t∈[T ]

Yt ≥ k + y

]
≤ 1−

(
1− e−

y
3

)T
.

Let y = max{12k, 3 lnT}+ z for z ≥ 0. Then,

Pr

[
max
t∈[T ]

Yt ≥ k + y

]
≤ 1−

(
1− e−

max{12k,3 lnT}+z
3

)T
≤ 1−

(
1− 1

T
e−

z
3

)T
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≤ e−
z
3 .

From the above,

E

[
max
t∈T

Yt

]
≤ k + max{12k, 3 lnT}+

∫ ∞
z=0

e
z
3 dz ≤ k + max{12k, 3 lnT}+ 3.

For the second part, we again begin from the Laurent-Massart bound. For any x ≥ 0,

Pr
[√

Yt ≥
√
k +
√

2x
]
≤ e−x,

which in turn implies for y ≥ 0,

Pr
[√

Yt ≥
√
k +
√

2 lnT + y
]
≤ e−

y2+2y
√

2 lnT
2 ≤ e−

y2

2 .

Further substituting y =
√

2 lnT + z for z ≥ 0,

Pr
[
max
t

√
Yt ≥

√
k + 2

√
2 lnT + z

]
≤ 1−

(
1− 1

T
e−

z2+2z
√

2 lnT
2

)T
≤ e−

z2

2 .

Finally,

E
[
max
t

√
Yt

]
≤
√
k +
√

8 lnT +

∫ ∞
0

e−
z2

2 dz

=
√
k +
√

8 lnT +

√
π

2
.

The following lemma is adapted from Hajek [1982], but we prove it here for completeness.

Lemma 29. Let W1,W2, . . . be a non-negative stochastic process, and (Wt)t∈N be the induced filtration.

Let Y0, Y1, . . . be a non-negative stochastic process adapted to Wt such that for some 0 < ρ < 1, for all

t ≥ 0,

Yt+1 ≤ ρYt +Wt+1, almost surely.

Let a ≥ 0 and ρ ≤ ρ̂ < 1 be such that for all t ≥ 1,

E

[
ρ+

Wt+1

a

∣∣∣∣ Wt

]
≤ ρ̂.

Define the a-hitting time of process {Yt} as:

τa = min
k≥1
{Yk ≤ a} .
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Then,

1. Pr[τa ≥ k | W0] ≤ Y0
a ρ̂

t,

2. E
[∑τa

k=0 Y
2
k | W0

]
≤ Y 2

0
1−ρ̂2 ≤

Y 2
0

1−ρ̂ .

Proof. Conditioning on the event {Yt ≥ a} and using the definition of ρ̂ above,

E[Yt+1 | Wt, Yt ≥ a] ≤ E[ρYt +Wt+1 | Wt, Yt ≥ a]

= E

[
Yt

(
ρ+

Wt+1

Yt

) ∣∣∣∣ Wt, Yt ≥ a
]

≤ ρ̂ · Yt.

Therefore, the stopped process Yt∧τa/ρ̂
t∧τa is a non-negative supermartingale, and hence

Y0 ≥ E

[
Yk∧τa
ρ̂k∧τa

∣∣∣∣ W0

]
≥ E

[
Yk∧τa
ρ̂k∧τa

1{τa ≥ k}
∣∣∣∣ W0

]
≥ a

ρ̂k
Pr[τa ≥ k | W0].

That is, Pr[τa ≥ k | W0] ≤ Y0
a ρ̂

k, proving the first part of the lemma. For the second part,

τa∑
k=0

Y 2
k =

∞∑
k=0

Y 2
k · 1{τa ≥ k}.

Taking the expectation and using the supermartingale result from above,

E

[
τa∑
k=0

Y 2
k | W0

]
=

∞∑
k=0

E
[
Y 2
k · 1{τa ≥ k} | W0

]
≤

∞∑
k=0

Y 2
0 ρ̂

2k =
Y 2

0

1− ρ̂2
.

The following lemma on hitting times of exponentially ergodic random walks will be helpful for bounding

the number of epochs that end because of instability detection through ‖xt‖ becoming large.

Lemma 30. Let Y0, Y1, . . . be a non-negative stochastic process satisfying

Yt+1 ≤ ρYt +
m∑
i=1

βi,t+1 |Wi,t+1|

where ρ < 1, and Wi,t are i.i.d N (0, 1) random variables. Furthermore, let maxi,t βi,t ≤ B, and

ā =
(√

8mB√
1−ρ
√

log T + mB
1−ρ

)
. Then,

Pr

[
max
t∈[T ]

Yt ≥ Y0 + ā

]
≤ 1

T 3
.
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Proof. Extending the sequence of random variables for t ≤ 0, we get the following upper bound on Yt:

Yt ≤ ρtY0 +
∞∑
k=0

ρkB
m∑
i=1

|Wi,t−k|.

Let

St :=

∞∑
k=0

ρkB

m∑
i=1

|Wi,t−k|.

Therefore, for a ≥ 0,

Pr[Yt ≥ Y0 + a] ≤ Pr
[
ρtY0 + St ≤ Y0 + a

]
≤ Pr[St ≤ a].

Furthermore,

S2
t = B2

 ∞∑
k=0

m∑
i=1

ρ2kW 2
i,t−k +

∑
(k1,i1)6=(k2,i2)

ρk1+k2 |Wi1,t−k1 | · |Wi2,t−k2 |


≤ B2

 ∞∑
k=0

m∑
i=1

ρ2kW 2
i,t−k +

1

2

∑
(k1,i1)6=(k2,i2)

ρk1+k2
(
W 2
i1,t−k1

+W 2
i2,t−k2

)
= mB2

∞∑
k=0

m∑
i=1

ρk

1− ρ
W 2
i,k.

Applying Laurent-Massart bound from Lemma 27,

Pr

[
S2
t ≥

m2B2

(1− ρ)2
+

2m3/2B2

(1− ρ)
√

1− ρ2

√
x+

2mB2

1− ρ
x

]
≤ e−x.

A simple upper bound on the right hand side within Pr[·] gives,

Pr

[
St ≥

mB

1− ρ
+

√
2mB√
1− ρ

√
x

]
≤ e−x. (17)

Substituting x = 4 lnT ,

Pr

[
Yt ≥ Y0 +

mB

1− ρ
+

√
8mB√
1− ρ

√
lnT

]
≤ 1

T 4
.

A union bound completes the final argument.

For reference, we note some basic matrix norm inequalities:

1. 1
2

∥∥∥Θ− Θ̂
∥∥∥ ≤ max

{∥∥∥A− Â∥∥∥ ,∥∥∥B − B̂∥∥∥} ≤ ∥∥∥Θ− Θ̂
∥∥∥;
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2. 1√
n

∥∥∥Θ− Θ̂
∥∥∥
F
≤
∥∥∥Θ− Θ̂

∥∥∥ ≤ ∥∥∥Θ− Θ̂
∥∥∥
F

.

Lemma 1 states that
∥∥∥Θ− Θ̂

∥∥∥
F
≤ C3 implies J∗(Θ)− J(Θ,K∗(Θ̂)) ≤ C4

∥∥∥Θ− Θ̂
∥∥∥2

F
.

B Proof of Sequential Strong Stability

Lemma 31 (Gahinet et al. [1990]). Let X be the solution to the Lyapunov equation

X − F>XF = M.

Let X + ∆X be the solution to the perturbed problem

Z − (F + ∆F )>Z(F + ∆F ) = M.

Then the following inequality holds for the spectral norm:

‖∆X‖
‖X + ∆X‖

≤ 2

∥∥∥∥∥
+∞∑
k=0

(
F>
)k
F k

∥∥∥∥∥ · (2‖F‖+ ‖∆F‖) · ‖∆F‖.

Proof of Lemma 6 Let Pt := P (Θt, K̂) and Pt+1 := P (Θt+1, K̂) be the solutions to the following

Lyapunov equations, respectively:

Pt = Q+ K̂>RK̂ + (At +BtK̂)>Pt(At +BtK̂),

Pt+1 = Q+ K̂>RK̂ + (At+1 +Bt+1K̂)>Pt+1(At+1 +Bt+1K̂).

Taking X = Pt, X + ∆X = Pt+1, F = At +BtK̂, F + ∆F = At+1 +Bt+1K̂, and applying Lemma 31,

we get the following Lemma as a corollary.

Lemma 32. It holds that

Pt � Pt+1 ·
(

1 +
2(1− γ)2

1− (1− γ)2
(2(1− γ) + (κ+ 1)‖Θt+1 −Θt‖)

)
‖Θt+1 −Θt‖.

Proof. Applying Lemma 31 with X = Pt, X + ∆X = Pt+1, F = At +BtK̂, and ∆F = At+1 +Bt+1K̂ −
(At +BtK̂) = (At+1 −At) + (Bt+1 −Bt)K̂, we have

‖Pt+1 − Pt‖
‖Pt+1‖

≤ 2

∥∥∥∥∥
+∞∑
k=0

(
(At +BtK̂)>

)k
(At +BtK̂)k

∥∥∥∥∥
· (2‖(At +BtK̂)‖+ ‖(At+1 −At) + (Bt+1 −Bt)K̂‖) · ‖(At+1 −At) + (Bt+1 −Bt)K̂‖
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≤ 2(1− γ)2

1− (1− γ)2
· (2(1− γ) + (1 + κ)‖Θt+1 −Θt‖)‖Θt+1 −Θt‖,

where in the last inequality we use ‖At +BtK̂‖ ≤ 1− γ and ‖K̂‖ ≤ κ. Then by direct computation, we

have

‖Pt‖ ≤ ‖Pt+1‖+ ‖Pt+1 − Pt‖

≤ ‖Pt+1‖ ·
(

1 +
2(1− γ)2

1− (1− γ)2
(2(1− γ) + (κ+ 1)‖Θt+1 −Θt‖)‖Θt+1 −Θt‖

)
.

In the sequel, we first prove that K is (κ, γ)-strongly stable for At + BtK = HtLtH
−1
t . Note that by

our assumption,

J∗(Θt, K̂) ≤ J∗(Θt) + C4

∥∥∥Θt − Θ̂
∥∥∥2

F
≤ J∗(Θt) + C4C3 ≤ J∗I + C4C3 := J̃∗I .

We have λmax(Pt) ≤ J̃∗I/ψ2 and ‖Ht‖ ≤
√
J̃∗I/ψ =: B0. By definition, we have

Pt = Q+K>RK + (At +BtK)>Pt(At +BtK)

� qminI + rminK
>K + (At +BtK)>Pt(At +BtK)

� qminI + (At +BtK)>Pt(At +BtK).

Specifically, we have Pt � qminI. Hence ‖H−1
t ‖ ≤ q

−1/2
min =: 1/b0. Then setting κ = B0/b0 =

√
J̃∗I

ψ2qmin

will suffice. By Pt � rminK
>K, we have

‖K‖ ≤

√
‖Pt‖
rmin

≤

√
J̃∗I

ψ2rmin
=: κ.

Moreover,

L>t Lt = P
−1/2
t (At +BtK)> Pt (At +BtK)P

−1/2
t

� P−1/2
t (Pt − qminI)P

−1/2
t

� I − qminP
−1
t .

Then

‖Lt‖2 ≤ 1− qminψ
2

J̃∗I
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and

‖Lt‖ ≤
√

1− qminψ2

J∗
≤ 1− qminψ

2

2J̃∗I
.

In the sequel, we prove the (κ, γ)-sequentially strongly stability. By direct computation, we have

‖H−1
t+1Ht‖2 = ‖P−1/2

t+1 P
1/2
t ‖2

= ‖P−1/2
t+1 PtP

−1/2
t+1 ‖

≤
(

1 +
2(1− γ)2

1− (1− γ)2
(2(1− γ) + (κ+ 1)‖Θt+1 −Θt‖)‖Θt+1 −Θt‖

)
,

where in the inequality we apply Lemma 32. By the fact that
√

1 + x ≤ 1 + 1
2x for x ≥ 0, we have

‖H−1
t+1Ht‖ ≤ 1 +

(1− γ)2

1− (1− γ)2
(2(1− γ) + (κ+ 1)‖Θt+1 −Θt‖) ‖Θt+1 −Θt‖

≤ 1 +
2(1− γ)2

1− (1− γ)2
((1− γ) + (κ+ 1)) ‖Θt+1 −Θt‖,

where in the last step we use that ‖Θt+1 −Θt‖ ≤ 2
√
C3 ≤ 2 by our assumption that C3 ≤ 1.

Proof of Lemma 7 Without loss of generality, we let sI = 1. Since xt+1 = (At +BtK)xt+σtBtηt+

wt, we have

xt = M1x1 +

t−1∑
s=1

Ms+1(σsBsηs + ws),

where we define Mt = I and Ms =
∏t−1
j=s (Aj +BjKj). Moreover,

‖Ms‖ =

∥∥∥∥∥∥
t−1∏
j=s

HjL
>
j H

−1
j

∥∥∥∥∥∥
≤ ‖Ht−1‖

t−1∏
j=s

‖Lj‖

t−2∏
j=s

∥∥∥H−1
j+1Hj

∥∥∥
∥∥H−1

s

∥∥
≤ B0(1− γ)t−s

t−2∏
j=s

∥∥∥H−1
j+1Hj

∥∥∥
 (1/b0)

≤ κ(1− γ)t−s

t−2∏
j=s

∥∥∥H−1
j+1Hj

∥∥∥
 .
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Using the fact that 1 + x ≤ ex, we have

t−2∏
j=s

∥∥∥H−1
j+1Hj

∥∥∥ ≤ e∑t−2
j=s

2(1−γ)2

1−(1−γ)2
((1−γ)+(κ+1))‖Θt+1−Θt‖

≤ eCssV[s,t−1]

for some constant Css. Then it holds that

‖Ms‖ ≤ κ(1− γ)t−seCssV[s,t−1]

≤ κe−γ(t−s)eCssV[s,t−1] .

Then we can bound the norm of xt as

‖xt‖ ≤ ‖M1‖ ‖x1‖+

t−1∑
s=1

‖Ms+1‖ ‖σsBsηs + ws‖

≤ κe−γ(t−1)eCssV[1,t−1]‖x1‖+ κe−γ(t−s)eCssV[s,t−1]

t−1∑
s=1

(1− γ)t−s−1 ‖σsBsηs + ws‖

≤ κe−γ(t−1)eCssV[1,t−1]‖x1‖+ κe−γ(t−s)eCssV[s,t−1] max
1<s<t

‖σsBsηs + ws‖
∞∑
t=1

(1− γ)t

= κe−γ(t−1)+CssV[1,t−1]‖x1‖+
κe−γ(t−s)+CssV[s,t−1]

γ
max
1<s<t

‖σsBsηs + ws‖ .

C Estimation error bounds for OLS with non-stationary dynamics

C.1 Proof of error bound for I ⊆ Bij (Lemma 8)

Given the OLS estimator for interval I = [s, e],

Θ̂I = argmin
Θ

∑
t∈I

∥∥∥xt+1 −Θ[x>t u>t ]>
∥∥∥2

F
,

our goal is to bound the estimation error
∥∥∥Θ̂I − Θ̄

∥∥∥
F

where Θ̄ is a ‘representative’ Θ for {Θt}t∈I , for

example Θe. We will assume that during the entire interval I, the controller Kt = K is stationary. Let

M :=

[
In

K

]
. We will use the notation

yt = Mxt and ξt = σtη̃t = σt

[
0

Id

]
ηt, so that: zt =

[
xt

ut

]
= yt + ξt and xt+1 = Θtzt + wt.

44



By our choice of σt, we have σ2
L := ν1 =

√
C0
L ≥ σ2

t ≥ σ2
I :=

√
C0
|I| for all t ∈ I. With these notations,

we can write the OLS loss function and estimator as:

Θ̂I = argmin
Θ
L(Θ), where L(Θ) =

∑
t∈I
‖xt+1 −Θzt‖2F =

∑
t∈I
‖Θtzt + wt −Θzt‖2F .

Due to the OLS objective function, we can decompose this problem and estimate each row of Θ̂I

separately. Towards that end, let us fix a row i. With abuse of notation, denote the ith rows of

Θt,Θ, Θ̂I , Θ̄ by θt, θ, θ̂, θ̄, respectively. Let us also use ωt to denote the ith entry of wt. The OLS

estimation problem for the row i becomes:

θ̂ = argmin
θ
L(θ), where, L(θ) =

∑
t∈I

(〈θt, zt〉+ ωt − 〈θ, zt〉)2 .

The solution for this OLS estimation problem is given by the solution of the following linear system:

θ̂

(∑
t∈I

ztz
>
t

)
=

(∑
t∈I

θtztz
>
t

)
+
∑
t∈I

ωtz
>
t ,

or

θ̂ =

(∑
t∈I

θtztz
>
t

)(∑
t∈I

ztz
>
t

)−1

+

(∑
t∈I

ωtz
>
t

)(∑
t∈I

ztz
>
t

)−1

.

The second term above is a martingale sum, since ωt is zero mean and independent of zt, and contributes

to the variance of the estimator. However, the first term which contributes to the ‘bias’ is non-trivial.

In the stationary case, θt = θ and the first term becomes θ, which implies that the OLS estimator is

unbiased. However, in the non-stationary case, the first term can be far from θ̄ even when all the θt

are close to each other. This necessitates a fresh analysis of the OLS estimator in the non-stationary

setting.

The key obstacle in the analysis of the estimation error
∥∥∥θ̂ − θ̄∥∥∥2

, is that while zt lives in Rn+d, most

of its variance is in the n-dimensional column space of [In K
>]>. This is because the LQR dynamics

naturally adds the noise wt−1 to arrive at the state xt. In fact, this is precisely the reason we add the

exploration noise ξt: to be able to distinguish changes in Θt = [At Bt] that are orthogonal to the column

space of [In K
>]>. However, this also means that we can not use a naive analysis based on a lower

bound on the eigenvalues of the matrix
∑

t∈I ztz
>
t .

Our approach to bounding the estimation error of the OLS estimator is to begin by looking at the one

dimensional OLS problems parametrized by v ∈ Sn+d := {v ∈ Rn+d, ‖v‖ = 1}:

λv = argmin
λ
L(θ̄ + λ · v),
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and argue that |λv| are small for ‘enough’ directions v. That is, in enough directions, the minimizer of

the 1-dimensional quadratic defined above is close to the candidate θ̄. Finally, we will show via an ε-net

argument that this implies that the true OLS estimator θ̂ is also close to θ̄.

Step 1: Decomposing the problem into orthogonal subspaces. Fixing a direction v, the first

order conditions for the minimizer λv of L(θ̄ + λ · v) gives:

λv
∑
t

〈v, zt〉2 =
∑
t

〈
θt − θ̄, zt

〉
· 〈v, zt〉+

∑
t

ωt 〈v, zt〉 . (18)

For a vector u ∈ Rn+d, let u‖ and u⊥ denote the projections onto the column space of [In K
>]> and its

orthogonal space, respectively. That is,

u‖ =

[
In

K

]
(I +K>K)−1

[
In

K

]>
u and u⊥ = u− u‖.

Similarly, let û‖ and û⊥ denote the unit vectors in the direction u‖ and u⊥, respectively.

For analysis, it will be convenient to generalize the one dimensional problem of finding the minimizer

on the line θ̄ + λ · v to instead finding the minimizer in the plane θ̄ + λ‖v̂‖ + λ⊥v̂⊥, where we seek

the optimal values of λ‖ and λ⊥. From (18), denoting V :=
∑

t ztz
>
t , the Hessian of the corresponding

quadratic loss function is given by

Hv̂‖,v̂⊥ =

[(
v̂‖
)>
V v̂‖

(
v̂‖
)>
V v̂⊥(

v̂⊥
)>
V v̂‖

(
v̂⊥
)>
V v̂⊥

]
=

 ∑
t

〈
v̂‖, z

‖
t

〉2 ∑
t

〈
v̂‖, z

‖
t

〉 〈
v̂⊥, ξ⊥t

〉∑
t

〈
v̂‖, z

‖
t

〉 〈
v̂⊥, ξ⊥t

〉 ∑
t

〈
v̂⊥, ξ⊥t

〉2

 . (19)

A careful analysis on Hv̂‖,v̂⊥ later yields the following lemma that indicates it suffices to consider the

following two simpler cases: v = v̂‖ and v = v̂⊥.

Lemma 33. Let λv̂‖ = argminλ L(θ̄+ λ · v̂‖) and λv̂⊥ = argminλ L(θ̄+ λ · v̂⊥). It holds with probability

at least 1− 11δ that

λ2
v ≤ 2λ2

v̂‖ + 2λ2
v̂⊥ .

Proof. Combining Lemma 34 and Lemma 35, it suffices to prove that

max


∑

t

∣∣∣〈v̂‖, z‖t 〉 〈v̂⊥, ξ⊥t 〉∣∣∣∑
t

〈
v̂‖, z

‖
t

〉2 ,

∑
t

∣∣∣〈v̂‖, z‖t 〉 〈v̂⊥, ξ⊥t 〉∣∣∣∑
t

〈
v̂⊥, ξ⊥t

〉2

 ≤ 1

33

holds with probability at least 1− 11δ.
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Note that zt = yt + ξt = Mxt−1 + ξt = MΘt−1zt−1 +Mwt−1 + ξt. We have

z
‖
t = MΘt−1zt−1 +Mwt−1 + ξ

‖
t , z⊥t = ξ⊥t .

Step 0: Bound on
∑

t∈I ‖zt‖
2. We begin with the following corollary of Lemma 38: For |I| ≥ 16 ln 1

δ ,

conditioned on maxt∈I ‖xt‖ ≤ xu, it holds with probability at least 1− δ that∑
t∈I
‖zt‖2 ≤ 2|I|

(
(1 +K2

u)x2
u + 2σ2

L

)
=: |I|z2

u.

Step 1: Upper bound on the numerator. Recall ξt = σtη̃t and σt ≤ ν1 =: σL. Let

σ2
v̂⊥ = E

(v̂⊥)>

(
0n

ηt

)(
0n

ηt

)>
v̂⊥


denote the variance of

〈
v̂⊥, η̃⊥t

〉
. Write v̂⊥ as v̂⊥ = [(v̂⊥1 )> (v̂⊥2 )>]>, where v̂⊥1 ∈ Rn, v̂⊥2 ∈ Rd, and∥∥v̂⊥1 ∥∥+

∥∥v̂⊥2 ∥∥ = 1. Since v̂⊥ is a unit vector in the orthogonal space of the columns space of [In K
>]>,

we must have v̂⊥1 + K>v̂⊥2 = 0. Then
∥∥v̂⊥1 ∥∥ =

∥∥−K>v̂⊥2 ∥∥ ≤ ‖K‖ ∥∥v̂⊥2 ∥∥ and hence
∥∥v̂⊥2 ∥∥ ≥ 1

1+‖K‖ . We

have σ2
v̂⊥

= E
[
(v̂⊥2 )>ηtη

>
t v̂
⊥
2

]
= (v̂⊥2 )>Idv̂

⊥
2 =

∥∥v̂⊥2 ∥∥2 ≥ 1
(1+‖K‖)2 . Also, σ2

v̂⊥
≤ 1.

Applying a supermartingale argument, we get

Pr

[∣∣∣∣∣∑
t

〈
v̂‖, z

‖
t

〉〈
v̂⊥, ξ⊥t

〉∣∣∣∣∣ ≥ σv̂⊥σL
√

2 ln
1

δ

∑
t

〈
v̂‖, z

‖
t

〉2
]
≤ 2δ. (20)

Next, we lower bound the denominator.

Step 2: Lower bound for
∑

t

〈
v̂‖, z

‖
t

〉2
. By direct computation,

∑
t

〈
v̂‖, z

‖
t

〉2
=
〈
v̂‖,MΘt−1zt−1 +Mwt−1 + ξ

‖
t

〉2

≥
∑
t

〈
v̂‖,Mwt−1

〉2
+ 2

〈
v̂‖,Mwt−1

〉〈
v̂‖,MΘt−1zt−1

〉
+ 2

〈
v̂‖,Mwt−1

〉〈
v̂‖, ξ

‖
t

〉
+ 2

〈
v̂‖, ξ

‖
t

〉〈
v̂‖,MΘt−1zt−1

〉
.

Let σ2
1 = (v̂‖)>MWM>v̂‖ denote the variance of

〈
v̂‖,Mwt−1

〉
. Write v̂‖ = Mxv, where 1 =

∥∥v̂‖∥∥2
=∥∥[x>v x>v K

>]
∥∥2

= ‖xv‖2 + ‖Kxv‖2. Recalling that W < ψ2In, we have

σ2
1 = (v̂‖)>MWM>v̂‖ ≥ ψ2 · x>vM>MM>Mxv

= ψ2 · x>v (I +K>K)(I +K>K)xv
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= ψ2
(
x>v xv + 2x>v K

>Kxv + x>v K
>KK>Kxv

)
= ψ2

(
‖xv‖2 + 2 ‖Kxv‖2 +

∥∥∥K>Kxv∥∥∥2
)

≥ ψ2(‖xv‖2 + ‖Kxv‖2)

= ψ2.

We also have W 4 Ψ2In. Then

σ2
1 = (v̂‖)>MWM>v̂‖ ≤ Ψ2 · x>vM>MM>Mxv

= Ψ2 · x>v (I +K>K)(I +K>K)xv

= Ψ2
(
x>v xv + 2x>v K

>Kxv + x>v K
>KK>Kxv

)
= Ψ2

(
‖xv‖2 + 2 ‖Kxv‖2 +

∥∥∥K>Kxv∥∥∥2
)

≤ Ψ2

(
‖xv‖2 + ‖Kxv‖2 + ‖K‖2 ‖xv‖2 +

∥∥∥K>∥∥∥2
‖Kxv‖2

)
≤ Ψ2(1 + ‖K‖2).

By standard Laurent-Massart bounds, we get

Pr

[∑
t

〈
v̂‖,Mwt−1

〉2
≥ Ψ2(1 + ‖K‖2)

(
|I|+ 2

√
|I| ln(

1

δ
) + 2 ln(

1

δ
)

)]
≤ δ, (21)

Pr

[∑
t

〈
v̂‖,Mwt−1

〉2
≤ ψ2

(
|I| − 2

√
|I| ln(

1

δ
)

)]
≤ δ. (22)

Note that

σ2
L

∑
t

〈
v̂‖, η̃

‖
t

〉2
≥
∑
t

〈
v̂‖, ξ

‖
t

〉2
=
∑
t

σ2
t

〈
v̂‖, η̃

‖
t

〉2
≥ σ2

I
∑
t

〈
v̂‖, η̃

‖
t

〉2
.

Let σ2
v̂‖

= E

(v̂‖)>

(
0n

ηt

)(
0n

ηt

)>
v̂‖

 denote the variance of
〈
v̂‖, η̃⊥t

〉
. Write v̂‖ = [v̂

‖
1 v̂
‖
2], where

v̂
‖
1 ∈ Rn, v̂

‖
2 ∈ Rd and

∥∥∥v̂‖1∥∥∥ ,∥∥∥v̂‖2∥∥∥ ≤ 1. We have σ2
v̂‖

= E
[
(v̂
‖
2)>ηtη

>
t v̂
‖
2

]
= (v̂

‖
2)>Id(v̂

‖
2) =

∥∥∥v̂‖2∥∥∥2
≤ 1.

Again, by standard Laurent-Massart bounds, we have

Pr

[∑
t

〈
v̂‖, ξ

‖
t

〉2
≥ σ2

L

](
|I|+ 2

√
|I| ln(

1

δ
) + 2 ln(

1

δ
)

)
≤ δ,

Pr

[∑
t

〈
v̂‖, ξ

‖
t

〉2
≤ σ2

Iσ
2
v̂‖

(
|I| − 2

√
|I| ln(

1

δ
)

)]
≤ δ.
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Applying a supermartingale argument, we get

Pr

[∣∣∣∣∣∑
t

〈
v̂‖,Mwt−1

〉〈
v̂‖,MΘt−1zt−1

〉∣∣∣∣∣ ≥ Ψ(1 + ‖K‖2)
1
2

√
2 ln

1

δ

∑
t

〈
v̂‖,MΘt−1zt−1

〉2

]
≤ 2δ, (23)

Pr

[∣∣∣∣∣∑
t

〈
v̂‖, ξ

‖
t

〉〈
v̂‖,MΘt−1zt−1

〉∣∣∣∣∣ ≥ σL
√

2 ln
1

δ

∑
t

〈
v̂‖,MΘt−1zt−1

〉2

]
≤ 2δ, (24)

Pr

[∣∣∣∣∣∑
t

〈
v̂‖,Mwt−1

〉〈
v̂‖, ξ

‖
t

〉∣∣∣∣∣ ≥ σL
√

2 ln
1

δ

∑
t

〈
v̂‖,Mwt−1

〉2

]
≤ 2δ. (25)

Combining (21) and (25), we have

Pr

∣∣∣∣∣∑
t

〈
v̂‖,Mwt−1

〉〈
v̂‖, ξ

‖
t

〉∣∣∣∣∣ ≥ σLΨ(1 + ‖K‖2)
1
2

√√√√2 ln
1

δ

(
|I|+ 2

√
|I| ln(

1

δ
) + 2 ln(

1

δ
)

) ≤ 3δ.

Combining the inequalities above, it holds with probability at least 1− 8δ that

∑
t

〈
v̂‖, z

‖
t

〉2
≥
∑
t

〈
v̂‖,Mwt−1

〉2
+ 2

〈
v̂‖,Mwt−1

〉〈
v̂‖,MΘt−1zt−1

〉
+ 2

〈
v̂‖,Mwt−1

〉〈
v̂‖, ξ

‖
t

〉
+ 2

〈
v̂‖, ξ

‖
t

〉〈
v̂‖,MΘt−1zt−1

〉
≥ ψ2

(
|I| − 2

√
|I| ln(

1

δ
)

)
− 2Ψ(1 + ‖K‖2)

1
2

√
2 ln

1

δ

∑
t

〈
v̂‖,MΘt−1zt−1

〉2

− 2σL

√
2 ln

1

δ

∑
t

〈
v̂‖,MΘt−1zt−1

〉2

− 2σLΨ(1 + ‖K‖2)
1
2

√√√√2 ln
1

δ

(
|I|+ 2

√
|I| ln(

1

δ
) + 2 ln(

1

δ
)

)

≥ ψ2

(
|I| − 2

√
|I| ln(

1

δ
)

)
− 2Ψ(1 + ‖K‖2)

1
2 ‖M‖Θuzu|I|

1
2

√
2 ln

1

δ

− 2σL ‖M‖Θuzu|I|
1
2

√
2 ln

1

δ

− 2σLΨ(1 + ‖K‖2)
1
2

√√√√2 ln
1

δ

(
|I|+ 2

√
|I| ln(

1

δ
) + 2 ln(

1

δ
)

)

≥ ψ2

(
|I| − 2

√
|I| ln(

1

δ
)

)
− 2Ψ(1 + ‖K‖2)

1
2 ‖M‖Θuzu|I|

1
2

√
2 ln

1

δ

− 2σL ‖M‖Θuzu|I|
1
2

√
2 ln

1

δ
− 2σLΨ(1 + ‖K‖2)

1
2

√
2 ln

1

δ
2I
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= ψ2|I| −
√

2|I| ln 1

δ

(
2ψ2 + 2Ψ(1 + ‖K‖2)

1
2 ‖M‖Θuzu

)
+2σL ‖M‖Θuzu + 2

√
2σLΨ(1 + ‖K‖2)

1
2

)
=: Λ1. (26)

In arriving at (26) we have used the assumption |I| ≥ 16 ln 1
δ , which implies

2 ln
1

δ

(
|I|+ 2

√
|I| ln(

1

δ
) + 2 ln(

1

δ
)

)
≤ 2|I|.

To get a further cleaner expression, we further assume

|I| ≥ 32ψ−4 ln
1

δ

(
ψ2 + Ψ(1 + ‖K‖2)

1
2 ‖M‖Θuzu + σL ‖M‖Θuzu +

√
2σLΨ(1 + ‖K‖2)

1
2

)2
, (27)

which in turn implies |I| ≥ 16 ln 1
δ , under which the bound simplifies to

Λ1 ≥
ψ2

2
|I|. (28)

Combining (20) and (26), it holds with probability at least 1− 10δ that

∑
t

∣∣∣〈v̂‖, z‖t 〉 〈v̂⊥, ξ⊥t 〉∣∣∣∑
t

〈
v̂‖, z

‖
t

〉2 ≤
σv̂⊥σL

√
2 ln 1

δ√∑
t

〈
v̂‖, z

‖
t

〉2
≤ σL2

√
ln

1

δ
ψ−1|I|−

1
2 ≤ 1

33
, (29)

provided that

|I| ≥ 4 · 332σ2
L ln

1

δ
ψ−2. (30)

Step 3: Lower bound on
∑

t

〈
v̂⊥, ξ⊥t

〉2
. Recall that ξt = σtη̃t and σt ≤ σL. Let

σ2
v̂⊥ = E

(v̂⊥)>

(
0n

ηt

)(
0n

ηt

)>
v̂⊥


denote the variance of

〈
v̂⊥, η̃⊥t

〉
. Write v̂⊥ as v̂⊥ = [(v̂⊥1 )> (v̂⊥2 )>]>, where v̂⊥1 ∈ Rn, v̂⊥2 ∈ Rd and∥∥v̂⊥1 ∥∥+

∥∥v̂⊥2 ∥∥ = 1. Since v̂⊥ is a unit vector in the orthogonal space of the columns space of [In K
>]>,

we must have v̂⊥1 + K>v̂⊥2 = 0. Then
∥∥v̂⊥1 ∥∥ =

∥∥−K>v̂⊥2 ∥∥ ≤ ‖K‖ ∥∥v̂⊥2 ∥∥ and hence
∥∥v̂⊥2 ∥∥ ≥ 1

1+‖K‖ . We

have σ2
v̂⊥

= E
[
(v̂⊥2 )>ηtη

>
t v̂
⊥
2

]
= (v̂⊥2 )>Idv̂

⊥
2 =

∥∥v̂⊥2 ∥∥2 ≥ 1
(1+‖K‖)2 . Also, σ2

v̂⊥
≤ 1.
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By standard Laurent-Massart bounds, the denominator can be bounded from below by

Pr

[∑
t

〈
v̂⊥, ξ⊥t

〉2
≤

σ2
I

(1 + ‖K‖)2

(
|I| − 2

√
|I| ln(

1

δ
)

)]
≤ δ.

Plugging in our choice of σ2
I , with probability at least 1− 2δ we have

∑
t

〈
v̂⊥, ξ⊥t

〉2
≥ 1

(1 + ‖K‖)2

√
C0

|I|

(
|I| − 2

√
|I| ln(

1

δ
)

)
=

1

(1 + ‖K‖)2
C

1
2
0 (|I|

1
2 − 2

√
ln

1

δ
) =: Λ2.

Under the assumption that |I| ≥ 16 ln 1
δ , we get:

Λ2 ≥
1

2
|I|

1
2

1

(1 + ‖K‖)2
C

1
2
0 . (31)

Combining with (20), it holds with probability at least 1− 4δ that

∑
t

∣∣∣〈v̂‖, z‖t 〉 〈v̂⊥, ξ⊥t 〉∣∣∣∑
t

〈
v̂⊥, ξ⊥t

〉2 ≤
σv̂⊥σL

√
2 ln 1

δ

∑
t

〈
v̂‖, z

‖
t

〉2

∑
t

〈
v̂⊥, ξ⊥t

〉2

≤
σv̂⊥σL

√
2 ln 1

δ

∑
t

∥∥∥z‖t ∥∥∥2

∑
t

〈
v̂⊥, ξ⊥t

〉2

≤
σL

√
2 ln 1

δ |I|
1
2 zu∑

t

〈
v̂⊥, ξ⊥t

〉2

≤
σL

√
2 ln 1

δ |I|
1
2 zu

1
2 |I|

1
2

1
(1+‖K‖)2C

1
2
0

= 2
√

2

√
ln

1

δ
σLzu(1 + ‖K‖)2C

− 1
2

0

= 2
√

2

√
ln

1

δ
zu(1 + ‖K‖)2L−

1
2

≤ 1

33
,

provided L satisfies:

L ≥ 662 · 2 · ln 1

δ
· z2
u(1 + ‖K‖)4. (32)

Step 2: Bounding λv when v = v̂‖. Noting that z
‖
t = yt + ξ

‖
t , we can rewrite the left hand side of
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(18) in this case as λv̂‖
∑

t

〈
v, z
‖
t

〉2
, and the right hand side of (18) as

∑
t

ωt

〈
v, z
‖
t

〉
+
∑
t

〈
θt − θ̄, zt

〉
·
〈
v, z
‖
t

〉
.

Therefore,

|λv̂‖ | ≤

∣∣∣∑t

〈
θt − θ̄, zt

〉
·
〈
v, z
‖
t

〉∣∣∣∑
t

〈
v, z
‖
t

〉2 +

∣∣∣∑t ωt

〈
v, z
‖
t

〉∣∣∣∑
t

〈
v, z
‖
t

〉2 . (33)

By (26) and (28) it holds with probability at least 1− 8δ that

∑
t

〈
v̂‖, z

‖
t

〉2
≥ Λ1 ≥

ψ2

2
|I|,

if we have

|I| ≥ 32ψ−4 ln
1

δ

(
ψ2 + Ψ(1 + ‖K‖2)

1
2 ‖M‖Θuzu + σL ‖M‖Θuzu +

√
2σLΨ(1 + ‖K‖2)

1
2

)2
.

It remains to upper bound the numerators of the two terms in (33). For the first term, Cauchy-Schwartz

inequality gives: ∣∣∣∣∣∑
t

〈
θt − θ̄, zt

〉
·
〈
v, z
‖
t

〉∣∣∣∣∣ ≤
√∑

t

〈
θt − θ̄, zt

〉2

√∑
t

〈
v, z
‖
t

〉2

≤ max
t

∣∣θt − θ̄∣∣ ·√∑
t

‖zt‖2
√∑

t

〈
v, z
‖
t

〉2

≤ ∆I
√
z2
u|I|

√∑
t

〈
v, z
‖
t

〉2

≤ ∆Izu|I|
1
2

√∑
t

〈
v, z
‖
t

〉2
. (34)

Plugging this into (33) gives∣∣∣∑t

〈
θt − θ̄, zt

〉
·
〈
v, z
‖
t

〉∣∣∣∑
t

〈
v, z
‖
t

〉2 ≤ ∆Izu|I|
1
2√∑

t

〈
v, z
‖
t

〉2
≤ ∆Izu|I|

1
2 Λ
− 1

2
1 . (35)

For the second term, let ωt
d
= N (0, ψ2

i ). Note that assuming wt(i) is ψ2
i sub-Gaussian suffices. By the
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assumption on wt, a standard supermartingale argument implies that

Pr

[∣∣∣∣∣∑
t

ωt

〈
v, z
‖
t

〉∣∣∣∣∣ ≥ ψi
√

2 ln
1

δ

∑
t

〈
v, z
‖
t

〉2
]
≤ 2δ.

Plugging this into (33) gives∣∣∣∑t ωt

〈
v, z
‖
t

〉∣∣∣∑
t

〈
v, z
‖
t

〉2 ≤
ψi

√
2 ln 1

δ√∑
t

〈
v, z
‖
t

〉2
≤ ψi

√
2 ln

1

δ
Λ
− 1

2
1 . (36)

Finally, we conclude it holds with probability at least 1− 10δ that

|λv̂‖ | ≤ ∆Izu|I|
1
2 Λ
− 1

2
1 + ψi

√
2 ln

1

δ
Λ
− 1

2
1

≤
√

2ψ−1∆Izu + 2ψ−1ψi

√
ln

1

δ
|I|−

1
2 . (37)

Step 3: Bounding λv when v = v̂⊥. Noting that z⊥t = ξ⊥t , we can rewrite the left hand side of (18)

as λv̂⊥
∑

t

〈
v, ξ⊥t

〉2
, and the right hand side of (18) as∑

t

ωt

〈
v, ξ⊥t

〉
+
∑
t

〈
θt − θ̄, zt

〉
·
〈
v, ξ⊥t

〉
.

Therefore,

|λv̂⊥ | ≤
∣∣∑

t

〈
θt − θ̄, zt

〉
·
〈
v, ξ⊥t

〉∣∣∑
t

〈
v, ξ⊥t

〉2 +

∣∣∑
t ωt

〈
v, ξ⊥t

〉∣∣∑
t

〈
v, ξ⊥t

〉2 . (38)

For the first term, we observe that ξ⊥t is normally distributed and is independent of zt. Applying a

supermartingale argument, we get

Pr

[∣∣∣∣∣∑
t

〈
θt − θ̄, zt

〉
·
〈
v, ξ⊥t

〉∣∣∣∣∣ ≥ σL
√

2 ln
1

δ

∑
t

〈θt − θ, zt〉2
]
≤ 2δ,

and hence

Pr

[∣∣∣∣∣∑
t

〈
θt − θ̄, zt

〉
·
〈
v, ξ⊥t

〉∣∣∣∣∣ ≥ σL∆Izu|I|
1
2

√
2 ln

1

δ

]
≤ 3δ.
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Then the first term is upper bounded as

∣∣∑
t

〈
θt − θ̄, zt

〉
·
〈
v, ξ⊥t

〉∣∣∑
t

〈
v, ξ⊥t

〉2 ≤

√∑
t

〈
θt − θ̄, zt

〉2
√∑

t

〈
v, ξ⊥t

〉2∑
t

〈
v, ξ⊥t

〉2 ≤ σL∆Izu|I|
1
2

√
2 ln

1

δ
Λ−1

2 .

For the second term, a supermartingale argument implies that

Pr

[∣∣∣∣∣∑
t

ωt

〈
v, ξ⊥t

〉∣∣∣∣∣ ≥ ψi
√

2 ln
1

δ

∑
t

〈
v, ξ⊥t

〉2

]
≤ 2δ.

Then

∣∣∑
t ωt

〈
v, ξ⊥t

〉∣∣∑
t

〈
v, ξ⊥t

〉2 ≤
ψi

√
2 ln 1

δ

∑
t

〈
v, ξ⊥t

〉2∑
t

〈
v, ξ⊥t

〉2 ≤ ψi

√
2 ln

1

δ
Λ
− 1

2
2 .

Finally, we conclude it holds with probability at least 1− 6δ that

|λv̂⊥ | ≤
∣∣∑

t

〈
θt − θ̄, zt

〉
·
〈
v, ξ⊥t

〉∣∣∑
t

〈
v, ξ⊥t

〉2 +

∣∣∑
t ωt

〈
v, ξ⊥t

〉∣∣∑
t

〈
v, ξ⊥t

〉2

≤ σL∆Izu|I|
1
2

√
2 ln

1

δ
Λ−1

2 + ψi

√
2 ln

1

δ
Λ
− 1

2
2 .

Assuming |I| ≥ 16 ln 1
δ and using the bound on Λ2 from (31), we have

|λv̂⊥ | ≤ 2σL∆Izu

√
2 ln

1

δ
(1 + ‖K‖)2C

− 1
2

0 + 2ψi

√
ln

1

δ
(1 + ‖K‖)C−

1
4

0 |I|
− 1

4 . (39)

Combining Lemma 33, (37) and (39), we have that

λ2
v ≤ 2λ2

v̂‖ + 2λ2
v̂⊥

≤ 4∆2
Iz

2
u|I|Λ−1

1 + 8ψ2
i ln

1

δ
Λ−1

1 + 8σ2
L∆2
I(1 + ‖K‖)2x2

u ln
1

δ
|I|Λ−2

2 + 8ψ2
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1

δ
Λ−1

2

= 4∆2
Iz

2
u

(
|I|Λ−1

1 + 2C
1
2
0 ln

1

δ
|I|

1
2 Λ−2

2

)
+ 8ψ2

i ln
1

δ

(
Λ−1

1 + Λ−1
2

)
= 4∆2

Iz
2
u|I|

(
Λ−1

1 + 2σ2
L ln

1

δ
Λ−2

2

)
+ 8ψ2

i ln
1

δ

(
Λ−1

1 + Λ−1
2

)
≤ 8ψ−2∆2

Iz
2
u + 16ψ−2ψ2

i ln
1

δ
|I|−1 + 32σ2

L∆2
Iz

2
u ln

1

δ
(1 + ‖K‖)4C−1

0 + 16ψ2
i ln

1

δ
(1 + ‖K‖)2C

− 1
2

0 |I|
− 1

2

= 8∆2
Iz

2
u

(
ψ−2 + 4σ2

L ln
1

δ
(1 + ‖K‖)4C−1

0

)
+ 16ψ2

i ln
1

δ

(
ψ−2|I|−1 + (1 + ‖K‖)2C

− 1
2

0 |I|
− 1

2

)
holds with probability at least 1− 27δ.
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Hence, we conclude that

|λv| ≤ 2
√

2∆Izu

√
ψ−2 + 4σ2

L ln
1

δ
(1 + ‖K‖)4C−1

0 + 4ψi

√
ln

1

δ

√
ψ−2|I|−1 + (1 + ‖K‖)2C

− 1
2

0 |I|−
1
2

≤ 2
√

2∆Izu

√
ψ−2 + 4σ2

L ln
1

δ
(1 + ‖K‖)4C−1

0 + 4ψi

√
ln

1

δ

√
ψ−2 + (1 + ‖K‖)2C

− 1
2

0 |I|
− 1

4

=: C̃1∆I + C̃2|I|−
1
4 , (40)

holds with probability at least 1− 27δ, where we define

C̃1 = 2
√

2zu

√
ψ−2 + 4σ2

L ln
1

δ
(1 + ‖K‖)4C−1

0 ,

C̃2 = 4ψi

√
ln

1

δ

√
ψ−2 + (1 + ‖K‖)2C

− 1
2

0 . (41)

Step 4: An ε-net argument. To summarize, thus far we have shown that for any fixed direction

v ∈ Rn+d, and for any row θi of the parameter matrix Θ, the minimizer of the one-dimensional quadratic

loss function satisfies (40). We next invoke Lemma 37, which implies that if this statement holds for all

v in an ε-net of the (n + d)-dimensional unit sphere (where ε depends on the condition number κu of

the Hessian
∑

t ztz
>
t as ε ≤ 1

5(1+κu)), then the Frobenius norm of the OLS estimator θ̂i and θ̄i is upper

bounded by 5
3 λ̄. The bound on the condition number κu of the Hessian is proved in Lemma 40. We

make this more formal next.

We fix ε as the confidence level. First, substituting δ = ε/6 in Lemma 40 gives that with probability

at least 1− ε/6, the condition number of the Hessian is bounded from above as κI ≤ C9

√
|I| provided

ε ≤ 18/100 and

|I| ≥ 2000

9

2(n+ d) log
6

ε
+ (n+ d) log

x̄2(1 + ‖K‖2) + σ2
L

σ2
I min

{
1
2 ,

ψ2

σ2
L+2‖K‖2

}
 . (42)

We will thus choose ε = (5(1 + C9

√
I))−1 in the ε-net result of Lemma 37 and Lemma 36. This gives

an upper bound on the cardinality of the ε-net of
(
1 + 4

ε

)n+d ≤ (10(1 + C9

√
|I|))n+d.

Applying (40) by substituting δ = ε

54n(10(1+C9

√
|I|))n+d

, it holds with probability at least 1− ε that for

every row of Θ we have ∥∥∥θ̂I − θ̄∥∥∥
F

=
∥∥∥θ̂I − θ̄∥∥∥ ≤ 5

3

(
C̃1∆I + C̃2|I|−

1
4

)
.

Combining n rows, we have ∥∥∥Θ̂I − Θ̄
∥∥∥
F
≤ 5
√
n

3

(
C̃1∆I + C̃2|I|−

1
4

)
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≤ C̆1∆I + C̆2|I|−
1
4 ,

where

C̆1 = 5zu
√
n

(
ψ−1 +

√
4σ2

L(1 + ‖K‖)4C−1
0

√
ln

1

ε
+ ln 54n+ (n+ d) ln

(
10(1 + C9

√
|I|)
))

,

C̆2 = 7ψi
√
n

√
ψ−2 + (1 + ‖K‖)2C

− 1
2

0

√
ln

1

ε
+ ln 54n+ (n+ d) ln

(
10(1 + C9

√
|I|)
)
. (43)

Under our choice of C0 = O(log T ), L = O(log3 T ), σ2
L =

√
C0/L, ε = O(T−3), and assuming that T is

large enough so that L satisfies conditions (27), (30), (32), and (42), both C̆1, C̆2 are O(
√

log T ).

C.2 Proof of OLS Concentration for Bi,0 (Lemma 9)

To bound the estimation error of the OLS estimator of the warm-up block I = Bi,0, we look at the one

dimensional problem (18) again:

λv
∑
t

〈v, zt〉2 =
∑
t

ωt 〈v, zt〉+
∑
t

〈
θt − θ̄, zt

〉
· 〈v, zt〉 .

Since we are using a sequence of sequentially strongly stable policies {Kstab
t } instead of a fixed policy, we

do not have a fixed column space anymore. Nevertheless, the O(1) exploration noise ξt = ν0η̃t enables

us to bound the error similar to the case v = v‖. Recall that we set ν0 = 1 in Algorithm 1.

Let Mt :=

[
In

Kstab
t

]
. Note that

∑
t

〈v, zt〉2 = 〈v,MtΘt−1zt−1 +Mtwt−1 + ξt〉2

≥
∑
t

〈v,Mtwt−1 + ξt〉2 + 2 〈v,Mtwt−1〉 〈v,MtΘt−1zt−1〉

+ 2 〈v,Mtwt−1〉 〈v, ξt〉+ 2 〈v, ξt〉 〈v,MtΘt−1zt−1〉 .

Let v = v
‖
t + v⊥t , where v

‖
t is the projection of v onto the column space generated by Mt. We have

〈v,Mtwt−1 + ξt〉2 ≥
〈
v
‖
t ,Mtwt−1

〉2
+
〈
v⊥t , η̃t

〉2
.

Let σ2
1,t = (v

‖
t )
>MtWM>t v

‖
t denote the variance of

〈
v
‖
t ,Mtwt−1

〉
. Write v

‖
t = Mtxv,t, where

∥∥∥v‖t ∥∥∥2
=∥∥[x>v,t x

>
v,tK

>
t ]
∥∥2

= ‖xv,t‖2 +
∥∥(Kstab

t )xv,t
∥∥2

. Recall that W < ψ2In. We have

σ2
1,t = (v

‖
t )
>MtWM>t v

‖
t

≥ ψ2 · x>v,tM>t MtM
>
t Mtxv,t
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= ψ2 · x>v,t(I + (Kstab
t )>(Kstab

t ))(I + (Kstab
t )>(Kstab

t ))xv,t

= ψ2
(
x>v,txv,t + 2x>v,t(K

stab
t )>t (Kstab

t )xv + x>v,t(K
stab
t )>(Kstab

t )(Kstab
t )>(Kstab

t )xv,t

)
= ψ2

(
‖xv,t‖2 + 2

∥∥∥(Kstab
t )xv,t

∥∥∥2
+
∥∥∥(Kstab

t )>(Kstab
t )xv,t

∥∥∥2
)

≥ ψ2(‖xv,t‖2 +
∥∥∥(Kstab

t )xv,t

∥∥∥2
)

= ψ2
∥∥∥v‖t ∥∥∥2

. (44)

Let σ2
2,t denote the variance of

〈
v⊥t , η̃t

〉
. Write v⊥t as v⊥t = [(v⊥t,1)> (v⊥t,2)>]>, where v⊥t,1 ∈ Rn, v⊥t,2 ∈ Rd,

and
∥∥v⊥t,1∥∥+

∥∥v⊥t,2∥∥ =
∥∥v⊥t ∥∥. Since v̂⊥ is in the orthogonal space of the columns space of [In K

>
t ]>, we

must have v⊥t,1 +K>t v
⊥
t,2 = 0. Then

∥∥v⊥t,1∥∥ =
∥∥−K>v⊥t,2∥∥ ≤ ∥∥Kstab

t

∥∥∥∥v⊥t,2∥∥ and hence
∥∥v⊥t,2∥∥ ≥ 1

1+‖Kstab
t ‖

.

We have

σ2
2,t = E

[
(v⊥t,2)>ηtη

>
t v
⊥
t,2

]
= (v⊥t,2)>Idv

⊥
t,2 =

∥∥∥v⊥t,2∥∥∥2
≥ 1

(1 +
∥∥Kstab

t

∥∥)2

∥∥∥v⊥t ∥∥∥2
≥ 1

(1 +Ku)2

∥∥∥v⊥t ∥∥∥2
. (45)

Recall that
∥∥∥v‖t ∥∥∥2

+
∥∥v⊥t ∥∥2

= 1. Combing (44) and (45), we have

E
[
〈v, ξt +Mtwt−1〉2

]
≥ E

[〈
v
‖
t ,Mtwt−1

〉2
+
〈
v⊥t , ξt

〉2
]

≥ ψ2
∥∥∥v‖t ∥∥∥2

+
ν2

0

(1 +Ku)2

∥∥∥v⊥t ∥∥∥2

≥ min

{
ψ2,

ν2
0

(1 +Ku)2

}
=: σ2

v .

Using the standard Laurent-Massart bound implies

Pr

[∑
t

〈v, ξt +Mtwt−1〉2 ≤ σ2
v

(
|I| − 2

√
|I| ln(

1

δ
)

)]
≤ δ.

Let v = [v>1 v>2 ]>, where v1 ∈ Rn and v2 ∈ Rd. Then

E
[
〈v,Mtwt−1〉2

]
= E

[〈
v1 + (Kstab

t )>v2, wt

〉2
]

≤ E

[
2 〈v1, wt〉2 + 2

〈
(Kstab

t )>v2, wt

〉2
]

≤ 2(‖v1‖2 +K2
u ‖v2‖2)E

[
‖wt‖2

]
≤ 2(1 +K2

u)E
[
‖wt‖2

]
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=: σ2
stab.

By the standard Laurent-Massart bound, we have

Pr

[∑
t

〈v,Mtwt−1〉2 ≥ σ2
stab

(
|I|+ 2

√
|I| ln(

1

δ
) + 2 ln(

1

δ
)

)]
≤ δ.

Applying a supermartingale argument, we get

Pr

[∣∣∣∣∣∑
t

〈v,Mtwt−1〉 〈v,MΘt−1zt−1〉

∣∣∣∣∣ ≥ σstab
√

2 ln
1

δ

∑
t

〈v,MtΘt−1zt−1〉2
]
≤ 2δ,

Pr

[∣∣∣∣∣∑
t

〈v, ξt〉 〈v,MtΘt−1zt−1〉

∣∣∣∣∣ ≥ σvν0

√
2 ln

1

δ

∑
t

〈v,MtΘt−1zt−1〉2
]
≤ 2δ,

Pr

[∣∣∣∣∣∑
t

〈v,Mtwt−1〉 〈v, ξt〉

∣∣∣∣∣ ≥ σvν0

√
2 ln

1

δ

∑
t

〈v,Mtwt−1〉2
]
≤ 2δ.

By direct computation, we have that

∑
t

〈v, zt〉2 ≥
∑
t

〈
v
‖
t ,Mtwt−1

〉2
+
∑
t

〈
v⊥t , ξt

〉2
+ 2 〈v,Mtwt−1〉 〈v,MtΘt−1zt−1〉

+ 2 〈v,Mtwt−1〉 〈v, ξt〉+ 2 〈v, ξt〉 〈v,MtΘt−1zt−1〉

≥ σ2
v

(
|I| − 2

√
|I| ln(

1

δ
)

)
− 2σstab

√
2 ln

1

δ

∑
t

〈v,MtΘt−1zt−1〉2

− 2σvν0

√
2 ln

1

δ

∑
t

〈v,MtΘt−1zt−1〉2

− 2σvν0

√√√√2 ln
1

δ

(
|I|+ 2

√
|I| ln(

1

δ
) + 2 ln(

1

δ
)

)

≥ σ2
v

(
|I| − 2

√
|I| ln(

1

δ
)

)
− 2σstabMuΘuzu|I|

1
2

√
2 ln

1

δ

− 2σvν0MuΘuzu|I|
1
2

√
2 ln

1

δ
− 2σvν0

√√√√2 ln
1

δ

(
|I|+ 2

√
|I| ln(

1

δ
) + 2 ln(

1

δ
)

)

≥ σ2
v

(
|I| − 2

√
|I| ln(

1

δ
)

)
− 2σstabMuΘuzu|I|

1
2

√
2 ln

1

δ

− 2σvν0MuΘuzu|I|
1
2

√
2 ln

1

δ
− 2σvν0

√
2 ln

1

δ
2|I|

= σ2
v |I| − |I|

1
2

√
2 ln

1

δ

(√
2σ2

v + 2σstabMuΘuzu + 2σvν0MuΘuzu + 2
√

2σvν0

)
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=: Λstab,

holds with probability at least 1− 8δ, where Mu := maxt ‖Mt‖. We can simplify the bound to

Λstab ≥
1

2
σ2
vL

given the warm-up block I is long enough:

|I| = L ≥ 8σ−4
v ln

1

δ

(√
2σ2

v + 2σstabMuΘuzu + 2σvν0MuΘuzu + 2
√

2σvν0

)2
. (46)

Note that this condition is stricter than L ≥ 16 ln 1
δ .

By a supermartingale argument, we have

Pr

[∣∣∣∣∣∑
t

ωt 〈v, zt〉

∣∣∣∣∣ ≥ ψi
√

2 ln
1

δ

∑
t

〈v, zt〉2
]
≤ 2δ. (47)

Hence, it holds with probability at least 1− 9δ that

|λv| ≤
∣∣∑

t

〈
θt − θ̄, zt

〉
· 〈v, zt〉

∣∣∑
t 〈v, zt〉

2 +
|
∑

t ωt 〈v, zt〉|∑
t 〈v, zt〉

2

≤ ∆Izu|I|
1
2 Λ
− 1

2
stab + ψi

√
2 ln

1

δ
Λ
− 1

2
stab

≤
√

2σ−1
v zu∆I + 2ψiσ

−1
v

√
ln

1

δ
|I|−

1
2

=: C̃1,stab∆I + C̃2,stab|I|−
1
2 . (48)

Here we have used Cauchy-Schwartz inequality, (47), and the upper bounds |θt− θ̄| ≤ ∆I ,
∥∥Kstab

t

∥∥ ≤ Ku

and the definition of zu.

Finally, we combine (48) with an ε-net argument as in the proof of Lemma 8. We let ε be the confidence

parameter. Choosing δ = ε
6 in Lemma 40 we get an upper bound on the condition number of the

Hessian as κ0 = O(1). Setting ε = 5(1 + κ0), and applying (48) with δ = ε
18n(5(1+κ0))n+d , it holds with

probability at least 1− ε that for every row we have,∥∥∥θ̂ − θ̄∥∥∥
F

=
∥∥∥θ̂Bi,0 − θ̄∥∥∥ ≤ 5

3

(
C̃1,stab∆Bi,0 + C̃2,stab|Bi,0|−

1
4

)
.

Combining the n rows, we have∥∥∥Θ̂Bi,0 − Θ̄
∥∥∥
F
≤ 5
√
n

3

(
C̃1,stab∆Bi,0 + C̃2,stab|Bi,0|−

1
4

)
≤ C̆1,stab∆Bi,0 + C̆2,stab|Bi,0|−

1
4 ,
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a

b

α

γ

(a) A level set of f(x, y)

p
′ = (x′

, y
′)

p
∗

} λy

}λx

(b) Illustration of 1-d minimizers in
Lemma 34

Figure 3: Illustration of the setup for Lemma 34. The figure on the left shows one level set of the
quadratic form f(x, y); a α rotation of an axis-parallel ellipse with principal axes of lengths a and b.
The figure on the right is a visual illustration of λx, λy in the Lemma statement. For example, the blue
ellipse denotes the level set on which the minimizer (x′′, y′) (blue dot) lies, giving λx = x′ − x′′.

where

C̆1,stab = 3
√
nσ−1

v zu,

C̆2,stab = 4ψiσ
−1
v

√
n

√
ln

1

ε
+ ln 18n+ (n+ d) ln 5(1 + κ0). (49)

For our choice of xu, ν0, L, assuming that T is large enough so that L satisfies (46), and setting ε =

O(T−3), both C̆1,stab, C̆2,stab are O(
√

lnT ).

C.3 Lemmas on the geometry of the Hessian

The following lemma gives a sufficient condition under which to upper bound the distance of a point

p′ = (x′, y′) from the minimizer of a quadratic form f(x, y), it suffices to upper bound the distance of

p′ from the minimizers of the one-dimensional functions h(x) = f(x, y′) and g(y) = f(x′, y). In a nut

shell, the lemma states that if the level sets of f are “almost axis-parallel” (the precise requirement

being given by the condition number of the Hessian), then it suffices to obtain upper bounds on the

one-dimensional minimizers.

Lemma 34. Let f(x, y) be a quadratic form with Hessian H =

[
A2 C

C B2

]
� 0. Let the level sets of

f(x, y) be given by ellipses that are clockwise rotation by an angle α ∈
(
−π

4 ,
π
4

)
of axis parallel ellipses:

x2

a2 + y2

b2
= r2. Define γ such that tan γ = min{a,b}

max{a,b} ≤ 1.
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For a given point p′ = (x′, y′), define

x′′ = argmin
x

f(x, y′), y′′ = argmin
x

f(x′, y),

and λx = x′ − x′′, λy = y′ − y′′. Let p∗ = (x∗, y∗) = argmin(x,y) f(x, y) be the true minimizer of f(·). If

(i) tan γ ≥ 5
8 , or (ii) | tanα| ≤ tan2 γ

4 , then

λ2
x + λ2

y ≥
1

2

∥∥p′ − p∗∥∥2
.

Proof. We will assume that the true minimizer p∗ = 0 without loss of generality, so that we need to prove

that λ2
x + λ2

y ≥ 1
2 · (x

′2 + y′2). We will also assume without loss of generality that a ≤ b. Furthermore,

in the proof we will focus on the case α ∈ [0, π/4] and x′, y′ ≥ 0, as illustrated in Figure 3(b). This

is indeed the hardest case: if x′ ≤ 0, y′ ≥ 0, 0 ≤ α ≤ π/4, then |λy| ≥ |y′|, |λx| ≥ x′ and the Lemma

follows. The other cases are symmetric to one of the above.

We begin by finding an expression for y′′. Observe that at the point (x′, y′′), the tangent to the level

set is parallel to the y-axis. If we now imagine rotating the level set, along with the point (x′, y′′)

counter-clockwise by an angle α, so that the level set becomes axis-parallel and the point (x′, y′′) moves

to (x̂, ŷ), then the tangent at (x̂, ŷ) to this axis-parallel ellipse has a slope of m = −1/ tanα. We can

now obtain one relationship between x̂, ŷ by differentiating the equation for the level set with respect

to x:
d

dx

(
x2

a2
+
y2

b2

)∣∣∣∣
(x̂,ŷ)

= 0 =⇒ ŷ = x̂
b2

a2
tanα.

Let tanβ := b2

a2 tanα, so that ŷ = x̂ tanβ. Since (x′, y′′) is obtained by clockwise rotation of (x̂, ŷ) by

α, we have

y′′ = x′ tan(β − α) = x′
tanβ − tanα

1 + tanβ tanα
.

Substituting tanβ = b2

a2 tanα = tanα/ tan2 γ:

y′′ = x′ tanα
1− tan2 γ

tan2 γ + tan2 α
. (50)

A similar analysis gives,

x′′ = y′ tanα
1− tan2 γ

1 + tan2 γ tan2 α
. (51)

Writing (x′, y′) in polar coordinates (r, θ), we get

λx = x′ − x′′ = r

(
cos θ − sin θ · tanα

1− tan2 γ

1 + tan2 γ tan2 α

)
, (52)
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λy = y′ − y′′ = r

(
sin θ − cos θ · tanα

1− tan2 γ

tan2 γ + tan2 α

)
. (53)

By our assumptions, tanα ≥ 0 and 0 ≤ tan γ ≤ 1. One can further verify that under the condition

tanα ≤ tan2 γ
4 , we have

0 ≤ tanα
1− tan2 γ

1 + tan2 γ tan2 α
≤ 1/4,

and

0 ≤ tanα
1− tan2 γ

tan2 γ + tan2 α
≤ 1/4.

To see why, the above inequalities can be rearranged into the following quadratic inequalities in tanα

for any fixed value tan γ: (
tan2 γ

1− tan2 γ

)
tan2 α− 4 tanα+

1

1− tan2 γ
≥ 0,(

1

1− tan2 γ

)
tan2 α− 4 tanα+

tan2 γ

1− tan2 γ
≥ 0.

It can then be shown that tan2 γ
4 is a lower bound on the smaller roots of the quadratic expressions on

the left hand side above. In fact, the second condition above is stricter than the first (when tan γ ≤ 1),

and tan2 γ
4 is a linear approximation to the smaller root (= 2(1 − tan2 γ) −

√
4 tan2 γ − 9 tan γ + 4) in

the vicinity of tan2 γ = 0 for the second inequality above. In fact, if tan γ ≥ 5
8 , then the two inequalities

are always true.

Finally,

λ2
x + λ2

y = (x′ − x′′)2 + (y′ − y′′)2

≥ r2

[
sin2 θ + cos2 θ − 2 sin θ cos θ tanα

(
1− tan2 γ

1 + tan2 γ tan2 α
+

1− tan2 γ

tan2 γ + tan2 α

)]
≥ r2

(
1− 1

2
sin 2θ

)
≥ r2

2
.

The Hessian for the quadratic described in Lemma 34 is given by:

H =

[
A2 C

C B2

]
=

[
cos2 α
a2 + sin2 α

b2
sinα cosα

(
1
b2
− 1

a2

)
sinα cosα

(
1
b2
− 1

a2

)
sin2 α
a2 + cos2 α

b2

]
. (54)

Lemma 35. The Hessian in (54) satisfies the conditions of Lemma 34 if |C|
min{A2,B2} ≤

1
33 .

Proof. Without loss of generality, assume a ≤ b, so that with α ∈ [−π/4, π/4], we have B2 ≤ A2. To

62



neaten the exposition, we will further focus on α ∈ [0, π/4], since only | sinα| and | cosα| are involved

in verifying the condition.

It suffices to prove that

C

B2
=

1

2
· sin 2α

a2/b2
·

1− a2

b2

1 +
(
b2

a2 − 1
)

sin2 α
≤ 1

33
(55)

implies tanα ≤ a2

4b2
, under the assumption that a2

b2
≤ 25/64, since otherwise tan γ ≥ 5/8 and the first

condition in Lemma 34 is satisfied. Since under this assumption 1− a2

b2
≥ 39

64 , (55) implies

sin 2α

a2/b2
· 1

1 +
(
b2

a2 − 1
)

sin2 α
≤ 128

39 · 33
≤ 1

10
.

Rearranging,

b2

a2
≤ 1− sin2 α

10 sin 2α− sin2 α
≤ 1− sin2 α

10
√

2 sinα− sin2 α
, (56)

since in the interval α ∈ [0, π/4] we have sin 2α ≥
√

2 sinα. Since b2

a2 ≥ 64
25 ≥ 2, we get the quadratic

inequality

sin2 α− 20
√

2 sinα+ 1 ≥ 0,

which implies sinα ≤ 0.04 and therefore tanα = sinα
cosα ≤ 1.01 sinα.

Starting from (56) again, (
b2

a2
− 1

)
sin2 α− 10

√
2
b2

a2
sinα+ 1 ≥ 0,

which has roots
10
√

2b2/a2±
√

200b4/a4−4b2/a4+4

2(b2/a2−1)
. Since b2/a2 ≥ 64/25, we observe that the larger root

is greater than 5
√

2, and hence the smaller root is bounded above by 1
5
√

2
· 1
b2

a2−1
≤ 64/39

5
√

2
· a2

b2
, which

is also an upper bound on sinα. In the last inequality we have again used b2/a2 ≥ 64/25. Finally,

tanα ≤ 1.01 sinα ≤ 1.01 · 64/39

5
√

2
· a2

b2
≤ a2

4b2
as needed.

The following lemma adapted from the volume argument of ε-net w.r.t. Euclidean norm [Vershynin,

2010] gives an upper bound for the covering numbers of the sphere using ε-net w.r.t. tan.

Lemma 36. Let N(ε,Sn−1) be the minimal cardinality of an ε-net of Sn−1 such that for every unit

vector v ∈ Sn−1, there exists a vε ∈ Sε such that the tan of the angle between v and vε is in [−ε, ε]. If

ε ≤ 1
5 , we have that

N(ε,Sn−1) ≤
(

1 +
4

ε

)n
.
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Proof. Choose Nε to be the maximal subset of Sn−1 such that the tan of the angle between two arbitrary

vectors v1, v2 is larger than ε. By the maximality property, Nε is an ε-net. Moreover, using the fact

that x ≥ 1
2 tan(x) if x ≤ 1

5 , the balls of radii ε
4 centered at the points in Nε are disjoint. Let Bn,2 denote

the unit Euclidean ball in Rn centered at the origin. By comparing the volumes, it holds that

N(ε,Sn−1) ·
( ε

4

)n
vol(Bn) = N(ε,Sn−1) · vol

( ε
4
Bn
)
≤ vol

((
1 +

ε

4

)
Bn
)

=
(

1 +
ε

4

)n
· vol(Bn).

Hence we conclude

N(ε, Sn−1) ≤
(1 + ε

4)n

ε
4
n =

(
1 +

4

ε

)n
.

Lemma 37. Let L(θ) : Rn → R be a quadratic form loss function with positive definite Hessian H

and minimizer θ∗. Let κ ≥ 1, the condition number, denote the ratio of the largest to the smallest

eigenvalue of H. Let Sε ⊂ Sn−1 be an ‘ε-net’ of the n-dimensional unit sphere so that for every unit

vector v ∈ Sn−1, there exists a vε ∈ Sε such that the tan of the angle between v and vε is in [−ε, ε]
and ε ≤ 1

5+2κ . Let θ̄ be an approximate minimizer of L, and let λv denote the minimizer of the scalar

quadratic function Lv(λ) = L(θ̄ + λv). If for all vε ∈ Sε, |λvε | ≤ λ, then |θ̄ − θ∗| ≤ λ̄
1−2(1+κ)ε .

Proof. Let v = (vx, vy) denote the unit vector in the direction θ̄−θ∗, and let u = (ux, uy) ∈ Sε satisfy the

condition in the Lemma statement with respect to v. That is, if mv =
vy
vx

= tanα and mu =
uy
ux

= tanβ,

then tan(β − α) = ε′ with ε′ ∈ [−ε, ε]. Let P denote the point θ̄ + λuu. The points θ̄, θ∗, P define a

plane and the subsequent analysis will be restricted to this plane. Without loss of generality, let us

translate and rotate our co-ordinate system so that θ∗ is at the origin, the level sets of the loss function L
restricted to the plane of interest have the form x2

a2 + y2

b2
= r2 (with 1

κ ≤
a2

b2
≤ κ), and θ̄ = (θ̄x, θ̄y) = rθ̄ ·v

lie in the positive quadrant.

Using the fact that the point P = θ̄ + λuu is tangent to the level set, we get

−λu =
θ̄xb

2 + θ̄ymua
2

a2m2
u + b2

·
√

1 +m2
u = rθ̄.

vxb
2 + vymua

2

a2m2
u + b2

·
√

1 +m2
u.

Since mu = tanβ = tanα+ε′

1−ε′ tanα = mv+ε′

1−ε′mv , some calculations give,

|λu| = rθ̄.
vxb

2 + vymua
2

a2m2
u + b2

·
√

1 +m2
u

= rθ̄

√
1 + ε′2

1− ε′ (mv + ε′)a2 −mv(1−mvε
′)b2

(mv + ε′)2a2 + (1− µε′)2b2︸ ︷︷ ︸
D

 .
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We can bound D as:

D ≤ (mv + ε′)a2

(mv + ε′)2a2 + (1− µε′)2b2︸ ︷︷ ︸
D1

+
mv|1−mvε

′|b2

(mv + ε′)2a2 + (1− µε′)2b2︸ ︷︷ ︸
D2

.

Assuming |ε′| ≤ ε ≤ 1/5, if mv ≥ 1, then D1 ≤ 1 and D2 ≤ 2b2

a2 ≤ 2κ. If mv ≤ 1, then D1 ≤ 2a2

b2
≤ 2κ

and D2 ≤ 2. Therefore, D ≤ 2(1 + κ), finally giving:

|θ̄ − θ∗| = rθ̄ ≤
|λu|√
1 + ε′2

· 1

1− 2(1 + κ)ε′
≤ λ̄

1− 2(1 + κ)ε
.

C.4 Bound on
∑

t∈I ‖zt‖
2

Lemma 38. For a δ ∈ (0, 1) and an interval I lying within some block Bij with j ≥ 1 and |I| ≥ 16 ln 1
δ ,

it holds with probability at least 1− δ that

∑
t∈I
‖zt‖2 ≤ |I|

(
2

(
(1 +K2

u) max
t∈I
‖xt‖2 + 2σ2

L

))
.

In particular, for any x̄ ≥ 0, conditioned on maxt∈I ‖xt‖ ≤ x̄, we have
∑

t∈I ‖zt‖
2 ≤ |I|z̄, where

z̄ :=
√

2
(
(1 +K2

u)x̄2 + 2σ2
L

)
. Here σ2

L := ν2
1 =

√
C0/2L.

Proof. Recall that zt = yt + ξt and ‖Kt‖ ,
∥∥Kstab

t

∥∥ ≤ Ku. We have∑
t∈I
‖zt‖2 =

∑
t∈I
‖yt + ξt‖2

≤ 2
∑
t∈I
‖yt‖2 + 2

∑
t∈I
‖ξt‖2

≤ 2(1 +K2
u)|I|max

t∈I
‖xt‖2 + 2

∑
t∈I
‖ξt‖2 .

By a standard Laurent-Massart bound, we have:

Pr

[∑
t∈I
‖ξt‖2 ≥ σ2

L

(
|I|+ 2

√
|I| ln

(
1

δ

)
+ 2 ln

(
1

δ

))]
≤ δ.

Using the fact that
(
|I|+ 2

√
|I| ln(1

δ ) + 2 ln(1
δ )
)
≤ 2|I| when |I| ≥ 16 ln 1

δ , plugging the above in the
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bound derived above for
∑

t ‖zt‖
2 indicates that

∑
t∈I
‖zt‖2 ≤ 2

(
(1 +K2

u) max
t∈I
‖xt‖2 + 2σ2

L

)
|I|

holds with probability at least 1− δ. The right hand side of the bound given above is a random variable

since it involves maxt∈I ‖xt‖, and can instead be interpreted as saying that for any x̄, conditioned on

the event maxt∈I ‖xt‖ ≤ x̄,
∑

t∈I ‖zt‖
2 ≤ 2

(
(1 +K2

u)x̄2 + 2σ2
L

)
|I| =: |I|z̄.

Definition 39. Define zu :=
√

2
(
(1 +K2

u)x2
u + 2σ2

L

)
, where xu is defined in Algorithm 1.

C.5 Bound on the condition number of
∑

t∈I ztz
>
t

Lemma 40. For an arbitrary interval I, denote design matrix ΥI =
∑

t∈I ztz
>
t and its condition

number κ = λmax(ΥI)/λmin(ΥI).

(i) Let I be an interval within a block Bi,j in Algorithm 1. Define x̄ = maxt∈I ‖xt‖, and z̄ as in

Lemma 38. If we have

|I| ≥ 2000

9

2(n+ d) log
1

δ
+ (n+ d) log

x̄2(1 + ‖K‖2) + σ2
L

σ2
I min

{
1
2 ,

ψ2

σ2
L+2‖K‖2

}
 ,

then for δ ≤ 3/100, it holds with probability at least 1− 3δ that the condition number is upper bounded

as

κ ≤ z̄2|I|
9|I|
1600σ

2
I min

{
1
2 ,

ψ2

σ2
L+2‖K‖2

} =
1600z̄2

9σ2
I min

{
1
2 ,

ψ2

σ2
L+2‖K‖2

} .
Define κI be the bound above when x̄ = xu:

κI :=
1600z2

u

9σ2
I min

{
1
2 ,

ψ2

σ2
L+2‖K‖2

} ,
whence it follows that κI ≤ C9

√
|I| for some problem-dependent constant (independent of T ) C9.

(ii) For any warm-up block Bi,0 in in Algorithm 1, with sequentially strongly stablizing policies {Kstab
t }

such that
∥∥Kstab

t

∥∥ ≤ Ku, if

|Bi,0| ≥
2000

9

2(n+ d) log
1

δ
+ (n+ d) log

x̄2(1 +K2
u) + σ2

0

σ2
0 min

{
1
2 ,

ψ2

σ2
0+2(Kstab

l )2

}
 ,
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we have for δ ≤ 3/100,

κ ≤ z̄2|Bi,0|
9|Bi,0|
1600 σ

2
0 min

{
1
2 ,

ψ2

ν2
0+2‖K‖2

} =
1600z̄2

9ν2
0 min

{
1
2 ,

ψ2

ν2
0+2‖K‖2

} .
Define κ0 to be the bound above when x̄ = xu:

κ0 :=
1600z2

u

9ν2
0 min

{
1
2 ,

ψ2

ν2
0+2‖K‖2

} ,
from where it follows that κ0 ≤ C10 lnT for some problem dependent constant C10.

Proof. We need to bound λmin(ΥI) and λmax(ΥI) separately. By direct computation and Lemma 38,

it holds with probability at least 1− δ that

λmax(ΥI) ≤ Tr(ΥI) =
∑
t∈I

ztz
>
t =

∑
t∈I
‖zt‖2 ≤ z̄2|I|.

In the sequel, we bound λmin(ΥI) from below by specifying the choice of Υ0 such that Υ0 � ΥI with

high probability using Lemma 41. Note that zt | Ft−1 ∼ N (zt,Σt), where zt and Σt are measurable

and

Σt �

[
ψ2In ψ2InK

>

ψ2KIn ψ2KIdK
> + σ2

t Id

]
.

By Dean et al. [2018, Lemma F. 6], we have

λmin (Σt) ≥ σ2
t min

{
1

2
,

ψ2

σ2
t + 2 ‖K‖2

}
≥ σ2

I min

{
1

2
,

ψ2

σ2
L + 2 ‖K‖2

}
.

Moreover, we have

Tr (E[ΥI ]) = E

[∑
t∈I
‖xt‖2 + ‖ut‖2

]

≤ E

[∑
t∈I
‖xt‖2 + ‖Kt‖2 ‖xt‖2 + σ2

L

]
≤ |I|

(
x̄2(1 + ‖K‖2) + σ2

L

)
.
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Setting E = Ω (the probability space) and

Υ0 =
9|I|
1600

σ2
I min

{
1

2
,

ψ2

σ2
L + 2 ‖K‖2

}
Id+n,

Lemma 41 implies if

|I| ≥ 2000

9

2(n+ d) log
100

3
+ (n+ d) log

x̄2(1 + ‖K‖2) + σ2
L

σ2
I min

{
1
2 ,

ψ2

σ2
L+2‖K‖2

}
 (57)

≥ 2000

9

2(n+ d) log
1

δ
+ (n+ d) log

x̄2(1 + ‖K‖2) + σ2
L

σ2
I min

{
1
2 ,

ψ2

σ2
L+2‖K‖2

}
 (58)

with δ ≤ 3/100, we have

P [ΥT � Υ0] ≤ 2 exp(− 9

2000((n+ d) + 1)
|I|)

≤ 2 exp

(
− 9

2000((n+ d) + 1)

2000

9

(
2(n+ d) log

1

δ

))
≤ 2 exp

(
− 9

2000((n+ d) + 1)

2000

9

(
(n+ d+ 1) log

1

δ

))
= 2δ.

Then it holds with probability at least 1− 2δ − δ = 1− 3δ that

κ ≤ z̄2|I|
9|I|
1600σ

2
I min

{
1
2 ,

ψ2

σ2
L+2‖K‖2

} =
1600z̄2

9σ2
I min

{
1
2 ,

ψ2

σ2
L+2‖K‖2

} . (59)

For a warm-up block Bi,0, note that the exploration noise is fixed at ν2
0 = 1, and we have

∥∥Kstab
t

∥∥ ≤ Ku.

Plugging these parameters into (57) and (59) yields the corresponding results.

C.6 Supporting Lemmas

Lemma 41 (Lemma E.4 in Simchowitz and Foster [2020]). Suppose zt | Ft−1 ∼ N (zt,Σt), where

zt ∈ Rd̃ and Σt ∈ Rd̃×d̃ are Ft−1-measurable, and Σt � Σ � 0. Suppose E is an arbitrary event and

suppose Tr (E[VI1{E}]) ≤ ΛT for some constant Λ ≥ 0. Then for

T ≥ 2000

9
(2d̃ log(

100

3
) + d̃ log

Λ

λmin(Σ)
),
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let V0 := 9T
1600Σ, it holds that

Pr[{VT � V0} ∩ E ] ≤ 2 exp

(
− 9

2000(d̃+ 1)
T

)
.

Lemma 42 (Self-Normalized Tail Bound [Abbasi-Yadkori et al., 2011]). Let {ηt}t≥1 be a Ft-adapted

sequence such that ηt | Ft−1 is σ2-sub-Gaussian. Define VT :=
∑T

t=1 ztz
>
t . Fix V0 � 0, it holds with

probability 1− δ that∥∥∥∥∥
T∑
t=1

xtηt

∥∥∥∥∥
2

(V0+VT )−1

≤ 2σ2 log

{
1

δ
det
(
V
−1/2

0 (V0 + VT )V
−1/2

0

)}
.

D Proof of Proposition 12

Consider a non-stationary Markov decision process on state space S and action space A, with a time-

invariant cost function c(·, ·) : S × A → R, and time-dependent transition kernel parametrized by

{Θt}t∈[T ]. Let J∗t denote the optimal (minimum) average cost of the MDP corresponding to Θt, and let

ht(·) : S → R denote the relative value (bias) function. Then for an arbitrary state st ∈ S and action

at ∈ A, we have the inequality:

c(st, at) ≥ J∗t + ht(st)−EΘt [h(st+1) | st, at], (60)

where EΘt [X] denotes the expectation of random variable X under transition kernel parametrized by

Θt. Summing the above inequality from t = 1 to T :

T∑
t=1

c(st, at) ≥
T∑
t=1

J∗t + ht(st)−EΘt [h(st+1) | st, at]

=

T∑
t=1

J∗t + h1(s1)−EΘT [hT (sT+1) | sT , aT ]

+

T−1∑
t=1

ht+1(st+1)−EΘt [ht(st+1) | st, at]

=

T∑
t=1

J∗t + h1(s1)−EΘT [hT (sT+1) | sT , aT ]

+
T−1∑
t=1

ht+1(st+1)−EΘt [ht+1(st+1) | st, at]

+
T−1∑
t=1

EΘt [ht+1(st+1)− ht(st+1) | st, at].
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Taking expectation with respect to the randomization of the policy and the evolution of the non-

stationary MDP,

E

[
T∑
t=1

c(st, at)

]
−

T∑
t=1

J∗t ≥ h1(s1)−E[hT (sT+1)] +

T−1∑
t=1

E[ht+1(st+1)− ht(st+1)]

or

T∑
t=1

J∗t −E

[
T∑
t=1

c(st, at)

]
≤ −h1(s1) + E[hT (sT+1)] +

T−1∑
t=1

E[ht(st+1)− ht+1(st+1)].

Specializing to the non-stationary LQR setting, st ≡ xt, at ≡ ut, c(xt, ut) = x>t Qxt + u>t Rut, ht(st) ≡
x>t P

∗
t xt:

T∑
t=1

J∗t −E

[
T∑
t=1

c(xt, ut)

]
≤ E

[
x>T+1P

∗
TxT+1

]
+

T−1∑
t=1

E
[
x>t+1

(
P ∗t − P ∗t+1

)
xt+1

]
≤ E

[
‖xT+1‖2

]
‖P ∗T ‖+

T−1∑
t=1

E
[
‖xt+1‖2

] ∥∥P ∗t − P ∗t+1

∥∥ .
In Lemma 43, we prove that under the optimal dynamic policy, E

[
‖xt‖2

]
is bounded from above

by a constant depending only on the cost parameters and the sequential stability parameters κ, γ.

The perturbation result for the solution of Discrete Algebraic Riccati equation gives
∥∥P ∗t − P ∗t+1

∥∥ ≤
min{2C4 ‖Θt −Θt+1‖2 , 2Pu} = O(∆2

t+1) [Simchowitz and Foster, 2020, Theorem 5]. Lemma 43 does not

bound E
[
‖xT+1‖2

]
, however, following a similar argument as in the Lemma, we can create another policy

that has logarithmic regret compared to the optimal policy and has bounded E
[
‖xT+1‖2

]
. Combining

these, we get the desired bound on the additional regret of O(VT + log T ) with respect to the dynamic

optimal policy. �

Lemma 43. Under the optimal dynamic policy for the non-stationary LQR problem,

qminE
[
‖xt‖2

]
≤MΓ

2κ2

γ
Mx +MP

2κ2

γ
+

(
κ2Mx +

2κ2nψ2

γ

)(
2κ2

γ
MΓ + κ2MP

)
,

where Mx :=
(
MΓ
qmin

)
2κ2nψ2

γ , MP := 2nκ2

γ MΓ, and MΓ := maxs
∥∥Q+ (Kstab

s )>RKstab
s

∥∥ ≤ qmax + rmaxκ
2.

Proof. We prove this result by contradiction. We first establish some notation for the optimal dynamic

policy. A classical fact is that the optimal dynamic policy for non-stationary LQR is also a linear state

feedback policy, given via the following dynamic programming recursion:

PT+1 = 0,

Kt = −(R+B>t Pt+1Bt)B
>
t Pt+1At,
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Pt = Q+K>t RKt + (At +BtKt)
>Pt+1(At +BtKt),

Jt = Tr(W · Pt+1).

Let t be some time such that under the optimal dynamic policy, E
[
‖xt‖2

]
is larger than the bound in

the Lemma statement. Define

τ = max{s ≤ t− 1 : E
[
‖xs‖2

]
≤Mx}

as the last time before t when the expected squared norm of the state under the optimal policy is smaller

than Mx. Similarly, define

τ ′ = min{s ≥ t : ‖Ps+1‖ ≤MP }

as the first time including or after t when the norm of Ps+1 is smaller than MP . We will show that

by deviating to a policy where K ′s = Kstab
s for s ∈ {τ, . . . , τ ′} gives a policy with a smaller cost.

Let {x′s} denote the state process for this new policy, {P ′s} the relative value function matrices, and

J ′s := Tr(W · P ′s).

By the definition of the new policy, we must have P ′s = Ps for s ≥ τ ′ + 1. Recall the recursion for the

relative value function for LQR:

x>t Qxt + u>t Rut = x>t Ptxt + Jt −E
[
xTt+1Pt+1xt+1

]
.

We will decompose the cost of the optimal policy into contributions due to the four intervals {1, . . . , τ −
1}, {τ, . . . , t}, {t+1, . . . , τ ′} and {τ ′+1, . . . , T}. Since both policies agree on the first interval, the total

cost is the same, and hence we do not consider it henceforth. For the interval {τ, . . . , t} we lower bound

the cost of the optimal policy as:

E

[
t∑

s=τ

x>s Qxs + u>s Rus

]
≥

t∑
s=τ

qminE
[
‖xs‖2

]
. (61)

For the interval {t+ 1 . . . , τ ′}:

E

[
τ ′∑

s=t+1

x>s Qxs + u>s Rus

]
= E

[
x>t+1Pt+1xt+1

]
+

τ ′∑
s=t+1

Js −E
[
x>τ ′+1Pτ ′+1xτ ′+1

]

≥
τ ′+1∑
s=t+1

Tr(W · Ps)−E
[
x>τ ′+1Pτ ′+1xτ ′+1

]
,
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where we have used E
[
x>t+1Pt+1xt+1

]
≥ E

[
w>t+1Pt+1wt+1

]
= Tr(W ·Pt+1). Finally, for the last interval,

E

[
T∑

s=τ ′+1

x>s Qxs + u>s Rus

]
= E

[
x>τ ′+1Pτ ′+1xτ ′+1

]
+

T∑
s=τ ′+1

Js.

It will be convenient to combine the lower bound for the interval {t+ 1, . . . , T} as:

E

[
T∑

s=t+1

x>s Qxs + u>s Rus

]
≥

τ ′∑
s=t+1

Tr(W · Ps) +
T∑

s=τ ′

Js

≥
τ ′∑

t=t+1

ψ2 ‖Ps‖+

T∑
s=τ ′

Js. (62)

We now proceed to upper bound the cost during these intervals for the modified policy {K ′s}. Denote

u′s = K ′sx
′
s as the control at time step s under the new policy. We first summarize the results of

Lemma 44, which bounds E
[
‖x′s‖

2
]

and ‖P ′s‖ for s ∈ {τ + 1, . . . , τ ′}:

E
[
‖xs‖2

]
≤ κ2

(
1− γ

2

)2(s−τ)
E
[
‖xτ‖2

]
+

2κ2nψ2

γ
,

∥∥P ′s∥∥ ≤ κ2
(

1− γ

2

)2(τ ′−s+1)
‖Pτ ′+1‖+

2κ2

γ
MΓ.

For the second interval, {τ, . . . , t}, we can upper bound the cost of the new policy by:

E

[
t∑

s=τ

x′
>
s Qx

′
s + u′

>
s Ru

′
s

]
= E

[
t∑

s=τ

x′
>
s (Q+K ′

>
s RK

′
s)x
′
s

]

≤MΓ

t∑
s=τ

E
[∥∥x′s∥∥2

]
≤MΓ

(
(t− τ)

2κ2nψ2

γ
+

2κ2

γ
E
[
‖xτ‖2

])
, (63)

where we have used the bound on E
[
‖x′s‖

2
]

from Lemma 44. Next, we upper bound the cost for interval

{t+ 1, . . . , T}:

E

[
τ ′∑

s=t+1

x′
>
s Qx

′
s + u′

>
s Ru

′
s

]
= E

[
x′t+1

>
P ′t+1x

′
t+1

]
+

T∑
s=t+1

J ′s

= E
[
x′t+1

>
P ′t+1x

′
t+1

]
+

τ ′∑
s=t+2

Tr(W · P ′s) +

T∑
s=τ ′

J ′s

≤ E
[∥∥x′t+1

∥∥2
] ∥∥P ′t+1

∥∥+ nψ2
τ ′∑

s=t+2

∥∥P ′s∥∥+
T∑

s=τ ′

Js.
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Using Lemma 44 we can bound:

τ ′∑
s=t+2

∥∥P ′s∥∥ ≤ τ ′∑
s=t+2

(
κ2
(

1− γ

2

)2(τ ′−s+1)
‖Pτ ′+1‖+

2κ2

γ
MΓ

)
≤ (τ ′ − t− 1)

2κ2

γ
MΓ +

2κ2

γ
‖Pτ ′+1‖ .

Also, using Lemma 44:

E
[∥∥x′t+1

∥∥2
] ∥∥P ′t+1

∥∥ ≤ (κ2E
[
‖xτ‖2

]
+

2κ2nψ2

γ

)(
κ2 ‖Pτ ′+1‖+

2κ2

γ
MΓ

)
.

Putting together,

E

[
τ ′∑

s=t+1

x′
>
s Qx

′
s + u′

>
s Ru

′
s

]
≤
(
κ2E

[
‖xτ‖2

]
+

2κ2nψ2

γ

)(
κ2 ‖Pτ ′+1‖+

2κ2

γ
MΓ

)

+ nψ2

(
(τ ′ − t)2κ2

γ
MΓ +

2κ2

γ
‖Pτ ′+1‖

)
+

T∑
s=τ ′+1

Js. (64)

Combining the lower bounds on the optimal policy cost from (61)-(62) and upper bound on the cost of

the modified policy from (63)-(64):

E

[
T∑
s=τ

x>s Qxs + u>s Rus

]
−E

[
T∑
s=τ

x′
>
s Qx

′
s + u′

>
s Ru

′
s

]

≥
t−1∑
s=τ

(
qminE

[
‖xt‖2

]
−MΓ

2κ2nψ2

γ

)

+ ψ2
τ ′∑

s=t+1

(
‖Ps‖ −

2κ2n

γ
MΓ

)
+ qminE

[
‖xt‖2

]
− 2κ2

γ
‖Pτ ′+1‖ −MΓ

2κ2

γ
E
[
‖xτ‖2

]
−
(
κ2E

[
‖xτ‖2

]
+

2κ2nψ2

γ

)(
κ2 ‖Pτ ′+1‖+

2κ2

γ
MΓ

)
.

Recall that we choose Mx :=
(
MΓ
qmin

)
2κ2nψ2

γ as the threshold for E
[
‖xτ‖2

]
, and MP := 2nκ2

γ MΓ as the

threshold of ‖Pτ ′+1‖. This ensures the first two terms above are non-negative. Therefore, if

qminE
[
‖xt‖2

]
≥ 2κ2

γ
‖Pτ ′+1‖+MΓ

2κ2

γ
E
[
‖xτ‖2

]
+

(
κ2E

[
‖xτ‖2

]
+

2κ2nψ2

γ

)(
κ2 ‖Pτ ′+1‖+

2κ2

γ
MΓ

)
≥ 2κ2

γ
MP +MΓ

2κ2

γ
Mx +

(
κ2Mx +

2κ2nψ2

γ

)(
κ2MP +

2κ2

γ
MΓ

)
,

we get that the cost of the optimal policy is larger than the modified policy, a contradiction.
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Lemma 44. For the alternate policy which chooses K ′s = Kstab
s for s ∈ {τ, . . . , t, . . . , τ ′}, we have:

• E
[
‖xs‖2

]
≤ κ2

(
1− γ

2

)2(s−τ)
E
[
‖xτ‖2

]
+ 2κ2nψ2

γ ,

• ‖P ′s‖ ≤ κ2
(
1− γ

2

)2(τ ′−s+1) ‖Pτ ′+1‖+ 2κ2

γ MΓ,

where MΓ := maxs
∥∥Q+ (Kstab

s )>RKstab
s

∥∥, and {xs}, {Ps} denote the optimal policy quantities.

Proof. Recall our notation Φt := At +BtK
stab
t , Γt = Q+ (Kstab

t )>RKstab
t . Denote for a ≤ b:

Φb:a = ΦbΦb−1 · · ·Φa.

We can write:

xs = Φs−1xs−1 + ws−1

= Φs−1Φs−2xs−2 + Φs−1ws−2 + ws−1

= Φs−1:τxτ +

s−1∑
`=τ

Φs−1:`+1w`,

which gives:

E
[
‖xs‖2

]
≤ ‖Φs−1:τ‖2 E

[
‖xτ‖2

]
+

s−1∑
`=τ

‖Φs−1:`+1‖2 E
[
‖w`‖2

]
. (65)

By sequential strong stability:

‖Φs−1:`‖ =
∥∥Hs−1Ls−1H

−1
s−1Hs−2Ls−2H

−1
s−2 · · ·H`L`H

−
` 1
∥∥

≤ ‖Hs−1‖ ‖Ls−1‖
∥∥H−1

s−1Hs−2

∥∥ ‖Ls−2‖ · · ·
∥∥H−1

`+1H`

∥∥ ‖L`‖ ∥∥H−` 1
∥∥

≤ κ(1− γ)s−`(1 + γ/2)s−`−1,

which using (1− γ)(1 + γ/2) ≤ (1− γ/2) gives

≤ κ(1− γ/2)s−`.

Substituting the above in (65) and using E
[
‖ws‖2

]
= nψ2:

E
[
‖xs‖2

]
≤ κ2(1− γ/2)2(s−τ)E

[
‖xτ‖2

]
+ nψ2κ2

(
1 + (1− γ/2)2 + · · ·+ (1− γ/2)2(s−τ−1)

)
≤ κ2(1− γ/2)2(s−τ)E

[
‖xτ‖2

]
+ nψ2κ2 2

γ
.
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This proves the first part. For the second part,

P ′s = Q+ (Kstab
s )>RKstab

s + Φ>s P
′
s+1Φs

= Γs + Φ>s P
′
s+1Φs

= Γs + Φ>s Γs+1Φs + Φ>s Φ>s+1P
′
s+2Φs+1Φs

= Φ>τ ′:sPτ ′+1Φτ ′:s +

τ ′∑
`=s

Φ>`−1:sΓ`Φ`−1:s.

Therefore,

∥∥P ′s∥∥ ≤
∥∥∥∥∥

τ ′∏
m=s

Φτ ′:s

∥∥∥∥∥
2

‖Pτ ′+1‖+
τ ′∑
`=s

∥∥∥∥∥
`−1∏
m=s

Φ`−1:s

∥∥∥∥∥
2

‖Γ`‖

≤ κ2(1− γ/2)2(τ ′+1−s) ‖Pτ ′+1‖+MΓκ
2
(

1 + (1− γ/2)2 + · · ·+ (1− γ/2)2(τ ′−s)
)

≤ κ2(1− γ/2)2(τ ′+1−s) ‖Pτ ′+1‖+MΓ
2κ2

γ
.

E Proof of Theorem 11

E.1 Proofs for Section 7.2

Proof of Lemma 14 Consider a stabilization epoch starting at time τ stab and ending at θstab. During

the epoch, the dynamics of the state evolution is:

xs = Φs−1xs−1 + ws−1,

where Φs := As +BsK
stab
s . Denote for a ≤ b:

Φb:a = ΦbΦb−1 · · ·Φa.

Then,

‖xs‖ ≤
∥∥Φs−1:τ stab

∥∥ ‖xτ stab‖+
∥∥Φs−1:τ stab

∥∥ ‖wτ stab‖+
∥∥Φs−1:τ stab+1

∥∥∥∥wτ stab+1

∥∥+ · · ·+ ‖Φs−1‖ ‖ws−1‖

≤ κ(1− γ/2)s−τ
stab ‖xτ stab‖+ κ(1− γ/2)s−τ

stab ‖wτ stab‖+ κ(1− γ/2)s−τ
stab−1

∥∥wτ stab+1

∥∥
+ · · ·+ κ(1− γ/2) ‖ws−1‖

=: κYs−τ stab ,
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so that
∥∥xt+τ stab∥∥ ≤ κYt with Y0 = ‖xτ stab‖, Wt =

∥∥wt+τ stab∥∥ and

Yt+1 ≤ (1− γ/2)Yt +Wt.

Now applying Lemma 29 with ρ = ρ0 = (1− γ/2), and substituting a = 2ψ
√
n

1−ρ0
, we get

ρ0 + (1− ρ0)
E[‖wt‖]
2ψ
√
n
≤ ρ0 + (1− ρ0)

ψ
√
n

2ψ
√
n

=
1 + ρ0

2
.

Therefore,
θstab∑
t=τ stab

‖xt‖2 ≤ 2κ2 ‖xτ stab‖
2

1− ρ0
.

Since

E[ct | Ft−1,Gt−1] = x>t Qxt + [(At +BtKt)xt]
>R[(At +BtKt)xt] + σ2

t Tr(R) = O(‖xt‖2 + 1),

the total cost during the stabilization epoch is bounded by O(‖xτ stab‖
2). We next show that this is

O(lnT ). Note that we have
∥∥xτ stab−1

∥∥ ≤ xu = 2κeCss
(√

8(n+d)β√
1−ρ0

√
log T + (n+d)B

1−ρ0

)
. Therefore,

E
[
‖xτ stab‖

2
]
≤ E

 sup
y1,...yT−1∈Rn:
‖yt‖≤xu∀t∈[T−1]

max
t
‖(At +BtKt)yt +Btσtηt + wt‖2

.
Since maxt max{‖At‖ , ‖Bt‖ , ‖Kt‖} are bounded, for some problem dependent constant C13

E
[
‖xτ stab‖

2
]
≤ C13

(
E
[
max
t
‖wt‖2 + max

t
‖ηt‖2

]
+ xuE

[
max
t
‖wt‖+ max

t
‖ηt‖

]
+E
[
max
t
‖wt‖

]
·E
[
max
t
‖ηt‖

])
.

Using Lemma 28, the expression above is O(n+ d+ lnT ).

Proof of Lemma 15 Since Ei is an exploration epoch, we have ‖xτi‖ ≤ xu. During Bi,0 the dynamics

are given by:

xt+1 = Φtxt + ν0Ξtηt + wt,

where Φt := At +BtK
stab
t and Ξt := BtK

stab
t . Denote for a ≤ b:

Φb:a = ΦbΦb−1 · · ·Φa.
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By our assumption that ηt and wt are a sequence of independent mean 0 Gaussian random vectors:

E
[
‖xt‖2 | Fτi−1,Gτi−1

]
= ‖Φt:τixτi‖

2 +

t−1∑
s=τi

ν2
0E
[
‖Φt:s+1Ξsηs‖2 | Fτi−1,Gτi−1

]
+

t−1∑
s=τi

E
[
‖Φt:s+1ws‖2 | Fτi−1,Gτi−1

]
≤ κ2ρ

2(t−τi)
0 ‖xτi‖

2 + κ2n
ν2

0C6 + ψ2

1− ρ2
0

,

where C6 := maxt∈[T ]

∥∥BtKstab
t

∥∥2
. This further gives the total during Bi,0

asE

[
τi+L−1∑
t=τi

‖xt‖2 | Fτi−1,Gτi−1

]
≤ κ2 x2

u

1− ρ2
0

+ Lκ2n · ν
2
0C6 + ψ2

1− ρ2
0

.

Finally, again using the fact that E[ct | Fτi−1] = Õ(E
[
‖xt‖2 | Fτi−1

]
+ 1), and the definition of L :=

16(n+d) log3 T
1−ρ0

, the bound in the lemma statement follows.

Proof of Lemma 16 We first prove a lemma that gives a regret decomposition for good intervals.

Lemma 45. For some epoch Ei, a block Bi,j in epoch Ei, and a good interval Igoodi,j,k = [τ, θ] in block Bi,j,
the following identity holds:

Rπ(Igoodi,j,k ) :=
∑

t∈Igoodi,j,k

x>t Qxt + u>t Rut − J∗t

=

θ∑
t=τ

Jt(Kt)− J∗t

+ x>τ Pτ (Kτ )xτ − x>θ+1Pθ(Kθ)xθ+1

+
θ−1∑
t=τ

x>t+1 (Pt+1(Kt+1)− Pt(Kt))xt+1

+
θ∑
t=τ

(
x>t+1Pt(Kt)xt+1 −E

[
x>t+1Pt(Kt)xt+1 | xt, σt

])
+

θ∑
t=τ

σ2
t Tr

(
R+B>t Pt(Kt)Bt

)
.

Proof. Note that for an interval lying within block Bi,j , the policy Kt = K∗(Θ̂i,j−1) is fixed, however for

generality, we use Kt. For dynamics given by Θt, and control policy ut = Ktxt+σtηt with ηt ∼ N(0, In),
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we have the following Bellman recursion:

x>t Pt(Kt)xt = x>t Qxt + u>t Rut − Jt(Kt)− σ2
t Tr

(
R+B>t Pt(Kt)Bt

)
+ E

[
x>t+1Pt(Kt)xt+1 | xt, σt

]
.

Rearranging terms, we get,

x>t Qxt + u>t Rut − J∗t

= Jt(Kt)− J∗t + x>t Pt(Kt)xt −E
[
x>t+1Pt(Kt)xt+1 | xt, σt

]
+ σ2

t Tr
(
R+B>t Pt(Kt)Bt

)
= Jt(Kt)− J∗t +

(
x>t Pt(Kt)xt − x>t+1Pt+1(Kt+1)xt+1

)
+
(
x>t+1Pt+1(Kt+1)xt+1 − x>t+1Pt(Kt)xt+1

)
+
(
x>t+1Pt(Kt)xt+1 −E

[
x>t+1Pt(Kt)xt+1 | xt, σt

])
+ σ2

t Tr
(
R+B>t Pt(Kt)Bt

)
Summing the above for the entire interval gives the identity in the lemma.

With Lemma 45, after taking expectation and using Lemma 1, we prove Lemma 16 below.

Proof. The second expression follows from the first by noting the definition of good intervals: for all

t ∈ Igoodi,j,k ,
∥∥∥Θ̂i,j−1 −Θt

∥∥∥ ≤ C3 and applying Lemma 1.

To arrive at the first expression, we go through the expression in Lemma 45 line-by-line. The expression

in the second line is bounded by ‖xτ‖2 ‖Pτ (Kτ )‖, which is Õ
(
n+d+log T

1−ρ0

)
. For the expression in the third

line, noting that Kt = Kt+1, and that ‖Pt(K)− Pt+1(K)‖ ≤ C12 ‖Θt −Θt+1‖ for a stabilizing controller

K, and a constant C12, the sum is bounded by C12
∑θ

t=τ ‖xt‖
2 ‖Θt −Θt+1‖, which is Õ

(
n+d+log T

1−ρ0
∆i,j,k

)
.

The expression in the fourth line is a mean 0 random variable and hence vanishes when we take the

expectation. For the expression in the last line, note that in block Bi,j , for each m = 0, 1, . . . , j − 1 we

start an exploration phase of scale m (duration L · 2m) with probability 1

L
√

2j
√

2m
at each time t, and

during an exploration of phase m, we choose σ2
t =

√
C0
L2m . We will upper bound E

[∑
t∈Igoodi,j,k

σ2
t

]
by

allocating the entire exploration variance to the time t at which an exploration phase begins. For a given

time t, this gives the expected contribution due to scale m as 1

L
√

2j
√

2m
×
√
C02m/L =

C
1/2
0

L3/2
√

2j
. Summing

over m gives
jC

1/2
0

L3/2
√

2j
, and multiplying by

∣∣∣Igoodi,j,k

∣∣∣ finally gives the expression in the Lemma.

E.2 Proofs for Section 7.3

Proof of Lemma 17 Consider the block Bi,j = [si,j , si,j+2jL−1] in Ei. We first show that no restart

is triggered by EndOfBlockTest(i, j). Let t = τi + 2jL− 1, then ∆Bi,j ≤ ∆[τi,t] ≤ (t− τi + 1)−1/4 ≤
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|Bi,j |−1/4. Conditioning on Event E , we have∥∥∥Θsi,j − Θ̂i,j

∥∥∥
F
≤ C̄bias∆Bi,j + C̄var|Bi,j |−1/4.

Similarly, we also have ∥∥∥Θsi,j−1 − Θ̂i,j−1

∥∥∥
F
≤ C̄bias∆Bi,j−1 + C̄var|Bi,j−1|−1/4

and ∥∥∥Θsi,j−1 − Θ̂[τi,t]

∥∥∥
F
≤ ∆[τi,t] + C1|t− τi + 1|−1/4,∥∥∥Θsi,j − Θ̂[τi,t]

∥∥∥
F
≤ ∆[τi,t] + C1|t− τi + 1|−1/4.

Then ∥∥∥Θ̂i,j − Θ̂i,j−1

∥∥∥
F
≤
∥∥∥Θsi,j − Θ̂i,j

∥∥∥
F

+
∥∥Θsi,j −Θsi,j−1

∥∥
F

+
∥∥∥Θsi,j−1 − Θ̂i,j−1

∥∥∥
F

≤ C̄bias∆Bi,j + C̄var|Bi,j |−1/4 + ∆τi,t + C̄bias∆Bi,j−1 + C̄var|Bi,j−1|−1/4

≤ (1 + C̄bias)∆τi,t + 2C̄var|Bi,j−1|−1/4

≤ (1 + C̄bias + 2C̄var)|Bi,j−1|−1/4.

As a result,
∥∥∥Θ̂i,j − Θ̂i,j−1

∥∥∥2

F
≤ (1 + C̄bias + 2C̄var)

2|Bi,j−1|−1/2 and EndOfBlockTest(i, j) = Pass.

Similarly, for any exploration interval I = [s, e] ⊂ [τi, t] with index m ≤ j − 1, note that ∆I ≤ ∆[τi,t] ≤
(t− τi + 1)−1/4 ≤ |I|−1/4. Then∥∥∥Θ̂i,j,(m,s) − Θ̂i,j−1

∥∥∥
F
≤
∥∥∥Θ̂i,j,(m,s) −Θs

∥∥∥
F

+
∥∥Θs −Θsi,j−1

∥∥
F

+
∥∥∥Θsi,j−1 − Θ̂i,j−1

∥∥∥
F

≤ C̄bias∆I + C̄var|I|−1/4 + ∆τi,t + C̄bias∆Bi,j−1 + C̄var|Bi,j−1|−1/4

≤ (1 + C̄bias)∆τi,t + 2C̄var|I|−1/4

≤ (1 + C̄bias + 2C̄var)|I|−1/4.

Then
∥∥∥Θ̂i,j,(m,s) − Θ̂i,j−1

∥∥∥2

F
≤ (1 + C̄bias + 2C̄var)

2|I|−1/2 and EndOfExplorationTest(i, j,m, s) =

Pass.

Proof of Corollary 18 By Lemma 17, to end an epoch Ei due to detection of nonstationarity, we

need ∆[τi,t] ≥
√

C0

|Ei|1/2
. Then

∆T ≥
E∑
i=1

∆[τi,t] ≥
E∑
i=1

√
C0

|Ei|1/2
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or
E∑
i=1

|Ei|−
1
4 ≤ C−

1
2

0 ∆T .

By Hölder’s inequality,

E ≤

(
E∑
i=1

|Ei|−
1
4

) 4
5
(

E∑
i=1

|Ei|

) 1
5

≤
(
C
− 1

2
0 ∆T

) 4
5

(T )
1
5

= C
− 2

5
0 ∆

4
5
TT

1
5 .

Proof of Lemma 19 By Assumption 4, a control based on an estimate Θ̂t of Θt such that
∥∥∥Θt − Θ̂t

∥∥∥
F
≤

C3/2 guarantees that K∗(Θ̂t) is in fact (κ, γ, ν) sequentially strongly-stable for the epoch Ei and pa-

rameters κ, γ, ν specified in Lemma 7. We first show that under the assumption that {Kt} is a (κ, γ, ν)

sequentially strongly-stable sequence of controllers for the non-stationary dynamics in the interval [s, e]

(1 ≤ s ≤ e ≤ T ), then Lemma 30 implies that with high probability maxt∈[s,e] ‖xt‖ ≤ xu.

The LQR dynamics are given by:

xt+1 = (At +BtKt)xt + σtBtηt + wt.

Under the independence assumptions on {ηt}, {wt}, we can use the analysis approach in Lemma 14 to

show that ‖xt‖ ≤ κeCssV[s:t−1]Yt where Yt obeys Ys−1 = ‖xs−1‖ and

Yt+1 ≤ (1− γ)Yt +
d∑
i=1

βi,t|η̂i,t|+ ψ
n∑
j=1

|ŵi,t|.

In the above, βi,t are the singular values of Bt, and η̂i,t, ŵi,t are independent N (0, 1) random variables.

We have used the fact that σt ≤ 1 for all t. Denoting:

β = max

{
ψ,max

i,t
βi,t

}
and applying Lemma 30,

Pr

[
max
t∈[s,e]

Yt ≥ Ys−1 +

(√
8(n+ d)β√

1− ρ0

√
log T +

(n+ d)B

1− ρ0

)]
≤ |e− s+ 1|

T 4
, (66)
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or,

Pr

[
max
t∈[s,e]

‖xt‖ e−CssV[s:e−1]/κ ≥ ‖xs−1‖+

(√
8(n+ d)β√

1− ρ0

√
log T +

(n+ d)B

1− ρ0

)]
≤ |e− s+ 1|

T 4
. (67)

Note that we start an epoch with ‖xτi‖ ≤ xu, and then use stabilizing controls for L time steps. Using

(30),

Pr

[
‖xτi+L‖ ≥ κ2

(
ρL0 xu +

(√
6(n+ d)β√

1− ρ0

√
log T +

(n+ d)B

1− ρ0

))]
≤ 1

T 3
. (68)

With our choice of L, ρL0 xu = o(1).

Lemma 9 and Lemma 8 prove that under Event 1 the OLS estimate Θ̂i,j based on block j ≥ 0 of

epoch Ii indeed satisfies
∥∥∥Θt − Θ̂t

∥∥∥2

F
≤ C3. Thus it holds that the controllers {Kt} are indeed (κ, γ, ν)

sequentially strongly-stable for t ∈ [τi + L, θi]. Combining (68) and (67), for epoch Ei = [τi, θi] we get

Pr

[
max

t∈[τi+L,θi]
‖xt‖ ≥ 2κeCss

(√
8(n+ d)β√

1− ρ0

√
log T +

(n+ d)B

1− ρ0

)]
≤ 2

T 3
. (69)

Therefore, with high probability, a restart of the epoch based on instability detection does not happen.

E.3 Proofs for Section 7.4

Lemma 46. Assume Event 1 holds. Let I = [s, e] be an interval in Bi,j satisfying ∆2
I ≤ αI = 1√

|I|
and

εI =
∥∥∥Θ̂i,j−1 −Θs

∥∥∥2

F
≥ C5 · 1√

I , where we define C5 := (2 + 2C̄bias + 3C̄var)
2. Define ε̃I := min{εI , C3}.

Then, there exists an index m, such that (1) C5 · 1√
2m+1L

≤ ε̃I ≤ C5 · 1√
2mL

, (2) 2mL ≤ |I|, and (3)

if an exploration phase with index m starts at some time s̃ within the interval [s, e − 2mL], then the

algorithm starts a new epoch at the end of the exploration phase.

Proof. By our assumption, ε̃I ≤ C5√
L

. Note that I ⊂ J , then ε̃I ≥ C5 · 1√
I ≥ C5 · 1√

2jL
. Then there

exist a index m ∈ [j] satisfying (1). (2) is implied by C5 · 1√
|I|
≤ ε̃I ≤ C5 · 1√

2mL
.

To prove (3), let s̃ ∈ [s, e − 2mL] be the starting time of I, condition on Event E and note that

[s̃, s̃+ 2mL] ⊂ I. We have ∥∥∥Θ̂i,j,(m,s̃) −Θs̃

∥∥∥
F
≤ C̄bias∆I + C̄var|I|−

1
2 .

By direct computation,∥∥∥Θ̂i,j−1 − Θ̂i,j,(m,s)

∥∥∥
F
≥
∥∥∥Θ̂i,j−1 −Θs̃

∥∥∥
F
− ‖Θs̃ −Θs‖F −

∥∥∥Θs − Θ̂i,j,(m,s̃)

∥∥∥
F
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≥
√
C5 · I−

1
4 −∆I − C̄bias∆I − C̄var|I|−

1
2

≥
√
C5 · I−

1
4 − (1 + C̄bias)I−

1
4 − Cvar|I|−

1
2

≥ (
√
C5 − 1− C̄bias − C̄var)I−

1
4 .

Hence ∥∥∥Θ̂i,j−1 − Θ̂i,j,(m,s̃)

∥∥∥2

F
≥ (
√
C5 − 1− C̄bias − C̄var)

2I−
1
2 ≥ (1 + C̄bias + 2C̄var)

2I−
1
2

and EndOfExplorationTest(i, j,m, s) = Fail.

Proof of Lemma 21 Starting with the definition in (12),

L(I) :=
∑
t∈I

min

{
C4

∥∥∥Θ̂i,j−1 −Θt

∥∥∥2

F
, C3

}
≤ C4

∑
t∈I

∥∥∥Θt − Θ̂i,j−1

∥∥∥2

F

≤ 2C4|I|
∥∥∥Θ̂i,j−1 −Θs

∥∥∥2

F
+ 2C4

∑
t∈I
‖Θt −Θs‖2F

≤ 2C4|I|
(
(αI + εI1{εI ≥ αI}) + ∆2

I
)
.

Proof of Lemma 22 We create the partition using Algorithm 4, where we check the truncat-

ing condition current interval ends and a new interval is created at time t ∈ J whenever ∆[sk,t] ≤√
log |J |

(t−sk)1/2+1
and ∆[sk,t+1] >

√
log |J |

(t−sk)1/2+2
at each time t ∈ J .

Algorithm 4: Creating Partition

Input: an block J = [s, e].;
Initialize: Set k = 1; s1 = s; t = s.;
while t ≤ e do

if ∆[sk,t] ≤
√

log |J |
(t−sk)1/2+1

and ∆[sk,t+1] >
√

log |J |
(t−sk)1/2+2

then

Let ek ← t; Ik ← [sk, ek]; k ← k + 1.
end
t← t+ 1

end
if sk ≤ e then

ek ← e; Ik ← [sk, ek].
end
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To calculate an upper bound for the number of intervals Γ, consider the inequality

∆[s,e] ≥ ∆[s1,e1+1] + ∆[s2,e2+1] + . . .+ ∆[sΓ−1,eΓ−1+1] ≥
Γ−1∑
k=1

√
log |J |

(ek − sk)1/2 + 2
=

Γ−1∑
k=1

√
log |J |
I1/2
k + 1

.

On the other hand, by Holder’s inequality,

(
Γ−1∑
k=1

√
log |J |
|Ik|1/2 + 1

) 2
3
(

Γ−1∑
k=1

(
|Ik|1/2 + 1

)) 1
3

≥ (Γ− 1) (log |J |)
1
3 .

Combining the two inequalities, we have

Γ− 1 ≤ (log |J |)−
1
3

(
Γ−1∑
k=1

(
|Ik|1/2 + 1

)) 1
3

∆
2
3

[s,e] ≤ O
(

(log |J |)−
2
5 |J |

1
5 ∆

4
5

[s,e] + 1

)
.

To prove the upper bound using SJ , recall the condition ∆[sk,t+1] >
√

log |J |
(t−sk)1/2+2

. Each distribution

switch only creates one interval, then we have Γ− 1 ≤ SJ − 1.

Proof of Lemma 23 In Section 7.4, we sketched the proof for an upper bound for regret for block

J , where we only considered the first Γ − 1 complete intervals. Here we show the omitted details in

the proof. Following the technique in Chen et al. [2019], we define J ′ := [τi, τi + 2jL] to be the block

that differs from J only in that J is assumed not triggering the restart. Note that following the same

partitioning procedure, we have J ′ = I ′1 ∪ I ′2 ∪ · · · ∪ I ′Γ′ . We can check that Γ ≤ Γ′, I ′k = Ik for

k = 1, 2, . . . ,Γ− 1. Moreover, let IΓ = [sΓ, eΓ] and I ′Γ = [s′Γ, e
′
Γ]. We have sΓ = s′Γ and eΓ ≤ e′Γ.

By direct computation, we bound the first term in (13) by

Γ∑
k=1

|Ik|αIk =
Γ−1∑
k=1

|I ′k|αI′k + |IΓ|αIΓ

≤
Γ−1∑
k=1

|I ′k|αI′k + |I ′Γ|αI′Γ

≤
Γ∑
k=1

√∣∣I ′k∣∣ log
∣∣I ′k∣∣

≤

√√√√Γ

Γ∑
k=1

|I ′k|

≤ O
(

min

{
|J |

3
5 ∆

2
5
J ,
√
SJ
})

,
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where the last inequality comes from applying Cauchy-Schwarz inequality and plugging in

Γ = O
(

min

{
SJ , (log |J |)−

2
5 ∆

4
5
J |J |

1
5 + 1

})
.

In the following, we upper bound the second term in (13). Note that IΓ ⊂ I ′Γ, we only need to bound∑Γ
k=1 |I ′k|εI′k1{εI′k ≥ αI′k}. We follow Chen et al. [2019] and prove the following adapted lemma.

Lemma 47. With probability at least 1− δ, it holds that

Γ∑
k=1

|I ′k|εI′k1{εI′k ≥ αI′k} ≤ O
(

min

{
|J |

3
5 ∆

2
5
J ,
√
SJ
})

.

Proof. Define M = {k ∈ [Γ]|εI′k ≥ αI′k}. Let mk be the index defined in Lemma 46. By definition,

Γ∑
k=1

|I ′k|εI′k1{εI′k ≥ αI′k} =
∑
k∈M

|I ′k|εI′k

≤
∑
k∈M

(|I ′k| − 2mkL)εI′k +
∑
k∈M

2mkL× εI′k .

Following a similar derivation as in Chen et al. [2019, Lemma 26], the first term is bounded by

O
(√
|J | log T

)
with probability at least 1− δ. Specifically,

∑
k∈M

(|I ′k| − 2mkL)εI′k =
∑
k∈M

∑
t∈[sk+2mkL,ek]

εI′k

≤
∑
k∈M

∑
t∈[sk+2mkL,ek]

C5 ·
1√

2mkL

=
∑
k∈M

∑
t∈[s′k+2mkL,e′k]

C5 ·
1√

2mkL
1{t ≤ eΓ}

= ϕ(eΓ),

where we define ϕ(τ) =
∑

k∈M
∑

t∈[s′k+2mkL,e′k]C5· 1√
2mkL

1{t ≤ τ}. By definition, we have Pr[φ(eΓ) > φ(τ)] ≤
Pr[eΓ > τ ]. By Lemma 46, if the algorithm has not been restarted till time τ , for all k such that e′k ≤ τ ,

the algorithm must have missed all opportunities to start an exploration phase with index mk. And for

the k with τ ∈ [s′k, e
′
k] the algorithm must have missed all opportunities to start a exploration phase

with index in [s′k, τ − 2mkL]. Define pm = 1
L2−j/22−m/2. Hence, we have

Pr[eΓ > τ ] ≤
∏
k∈M

∏
t∈[s′k,e

′
k−2mkL]

(1− pmk1 {t ≤ τ − 2mkL})
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≤
∏
k∈M

∏
t∈[s′k+2mkL,e′k]

(1− qmk1{t ≤ τ})

≤
∏
k∈M

∏
t∈[s′k+2mkL,e′k]

exp (−qmk1{t ≤ τ})

≤
∏
k∈M

∏
t∈[s′k+2mkL,e′k]

(1− qmk1{t ≤ τ})

≤ exp

−∑
k∈M

∑
t∈[s′k+2mkL,e′k]

qmk1{t ≤ τ}


= exp

(
− ϕ(τ)

C5

√
2jL

1{t ≤ τ}
)

= exp

(
− ϕ(τ)

C5

√
|J |

1{t ≤ τ}

)
.

Define z =

(
1√
L|J |

+ log(1/δ)

)
C5

√
|J | and pick τ such that ϕ(τ) ≤ z ≤ ϕ(τ + 1). If no such z exists,

then Pr[φ (eΓ) > φ(τ)] = 0. Then we have ϕ(τ) > ϕ(τ + 1)− C5√
L
> z − C5√

L
and

Pr[φ (eΓ) > z] ≤ Pr[φ (eΓ) > φ(τ)] ≤ exp

(
− z

C5

√
|J |

+
C5

C5

√
|J |
√
L

)
= δ.

Hence, φ (eΓ) ≤
(

1√
L|J |

+ log(1/δ)

)
C5

√
|J | with probability at least 1− δ.

The second term is bounded as∑
k∈M

2mkL× εI′k ≤
∑
k∈M

2mkL× C5
1√

2mkL

=
∑
k∈M

C5

√
|Ik|

≤ C5

√
Γ
∑
k∈M

|Ik|.

Plugging in Γ = O
(

min

{
SJ , (log |J |)−

2
5 ∆

4
5
J |J |

1
5 + 1

})
concludes the proof.
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F Proof of Theorem 26

Our goal is to prove that for the randomized instance described in Section 8, algorithm RestartLQR

with the optimally tuned window size W and exploration noise σ yields regret Ω(V
1/3
T T 2/3).

We first begin by noting that using the sequence of controllers Kt = K∗(Θt) incurs a total cost of at

most
∑

t∈[T ] J
∗
t +O(S), where S denotes the number of switches in the hypothesis. This is because for

an interval {τ1, τ1 + 1, . . . , τ2} where the dynamics remain fixed at θ with optimal parameters p∗, k∗, J∗,

we have

τ2∑
t=τ1

x2
t + u2

t =

τ2∑
t=τ1

x2
t + (k∗xt)

2 =

τ2∑
t=τ1

J∗ + p∗x2
τ1 − p

∗E
[
x2
τ2+1

]
≤

τ2∑
t=τ1

J∗ + p∗x2
τ1 .

Furthermore, since the optimal controllers yield |a + btk
∗
t | =

∣∣∣a1−b2t p∗t
1+b2t p

∗
t

∣∣∣ ≤ a = 1√
5
, E[xt] is bounded for

all t ∈ [T ].

We next show that the loss for the optimally tuned RestartLQR algorithm is at least
∑

t J
∗
t +Ω

(
V

1/3
T T 2/3

)
.

We will use the following lemma from Cassel et al. [2020].

Lemma 48 (Lemma 14 in Cassel et al. [2020]). Let I = {τ1, . . . , τ2} be an interval with dynamics

a = 1/
√

5, bt = b with |b| ≤ 0.05, E
[
w2
t

]
= ψ2, and optimal policy parameters k∗, J∗. Then for an

arbitrary admissible control policy {ut},

E

[∑
t∈I

x2
t + u2

t

]
− |I|J∗ ≥ 0.99E

[∑
t∈I

(ut − k∗xt)2

]
− 4ψ2, (70)

as well as:

E

[∑
t∈I

x2
t + u2

t

]
− |I|J∗ ≥ 1

3
E

[∑
t∈I

u2
t

]
− 5

6
ψ2(k∗)2|I|. (71)

We begin by defining the random variables that specify the instance. Let {µt} (t = 1, 2, . . . , T ) be

the sequence specifying the magnitude of changes in bt, defined so that µ1 = ε, and µ2, . . . , µT are

i.i.d. random variables with the following distribution:

µt =


0.05 with probability VT

2T ,

ε with probability
(
VT
T

)5/6
,

0 otherwise,

where

ε = 0.05 · (VT /T )1/6 .
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Let {χt} be the sequence specifying the sign of changes in bt, defined so that χ1 = 1 and χt for t ≥ 2

are i.i.d. Rademacher random variables (i.e., ±1 with equal probability). Given the above, the sequence

bt is defined as

bt = bt−1 · 1µt=0 +µt · χt.

Let

Ht = {ws, ηs, σs, µs, χs}ts=1

denote the history of the dynamics and instances until time t. Recall that the RestartLQR(W ) family

of algorithms partition the horizon into contiguous non-overlapping windows of size W . We will use

Ii = [W · (i− 1) + 1, . . . ,W · i] to denote the i-th window. The control for t ∈ Ii is chosen as k̂(i) + σtηt

where ηt are i.i.d. N (0, 1) and σt is an arbitrary adapted sequence of exploration energy injected by

the algorithm. With some abuse of notation, we will use k∗(b) to denote the optimal linear feedback

controller as a function of b (with a = 1/
√

5 and wt ∼ N (0, ψ2) implicit), and note that k∗(b) = −k∗(−b).

We will partition our windows into three sets:

1. I1: windows i which have at least one µt = 0.05 for t ∈ Ii; let τ1(i) ∈ Ii be the first time such

that µτ1(i) 6= 0,

2. Iε: pairs of contiguous windows (i, i+ 1) with µt = 0 for all t ∈ Ii ∪ Ii+1, and |bt| = ε,

3. I2: the remaining windows.

Note that this partition is not unique. In particular, there could be many ways to pair up contiguous

windows with small bt and no change of dynamics to create the second set. We pick any such maximal

partition.

We can use (70) and (71) to express the total cost of the algorithm as:

E

∑
t∈[T ]

x2
t + u2

t

−∑
t∈[T ]

J∗t

≥ 0.99E

[∑
t∈T

(ut − k∗t xt)2

]
− 4ψ2S

≥
∑
i∈I1

0.99E

 i·W∑
t=τ1(i)

(ut − k∗t xt)2


+

∑
(i,i+1)∈Iε

1

3
E

∑
t∈Ii

u2
t

− 5

6
ψ2(k∗(ε))2W + 0.99E

 ∑
t∈Ii+1

(ut − k∗t xt)2

− ψ2S. (72)

Begin by considering the event Ei,1 := {i ∈ I1}. Conditioning on this event, τ1(i) is uniformly distributed

in Ii. Furthermore, the sign of bτ1(i) is ±1 with equal probability. We thus bound the contribution to
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regret due to windows in I1 as:

E

 i·W∑
t=τ1(i)

(ut − k∗t xt)2

∣∣∣∣∣∣ Ei,1,Ht


= E

 i·W∑
t=τ1(i)

(σtηt + (k̂(i) − k∗t )xt)2

∣∣∣∣∣∣ Ei,1,Ht


≥ E

 i·W∑
t=τ1(i)

(k̂(i) − k∗t )2x2
t

∣∣∣∣∣∣ Ei,1,Ht


≥ ψ2E

 i·W∑
t=τ1(i)

(k̂(i) − k∗t )2

∣∣∣∣∣∣ Ei,1,Ht


≥ ψ2E

 i·W∑
t=(i−1)W+1

1{t≥τ1(i),|bt|=1}(k̂(i) − k∗t )2

∣∣∣∣∣∣ Ei,1,Ht


≥ ψ2E[|t : t ≥ τ1(i), |bt| = 1|]E
[

(k̂(i) − k∗(b))2
∣∣∣ Ei,1,Ht],

where b denotes a random variable that is ±0.05 with equal probability;

= ψ2 ·E[|t : t ≥ τ1(i), |bt| = 0.05|] ·
(

1

2
(k̂(i) − k∗(0.05))2 +

1

2
(k̂(i) + k∗(0.05))2

)
≥ ψ2 ·E[|t : t ≥ τ1(i), |bt| = 0.05|] · k∗(0.05)2

≥ ψ2 ·E[|t : t ≥ τ1(i), |bt| = 0.05|] · 1

4000
.

Therefore,

∑
i∈I1

E

 i·W∑
t=τ1(i)

(ut − k∗t xt)2

∣∣∣∣∣∣ Ei,1,Ht
 =

∑
i

E

 i·W∑
t=τ1(i)

(ut − k∗t xt)2

∣∣∣∣∣∣ Ei,1,Ht
E
[
1Ei,1

]
≥
∑
i

ψ2 ·E[|t : t ≥ τ1(i), |bt| = 0.05|] · 1

4000
E[Ei,1]

=
ψ2

4000

∑
i

∑
t∈Ii

Pr[µt = 0.05]E
[
min{i ·W − t+ 1,Geom(VT /T + (VT /4T )5/6)}

]
,

where Geom(p) denotes a Geometric random variable with success probability p. For any non-negative

integer-valued random variable X with median X̂ and non-negative integer a, we have the identity,

E[min{X, a}] =

a∑
x=1

Pr[X ≥ x] ≥
min{a,X̂}∑
x=1

Pr[X ≥ x] ≥ min{X̂, a}
2

.
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For X ∼ Geom(p), we have X̂ ≥ 1
5p , which finally gives,

∑
i∈I1

E

 i·W∑
t=τ1(i)

(ut − k∗t xt)2

∣∣∣∣∣∣ Ei,1,Ht
 ≥ ψ2

4000

∑
i

∑
t∈Ii

VT
2T

min{W, 0.1(4T/VT )5/6}
2

=
ψ2

8000
VT min

{
W, 0.1(4T/VT )5/6

}
. (73)

Note that if W = Ω
(
(T/VT )2/3

)
, then (73) already gives the regret lower bound of the Theorem.

Therefore, henceforth we will assume W = O
(
(T/VT )2/3

)
.

Next, we turn to windows in Iε. Specifically, pick a pair (i, i+ 1), and our goal is to bound

1

3
E

∑
t∈Ii

u2
t

− 5

6
ψ2(k∗(ε))2W + 0.99E

 ∑
t∈Ii+1

(ut − k∗t xt)2

.
We next invoke yet another useful lemma from Cassel et al. [2020].

Lemma 49 (Lemma 15 in Cassel et al. [2020]). Let P+ and P− denote the probability laws of {xt}t∈Ii
under bt = +ε and bt = −ε (∀t ∈ Ii), respectively. Then, the total variation distance between these is

upper bounded as

TV (P+,P−) ≤ ε

ψ

√√√√√E

∑
t∈Ii

u2
t

.
We will use the notation of the above lemma for the rest of the proof to bound the regret due to windows

(i, i+ 1). As before, we bound the regret in the window Ii+1 by:

0.99E

 ∑
t∈Ii+1

(ut − k∗t xt)2

 ≥ 0.99ψ2WE

[(
k̂(i+1) − k∗t

)2
]

= 0.99ψ2W

(
1

2
E+

[(
k̂(i+1) − k∗(ε)

)2
]

+
1

2
E−

[(
k̂(i+1) + k∗(ε)

)2
])

.

Let F+, F− denote the distribution of k̂(i+1) under P+,P−, respectively, and let g+(k) :=
(
k̂(i+1) − k∗(ε)

)2

and g−(k) :=
(
k̂(i+1) + k∗(ε)

)2
. Note that g+, g− are non-negative and

1

2
(g+(k) + g−(k)) ≥ k∗(ε)2.
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Therefore,

1

2
E+

[(
k̂(i+1) − k∗(ε)

)2
]

+
1

2
E−

[(
k̂(i+1) + k∗(ε)

)2
]

=
1

2

∫
<
g+(k)dF+(k) +

1

2

∫
<
g−(k)dF−(k)

= sup
F∈Γ(F+,F+)

∫
<×<

1

2
(g+(k1) + g−(k2)) dF (k1, k2)

where Γ(F+, F−) denotes the set of stochastic couplings of measures F+, F−,

≥ sup
F∈Γ(F+,F+)

∫
<×<

1

2
(g+(k1) + g−(k2))1{k1=k2} dF (k1, k2)

≥ sup
F∈Γ(F+,F+)

∫
<×<

k∗(ε)2dF (k1, k2)

≥ k∗(ε)2(1− TV (P+,P−)).

We therefore have,

1

3
E

∑
t∈Ii

u2
t

− 5

6
ψ2(k∗(ε))2W + 0.99E

 ∑
t∈Ii+1

(ut − k∗t xt)2


≥ ψ2TV (P+,P−)2

3ε2
+ ψ2k∗(ε)2W

(
0.99(1− TV (P+,P−))− 5

6

)
≥ min

{
ψ2

300ε2
,
ψ2k∗(ε)2W

20

}
≥ min

{
ψ2

300ε2
,
ψ2ε2W

200

}
. (74)

Since we are assuming W = O
(
(T/VT )2/3

)
= o

(
(T/VT )5/6

)
(the mean duration between switches in

bt), the expected number of pairs (i, i + 1) in any maximal choice of Iε is Ω (T/W ), which gives the

total regret contribution due to intervals in Iε of at least

T ·min

{
ψ2

300Wε2
,
ψ2ε2

200

}
.

The expression above is decreasing in W , and for W = O
(
(T/VT )2/3

)
is Ω

(
V

1/3
T T 2/3

)
. �
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