
CachePerf: A Unified Cache Miss Classifier via Hybrid Hardware
Sampling

JIN ZHOU, University of Massachusetts Amherst, USA
STEVEN (JIAXUN) TANG, University of Massachusetts Amherst, USA
HANMEI YANG, University of Massachusetts Amherst, USA
TONGPING LIU, University of Massachusetts Amherst, USA

The cache plays a key role in determining the performance of applications, no matter for sequential or concurrent
programs on homogeneous and heterogeneous architecture. Fixing cache misses requires to understand the origin
and the type of cache misses. However, this remains to be an unresolved issue even after decades of research.
This paper proposes a unified profiling tool–CachePerf–that could correctly identify different types of cache
misses, differentiate allocator-induced issues from those of applications, and exclude minor issues without much
performance impact. The core idea behind CachePerf is a hybrid sampling scheme: it employs the PMU-based
coarse-grained sampling to select very few susceptible instructions (with frequent cache misses) and then
employs the breakpoint-based fine-grained sampling to collect the memory access pattern of these instructions.
Based on our evaluation, CachePerf only imposes 14% performance overhead and 19% memory overhead (for
applications with large footprints), while identifying the types of cache misses correctly. CachePerf detected 9
previous-unknown bugs. Fixing the reported bugs achieves from 3% to 3788% performance speedup. CachePerf
will be an indispensable complementary to existing profilers due to its effectiveness and low overhead.

CCS Concepts: • Software and its engineering → Multiprocessing / multiprogramming / multitasking; •
Computer systems organization → Real-time operating systems.

Additional Key Words and Phrases: Cache Performance, Cache Miss, Conflict Miss, Coherency Miss, Capacity
Miss

ACM Reference Format:
Jin Zhou, Steven (Jiaxun) Tang, Hanmei Yang, and Tongping Liu. 2022. CachePerf: A Unified Cache Miss
Classifier via Hybrid Hardware Sampling. In SIGMETRICS ’22, June 6–10, 2022, Mumbai, India. ACM, New
York, NY, USA, 25 pages. https://doi.org/10.1145/3489048.3526954

1 INTRODUCTION

Cache accesses are typically orders of magnitude faster (e.g., 200× [30]) than memory accesses.
Therefore, it is critical to reduce cache misses in order to boost the performance of applications, no
matter for single-threaded or multi-threaded applications running on homogeneous or heterogeneous
hardware architectures. However, it is challenging to identify cache misses statically, as they are
related to access pattern [32], hardware feature (e.g., cache capacity, cache line size), or even starting
addresses of objects [34].

Many tools aiming to identify cache misses have been developed in the past. Simulation-based
approaches, such as different Pin tools [19, 38], or cachegrind (one tool inside Valgrind [40]) [49],
typically impose prohibitive performance overhead (e.g., 100 times) that makes them even unsuitable

We have filed a U.S. patent with the serial number 63/281,942. Please contact with tongping@umass.edu for the licence.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact
the owner/author(s).
SIGMETRICS ’22, June 6–10, 2022, Mumbai, India
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9141-2/22/06.
https://doi.org/10.1145/3489048.3526954

1

ar
X

iv
:2

20
3.

08
94

3v
2 

 [
cs

.P
F]

  1
9 

M
ar

 2
02

2

https://doi.org/10.1145/3489048.3526954
https://doi.org/10.1145/3489048.3526954


SIGMETRICS ’22, June 6–10, 2022, Mumbai, India Jin Zhou, Steven (Jiaxun) Tang, Hanmei Yang, and Tongping Liu

for development phases [49, 52]. To solve such issues, many sampling-based tools, such as perf [10],
oprofile [31], are proposed to reduce the profiling overhead. They could attribute the percentage of
cache misses to the specific lines of the source code based on the sampling. However, they cannot
report both the type and origin of cache misses, making their reports not sufficient to guide the bug
fixes.

Different types of cache misses, including compulsory misses, capacity misses, conflict misses, and
coherency misses [18, 21], require different fixing methods, as detailed in Section 2. A compulsory
miss occurs when the related cache line is accessed for the first time, which is considered to be
mandatory and unavoidable. Instead, a capacity miss may occur if the working set of a program
exceeds the capacity of the cache. Capacity misses can be reduced by loop optimizations [55] or array
regrouping [35]. In contrast, conflict misses can be introduced when more than N cache lines are
mapping to the same set in N-way associative cache, and coherency misses may occur when multiple
threads are accessing the same cache line simultaneously. Although some conflict and coherency
misses can be reduced with padding, they require different padding strategies: fixing conflict misses
should prevent the mapping to the same set, while coherency misses can be reduced by avoiding
multiple threads accessing the same cache lines. Reducing cache misses also requires to know the
origin: whether a problem is caused by the allocator or the application? For application bugs, which
objects or which instructions are involved? Without knowing such information, it is impossible to
reduce cache misses effectively.

Some tools aim to identify a specific type of cache misses, such as capacity misses [35], coherence
misses [6, 25, 33, 39], and conflict misses [46]. However, it is inconvenient to identify all types of
cache misses using these tools, as they are designed as exclusive to each other. Further, none of them
could correctly identify cache misses caused by the memory allocator. For instance, cache-thrash
can be slowed down by 38× when using TCMalloc (as shown in Table 2). Without knowing the
origin of cache misses, programmers may waste their efforts in improving the application but achieve
only minor or no improvement. DProf [43] is the only tool that can identify all types of cache misses
for data structures of Linux kernel, which unfortunately requires significant manual effort, as further
discussed in Section 6.

This paper proposes a novel tool–CachePerf–that overcomes these shortcomings: (1) CachePerf is a
unified profiler that could identify all fixable cache misses (except compulsory misses); (2) CachePerf
only reports serious issues, saving manual effort spending on trivial issues; (3) CachePerf reports
both type and origin of cache misses, providing useful information for bug fixes; (4) CachePerf only
imposes reasonable overhead for its identification. Designing such a tool includes the following
challenges.

The first challenge is to choose an appropriate profiling method that can classify all types of cache
misses with reasonable overhead. Prior work employs different sampling events, including address
sampling for capacity misses [35] and coherency misses [6, 33], HITM events [39] for coherency
misses, and L1 cache misses for conflict misses [46]. However, it is infeasible to combine these
events together, as that will introduce prohibitive overhead and complexity. Although it is intuitive
to employ the hardware-based sampling, the Performance Monitoring Units (PMU) supports up to
hundreds of events (e.g., 207 events at Intel Xeon Silver 4114 [15]). CachePerf’s selection is driven
by the requirement of differentiating the type, reporting the origin, and measuring the seriousness of
cache misses, as discussed later. In summary, such an event should capture the detailed information
of memory accesses, such as the memory address, the related instruction, and the hit information
(indicating a cache miss or not), which is often omitted by existing work [6, 33]. Therefore, “the
PMU-based precise address sampling” is chosen as the right event, and we elaborate why and how
CachePerf exploits this event as follows.

2



CachePerf SIGMETRICS ’22, June 6–10, 2022, Mumbai, India

The second challenge is to differentiate all types of cache misses correctly. The PMU-based
sampling helps filter out cache misses, but it is impossible to correctly identify the type of each
cache miss under the sampling, due to the lack of the history of cache usage and memory accesses.
Instead, CachePerf proposes to identify coherency misses based on the cumulative behavior of
many misses: only very few cache lines (not mapping to the same set) with extensive misses
are most likely caused by coherency misses. Unfortunately, this rule cannot differentiate capacity
misses from conflict misses, where the detailed access pattern is required for the differentiation,
as further discussed in Section 2. Further, CachePerf classifies other types of cache misses based
on a key observation: serious cache misses are typically caused by very few instructions whose
access patterns are not altered during the whole execution. Based on this key observation, we
propose a novel approach–hybrid hardware sampling–to classify the type of cache misses: the
PMU-based coarse-grained sampling detects susceptible instructions with frequent cache misses,
then the breakpoint-based fine-grained sampling is employed to identify memory access patterns of
these selected instructions. This approach combines the best of both worlds, as the coarse-grained
sampling could reduce the profiling overhead, while the fine-grained sampling collects a short
history of memory accesses that is necessary to classify the access pattern. For instance, it is easy to
determine conflict misses if multiple continuous accesses are accessing the same cache set.

The third challenge is to differentiate cache misses caused by the memory allocator from those
ones caused by applications. Although allocator-induced cache misses may have a high impact on the
performance, they get less attention than they deserve. This paper makes the following observations:
(1) the allocator may introduce both conflict and coherence misses (mainly false sharing, a type of
coherency misses that multiple threads are accessing different words of the same cache line [32]);
(2) Allocator-induced cache misses share the same attribute that multiple heap objects are involved
unnecessarily, although this is not the sufficient condition. For instance, allocator-induced false
sharing should have more than two objects on the same cache line. Further, these objects, accessed
by different threads, must be allocated by different threads. Similarly, an allocator may introduce
conflict misses, when multiple objects are mapped to the same set of cache lines. To the best of our
knowledge, CachePerf is the first work that reports allocator-induced cache misses.

CachePerf further designs practical mechanisms that help reduce the detection overhead and avoid
reporting minor issues: (1) CachePerf tracks a specified number of the most recent memory accesses
(or a window), and then only checks cache misses inside if the miss ratio (i.e., the number of misses
divided by the number of accesses) in the current buffer is larger than a threshold. This windowing
mechanism also helps filter out sporadic cache misses, e.g., compulsory misses; (2) CachePerf further
proposes a “ratio-based filtering” that only reports an issue if the ratio of memory accesses or cache
misses is larger than a threshold;

We evaluated CachePerf on a range of well-studied benchmarks and real applications, where some
have known cache misses. Based on our evaluation, CachePerf only introduces 14% performance
overhead and 19% memory overhead (for large applications), while detecting all known bugs and
night previously-unknown cache misses. Guided by CachePerf’s report, we are able to fix most
detected cache misses, achieving the performance speedup up to 38×. Overall, the paper makes the
following contributions:

• It proposes a novel hybrid sampling scheme that combines coarse-grained PMU-based sampling
and fine-grained breakpoint-based sampling, with a better trade-off between performance and
accuracy.

• It is the first tool that can classify different types of cache misses without manual involvement.
• It proposes practical mechanisms to differentiate cache misses caused by the allocator from

those from applications, and to prune insignificant issues.

3



SIGMETRICS ’22, June 6–10, 2022, Mumbai, India Jin Zhou, Steven (Jiaxun) Tang, Hanmei Yang, and Tongping Liu

• It provides the detailed implementation of a profiler with low overhead (14% on average) and
high effectiveness, confirmed by our extensive evaluation.

2 BACKGROUND AND OVERVIEW

This section first introduces some basic background of cache misses, and then discusses the basic
idea of CachePerf.

2.1 Types of Cache Misses

Cache miss can be classified into compulsory miss, capacity miss, conflict miss, and coherence
miss [43]. Among them, a compulsory miss occurs when the cache line is accessed for the first time,
which is mandatory and unavoidable [21]. In the remainder of this paper, we mainly focus on the
other three types of cache misses. In the following, we will discuss their definitions, fix strategies,
and possible causes.

2.1.1 Capacity Miss. Capacity misses occur when the accessed data of a program exceeds the
capacity of the cache [53]. When the cache cannot hold all the active data, some recently-accessed
cache lines are forced to be evicted, which leads to cache misses if they are accessed again. As shown
in Fig. 1(a), both for loops will suffer from cache capacity misses, as both Alpha and Beta’s size is
four times of the cache size (with the “CACHE_SIZE” number of integers).

Capacity misses are mainly caused by applications. Not all capacity misses can be completely
eliminated. However, some can be significantly reduced via array regrouping [35] or loop optimiza-
tions [55] (e.g., loop tiling [2]). For the example shown in Fig. 1(a), we could combine two loops
into one loop as Fig. 1(b) to reduce cache misses, also known as loop fusion [11].

for (int i = 0; i < CACHE_SIZE; ++i) {
Alpha[i] = i;

}

for (int i = 0; i < CACHE_SIZE; ++i) {
Beta[i] = Alpha[i]*2; 

} 

for (int i = 0; i < CACHE_SIZE; ++i) 
{

Alpha[i] = i;
Beta[i] = Alpha[i]*2; 

} 

(a) Original code (b) Reduced cache misses via loop fusion [13]

Fig. 1. An example with capacity misses.

for (int z  =  0; z < num_zones; ++ z){
double vol = sdom.volume[z];
for(int d = 0; d < num_directions; ++ d){

double w = dirs[d].w;
for(int g = 0; g < num_groups; ++ g){

part += w * (*sdom.psi)(g,d,z) * vol;
}

}
}

(a) Loop with conflict misses (b) Number of cache misses on each set

Time

Set 0

0 1152

Set 1

2688

Set 2

4224

Set 3

5760

(c) Access sequence based on cache sets

0

50000

100000

150000

200000

250000

300000

1 3 5 7 9 111315171921232527293133353739414345474951535557596163

# 
of

 C
ac

he
 M

iss
es

Cache Set Index

Fig. 2. A real example of conflict misses from the Kripke application [27, 46].

4



CachePerf SIGMETRICS ’22, June 6–10, 2022, Mumbai, India

2.1.2 Conflict Miss. Conflict misses are introduced in direct-mapped or set-associative cache [43, 46].
For an N-way associative cache, conflict misses will occur when more than N cache lines mapping to
the same set are accessed recently.

Fig. 2(a) shows a real example of conflict misses: Kripke accesses multiple cache lines of Set 0
and then Set 1, as shown in Figure 2(c). For this example, each cache set has exactly the same number
of cache misses, as shown in Figure 2(b). This indicates that conflict misses cannot be identified by
the portion of misses in cache sets. Instead, the access pattern of the corresponding instruction(s)
should be employed to identify such issues.

Conflict misses can not only be caused by applications, but also can be caused by the allocator
when multiple allocated objects are mapped to the same cache set. raytrace, an application in
PARSEC [4], introduces a 27% performance slowdown due to conflict misses of the allocator, as
shown in Table 2. Conflict misses can be resolved or reduced by changing the starting addresses of
objects, or padding the corresponding structure. Even for allocator-induced applications, we could
insert some bogus memory allocations or change the size of the corresponding allocations in order to
reduce cache misses.

2.1.3 Cache Coherence Misses. Multithreaded applications are prone to coherence misses when
multiple threads are accessing the same cache line. When a thread writes to a cache line, the cache
coherence protocol invalidates all existing copies of this cache line, introducing cache coherency
misses. Coherence misses can be caused by true and false sharing. False sharing occurs when multiple
threads are accessing different portions of the same cache line, while threads are accessing the same
units in true sharing. When modern architectures are equipped with larger cache lines and more
cores, they are more prone to coherence misses with higher performance impacts.

True sharing is typically caused by applications. Although true sharing is considered to be
unavoidable [32], programmers could still refactor the code to reduce its seriousness [26, 39]. For
example, programmers may reduce the updating of shared variables by using thread-local or local
variables. False sharing can be caused by both applications and allocators. For allocator-induced false
sharing, multiple threads may access different objects concurrently within the same cache line that
are allocated by different threads. False sharing can be reduced by padding the data structure [25], or
using per-thread private pages [32]. Therefore, it is important to differentiate between false and true
sharing, as they need different fixing strategies.

2.2 Basic Idea of CachePerf

CachePerf aims to identify the type and the origin of cache misses correctly so that programmers
can further fix them correspondingly. More specifically, CachePerf not only differentiates capacity
misses, conflict misses, and coherency misses, but also differentiates whether some misses are caused
by the allocator or the application. If they are caused by the application, CachePerf further reports
the lines of code with the issue, e.g., call sites and instructions. For allocator-induced cache misses,
CachePerf also reports the sizes of the related objects.

2.2.1 Differentiating Different Types of Misses. As mentioned in Section 1, it is challenging to
identify the type of each miss directly. For instance, to identify a capacity miss, it is required to know
the working set of the current program [43], which is infeasible under the coarse-grained sampling.
CCProf [46] observes that “a relatively larger portion of cache misses in a subgroup of the total cache
sets over the others indicates conflicts in those cache sets”. Unfortunately, this method is neither
sufficient nor necessary condition of conflict misses, although it seems to be valid at the first glance.
As shown in Fig. 2(b), all cache sets have exactly the same number of cache misses for the Kripke
application. However, this issue belongs to “conflict misses” based on the access pattern shown in
Fig. 2(c). Further, a for loop consecutively accessing an array (e.g., 1.5 times larger than the cache

5



SIGMETRICS ’22, June 6–10, 2022, Mumbai, India Jin Zhou, Steven (Jiaxun) Tang, Hanmei Yang, and Tongping Liu

size) may cause only half of the cache sets to have significantly more cache misses than the other
half, but this belongs to capacity misses instead of conflict misses.

In fact, CachePerf’s identification is based on the following observations: (i) Coherence misses
typically occur on few cache lines, but not for capacity and conflict misses; (ii) Extensive cache
misses are typically caused by few susceptible instructions; (iii) The patterns of memory accesses
are necessary to differentiate conflict misses from capacity misses: if multiple memory accesses
are accessing the same set of cache lines, then it is an issue of conflict miss; If they are accessing
different cache sets, the issue is more likely to be capacity miss.

Observation (i) indicates that coherence misses (e.g., false sharing and true sharing) can be
identified by checking the cumulative behavior of cache lines: if few cache lines (not on the same
set) have more cache misses than others, then this issue must be caused by coherence misses. Like
existing work [32], false sharing can be easily differentiated from true sharing using their definitions:
if multiple threads are accessing different words of the same cache line, then it is false sharing.
Otherwise, it is true sharing. We will use the Performance Monitoring Unit (PMU)’s address sampling
to collect accesses on a cache line, helping differentiate false sharing from true sharing.

Based on observation (i) and (ii), we propose the hybrid hardware sampling to classify cache
misses: the hardware Performance Monitoring Unit (PMU) is employed to collect the coarse-grained
samples in order to pinpoint susceptible instructions with extensive cache misses; After that, the
breakpoints are further installed on these instructions in order to collect fine-grained memory
accesses to understand their memory access patterns. After collecting memory access patterns, it is
possible to differentiate conflict misses from capacity misses using observation (iii).

2.2.2 Differentiating Serious Issues from Minor Ones. Minor issues, although they are not false
positives, should be excluded to avoid wasting the time of programmers. Unfortunately, most existing
tools [6, 32–35, 39, 46] cannot achieve this goal, as they typically utilize the same absolute metric for
different applications, e.g., the number of cache invalidations to evaluate false sharing issues, omitting
the temporal effect. However, the same number of cache misses may have different performance
impacts for a long-running or short-running program. Further, a program with sparse cache misses
and another one with intense misses may benefit differently from the reduction of cache misses, even
if they have a similar execution length and cache misses.

CachePerf further proposes two ratio-based mechanisms to exclude minor issues. First, CachePerf
proposes a windowing mechanism that tracks a specified number of the most recent memory accesses,
and then only checks cache misses inside if the miss ratio (i.e., the number of misses divided by
the number of accesses) in the past window is larger than a threshold, as discussed in Section 3.2.
This windowing mechanism excludes sparse or sporadic cache misses. Second, CachePerf only
reports a potential issue if its related memory accesses and cache misses are higher than 0.01%
and 1% separately. The access ratio can be utilized to predict the potential performance impact.
Assuming that the memory access is 200× slower than the L1 cache access [30], and the access
ratio of a potential bug is 0.01% of the total accesses (of the program). We further assume that
other accesses of this program can be satisfied at L1 cache, then the total runtime of this program is
0.01% × 200X + 99.99% × X = 101.9%X, if the cycle of L1 cache access is X . Then this bug will
introduce at most 2% slowdown, comparing to all accesses are satisfied by the L1 cache (100%X).
Similarly, the ratio of cache misses helps prune insignificant instructions.

2.2.3 Differentiating Allocator-Caused Misses from Applications. As discussed in Section 2.1, the
allocator may introduce both conflict and coherence misses. When an allocator allocates multiple
objects that happen to access few sets of cache lines, it introduces conflict misses. An allocator can
introduce false sharing by allocating multiple objects in the same cache line to different threads [3].
CachePerf tracks the allocation information (e.g., the thread, address) that could help differentiate

6



CachePerf SIGMETRICS ’22, June 6–10, 2022, Mumbai, India

the bugs caused by applications from those caused by the allocator. To the best of our knowledge,
CachePerf is the first work that could report allocator-induced cache misses.

3 DESIGN AND IMPLEMENTATION

This section discusses the detailed design and implementation of CachePerf. CachePerf is designed as
a library that can be linked with different applications, without the need of changing and recompiling
user programs. In the following, we start with the description of CachePerf’s basic components, and
then discuss each component separately.

Allocation 
Intercepter

Access 
Sampler

Breakpoint 
Handler

Object Store
(heap, global)

Miss 
Classifier

Cache Miss Store
(object, line, set)

Miss Ratio 
Checker

Instruction 
Store

Program

Report

CachePerf

Link

Fig. 3. Basic components of CachePerf

Fig. 3 shows the basic components of CachePerf. As mentioned in Section 1, CachePerf relies on
the PMU-based sampling to collect the information of memory accesses and cache misses, which
will be handled by its “Access Sampler” module. To exclude insignificant cache misses, CachePerf
introduces a “Miss Ratio Checker” module that computes and checks the cache miss ratio (the
percentage of cache misses in all memory accesses). When the cache miss ratio is larger than a
predefined threshold (e.g., 0.5%), as further discussed in Section 4.5.2, all recent cache misses will be
further updated to “Miss Store” and “Instruction Store”. Otherwise, all cache misses will be skipped.
Due to this filtering mechanism, low-frequency cache misses (such as some compulsory misses) will
be excluded automatically. When continuous cache misses from the same instruction are detected or
multiple misses are landing on the same cache set, indicating possible capacity or conflict misses,
CachePerf further employs breakpoints to collect fine-grained memory accesses information (via
“breakpoint Handler”), which enables us to differentiate conflict misses from capacity misses.

In order to attribute cache misses to data objects (called “data-centric” analysis [35]), CachePerf
further intercepts memory allocations and deallocations, and updates the “Object Store” correspond-
ingly. “Object Store” tracks address ranges and callsites of heap objects. In the end, CachePerf
classifies cache misses by integrating the data in “Miss Store” and “Instruction Store”, and finally
reports helpful information based on “Object Store”, including the allocation call sites, object size,
and object name (only for global objects). Different from existing tools [6, 46], there is no need for
offline analysis, i.e., it has no hiding overhead.

3.1 Access Sampler

For the access sampler, CachePerf employs the Performance Monitoring Units (PMU) to sample
memory accesses. The PMU is the ubiquitous hardware in modern architectures (e.g., X86 or ARM)
that can provide hundreds of hardware events [16]. There is a trend for profilers to build on top of the
PMU [5, 17, 22, 33, 36, 37, 39, 50], due to its low overhead. Currently, Linux also provides a system
call –perf_event_open – that allows to configure and start the PMU easily.

CachePerf samples two types of events, including memory loads and stores. The configuration
for the PMU sampling is shown in Table 1, which is based on Intel’s Xeon machine. To balance the

7



SIGMETRICS ’22, June 6–10, 2022, Mumbai, India Jin Zhou, Steven (Jiaxun) Tang, Hanmei Yang, and Tongping Liu

Configuration Load Sampling Store Sampling
type PERF_TYPE_RAW

config 0x1cd 0x82d0
sample_period 20000 (±10%) 50000 (±10%)

freq false

sample_type
PERF_SAMPLE_IP |
PERF_SAMPLE_ADDR |

PERF_SAMPLE_DATA_SRC
precise_ip 3 1

__reserved_1 3 0
config1 3 0

Table 1. Configuration of the PMU sampling

detection effect on loads and stores, we empirically set the sampling period of loads as 20,000, and
the one of stores as 50,000, which has been evaluated in Section 4.5. To avoid different threads from
sampling the same instructions, we introduce 10% randomized variance for each thread’s sampling
period. Note that it is important to include PERF_SAMPLE_DATA_SRC in the sample type so that we
can know which level the corresponding instruction is hit, such as L1, L2, LLC, or memory. It is also
referred to as “hit information” in the remainder of this paper.

CachePerf employs the following information of the sampling: the type of access (e.g., load or
store), hit information, memory address, and instruction pointer (IP). Among them, the hit information
helps identify all cache misses from all sampled memory accesses, where all accesses that do not hit
on the L1 cache will be treated as cache misses. IP tells the instruction performing the corresponding
access, and the memory address helps pinpoint which cache line and cache set have the miss, enabling
us to perform the classification.

3.2 Miss Ratio Checker

A miss ratio checker is introduced to filter out sparse cache misses. As mentioned above, since sparse
cache misses may not incur significant performance slowdown, they should be excluded in order to
avoid wasting the effort of fixing such issues. Further, the filtering reduces the memory overhead of
storing such cache misses and the performance overhead of spending in classification.

In the implementation, CachePerf maintains two circular buffers to track the most recently sampled
memory accesses for each thread, one buffer for memory loads and the other one for memory stores.
These buffers are updated in First-In-First-Out order that the later accesses will overwrite the least-
recent memory accesses. CachePerf computes the cache miss ratio upon every access via dividing
the number of cache misses by that of accesses. Only when the miss ratio of the buffer is larger than
a predefined threshold (e.g., 0.5%), all cache misses in the current buffer will be handled and be
updated to “Instruction Store” and “Miss Store”. Otherwise, they will be skipped. The Instruction
Store holds the information related to instructions, such as the number of accesses and cache misses.
The Miss Store maintains the detailed information about each cache miss, e.g., object, line, and set.

3.3 Breakpoint Handler

As mentioned in Section 2, CachePerf employs the breakpoints to collect fine-grained memory
accesses of the selected instructions, enabling us to differentiate conflict misses from capacity misses.
For the susceptible instructions, CachePerf focuses on two types of instructions: (1) instructions
introducing multiple continuous cache misses, indicating that they may incur extensive cache misses.

8



CachePerf SIGMETRICS ’22, June 6–10, 2022, Mumbai, India

(2) instructions introduce extensive misses on the same set in a time window, which are potential
candidates for conflict misses.

After identifying these instructions, CachePerf installs hardware breakpoints via the perf_event_
open system call by specifying the type to be “PERF_TYPE_BREAKPOINT" and the bp_type to be
“HW_BREAKPOINT_X”. After the installation, every time a program executes such an instruction,
CachePerf will be interrupted so that it could collect the fine-grained memory accesses of each
instruction. However, the interrupt handler provides no information about the memory address, as the
breakpoint is typically triggered before the access. CachePerf infers the memory address by analyzing
the corresponding instruction. For example, if the instruction is “addl $0x1,-0x4(%rbp)”, then
CachePerf could infer the stored memory address via the value of register and rbp. CachePerf
employs Intel’s xed library [14] to perform the binary analysis.

To simplify the handling, CachePerf only installs one breakpoint for all threads at a time, collecting
all accesses from different threads. To reduce the overhead caused by handling endless interrupts,
CachePerf only collects at most 64 accesses from one instruction. If there are 8 accesses landing on
the same set, then it is identified as a bug with conflict misses. Otherwise, it is a bug with capacity
misses. Based on this, if 8 continuous accesses are landing on the same cache set, which can be
clearly identified as “conflict misses”, CachePerf will remove the breakpoint so that it could monitor
other instructions.

However, it is possible that an instruction has no or few accesses after the installation. When new
instructions require to be monitored, CachePerf further introduces an expiration mechanism that a
breakpoint will be expired after 100ms. In this way, CachePerf is able to install breakpoints on new
instructions. The identification of cache misses is further discussed in Section 3.5.

3.4 Important Data Stores

CachePerf maintains Object Store, Miss Store, and Instruction Store, as further described below.

Object Store. Object Store tracks the information of two types of objects, heap objects and global
objects, as most cache misses occur on these objects, which are handled differently.

For heap objects, CachePerf intercepts all memory management functions, such as malloc() and
free(), in order to track their corresponding callsites. For each heap object, CachePerf tracks its
size, callsite, and address range. As there are large amounts of heap objects, the Data Store should be
carefully designed in order to support the following operations efficiently: adding and updating of
an object via the starting address upon memory allocations and deallocations, and searching by an
address in the range of a valid object upon each sampled access. Although the hash table can support
the adding and updating operations efficiently via the starting address (as the key), it is expensive to
search the memory address inside heap objects (different from the key). Instead, an ordered list/array
supports the searching better via the binary search. Furthermore, we observe that heap objects are
typically classified into small, medium, and large sizes, where the number of small-size objects is
much larger than that of medium-size and large-size objects.

Based on these observations, CachePerf designs a three-level data store as shown in Fig. 4 to
support efficient adding, updating, and searching. In particular, any object can be stored in one of
Page Table, Chunk Table, and Sorted Huge Objects List, which are mutually exclusive. CachePerf
updates these tables/lists as follows: (1) if an object exists only in a single page, it is stored in the
Page Table; (2) If the range of an object crosses two different pages but within the same megabyte,
it is stored in the Chunk Table; (3) Otherwise, it is inserted into the Sorted Huge Objects List. For
each address, CachePerf always searches the Page Table at first (with the highest possibility), then
the Chunk Table, and finally the Sorted Huge Objects List, and stops if the object is found already.
Although three searches are required for some objects, however, we believe that such searches will

9



SIGMETRICS ’22, June 6–10, 2022, Mumbai, India Jin Zhou, Steven (Jiaxun) Tang, Hanmei Yang, and Tongping Liu

Level 1: Page Table

Sorted 
Array 

Level 2: Chunk Table

Sorted 
Array 

Level 3: Sorted Huge Objects List

Search 
Order

Fig. 4. A three-level object store that combines with the shared memory and the sorted array/list.

be fewer than others. This design is based on the assumption that small objects (less than 1-page
size) are typically significantly more than large objects.

For the performance reason, each entry of Page Table and Chunk Table stores a pointer pointing
to a sorted array that stores all allocated objects inside the same page (4KB) and chunk (1MB). If
an entry is empty (with the NULL value), then there are no objects in the corresponding page or
chunk, indicating the unnecessary of searching for a higher-level store. Both tables are employing the
shadow memory [48, 58] to store these pointers, where the index of each entry could be computed
simply with a bit-shifting operation. Since the number of huge objects is typically small, a sorted list
is used to store huge objects, which is not using the shadow memory. For the sorted arrays and lists,
the search can be done efficiently via the binary search.

CachePerf also proposes a callsite-based optimization to reduce the overhead, especially on the
updates of memory allocations and sampled accesses: if objects from a particular callsite have a
much lower cache miss ratio, compared to the average one, then all allocations and cache misses
from this callsite could be safely skipped. Based on our observation, such an optimization reduces
the overhead by over 30% for a particular application (Canneal of PARSEC [4]).

CachePerf handles global objects differently, as an application typically has a small number of
global objects and they are not increased during the execution. All accesses of global objects (e.g.,
addresses) will be stored in a hash table. CachePerf obtains the name and address range by analyzing
the corresponding ELF header, and then computes the miss ratio of each object, as discussed in
Section 3.5.

Miss Store. The Miss Store saves the information of each cache miss, which is not filtered out as
described by Miss Ratio Checker (Section 3.2). In particular, cache misses are stored in two separate
data structures: an array (with the size of the number of cache sets) stores the information of each
cache set, and a hash table stores the information of each cache line (using the starting address as the
key). For both data structures, CachePerf stores the number of cache misses (on each cache set and
each cache line). For cache lines, CachePerf further stores the thread information for accessing each
word, which could help differentiate false sharing from true sharing.

Instruction Store. Instruction Store saves the information of memory accesses (e.g., loads and
stores) and cache misses of the selected instructions by the miss ratio checker (as discussed in
Section 3.2). The data structure of Instruction Store is a hash table that uses the instruction pointer as

10



CachePerf SIGMETRICS ’22, June 6–10, 2022, Mumbai, India

the hash key. For each instruction, CachePerf records the number of cache misses, the related cache
set, and the detailed memory access pattern.

Since each line/statement of the code may be related with multiple instructions (at the assem-
bly level), CachePerf further summarizes cache misses of the related statement, and only reports
statements with extensive cache misses.

3.5 Miss Classifier

Algorithm 1: The Algorithm of Classifying Cache Misses

for cache line c in Miss Store do
if multiple threads access the same words of c then

Report true sharing
end
if multiple threads access different words of c then

if c has multiple objects allocated by different threads then
Report allocator-induced false sharing

else
Report application’s false sharing

end
end

end
for instruction i in Instruction Store do

if the issue is reported as coherency miss then
continue

end
if i’s misses land on the same cache set then

if misses are landing on multiple heap objects then
Report allocator-induced conflict miss

else
Report application’s conflict miss

end
else

Report application’s capacity miss
end

end

CachePerf classifies and reports serious cache misses by combining the information from Cache
Miss Store and Instruction Store together. The detailed algorithm is shown as Algorithm 1. CachePerf
omits cache misses without significant performance impacts. Instead, it focuses on instructions or
cache lines that have passed the “ratio-based filtering”: (1) for an application, if the number of load
misses is less than 3% of all load accesses and the number of store misses is less than 1% of all
store accesses, then CachePerf will not report any issue; (2) for each instruction, if its memory
accesses are less than 0.01% of total accesses, or its cache misses are less than 1% of total misses,
this instruction will not be reported; (3) for each cache line and each cache set, it will be reported
only if its misses larger than 1% of all misses. These numbers are set based on our experience, which
has been evaluated as Section 4.5.

CachePerf reports potential coherence misses by checking all cache lines in Miss Store. As
discussed in Section 2.2.1, few cache lines with extensive cache misses but not mapping to the same

11



SIGMETRICS ’22, June 6–10, 2022, Mumbai, India Jin Zhou, Steven (Jiaxun) Tang, Hanmei Yang, and Tongping Liu

cache set can be caused by coherency misses. For each cache line, CachePerf can further determine
the type, false sharing and true sharing, via word-level information of the corresponding cache
lines. If multiple threads are accessing the same words of the cache line, then it is true sharing of
applications. Otherwise, it is a false sharing problem. CachePerf further checks whether multiple
objects on the same cache line are allocated by different threads or not. If yes, then it is allocator-
induced false sharing. Otherwise, it is the application’s false sharing. If cache lines are identified as
coherency misses, the corresponding instructions will be marked as checked, which will be excluded
for identifying conflict misses and capacity misses afterward.

CachePerf differentiates capacity misses from conflict misses based on the memory access pattern
of each instruction (with extensive cache misses) in the Instruction Store. A simple mechanism is
employed to differentiate conflict misses from capacity misses: if the number of accesses mapping to
the same cache set is larger than a threshold (e.g., 8), then the corresponding cache misses will be
considered as conflict misses. Otherwise, they are capacity misses. For conflict misses, CachePerf
further checks whether they are caused by the allocator or not: if they are involved with multiple heap
objects, this belongs to allocator-induced conflict miss. Otherwise, it is an application’s conflict miss.

CachePerf could further report the detailed information of cache misses, including the instruction
information (from Instruction Store) and object information (from Object Store). The former one
tells which instructions introduce cache misses, while the latter one helps locate the heap object with
its allocation callsite. This information could guide bug fixes. For instance, if two objects mapping to
the same cache set introduce excessive cache misses, such an issue can be significantly reduced by
changing the address of objects (by mapping to different sets).

4 EXPERIMENTAL EVALUATION

The experimental evaluation will answer the following research questions:

• How is the effectiveness of CachePerf? (Section 4.2)
• What is the performance overhead of CachePerf? (Section 4.3)
• What is the memory overhead of CachePerf? (Section 4.4)
• What are the impacts of different configurations? (Section 4.5)

4.1 Experimental Setting

Hardware Platform: Experiments are evaluated on a two-processor machine, where both proces-
sors are Intel(R) Xeon(R) Gold 6230 with 20 cores. We only enabled 16 hardware cores in one node
to exclude the NUMA impact as it is outside the scope of this paper. The machine has 256GB of
main memory, 64KB L1 cache, and 1MB of L2 cache.

Software: The OS is Ubuntu 18.04.3 LTS, installed with Linux-5.3.0-40. The compiler is GCC-
7.5.0, while we are using -O2 and -g flags for the compilation.

Evaluated Applications: Two types of applications are included in the evaluation, including
general applications and applications known to have cache misses. In particular, all 13 applications
from the PARSEC-2.0 benchmark are included as general applications [4], but some also have
known bugs. Buggy applications with coherence misses (false sharing) include two stress tests
cache-scratch and cache-thrash from Hoard [3], and two Phoenix [45] applications (histogram
and linear_regression). Among them, the first two applications actually have false sharing caused
by the allocator. Five applications with conflict misses are collected from CCProf [46]: ADI [44],
HimenoBMT [13], Kripke [27], MKL-FFT [9], and NW [7]. TinyDNN [54] is not included, since we did
not observe conflict misses and the change (based on CCProf [46]) did not improve the performance.
We also include irs [28] and SRAD [56] applications that were employed by ArrayTool [35] to

12



CachePerf SIGMETRICS ’22, June 6–10, 2022, Mumbai, India

evaluate capacity misses. Note: to reproduce false sharing on our machine, histogram processes
a special BMP file adapted from the original one that all of the red values are set to 0 and the blue
values are set to 255. For linear_regression, we also use the volatile keyword for the args
variable in order to avoid the optimization of the compiler. For HimenoBMT, the grid size is medium
and the number of integration is 80. NW’s matrix dimension is set to be 16384×16384, and its penalty
is set to be 10.

Evaluated Allocators: To evaluate CachePerf’s detection on issues introduced by allocators,
we evaluate on two widely-used allocators, Glibc-2.28 and TCMalloc-4.5.3. Glibc-2.28 in-
cludes the default allocator in our machine, and TCMalloc is a widely-used allocated designed by
Google [12].

Comparison: We compare CachePerf with two state-of-art tools in effectiveness, performance,
and memory consumption. One is CCProf which detects cache conflict misses [46], and the other
one is Feather for false sharing detection [6]. We have difficulty running ArrayTool [35] successfully,
which is the reason why ArrayTool is not included for comparison. For these tools, we use their
default sampling rates used for their evaluation.

4.2 Effectiveness

We list the effectiveness results of CachePerf’s detection in Table 2. Overall, CachePerf reports
all known bugs and detects 9 new bugs, while fixing the reported bugs achieves the performance
improvement between 3% and 3788%. Some applications with capacity misses cannot be easily
fixed, marked as “?” in the “Improve” column. This also concurs with our discussion in Section 2.1
that not all capacity misses can be fixed easily. CachePerf correctly identifies all types of bugs,
except bug 7 in ADI. The type is identified by CachePerf as capacity miss, but it is actually conflict
miss. Based on our investigation, the failure of the identification is caused by the skids of the PMU
hardware [1]. The PMU hardware fails to pinpoint the exact instruction with the sampled cache miss,
with the distance of one instruction. Therefore, CachePerf actually captures the access pattern of
an instruction different from the one with cache misses, which does not have the pattern of conflict
misses. However, our observation that “an instruction’s access pattern is not changed during the
whole execution” still holds.

Note that although streamcluster has been reported by previous tools with a false sharing issue,
but achieving no performance improvement after fixing the bug as suggested by previous tools [32].
CachePerf successfully avoids the report of this bug, therefore, preventing programmers to spend
the effort on this bug. In contrast, Feather still reports this insignificant bug, which is the reason
why it is marked as “✓–”. Feather cannot report the origin of false sharing in both cache-scratch
and cache-thrash, which are allocator-induced conflict misses. Similarly, although CCProf reports
conflict misses of raytrace, but it fails to identify as an allocator-induced miss.

4.2.1 Conflict Misses of Applications. CachePerf could correctly report all known conflict misses,
including ADI, HimenoBMT, Kripke, MKL-FFT, and NW. These bugs can be fixed by switching the
order of loops (Kripke) and using the padding (others).

CachePerf further detects three unknown conflict misses, in ADI, SRAD, and swaptions. The bug
of the SRAD application is shown in Fig. 5, which can be detected by CCProf. CachePerf reports that
line 243 of main.c introduces around 64% of load misses. As shown in Fig. 5(a), SRAD uses two
nested for loops to calculate the sum for every pixel in the image ROI. By simply switching these
two loops, we improve the performance by 748%.

4.2.2 Allocator-Induced Conflict Misses. CachePerf also detects a serious conflict miss in raytrace
caused by the default allocator–glibc-2.28, as shown in Fig. 6. The report can be seen in Fig. 6(b).

13



SIGMETRICS ’22, June 6–10, 2022, Mumbai, India Jin Zhou, Steven (Jiaxun) Tang, Hanmei Yang, and Tongping Liu

Category Index Application Improve CCProf Feather CachePerf New

False Sharing

1 cache-scratch* 1007% ✗ ✓– ✓ ✓
2 cache-thrash* 3788% ✗ ✓– ✓ ✓
3 histogram 117% ✗ ✓ ✓
4 linear_regression 712% ✗ N/A ✓
5 streamcluster 0% ✗ ✓– ✓

Conflict Miss

6 ADI 246% ✓ ✗ ✓
7 ADI 18% ✗ ✗ ✓– ✓
8 HimenoBMT 964% ✓ ✗ ✓
9 Kripke 7% N/A N/A ✓

10 MKL_FFT 52% ✓ ✗ ✓
11 NW 245% ✓ ✗ ✓
12 raytrace* 27% ✓– ✗ ✓ ✓
13 SRAD 748% ✓ ✗ ✓ ✓
14 swaptions 3% ✗ ✗ ✓ ✓

Capacity Miss

15 bodytrack ? ✗ ✗ ✓ ✓
16 canneal ? ✗ ✗ ✓ ✓
17 IRS 33% ✗ ✗ ✓
18 SRAD 12% ✗ ✗ ✓
19 streamcluster ? ✗ ✗ ✓ ✓

Table 2. This table lists applications with cache misses. For applications marked with *, cache-scratch,
cache-thrash have allocator-induced false sharing, and raytrace has allocator-induced conflict misses.
Column “Improve” lists the performance improvement after fixes based on information provided by CachePerf,
where column “New” indicates whether it is first discovered by CachePerf. Further, “✓” indicates the tool correctly
detects the issue, “✓–” indicates an imperfect report, “✗” indicates a failed detection, and “N/A” indicates that the
corresponding application crashes or deadlocks when running with the tool. Note that applications marked as “?”
in “Improve” cannot be fixed easily, which confirms our discovery in Section 2.1.

Application’s conflict misses, accessed by the 
instruction at:    
- main.c: 243   

Related to the heap object (419430400 bytes) 
allocated at:    
- # 0: main.c: 143

241: for (I = r1; i <= r2; i++) {
242:   for (j = c1; j <= c2; j++) {
243:     tmp = image [i + Nr * j];

......
246:   }
247: }

(a) Source code (main.c) (b) CachePerf’s report

Fig. 5. The conflict miss in SRAD, which can be fixed easily by switching the loops of line 241 and 242.

For this problem, the default glibc-2.28 happens to allocate many 48-byte objects mapping to the
same cache set, causing conflict misses. TCMalloc does not have this issue, which runs about 27%
faster on this application than glibc-2.28. We further confirm whether there exists a systematic
method in TCMalloc to prevent such an issue. We find that TCMalloc always requests two pages
at a time, then allocates objects (48 bytes) continuously, and skips non-used bytes in the end. This
mechanism luckily avoids conflict misses of raytrace application. In summary, allocator-induced
conflict misses are not easy to prevent from the design of the allocator. This also shows the importance
of CachePerf that could help identify the root cause of performance slowdown. After finding out
the issue, programmers may switch to a different allocator, or change the application by introducing
unnecessary allocations inside or changing the alignment of the related structure.

4.2.3 Capacity Misses of Applications. We borrowed some buggy applications from ArrayTool [35],
including IRS [28] and SRAD [56]. The paper also reports serious issues in a specific version of

14



CachePerf SIGMETRICS ’22, June 6–10, 2022, Mumbai, India

Allocator’s conflict misses, accessed by:
#0 instruction at:  
- /usr/include/c++/7/bits/stl_tree.h: 1875

#1 instruction at: 
- # 0: /usr/include/c++/7/bits/stl_pair.h: 456
......

Related to multiple heap objects (48 bytes)
allocated at:   
- # 0: /usr/include/c++/7/tuple: 1652
......
- # 9: MiniView/ObjParser.hxx: 145
......

139: _INLINE int getVertexID
(int vtxID,int norID, int txtID)

140: {
......

145:   vertex.push_back(tmpVtx[vtxID]);
......

151: }
...... 

(a) Source code (ObjParser.hxx) (b) CachePerf’s report

Fig. 6. CachePerf reports an allocator-caused conflict miss in raytrace

LULESH [23]. However, we cannot find the exact source code, which is the reason why LULESH is not
included. Besides these applications, CachePerf also detects unknown capacity misses in bodytrack,
canneal, and streamcluster, which has been confirmed by us manually. However, as mentioned
in Section 2.1, not all capacity misses could be fixed easily.

As shown in Table 2, CachePerf successfully reports capacity misses hidden in both IRS and SRAD.
As an example, the IRS’s source code and report are shown in Fig. 7. IRS’s capacity misses occur
in line 239 of aos3.cpp, although addr2line actually reports lines between 239 and 247. This
statement accesses many objects of the same size (88824176 bytes), e.g., dbl, xdbl, dbc. Since every
object has exactly the same access pattern, these accesses should be grouped together. Using the
suggested fix strategy [35], the performance can be improved by 32.7%.

Application’s capacity misses, accessed by:
#0 instruction at:  

- aos3.cpp: 239

#1 instruction at: 
- aos3.cpp: 240

......

Related to multiple heap objects (8824176 bytes) 
allocated at:   
# 0 object is allocated at:

- # 0: aos3.cpp: 275

# 1 object is allocated at:
- # 0: aos3.cpp: 278

......

235: for (kk = kmin; kk < kmax; kk++) {
236:   for (jj = jmin; jj < jmax; jj++) {
237:     for (ii = imin; ii < imax; ii++) {
238:       i = ii + jj * jp + kk * kp;
239:       b[i] = dbl[i] * xdbl[i] + dbc[i] * xdbc[i] 

+ dbr[i] * xdbr[i] +
240:       dcl[i] * xdcl[i] + dcc[i] * xdcc[i] + dcr[i] * xdcr[i] +
241:       dfl[i] * xdfl[i] + dfc[i] * xdfc[i] + dfr[i] * xdfr[i] +
242:       cbl[i] * xcbl[i] + cbc[i] * xcbc[i] + cbr[i] * xcbr[i] +
243:       ccl[i] * xccl[i] + ccc[i] * xccc[i] + ccr[i] * xccr[i] +
244:       cfl[i] * xcfl[i] + cfc[i] * xcfc[i] + cfr[i] * xcfr[i] +
245:       ubl[i] * xubl[i] + ubc[i] * xubc[i] + ubr[i] * xubr[i] +
246:       ucl[i] * xucl[i] + ucc[i] * xucc[i] + ucr[i] * xucr[i] +
247:       ufl[i] * xufl[i] + ufc[i] * xufc[i] + ufr[i] * xufr[i];
248:     }
249:   }
250: }

(a) Source code (aos3.cpp) (b) CachePerf’s report

Fig. 7. Reported capacity miss in IRS

Note that CachePerf cannot report SRAD’s capacity miss in the original version when the conflict
miss (as shown in Fig. 5) is the dominant performance issue. We also confirmed that applying the
suggested fix by ArrayTool [35] achieves almost no performance improvement. In fact, this actually
illustrates the effectiveness of CachePerf as its rule-based filtering mechanism avoids reporting
minor issues. After fixing the conflicting miss of SRAD, then CachePerf could successfully report the
capacity miss. After fixing the report bug, SRAD’s performance is improved by 12.4% finally.

4.2.4 Coherency Misses (FS) of Applications. For coherency misses of applications, we utilize three
known buggy applications to evaluate CachePerf’s effectiveness, including histogram, linear_re-
gression, and streamcluster. CachePerf successfully detects these issues latent in histogram

15



SIGMETRICS ’22, June 6–10, 2022, Mumbai, India Jin Zhou, Steven (Jiaxun) Tang, Hanmei Yang, and Tongping Liu

and linear_regression, similar to existing work [6, 32]. We show the source code and CachePerf’s
report of linear_regression in Fig. 8. This is a known bug that the structure of args is not aligned
to 64 bytes (but only 52 bytes instead). As a result, thread 1 will access the same cache line as thread
2. By simply aligning the related structure, the performance can be improved by 712%. Different
from existing tools, CachePerf will not report the issue of streamcluster, although it was reported
to have false sharing for the work_mem object [32]. Based on existing work, we fixed the false sharing
by using the padding and observed the reduction of cache misses. However, we do not observable
performance impact with this change, less than 1%. That is, CachePerf successfully excludes the
insignificant issue, avoiding the waste of manual effort. In contrast, Feather still reports this false
sharing of streamcluster, although it only imposes little performance impact.

Application’s false sharing, accessed by: 
#0 instruction at:    
- linear_regression-pthread.c: 94

#1 instruction at:
- linear_regression-pthread.c: 97

Related to the heap object (1056 bytes) 
allocated at:   
- # 0: linear_regression-pthread.c: 155

91: for (i = 0; i < args->num_elems; i++)
92: {
93:   //Compute SX, SY, SYY, SXX, SXY
94:   args->SX  += args->points[i].x;
95:   args->SXX += args->points[i].x*args->points[i].x;
96:   args->SY  += args->points[i].y;
97:   args->SYY += args->points[i].y*args->points[i].y;
98:   args->SXY += args->points[i].x*args->points[i].y;
99: }

(a) Source code (linear_regression-pthread.c) (b) CachePerf’s report

Fig. 8. CachePerf reports false sharing in linear_regression

4.2.5 Allocator-Induced False Sharing. When using the default allocator, CachePerf also reports
allocator-induced false sharing as shown in Fig. 9. CachePerf infers allocator-induced false sharing
as more than two objects allocated by different threads are located in the same cache line, as shown
in Fig. 9 (b). A simple solution is to change the alignment of the structure related to obj, which
improves the performance by 1007%. CachePerf also reports some serious allocator-caused false
sharing issues for both cache-scratch and cache-thrash with the TCMalloc allocator. There will
be 3788% performance improvement using the padding. Although allocator-caused false sharing is a
bug of the allocator design, it can be prevented by changing the application itself. In addition, users
could switch to a new allocator to fix such issues. CachePerf provides helpful information that could
help fix such bugs.

Allocator’s false sharing, accessed by the 
instruction at:    
- cache-scratch.cpp: 84

Related to multiple heap objects
allocated by different threads:
# 0 object (8 bytes) is allocated at:
- # 0: cache-scratch.cpp: 81

# 1 object (8 bytes) is allocated at: 
- # 0: cache-scratch.cpp: 81

......

81: char * obj = new char[w1._objSize];
82: for (int j = 0; j < w1._repetitions; j++){
83:   for (int k = 0; k < w1._objSize; k++) {
84:     obj[k] = (char) k;

......
87:   }
88: }

(a) Source code (cache-scratch.cpp) (b) CachePerf’s report

Fig. 9. CachePerf reports coherence misses in cache-scratch

Comparing with Other Tools: Overall, CachePerf shows three obvious advantages when com-
pared with existing tools. First, CachePerf can detect multiple types of cache misses, while others
could only report a specific type of cache misses. Note that the other tools are mutually exclusive,

16



CachePerf SIGMETRICS ’22, June 6–10, 2022, Mumbai, India

forcing programmers to use them one after the other. Second, CachePerf is the only tool that identifies
the performance issues introduced by the memory allocator, preventing programmers from wasting
the unnecessary effort of improving applications but achieving no performance improvement. Finally,
CachePerf is the only tool excluding minor issues with little performance impact, saving users’ time.

4.3 Performance Overhead

We evaluated the performance overhead of CachePerf, CCProf, and Feather. Since CCProf and
Feather have online and offline stages, we add their overhead of two stages together. The results
(with the AVERAGE and GEOMEAN) are shown in Fig. 10.

CachePerf Feather CCProf  Online Offline

5.6    24    204   20  7.4 10    64  15 945  43  13    59    5.3

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

N
or

m
al

iz
ed

 R
un

tim
e

PARSEC  Coherence Miss (FS)  Conflict Miss  Capacity Miss 

CachePerf Feather CCProf  Online Offline

Fig. 10. The performance of CachePerf, CCProf, and Feather,
where the results are normalized to the default setting (without running any tool).

On average (GEOMEAN), CachePerf introduces 14% performance overhead, while CCProf’s
overhead is 5.3× and Feather’s overhead is 80% if considering both online profiling and offline
analysis. Even only considering their online profiling, CachePerf is still faster than both CCProf
and Feather. Based on our understanding, CachePerf’s ratio-based mechanism helps reduce much
unnecessary overhead by pruning sporadic cache misses, but without compromising its effectiveness.
CachePerf’s specific data structures also help reduce the overhead. CachePerf’s hybrid sampling
technique that combines with both coarse-grained and fine-grained sampling also balances the
accuracy and the overhead. On one hand, its coarse-grained sampling works as a filter that allows it
to focus on only a few susceptible instructions, avoiding installing unnecessary breakpoints. On the
other hand, the breakpoints effectively ensure the precision of the tool even with a low PMU-based
sampling rate.
MKL_FFT is the only application with an overhead higher than 100%. We confirmed that more than

80% of its overhead is spent in its reporting phase, which could be placed offline if necessary. This
application has involved a big amount of cache sets, heap objects, and instructions. For instance,
CachePerf requires to invoke the expensive addr2line to obtain the line numbers for many lines.
We are planning to reduce such overhead with heuristics in the future.

CachePerf introduces 36% performance overhead for canneal. The basic reason is that canneal
has a great number of allocations (about 1.3 million per second), where keeping the information of
these objects adds significant overhead (and memory overhead). Similarly, CachePerf introduces
high overhead for keeping and updating the information of objects for raytrace, as there are around
500 thousand memory allocations each second. CachePerf introduces high overhead for bodytrack
and facesim for a similar reason.

17



SIGMETRICS ’22, June 6–10, 2022, Mumbai, India Jin Zhou, Steven (Jiaxun) Tang, Hanmei Yang, and Tongping Liu

Category Application Default CachePerf CCProf Feather

PARSEC

blackscholes 614 632 1850 622
bodytrack 34 70 1397 44
canneal 851 1728 2089 860
dedup 1513 1647 2811 1549
facesim 311 390 2776 330
ferret 108 142 1343 116
fluidanimate 209 234 2675 218
freqmine 1280 1312 3736 1289
raytrace 1287 1319 3213 1295
streamcluster 112 238 2572 122
swaptions 7 36 1244 16
vips 55 80 1234 108
x264 482 514 1711 510

Coherence Miss
(False Sharing)

cache-scratch 3 22 1551 11
cache-thrash 4 28 1810 11
histogram 1344 1362 2574 1336
linear_regression 1956 1974 3185 N/A

Conflict Miss

ADI 514 528 1743 520
HimenoBMT 225 302 1455 232
Kripke 301 360 N/A N/A
MKL-FFT 261 283 1490 268
NW 2050 2068 3279 2058

Capacity Miss
IRS 248 342 3118 256
SRAD 2404 2420 4869 2412

TOTAL 16174 18032 53726 14182
GEOMEAN 151% 889% 122%

Table 3. The memory consumption (MB) of CachePerf, CCProf , and Feather.
Column “Default’ lists memory footprints of applications when running alone.

We further checked the reason why Feather runs faster with cache-thrash and CCProf runs
faster with linear_regression. Based on our investigation, Feather allocates some memory from
the default memory allocator for its internal usage, which happens to alleviate the false sharing issue
introduced by the allocator. Similarly, CCProf’s memory usage also changes the starting address of
the false sharing object, reducing the severity of false sharing. That is, they should impose higher
overhead if such lucky cases are excluded. We also observe that CCProf’s offline phase is very
expensive, e.g., MKL_FFT, which could be as much as 945× higher. In contrast, CachePerf does not
have the hidden overhead for the offline analysis, which could report cache misses immediately after
the execution or when receiving the signal from users (good for long-running applications).

4.4 Memory Overhead

We also evaluated the memory overhead of CachePerf, CCProf, and Feather, as shown in Ta-
ble 3. Since CCProf crashed for Kripke, and Feather encountered the deadlock for Kripke and
linear_regression, these applications are marked “N/A” in the table.

In total, CachePerf adds around 11% memory consumption, although its average overhead is
around 51%. When only considering the online stages of CCProf and Feather, CachePerf’s memory
overhead is significantly better than CCProf, but slightly worse than Feather. However, if the offline
stage is also considered when using the maximum memory consumption of both stages, then
CachePerf has the smallest memory consumption.

Table 3 shows that CachePerf introduces high memory overhead for applications with small mem-
ory footprints, such as swaptions, cache-scratch, and cache-thrash. Based on our observation,

18



CachePerf SIGMETRICS ’22, June 6–10, 2022, Mumbai, India

the overhead is introduced by CachePerf’s initialization overhead for its pre-defined hash tables.
However, CachePerf only introduces around 19% memory overhead on average for applications with
large footprints (e.g., > 100MB). Considering the functionalities provided by CachePerf, we believe
that the memory overhead of CachePerf is reasonable and acceptable.

4.5 Impact of Configurations

In this section, we investigate the performance and effectiveness impacts of different configurations
using all PARSEC applications. We investigate the impact of the sampling rate, thresholds of Miss
Ratio Checker, breakpoint configurations, and access/miss ratio.

4.5.1 Sampling Rate. We evaluated three sets of sampling periods as shown in Table 4. With its
default setting (marked as bold), CachePerf’s GEOMEAN performance and memory overhead are
14% and 48% separately. When the sampling frequencies are 10 times lower than the default setting,
the performance overhead is 10% and the memory overhead is 47%. However, as shown in the “CP1”
column of Table 5, CachePerf will miss 10 out of 19 issues. When the sampling frequencies are
10 times higher than the default setting, the performance and memory overhead are increased to
18% and 79% correspondingly, but do not report more issues. Overall, CachePerf’s default sampling
periods keep a good balance between performance and effectiveness.

L:200K, S: 500K
Miss Ratio: 0.5%

L:20K, S: 50K
Miss Ratio: 2.5%

L:20K, S: 50K
Miss Ratio: 0.5%

L:2K, S: 5K
Miss Ratio: 0.5%

L:20K, S: 50K
Miss Ratio: 0%

Performance 10% 12% 14% 18% 18%
Memory 47% 45% 48% 79% 70%

Table 4. This table lists the performance and memory overhead under different sampling periods (“L” is the load
sampling period and “S” is the store sampling period) and different thresholds of the Miss Ratio Checker (“Miss
Ratio”) using all PARSEC applications. The middle column (in bold) is the default configuration.

4.5.2 Threshold of Miss Ratio Checker. We further investigate the impacts of different thresholds
of the Miss Ratio Checker. CachePerf will handle all cache misses inside the buffers, when the
cache miss ratio is larger than the pre-defined threshold. As described in Section 3.2, the default
threshold is 0.5%. In the default setting, CachePerf’s performance and memory overhead are 14%
and 48% separately. When the threshold is increased to 2.5%, indicating CachePerf will only handle
all cache misses when there are 25 misses out of 1000 accesses, the performance overhead is 12%
and the memory overhead is 45%, as shown in Table 4. However, as shown in “CP2” in Table 5,
CachePerf will miss 5 issues under this configuration. Another setting is 0%, indicating CachePerf
will handle all cache misses in the buffer, the performance and memory overhead is 18% and 70%
correspondingly. However, this setting does not report more issues. Overall, the default threshold of
Miss Ratio Checker has a good balance between overhead and effectiveness.

4.5.3 Breakpoint Configuration. We also evaluated the overhead and effectiveness impacts of differ-
ent breakpoint configurations. As discussed in Section 3.3, CachePerf collects at most 64 accesses
from one selected instruction, and identifies the bug as the conflict miss when more than 8 accesses
are landing on the same cache set. That is, CachePerf will remove the breakpoint on this instruction
if 8 continuous accesses are from the same set. Besides this default setting, we also evaluated using
4 or 16 accesses as the condition for identifying the conflict miss. We also evaluated different
expiration time for the breakpoint installing on an instruction, such as 10ms and 1000ms, where the
breakpoint will be installed for a new instruction. However, we do not observe a significant difference
in overhead or effectiveness for different configurations.

19



SIGMETRICS ’22, June 6–10, 2022, Mumbai, India Jin Zhou, Steven (Jiaxun) Tang, Hanmei Yang, and Tongping Liu

Index Application Instructions Allocation Callsite CP CP1 CP2
1 cache-scratch* cache-scratch.cpp: 84 cache-scratch.cpp: 81 ✓ ✓ ✓
2 cache-thrash* cache-thrash.cpp: 84 cache-thrash.cpp: 75 ✓ ✓ ✓
3 histogram histogram-pthread: 126, 132 histogram-pthread: 231 ✓ ✗ ✓
4 linear_regression linear_regression-pthread.c: 94, 97 linear_regression-pthread.c: 155 ✓ ✗ ✓
5 streamcluster streamcluster.cpp: 1005, 1015, 1098, 1099 streamcluster.cpp: 985 ✓ ✓ ✓
6 ADI adi.c: 104 utilities/polybench.c: 524 ✓ ✓ ✓
7 ADI adi.c: 109 utilities/polybench.c: 524 ✓– ✓– ✓–

8 HimenoBMT himenoBMTxpa.c: 295-316 himenoBMTxpa.c: 231 ✓ ✗ ✓
9 Kripke Grid.cpp: 262 SubTVec.h: 54 ✓ ✗ ✗
10 MKL_FFT MKL Library basic_dp_xx_2d_4096.c: 88, 95 ✓ ✗ ✓
11 NW needle.cpp: 130, 191, 290 needle.cpp: 262, 263 ✓ ✗ ✗
12 raytrace* C++ STL Library MiniView/rtview.cxx: 410 ✓ ✓ ✓
13 SRAD main.c: 243 main.c: 143 ✓ ✓ ✓
14 swaptions HJM_SimPath_Forward_Blocking.cpp: 121 nr_routines.cpp: 168 ✓ ✗ ✗

15 bodytrack ImageMeasurements.cpp: 43 AsyncIO.cpp: 55 ✓ ✗ ✓
16 canneal C++ STL Library netlist.cpp: 236 ✓ ✓ ✓
17 IRS aos3.cpp: 239-247 aos.cpp: 275-304 ✓ ✓ ✓
18 SRAD main.c: 312 main.c: 188-191 ✓ ✗ ✗
19 streamcluster streamcluster.cpp: 652 streamcluster.cpp: 1862 ✓ ✗ ✗

Table 5. This table lists the effectiveness of CachePerf under different configurations. “CP” is the default setting,
with the load and store sampling periods to be 20K and 50K separately. “CP1” has 10 times lower sampling
frequencies ( 200K and 500K separately), but will miss 10 cases. In “CP2”, its miss ratio checker uses a higher
threshold (2.5%), which will miss 5 cases. “✓”, “✓–”, and “✗” have the same meaning as Table 2.

4.5.4 Thresholds of Miss Rates. As described in Section 3.5, CachePerf will skip the report if the
number of load misses is less than 3% of all load accesses and the number of store misses is less
than 1% of all store accesses. The goal is to exclude minor issues. To evaluate the correctness of the
two thresholds, we checked the load and store miss rates of all evaluated applications. Overall, for
applications with reported issues, as listed in Table 2, their load or store miss rates are higher than the
default thresholds. For applications where we do not observe significant issues (not listed in Table 2),
the load and store miss rates are both lower than these thresholds. Therefore, the current thresholds
of miss rates are helpful to filter out minor issues and highlight significant issues of cache misses.

5 DISCUSSION

This section discusses the compatibility, thresholds, and limitation of CachePerf.

5.1 Compatibility

CachePerf can be easily adapted to different hardware environments, such as cache with different
cache line sizes or associativity. Currently, the cache-related parameters (e.g. cache line size, cache
associativity) are listed in a configuration file. If users would like to use CachePerf for hardware with
a different setting, they only need to change this configuration file.

5.2 Configurable Thresholds

CachePerf introduces some thresholds to control the sampling and the reporting. Such thresholds
are confirmed to balance the overhead and effectiveness on the evaluated machine. In a different
environment, users may need to change these thresholds. The thresholds used by CachePerf can be
easily changed via compilation flags or environmental settings.

20



CachePerf SIGMETRICS ’22, June 6–10, 2022, Mumbai, India

5.3 Limitation

CachePerf utilizes the hardware-based sampling techniques to perform the profiling, which has the
benefits that do not need to change the programs and imposes little performance overhead. However,
the setting of the PMU-based sampling may require some slight changes on different machines with
different implementations. Since the PMU-based sampling and the breakpoint-based sampling are
generally supported by different hardware architecture, the proposed techniques should be applicable
for different hardware.

6 RELATED WORK

We discuss the related work based on the type of cache misses in the following. Although some
tools, such as perf [10], oprofile [31], different Pin tools [19, 38], or cachegrind (one tool inside
Valgrind [40]), could report the percentage of cache misses in the lines of code, they cannot identify
the type of cache misses. Therefore, they are not the focus of this paper. In the following, we only
list tools that could identify the type of cache misses.

Detecting Capacity Misses: Tao et al. propose a cache simulator that can identify cache capacity
misses using the reuse distance for each memory access [51]. Nikos et al. propose another cache
simulation methodology [41]. Both cache simulators could study cache behaviors under various cache
configurations, but neither of them can be used as an online profiling tool due to their prohibitive
overhead. Delorean [42] improves the simulation efficiency, and identifies cache capacity misses by
the number of distinct memory accesses since the last access to the observed cache line. However, it
is still a simulation technique that requires the inspection of every memory access, which is slow too.
ArrayTool focuses on a special type of capacity misses caused by multiple arrays [35]. It utilizes the
PMU-sampling to collect memory samples and determines candidate arrays by the combination of
array affinities and array’s access patterns.

Detecting Conflict Misses: Cache simulators detect conflict misses by simulating the cache be-
havior based on the memory trace [29, 57], but they are too slow to be used for online profiling.
CCProf proposes to employ Re-Conflict Distance to filter out cache sets with low RCD [46], based
on address sampling. However, CCProf may introduce high performance overhead due to the use of
a low sampling rate to capture RCD. As shown in Fig. 10, the overhead of CCProf can be as much as
945 times. In contrast, CachePerf imposes significantly less overhead while could identify different
types of cache misses.

Detecting Cache Coherency Misses: There exist multiple types of tools that could detect cache
coherence issues, mostly focusing on false sharing. Some tools are relying on binary instrumenta-
tion [58], compiler-based instrumentation [34], process-based page protection [32], and the PMU-
based sampling [6, 8, 20, 25, 33, 39]. Instrumentation-based tools are generally too expensive to be
employed in the production environment [34, 58], while Sheriff only supports C/C++ applications
using standard synchronizations [32]. In theory, Sheriff cannot be able to support some complicated
applications (e.g., MySQL) with ad hoc synchronizations. The approaches with the PMU-based
sampling is efficient, but with their own shortcomings: Cheetah utilizes a simplified method to
compute the number of cache invalidations [33], instead of relying on the sampled cache misses;
Jayasena et al. propose a machine learning approach based on the sampled events [20], Laser utilizes
a special type of events (hit-Modified) that may not be available on all hardware [39], while Feather
utilizes the combination of the PMU-sampling and watchpoints to identify false sharing [6]; however,
all existing tools typically report an absolute number to evaluate the seriousness of false sharing,
which may report insignificant issues. They could not detect false sharing caused by external libraries.

21



SIGMETRICS ’22, June 6–10, 2022, Mumbai, India Jin Zhou, Steven (Jiaxun) Tang, Hanmei Yang, and Tongping Liu

Classifying Different Types of Cache misses. Some approaches could classify multiple types of
cache misses together. Sanchez et al. propose a data locality analysis tool that can identify compulsory,
conflict and capacity misses, but not coherence misses [47]. Its profiling stage incurs reasonable
overhead, but it requires a specialized compiler to extract reuse information beforehand and an
expensive offline processing stage. These characteristics make this tool inconvenient and inefficient
to use. DProf detects datatype-related cache performance issues inside the Linux kernel via the
PMU-based sampling and tracing object access histories [43]. DProf employs the definitions of
cache misses for its classification, but with the following issues: first, it requires human effort and
expertise to summarize data profile, miss classification, working set, and data flow together to identify
a particular type of issue, which is not friendly to people without such expertise. Second, it may lose
its precision due to its coarse-grained profiling, which is infeasible to find the last write of each miss
(and then affect its report). Third, DProf requires the change of the monitored target (e.g., kernel),
which may prevent people from using it. Fourth, DProf provides no mechanism of differentiating
issues of applications from those of allocators. In contrast, CachePerf overcomes these issues by
automatically identifying the type of cache misses, as discussed in Section 3.5. Another difference is
that CachePerf requires no change of programs, as it is a library that can be linked to applications.
Further, CachePerf could also identify cache misses caused by the allocator that DProf cannot do.

Other Relevant Work: DMon proposes selective profiling that could incrementally increase its
monitoring scope (e.g., sampled events) based on the dynamic behavior of execution [24]. In this
sense, CachePerf is very similar to DMon. However, CachePerf selectively chooses the instructions
to monitor (not hardware events) in order to collect fine-grained information. DMon relies on perf
to collect sampled events, while CachePerf proposes a new profiler that classifies different types of
cache misses based on a set of hardware events and hardware breakpoints. CachePerf could classify
the type of cache misses, where DMon only reports the cache miss ratio at different lines of code,
inheriting from perf, and relies on human expertise to diagnose the issue.

7 CONCLUSION

Cache miss is a well-known performance issue. Although existing tools could report cache miss
ratios at different lines of code, significant effort is still mandatory to figure out the type and the
origin (e.g., object, allocator) of cache misses in order to reduce cache misses. This paper describes
a unified profiling tool–CachePerf– that could correctly identify different types of cache misses
while imposing reasonable overhead. This paper further proposes a new method that combines PMU-
based coarse-grained sampling and breakpoint-based fine-grained sampling to balance the accuracy
and performance. Overall, CachePerf only imposes 14% performance overhead, while identifying
multiple known and new cache misses correctly. CachePerf is an indispensable complementary to
existing profilers due to its uniqueness.

ACKNOWLEDGMENTS

We thank our Shepherd Sergey Blagodurov and anonymous reviewers for their helpful comments on
improving this paper. We also thank Probir Roy, Milind Chabbi for their help on the setup of CCProf
and Feather for the comparison, and Xu Liu for the initial discussions on hardware performance
counters. This material is based upon work supported by the National Science Foundation under
Award CCF-2024253, and the UMass start-up package. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s) and do not necessarily reflect
the views of the National Science Foundation.

22



CachePerf SIGMETRICS ’22, June 6–10, 2022, Mumbai, India

REFERENCES
[1] Denis Bakhvalov. Advanced profiling topics. pebs and lbr. https://easyperf.net/blog/2018/06/08/Advanced-profiling-

topics-PEBS-and-LBR, 2018.
[2] Bin Bao and Chen Ding. Defensive loop tiling for shared cache. In Proceedings of the 2013 IEEE/ACM International

Symposium on Code Generation and Optimization (CGO), CGO ’13, page 1–11, USA, 2013. IEEE Computer Society.
[3] Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe, and Paul R. Wilson. Hoard: A scalable memory allocator

for multithreaded applications. In Proceedings of the Ninth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS IX, pages 117–128, 2000.

[4] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The parsec benchmark suite: Characterization and
architectural implications. In Proceedings of the 17th international conference on Parallel architectures and compilation
techniques, pages 72–81, 2008.

[5] Bryan R. Buck and Jeffrey K. Hollingsworth. Data centric cache measurement on the Intel ltanium 2 processor. In SC
’04: Proc. of the 2004 ACM/IEEE Conf. on Supercomputing, page 58, Washington, DC, USA, 2004. IEEE Computer
Society.

[6] Milind Chabbi, Shasha Wen, and Xu Liu. Featherlight on-the-fly false-sharing detection. In Proceedings of the 23rd
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP ’18, page 152–167, 2018.

[7] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer, Sang-Ha Lee, and Kevin Skadron. Rodinia:
A benchmark suite for heterogeneous computing. In 2009 IEEE International Symposium on Workload Characterization
(IISWC), pages 44–54, 2009.

[8] Intel Corporation. Intel vtune profiler. https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.
html#gs.ddftte.

[9] Intel Corporation. Intel math kernel library. https://software.intel.com/content/www/us/en/develop/tools/oneapi/
components/onemkl.html, 2021.

[10] Stephane Eranian, Eric Gouriou, Tipp Moseley, and Willem de Bruijn. Linux kernel profiling with perf. https:
//perf.wiki.kernel.org/index.php/Tutorial, 2015.

[11] Guang Gao, Russell Olsen, Vivek Sarkar, and Radhika Thekkath. Collective loop fusion for array contraction. In
International Workshop on Languages and Compilers for Parallel Computing, pages 281–295. Springer, 1992.

[12] Sanjay Ghemawat and Paul Menage. Tcmalloc: Thread-caching malloc, 2007. http://goog-perftools.sourceforge.net/
doc/tcmalloc.html, 2007.

[13] Ryutaro Himeno. Himeno benchmark. https://i.riken.jp/en/supercom/documents/himenobmt/.
[14] Intel. Intel xed. https://intelxed.github.io/, 2017.
[15] Intel Corporation. ntel® 64 and IA-32 Architectures Software Developer Manuals. https://software.intel.com/content/

www/us/en/develop/articles/intel-sdm.html.
[16] Intel 64 and IA-32 Architectures Software Developer’s Manual. https://software.intel.com/content/www/us/en/develop/

articles/intel-sdm.html.
[17] Marty Itzkowitz, Brian J. N. Wylie, Christopher Aoki, and Nicolai Kosche. Memory profiling using hardware counters.

In SC ’03: Proc. of the 2003 ACM/IEEE Conf. on Supercomputing, page 17, Washington, DC, USA, 2003. IEEE
Computer Society.

[18] R. Iyer. On modeling and analyzing cache hierarchies using casper. In 11th IEEE/ACM International Symposium on
Modeling, Analysis and Simulation of Computer Telecommunications Systems, 2003. MASCOTS 2003., pages 182–187,
2003.

[19] Aamer Jaleel, Robert S Cohn, Chi-Keung Luk, and Bruce Jacob. Cmp$im: A pin-based on-the-fly multi-core cache
simulator. In Proceedings of the Fourth Annual Workshop on Modeling, Benchmarking and Simulation (MoBS),
co-located with ISCA, pages 28–36, 2008.

[20] Sanath Jayasena, Saman Amarasinghe, Asanka Abeyweera, Gayashan Amarasinghe, Himeshi De Silva, Sunimal
Rathnayake, Xiaoqiao Meng, and Yanbin Liu. Detection of false sharing using machine learning. In SC ’13: Proceedings
of the International Conference on High Performance Computing, Networking, Storage and Analysis, pages 1–9, 2013.

[21] Norman P. Jouppi. Reducing compulsory and capacity misses, 1990.
[22] Changhee Jung, Sangho Lee, Easwaran Raman, and Santosh Pande. Automated memory leak detection for production

use. In Proceedings of the 36th International Conference on Software Engineering, ICSE 2014, pages 825–836, New
York, NY, USA, 2014. ACM.

[23] Ian Karlin. Lulesh programming model and performance ports overview. Technical report, Lawrence Livermore National
Lab.(LLNL), Livermore, CA (United States), 2012.

[24] Tanvir Ahmed Khan, Ian Neal, Gilles Pokam, Barzan Mozafari, and Baris Kasikci. Dmon: Efficient detection and
correction of data locality problems using selective profiling. In 15th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 21), pages 163–181. USENIX Association, July 2021.

23

https://easyperf.net/blog/2018/06/08/Advanced-profiling-topics-PEBS-and-LBR
https://easyperf.net/blog/2018/06/08/Advanced-profiling-topics-PEBS-and-LBR
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html#gs.ddftte
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html#gs.ddftte
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl.html
https://perf.wiki.kernel.org/index.php/Tutorial
https://perf.wiki.kernel.org/index.php/Tutorial
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
https://i.riken.jp/en/supercom/documents/himenobmt/
https://intelxed.github.io/
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html


SIGMETRICS ’22, June 6–10, 2022, Mumbai, India Jin Zhou, Steven (Jiaxun) Tang, Hanmei Yang, and Tongping Liu

[25] Tanvir Ahmed Khan, Yifan Zhao, Gilles Pokam, Barzan Mozafari, and Baris Kasikci. Huron: Hybrid false sharing
detection and repair. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2019, page 453–468, New York, NY, USA, 2019. Association for Computing Machinery.

[26] Alexey Kopytov and Sunny Bains. Inefficient innodb row stats implementation. https://bugs.mysql.com/bug.php?id=
79454, 2017.

[27] Adam J Kunen, Teresa S Bailey, and Peter N Brown. Kripke-a massively parallel transport mini-app. Technical report,
Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States), 2015.

[28] Lawrence Livermore National Laboratory. Llnl sequoia benchmarks. https://asc.llnl.gov/sequoia/benchmarks.
[29] Alvin R Lebeck and David A Wood. Cache profiling and the spec benchmarks: A case study. Computer, 27(10):15–26,

1994.
[30] David Levinthal. Performance analysis guide for intel core™ i7 processor and intel xeon 5500 processors. https:

//software.intel.com/content/dam/develop/external/us/en/documents/performance-analysis-guide-181827.pdf, 2009.
[31] John Levon and Philippe Elie. Oprofile: A system profiler for linux, 2004.
[32] Tongping Liu and Emery D. Berger. Sheriff: precise detection and automatic mitigation of false sharing. In Proceedings

of the 2011 ACM international conference on Object oriented programming systems languages and applications,
OOPSLA ’11, pages 3–18, New York, NY, USA, 2011. ACM.

[33] Tongping Liu and Xu Liu. Cheetah: Detecting false sharing efficiently and effectively. In Proceedings of the 2016
International Symposium on Code Generation and Optimization, CGO 2016, pages 1–11, New York, NY, USA, 2016.
ACM.

[34] Tongping Liu, Chen Tian, Hu Ziang, and Emery D. Berger. Predator: Predictive false sharing detection. In Proceedings
of 19th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPOPP’14, New York, NY,
USA, 2014. ACM.

[35] X. Liu, K. Sharma, and J. Mellor-Crummey. Arraytool: A lightweight profiler to guide array regrouping. In 2014 23rd
International Conference on Parallel Architecture and Compilation Techniques (PACT), pages 405–415, 2014.

[36] Xu Liu and John M. Mellor-Crummey. A data-centric profiler for parallel programs. In Proc. of the 2013 ACM/IEEE
Conference on Supercomputing, Denver, CO, USA, 2013.

[37] Xu Liu, Kamal Sharma, and John Mellor-Crummey. Arraytool: A lightweight profiler to guide array regrouping. In
Proceedings of the 23rd International Conference on Parallel Architectures and Compilation, PACT ’14, pages 405–416,
2014.

[38] Brandon Lucia. Multicachesim: A coherent multiprocessor cache simulator.
[39] L. Luo, A. Sriraman, B. Fugate, S. Hu, G. Pokam, C. J. Newburn, and J. Devietti. Laser: Light, accurate sharing

detection and repair. In 2016 IEEE International Symposium on High Performance Computer Architecture (HPCA),
pages 261–273, 2016.

[40] Nicholas Nethercote and Julian Seward. Valgrind: A framework for heavyweight dynamic binary instrumentation. In
Proceedings of the 28th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’07,
page 89–100. Association for Computing Machinery, 2007.

[41] Nikos Nikoleris, Erik Hagersten, and Trevor E Carlson. Delorean: Virtualized Directed Profiling for Cache Modeling in
Sampled Simulation, 2018.

[42] Nikos Nikoleris, Erik Hagersten, and Trevor E Carlson. Delorean: Virtualized directed profiling for cache modeling in
sampled simulation, 2018.

[43] Aleksey Pesterev, Nickolai Zeldovich, and Robert T. Morris. Locating cache performance bottlenecks using data
profiling. In Proceedings of the 5th European Conference on Computer Systems, EuroSys ’10, page 335–348, 2010.

[44] L.-N. Pouchet and T. Yuki. Polybench/c 4.1. https://sourceforge.net/projects/polybench/, 2016.
[45] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski, and Christos Kozyrakis. Evaluating mapreduce for

multi-core and multiprocessor systems. In 2007 IEEE 13th International Symposium on High Performance Computer
Architecture, pages 13–24, 2007.

[46] Probir Roy, Shuaiwen Leon Song, Sriram Krishnamoorthy, and Xu Liu. Lightweight detection of cache conflicts. In
Proceedings of the 2018 International Symposium on Code Generation and Optimization, CGO 2018, page 200–213,
New York, NY, USA, 2018. Association for Computing Machinery.

[47] J. Sanchez and A. Gonzalez. Analyzing data locality in numeric applications. IEEE Micro, 20(4):58–66, August 2000.
[48] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry Vyukov. Addresssanitizer: A fast address

sanity checker. In Proceedings of the 2012 USENIX Conference on Annual Technical Conference, USENIX ATC’12,
page 28, USA, 2012. USENIX Association.

[49] J Seward, N Nethercote, and J Fitzhardinge. Cachegrind: a cache-miss profiler, 2004.
[50] Tianwei Sheng, Neil Vachharajani, Stephane Eranian, Robert Hundt, Wenguang Chen, and Weimin Zheng. Racez: A

lightweight and non-invasive race detection tool for production applications. In Proceedings of the 33rd International
Conference on Software Engineering, ICSE ’11, pages 401–410, New York, NY, USA, 2011. ACM.

24

https://bugs.mysql.com/bug.php?id=79454
https://bugs.mysql.com/bug.php?id=79454
https://asc.llnl.gov/sequoia/benchmarks
https://software.intel.com/content/dam/develop/external/us/en/documents/performance-analysis-guide-181827.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/performance-analysis-guide-181827.pdf
https://sourceforge.net/projects/polybench/


CachePerf SIGMETRICS ’22, June 6–10, 2022, Mumbai, India

[51] J. Tao and W. Karl. Detailed cache simulation for detecting bottleneck, miss reason and optimization potentialities. In
Proceedings of the 1st international conference on Performance evaluation methodolgies and tools, page 62–es, New
York, NY, USA, 2006. Association for Computing Machinery.

[52] Jie Tao and Wolfgang Karl. Detailed cache simulation for detecting bottleneck, miss reason and optimization potentialities.
In Proceedings of the 1st international conference on Performance evaluation methodolgies and tools - valuetools ’06,
page 62, Pisa, Italy, 2006. ACM Press.

[53] Wikipedia Team. Cache performance measurement and metric: Capacity misses. https://en.wikipedia.org/wiki/Cache_
performance_measurement_and_metric#Capacity_misses.

[54] tiny-dnn Team. header only, dependency-free deep learning framework in c++14. https://github.com/tiny-dnn/tiny-dnn,
2018.

[55] Wikipedia. Loop optimization.
[56] ACTON S T YU YJ. Speckle reducing anisotropic diffusion. IEEE Transactions on Image Processing, 11(11):1260–1270,

2002.
[57] Hongli Zhang and Margaret Martonosi. A mathematical cache miss analysis for pointer data structures. In SIAM

Conference on Parallel Processing for Scientific Computing. Citeseer, 2001.
[58] Qin Zhao, David Koh, Syed Raza, Derek Bruening, Weng-Fai Wong, and Saman Amarasinghe. Dynamic cache

contention detection in multi-threaded applications. In Proceedings of the 7th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments, VEE’11, pages 27–38, New York, NY, USA, 2011. Association for
Computing Machinery.

25

https://en.wikipedia.org/wiki/Cache_performance_measurement_and_metric#Capacity_misses
https://en.wikipedia.org/wiki/Cache_performance_measurement_and_metric#Capacity_misses
https://github.com/tiny-dnn/tiny-dnn

	Abstract
	1 Introduction
	2 Background and Overview
	2.1 Types of Cache Misses
	2.2 Basic Idea of CachePerf

	3 Design and Implementation
	3.1 Access Sampler
	3.2 Miss Ratio Checker
	3.3 Breakpoint Handler
	3.4 Important Data Stores
	3.5 Miss Classifier

	4 Experimental Evaluation
	4.1 Experimental Setting
	4.2 Effectiveness
	4.3 Performance Overhead
	4.4 Memory Overhead
	4.5 Impact of Configurations

	5 Discussion
	5.1 Compatibility
	5.2 Configurable Thresholds
	5.3 Limitation

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

