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Abstract

This paper studies the sensitivity (or insensitivity) of a class of load balancing algorithms
that achieve asymptotic zero-waiting in the sub-Halfin-Whitt regime [24], named LB-zero. Most
existing results on zero-waiting load balancing algorithms assume the service time distribution
is exponential. This paper establishes the large-system insensitivity of LB-zero for jobs whose
service time follows a Coxian distribution with a finite number of phases. This result suggests
that LB-zero achieves asymptotic zero-waiting for a large class of service time distributions, which
is confirmed in our simulations. To prove this result, this paper develops a new technique, called
“Iterative State-Space Peeling” (or ISSP for short). ISSP first identifies an iterative relation
between the upper and lower bounds on the queue states and then proves that the system
lives near the fixed point of the iterative bounds with a high probability. Based on ISSP, the
steady-state distribution of the system is further analyzed by applying Stein’s method in the
neighborhood of the fixed point. ISSP, like state-space collapse in heavy-traffic analysis, is a
general approach that may be used to study other complex stochastic systems.

1 Introduction

Zero-waiting load balancing refers to a load balancing algorithm under which a job is routed to an idle
server to be processed immediately upon its arrival. The problem has become increasingly important
as the amount of modern machine learning (ML) and artificial intelligence (AI) applications running
on large-scale data centers explodes. While increasing the number of servers and the processing
speed of each server is a critical step to meet the increasing demand, the design of load balancing
algorithms that can efficiently utilize available resources to minimize or even eliminate the waiting
time of incoming jobs is equally important, especially when a minor increase of latency (e.g. 100
milliseconds) can lead to a significant drop in a cloud-computing provider’s revenue (7% drop in
sales according to a recent Akamai report [2]).

Significant processes have been made over the past few years on understanding achieving asymp-
totic zero-waiting (as the system size approaches infinity) in a large-scale data center with distributed
queues, including the classic supermarket model [14, 8, 32, 17, 3, 4, 30, 24, 25, 23, 22, 45, 9], models
with data locality [40, 31] and models where each job consists of parallel tasks [39, 37, 19], etc.

However, almost all these results assume exponential service time distributions. While each of
these results [14, 8, 32, 17, 29, 30, 24, 25, 23, 22, 40, 31, 39, 37, 19, 45, 9] provided important
insights of achieving zero-waiting in a practical system, theoretically, it is not clear whether these
principles hold for general service times. This is a very important question to answer because it is
well-known that service time distributions in real-world systems are not exponential. Understanding
a queueing system’s performance with general service time remains one of the most important and
intensively studied problems in stochastic networks. A concept that excited many theorists in the
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area is “insensitivity” [12]. A queueing system is called insensitive if the steady-state distribution
of queue lengths is invariant to the service time distribution. Therefore, any conclusion drawn from
exponential service time distributions can be applied to general service time distributions. A result
that is insensitive is robust and is expected to be widely applicable in practical systems. Unfortu-
nately, insensitivity results are rare and often hold only under some special queueing disciplines such
as processor sharing (PS) [12, 6, 21]. One of the reasons is that insensitivity, while appealing, is a
very strong notion of “robustness”. It requires the steady-state distribution under a general service
time distribution to be exactly the same as that under the exponential distribution. Some recent
studies started to relax it to weaker notions such as insensitivity in the heavy-traffic regime [36] or
the large-system regime [7, 32], i.e. insensitivity in the limiting regimes. In the light of these recent
developments, this paper addresses the following important question:

Are the zero-waiting algorithms insensitive and if so, in which notion of insensitivity?

1.1 Main Contributions

This paper provides some positive answers to the question above. First, it is well known that
most of zero-waiting algorithms, such as join-the-shortest-queue (JSQ) [41] and join-the-idle-queue
(JIQ) [26], are not insensitive (according to its original definition). However, we prove that in
the sub-Halfin-Whitt regime, LB-zero identified in [24] in fact achieves asymptotic zero-waiting
for jobs whose service time follows a Coxian distribution with a finite number of phases. This
result establishes the large-system insensitivity of LB-zero for Coxian service time distributions
with a finite number of phases. Since the Coxian family is dense in the class of positive-valued
distributions, our result strongly suggests a load balancing algorithm in the LB-zero family will be
able to minimize unnecessary waiting in large-scale data centers for a large class of job size or service
times distributions. Our simulations further confirm it.

To prove this result, this paper develops a new technique, called “iterative state-space peeling”
(or ISSP for short). ISSP first identifies an iterative relation between upper and lower bounds on the
queue states. Then by iteratively “peeling off” the low-probability states, it proves that the system
“lives” near the fixed point of the iterative bounds with a high probability. Based on ISSP, the
steady-state distribution of the system can be further analyzed by using Stein’s method in a small
neighborhood of the fixed point. ISSP, like the state-space collapse in the heavy-traffic analysis, is
a general technique that may be used to study other complex stochastic systems, e.g. large-system
insensitivity of load balancing algorithms for other models like those studied in [29, 39, 40, 37, 38].

We remark that this paper does not establish the large-system insensitivity for an arbitrary
service time distribution, for which we need to show that our results continue to hold for a large
but finite N when the number of phases of the Coxian distribution goes to infinity. This requires
an interchange limits arguments or a continuity argument and is an interesting open problem. It is
also worth mentioning that a Coxian representation of a probability distribution is non-unique. The
choice of the Coxian representation is out the scope of this paper.

1.2 Related Work

Steady-state analysis of distributed queueing systems has been an active research topic since the
seminal work on power-of-two-choices [28, 35]. The most popular approach to study a large-scale
distributed queueing system is the mean-field approach where the system is approximated using a
deterministic dynamical system (a set of ordinary differential equations), called a mean-field model.
In the large-system limit (as the number of servers approaches infinity), the steady-state of the
stochastic system can often be shown to converge to the equilibrium point of the mean-field model
using the interchange of limits (e.g. [35, 42, 44]) or Stein’s method (e.g. [43, 16]).

While most studies on this topic assume exponential service time distributions for tractability,
the approach has been used to study non-exponential service time distributions theoretically or
numerically (see. e.g. [28, 7, 32, 1, 34, 18, 33, 21]). For example, when non-exponential service time
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distributions has a decreasing hazard rate (DHR), the system often exhibits a monotonicity property
such that the system starting from the empty state is dominated by the system starting from any
other state. Leveraging this monotonicity, [7] proved the convergence of power-of-d-choices and [32]
proved the convergence of JIQ to the corresponding mean-field limit, respectively. Recently, [33]
studied load balancing policies under the hyper-exponential service time distribution in the light
traffic regime (or in a critical traffic regime). By transforming the hyper-exponential distribution
to a Coxian distribution with DHR, the monontoncity property holds in a partial order and the
global stability of the mean-field model was established. [21] studied Pod with PS servers for a
hyper-exponential distribution of order 2 in the light traffic regime. They also established the
global stability result in a spirit similar to [33]. We note [21] considered Pod where d is a constant
independent of the number of servers so the system has a non-vanishing delay in the large-system
limit. For the Pod algorithm in the LB-zero family, d is a function of N and the algorithm achieves
asymptotic zero waiting in the heavy-traffic regime without the DHR assumption.

Without DHR, the results are very limited. [7] proved the convergence of join the least loaded of
d queues (LL(d)) for general service time distributions and that of Pod when the load of the system
is small (less than 1/4). [15] proved the asymptotic optimality of JIQ under general service time
distributions when the normalized load is less than 0.5. Since JIQ is an LB-zero policy, our result
confirms the conjecture made in [15] that JIQ is asymptotically optimal for any load less than one,
not just less than 0.5. Another significant result is [6], which identifies a set of policies that are
insensitive in many-server load-balancing systems and are optimal in the class of insensitive load
balancing algorithms. The asymptotic blocking probability of this class of insensitive algorithms in
a finite buffer system was later studied in [20]. Many LB-zero such as JSQ and Pod algorithms are
sensitive, so the results in [6, 20] do not apply. We also note that the waiting probability in our
paper includes both blocking and being queued in the buffer, so our result implies asymptotic zero
blocking of LB-zero in the sub-Halfin-Whitt regime.

[22] is the work most related to this paper, which considers the Coxian-2 distribution and shows
that LB-zero achieves asymptotic zero-waiting in the sub-Halfin-Whitt regime. Inspired by [22],
this paper develops the ISSP technique for general Coxian distributions with a finite number of
phases and establishes its large-system insensitivity. We remark that [22] utilized a key property of
Coxian-2 service time distribution that a job in the first phase (phase-1) either departs or enters the
last phase (phase-2) immediately, which does not hold under a general Coxian distribution which
may have many phases.

In terms of the proof, each step in ISSP utilizes the tail bound in [5] to “peel off” a low probability
subspace. The tail bound is based on the Lyapunov drift analysis, and is a critical step to prove
state-space collapse in the traditional heavy traffic regime with a fixed number of servers (see e.g.,
[13, 27, 36]). The key difference is that [13] utilizes the tail bound only once while ISSP repeatedly
utilizes the tail bound guided by an iterative relation between the upper and lower bounds.

2 Model and State Representation

We consider a many-server system with N homogeneous servers, where job arrival follows a Poisson
process with rate λN with λ = 1 − N−α, 0 < α < 0.5, i.e. the system is in the sub-Halfin-Whitt
regime. We assume the service times follow the Coxian distribution with M phases as shown in
Figure 1, where µm > 0 is the rate a job finishes phase m when in service and 0 ≤ pi < 1, 1 ≤ i < M
is the probability that a job enters phase i+1 after completing phase i and pM = 1. Note we assume
λ = 1 − N−α for the ease of exposition and our results can be easily extended to the case that
λ = 1 − βN−α with any positive constant β > 0 independent with N. As convention, we define∑b

i=a xi = 0 if a > b and
∏b
i=a xi = 1 if a > b for the series {xi, i ≥ 1}.
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Figure 1: The Coxian-M Distribution: µm is the service rate in phase m and pm is the probability
entering phase m+ 1 after finishing service in phase m.

Without loss of generality, we normalize the mean service time to be one, i.e.

M∑
m=1

vm = 1 with vm =

∏m−1
i=1 pi
µm

,

where vm is viewed as the average time spent in phase m for a job. Given the unit service rate, λ
is the normalized load of the system and λvm is the normalized load of jobs in phase m.

Taking Coxian-3 distribution as an example (see Figure 2), a job is colored in black if it waits in
the buffer, and colored in light red, blue, and green when it is in phase 1, 2 and 3, respectively. Jobs
are served with the FIFO discipline and we assume each server has a buffer of size b− 1, so can hold
at most b jobs (b−1 in the buffer and one in service). The assumption of finite buffer is imposed due
to a technical reason and will be explained later in the paper. Relaxing the finite-buffer assumption
is not trivial technically but we conjecture our results hold without this assumption.

Load Balancer

Server 2 Server 1 Server N-1 

 

Server N 

Figure 2: Load Balancing in Many-Server Systems with Coxian-3 : jobs colored in black, light red,
blue, and green represent jobs in the buffer, in phase 1, 2, and 3, respectively.

To represent the system, define Qj,m(t) (m = 1, 2, · · · ,M) to be the fraction of servers which have
j jobs at time t and the one in service is in phase m. Because an idle server does not have a phase, we
define Q0,1(t) to be the fraction of servers that are idle at time t and Q0,m(t) = 0, ∀2 ≤ m ≤M for
convenience. We stack Qj,m(t) to a matrix Q(t) ∈ Rb×M such that the (j,m)th entry of the matrix

is Qj,m(t). We further define Si,m(t) =
∑

j≥iQj,m(t) and Si(t) =
∑M

m=1 Si,m(t). Therefore, Si,m(t)
is the fraction of servers which have at least i jobs and the job in service is in phase m at time t and
Si(t) is the fraction of servers with at least i jobs at time t. Stack Sj,m(t) to be a matrix S(t) such
that the (j,m)th entry of the matrix is Sj,m(t). Since Q(t) and S(t) have a one-to-one mapping,
we focus on S(t) throughout the paper. We consider load balancing policies which dispatch jobs to
servers based on S(t) and under which the finite-state CTMC {S(t), t ≥ 0} is irreducible, and so it
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has a unique stationary distribution. This includes well-known load balancing policies such as JSQ
[41, 14, 8], JIQ [26, 32], I1F [17] and Pod [28, 35]

Let Qj,m be a random variable that has the distribution of Qj,m(t) at steady state. Correspond-
ingly, define Si,m =

∑
j≥iQj,m and Si =

∑
m Si,m. In other words, Si,m is the fraction of servers

which have at least i jobs and the job in service is in phase m and Si is the fraction of servers with
at least i jobs, both at steady state. Consider a system with 10 servers and Coxian-3 service time
distribution. A realization of state representation Si,m is shown in Figure 3 and Table 1. Define
S ∈ Rb×M to be a matrix such that the (i,m)th entry is Si,m and s ∈ Rb×M to be a realization of
S. Define S(N) to be a set of s as follows

S(N) =

{
s

∣∣∣∣∣ 1 ≥ s1,m ≥ · · · ≥ sb,m ≥ 0, 1 ≥
M∑
m=1

s1,m, Nsi,m ∈ N, ∀i,m

}
, (1)

i.e., S(N) is the set of all possible s in a system with N servers.

 2 1 

Phase 2

3 

Phase 2

 5 4  8 7  10 9 

Figure 3: An example of the realization of Si,m in a system with 10 servers and Coxian-3 service
time distribution

Q1,1 Q2,1 Q3,1 Q1,2 Q2,2 Q3,2 Q1,3 Q2,3 Q3,3 Q4,3 Q5,3

0.2 0.1 0.1 0.1 0.2 0.1 0.0 0.0 0.0 0.1 0.1

S1,1 S2,1 S3,1 S1,2 S2,2 S3,2 S1,3 S2,3 S3,3 S4,3 S5,3

0.4 0.2 0.1 0.4 0.3 0.1 0.2 0.2 0.2 0.2 0.1

Table 1: The corresponding values of Qi,m and Si,m in Figure 3: The system in Figure 3 includes
four busy servers that are serving jobs in phase 1, including two servers without any waiting jobs
(Q1,1 = 0.2), one server with one waiting job (Q2,1 = 0.1), and one server with two waiting jobs
(Q3,1 = 0.1); four busy servers that are serving jobs in phase 2, including one server without any
waiting jobs (Q1,2 = 0.1), two server with one waiting job (Q2,2 = 0.2), and one server with two
waiting jobs (Q3,2 = 0.1); and two busy servers that are serving jobs in phase 3, including one server
with three waiting jobs (Q4,3 = 0.1) and one server with four waiting jobs (Q5,3 = 0.1).

5



3 Main Results

Before introducing the main results, we first define several constants that will be used throughout
the paper:

am =
µm

p1µ1 + µm
2 ≤ m ≤M

bm =(1− am)

(
1 +

M∑
r=m+1

vr
v1

)
− amvm

v1
2 ≤ m ≤M

ξ =
M∑
m=2

bm

M∏
j=m+1

aj

cm =5(1− am)

M∑
r=m+1

(r − 1)vr + 5am

m−1∑
r=2

µrvr
µm

+ 5(m− 2)amvm + 5− am 2 ≤ m ≤M

CM =
M∑
m=2

cm

M∏
j=m+1

aj .

These constants are positive constants and 0 < ξ < 1. The proof can be found in Appendix A. Their
values depend on the Coxian-M distribution but are independent of N.

We further define A1(s) to be the probability that an incoming job is routed to a busy server
conditioned on that the system is in state s ∈ S(N); i.e.

A1(s) = P (an incoming job is routed to a busy server|S(t) = s) .

We now consider the set of zero-waiting load balancing policies, named as LB-zero,

LB-zero : Π =

{
π

∣∣∣∣ Under policy π,A1(s) ≤ 1√
N

for any s ∈ S(N) such that s1 ≤ 1− 1

Nα logN

}
.

Note that this class of policies is similar to the one considered in [24]. Several well-known policies
satisfy this condition, as summarized in Table 2.

Load Balancing Policy Description Condition

Join-the-Shortest-Queue route an incoming job to the least loaded server A1(s) = 0 for s1 < 1

Join-the-Idle-Queue
route an incoming job to an idle server
if available and otherwise, to a server
chosen uniformly at random.

A1(s) = 0 for s1 < 1

Idle-One-First
route an incoming job to an idle server
if available; to a server with one job if available;
and otherwise, to a randomly selected server.

A1(s) = 0 for s1 < 1

Power-of-d-Choices
with d ≥ Nα log2N,

sample d servers uniformly at random and
route the job to the least loaded
server among the d servers.

For sufficiently large N,
A1(s) ≤ 1√

N

for s1 ≤ 1− 1
Nα logN

Table 2: Examples of LB-Zero Policies: Join-the-Shortest-Queue, Join-the-Idle-Queue, Idle-One-
First, and Power-of-d-Choices with a carefully chosen d.

To prove the large-system insensitivity of LB-zero, we first show that S1,m is “close” to s∗1,m =
λvm, which is the normalized load from phase-m of the jobs, and is also the equilibrium point of the
mean-field system assuming zero-waiting (details can be found in Section 4 and 5). We call s∗ the
zero-waiting equilibrium. Theorem 1 shows that at the steady-state, S1,m concentrates around the
zero-waiting equilibrium s∗1,m for large N. The proof of this theorem can be found in Section 6.
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Theorem 1 (High Probability Bound). Define θm = 6µ1vm+5(m−1)vm
C ,∀1 ≤ m ≤ M with C =√

2v̄2 log(1/ξ)
3M+(3M+4) log(1/ξ) and v̄ = minm vm. For any LB-zero policy in Π, the following bound holds

P
(
s∗1,m +

θm logN√
N

≤ S1,m ≤ s∗1,m +
1

Nα
−
∑

r 6=m θr logN
√
N

)
≥ 1− M

N3

when N satisfies

min

{
M∑
m=1

θm,
C(1− ξ)
2µ1CM

}
N0.5−α ≥ logN ≥ max

{
2µ1

1− ξ
,
C

µ1

}
. (2)

Remark 1. Theorem 1 shows that S1,m differs from s∗1,m by at most max
{
θm logN√

N
, 1
Nα

}
with a

probability at least 1−M/N3, which implies that the convergence the steady-state S1,m, ∀m to the zero-
waiting equilibrium as N →∞ in probability and mean-square senses. To be best of our knowledge,
this is the first result to establish such a steady-state convergence for a load balancing system under
Coxian-M service time distributions in the heavy-traffic regime. Since the high probability bound
holds for a large but finite N, it also provides the rate of convergence.

From Theorem 1, it is not clear whether the probability of waiting approaches zero under an
LB-zero policy, which will be studied in the next theorem. LetW denote the event that an incoming
job is routed to a busy server in the system, and P(W) denote the probability of this event at
steady-state. We have the following result on the waiting probability. The proof of Theorem 2 can
be found in Section 7.

Theorem 2. Define wm = (1 − pm)µm, wu = maxmwm, wl = minmwm, µmax = maxm µm,

ζ = 4wub
wl

[( 1
wl
− 1

wu
)
∑

m θmwm + 1
wl

+ 6], and k =
∑
m θmwm
wu

+ (1 + wl
4wub

)ζ −
∑

m θm. Under an
LB-zero policy in Π, the following result holds

P(W) ≤ 1√
N

+
10µmax + 4

N0.5−α logN
. (3)

when N satisfies

min

{
1

2k
,
M∑
m=1

θm,
C(1− ξ)
2µ1CM

}
N0.5−α ≥ logN ≥ max

{
log

(
1

ξ

)
,

2µ1

1− ξ
,

4b

wlζ
,
C

µ1
, 2

}
. (4)

Remark 2. Theorem 2 shows the waiting probability is O(1/N0.5−α) for a large but finite N, which
implies the asymptotic zero waiting, i.e. P(W)→ 0 as N →∞ in the sub-Halfin-Whitt regime. This
asymptotic result implies LB-zero is large-system insensitive to Coxian-M distributions with a finite
number of phases.

Next, we will establish these two main results. We first introduce the system dynamic of LB-zero
in Section 4 and present “iterative state-space peeling” (ISSP) in Section 5, which is used to prove
that the system lives near a limiting regime in Theorem 1 in Section 6 and to prove the large system
insensitivity in Theorem 2 in Section 7.
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4 System Dynamics

Define ei,m ∈ Rb×M to be a b ×M -dimensional matrix with the (i,m)th entry being 1/N and all
other entries being zero. Furthermore, define Ai,m(s) to be the probability that an incoming job is
routed to a server with at least i jobs and the job in service is in phase m given the system state s,
i.e.

Ai,m(s) = P (an incoming job is routed to a server with at least i jobs

and the job in service is in phase m | S(t) = s) .

Given state s (or the corresponding q) of the CTMC, each of the following three events triggers
a state transition, which is illustrated individually in Figure 4.

• Event 1: A job arrives and is routed to a server that has i− 1 jobs and the job in service is in
phase m as in the left figure in Figure 4. When this occurs, qi,m increases by 1/N, and qi−1,m

decreases by 1/N (note m = 1 if i = 1 since we define the faction of idle servers to be q0,1).
So the CTMC has the following transition:

q → q + ei,m − ei−1,m,

s→ s+ ei,m,

where the transition of s can be verified according to the definition si,m =
∑

j≥i qj,m so only
si,m increasing by 1/N. This event occurs with rate

λN(Ai−1,m(s)−Ai,m(s)),

where Ai−1,m(s) − Ai,m(s) is the probability that an incoming job is routed to a server that
has i− 1 jobs and the job in service is in phase m.

• Event 2: A server with i jobs finishes serving a job in phase m. The job departs from the
system without entering into the next phase as in the middle figure in Figure 4. When this
event occurs, qi,m decreases by 1/N and qi−1,1 increases by 1/N, so the CTMC has the following
transition:

q → q − ei,m + ei−1,1,

s→ s−
i∑

j=1

ej,m +
i−1∑
j=1

ej,1,

where the transition of s can be verified based on the definition si,m =
∑

j≥i qj,m so sj,m
decreases by 1/N for any j ≤ i and sj,1 increases by 1/N for any j < i. This event occurs with
rate

µmNqi,m(1− pm),

where µmNqi,m is the rate at which a job in phase m finishes the service and (1− pm) is the
probability that a job finishes phase m and departs from the system immediately.

• Event 3: A server with i jobs finishes serving a job in phase m, and the job enters the next
phase m + 1 as shown in the right figure in Figure 4. When this event occurs, a server in
state (i,m) transits to state (i,m+ 1), so qi,m decreases by 1/N and qi,m+1 increases by 1/N.
Therefore, the CTMC has the following transition:

q → q − ei,m + ei,m+1,

s→ s−
i∑

j=1

ej,m +
i∑

j=1

ej,m+1,

8



where the transition of s holds because si,m decreases by 1/N for any j ≤ i and sj,m+1 increases
by 1/N for any j ≤ i. This event occurs with rate

µmNqi,mpm,

where µmNqi,m is the rate at which a job in phase m finishes the service and pm is the
probability that a job enters phase m+ 1 after finishing phase m.

Figure 4: Illustrations of State Transitions on (qi,m or si,m) Triggered by the Three Events: 1) a job
arrives to a server with i− 1 jobs and the job in service in phase m; 2) a server with i jobs finishes a
job in phase m, and the job departs from the system; 3) a server with i jobs finishes a job in phase
m, and the job enters into the next phase.

Based on the three events above, we focus on (S(t) : t ≥ 0) because S(t) and Q(t) has one-to-one
mapping and the dynamics of S(t) have a simpler form. Define G to be the generator of CTMC
(S(t) : t ≥ 0). Given function f : S(N) → R, we have

Gf(s) =
b∑
i=1

M∑
m=1

[λN(Ai−1,m(s)−Ai,m(s))(f(s+ ei,m)− f(s)) (5)

+(1− pm)µmNqi,m

f
s− i∑

j=1

ej,m +
i−1∑
j=1

ej,1

− f(s)

 (6)

+pmµmNqi,m

f
s− i∑

j=1

ej,m +

i∑
j=1

ej,m+1

− f(s)

 . (7)

To understand the dynamics better, we write down the mean-filed model (MFM) according to
the generator:

ṡi,1 = λ(Ai−1,1(s)−Ai,1(s)) +

M∑
m=2

(1− pm)µmsi+1,m − µ1si,1, (8)

ṡi,m = λ(Ai−1,m(s)−Ai,m(s)) + pm−1µm−1si,m−1 − µmsi,m, ∀m ≥ 2. (9)

This mean-field model is nonlinear in s because Ai,m(s) is a nonlinear function in s, and its
equilbirium point is difficult to calculate in general. However, suppose zero-waiting occurs, i.e.,
si,m = 0, ∀i ≥ 2, and the faction of jobs dropped is negligible, then we can obtain the following
equilibrium

s∗1,m = λ

∏m−1
i=1 pi
µm

= λvm and s∗i,m = 0 ∀i ≥ 2.

We call s∗ zero-waiting equilibrium because it is a conjectured equilibrium by assuming zero-
waiting. In this following analysis, we will not solve mean-field model (8)-(9) to check whether its
equilibrium is close to s∗. Instead, we will directly prove S1,m concentrates around s∗1,m and zero
waiting occurs at the steady-state with a high probability.
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5 Iterative State-Space Peeling (ISSP)

In this section, we illustrate the key idea of ISSP, which will be applied to prove Theorem 1. Intu-
itively, the original stochastic system Si,m(t) and the steady-state Si,m would be close to the MFM
si,m(t) and the zero-waiting equilibrium s∗i,m, respectively. However, due to “non-monotonicity” of
the system, it is extremely challenging to justify this argument. To tackle the challenge, we develop a
new technique, called “Iterative State-Space Peeling” (ISSP), which first identifies an iterative rela-
tion between the upper and lower bounds on the queue states, and then proves that the system lives
in a regime concentrated around the “fixed point’ of the iterative bounds with a high probability.

In particular, we focus on S1,m the number of busy servers with the job in service in phase m
because we hypothesize Si,m → 0, ∀i ≥ 2 (in other words, the fraction of servers with any waiting
jobs is negligible in a large system).

Let L1,m(n) denote a high probability lower bound on S1,m and Um(n) be a high probability
upper bound on

∑m
r=2 S1,r, established at the nth step of ISSP, i.e.

P(S1,m ≥ L1,m(n)) and P

(
m∑
r=2

S1,r ≤ Um(n)

)
are close to one. Our goal is to show that as n increases, L1,m(n) and Um(n) approach the zero-
waiting equilibrium s∗1,m. Taking Coxian-3 distribution as an example, we need to show that as n
increases L1,m(n)→ s∗1,m, ∀m, U2 → s∗1,2 and U3 → s∗1,2 + s∗1,3.

5.1 ISSP: Iterative lower and upper bounds

Our “iterative state-space peeling” (ISSP) is based on the following iterative relation between the
upper and lower bounds on the queue states, denoted by L1,m and Um,∀m ≥ 2 :

L1,1(n+ 1) ≈ min{s∗1,1, 1− UM (n)} (10)

L1,m(n+ 1) ≈ vm
vm−1

L1,m−1(n+ 1) (11)

Um(n+ 1) ≈ 1− am − bmL1,1(n+ 1) + amUm−1(n+ 1) (12)

where the initial condition L1,m(0) = 0,∀m, and Um(0) = 1, ∀m ≥ 2, and “≈” is used because

we ignore diminishing terms (e.g., logN√
N

) in the equations (10)-(12) for explaining the intuition.

From(10)-(12), we can obtain an recursive equation for L1,1 :

L1,1(n+ 1) ≈ min{s∗1,1, v1 + ξ(L1,1(n)− v1)}, s∗1,1 = λv1 and 0 < ξ < 1. (13)

Therefore, as n→∞, L1,m(n)→ s∗1,m and Um(n)→
∑m

r=2 s
∗
1,r.

To provide the intuition behind (10)-(12), we consider the mean-field model under JSQ as an
example and focus on s1,m in (8)-(9) by ignoring si,m,∀i ≥ 2, that is,

ṡ1,1 = λI(s1 < 1)− µ1s1,1, (14)

ṡ1,m = pm−1µm−1s1,m−1 − µms1,m, ∀m ≥ 2, (15)

where the equilibrium can be verified to be s∗1,m = λvm,∀m.
We next carefully analyze (14)-(15) to establish (10)-(12). To derive the lower and upper bounds

on the equilibrium point of a dynamical system x(t) (or s1,m(t)), we use the following straightforward
ideas.

• If

ẋ(t) > L− x(t), (16)

then x(t) ≥ L when t is sufficiently large because otherwise x(t) continues to increase.

10



• If

ẋ(t) < U − x(t), (17)

then x(t) ≤ U when t is sufficiently large because otherwise, x(t) continues to decrease.

In the following, we will explain (10)-(12) based on the ideas above. The explanation is not a rigorous
proof. The detailed proof will be presented later. We will ignore iteration index n occasionally when
confusion does not arise.

The intuition to obtain (10): We start with the dynamic of s1,1 in (14), which is

ṡ1,1 = λI(s1 < 1)− µ1s1,1,

Given
∑M

m=2 s1,m < UM , we have
ṡ1,1 = λ− µ1s1,1

when s1,1 < 1 − UM , which implies ṡ1,1 > 0 when s1,1 < min
{

1− UM , s∗1,1
}
. Therefore, at the

equilibrium point, s1,1 ≥ L1,1 , min{1− UM , s∗1,1} because otherwise, s1,1 will continue to increase
because ṡ1,1 > 0.

The intuition to obtain (11): Consider the dynamic of s1,m,∀m ≥ 2 in (15):

ṡ1,m = pm−1µm−1s1,m−1 − µms1,m, ∀m ≥ 2.

Given s1,m−1 ≥ L1,m−1, we have

ṡ1,m ≥ pm−1µm−1L1,m−1 − µms1,m, ∀m ≥ 2,

which implies at the equilibrium point,

s1,m ≥ L1,m ,
pm−1µm−1

µm
L1,m−1 =

vm
vm−1

L1,m−1

because otherwise, s1,m will continue to increase because ṡ1,m > 0.

Note vm
vm−1

=
s∗1,m
s∗1,m−1

, so we have
L1,m

L1,m−1
=

s∗1,m
s∗1,m−1

, which means the ratio of the lower bounds is

the same as that of the corresponding equilibrium points.
The intuition to obtain (12): We focus on the dynamic of

∑m
r=2 s1,r that

m∑
r=2

ṡ1,r = p1µ1s1,1 −
m−1∑
r=2

(1− pr)µrs1,r − µms1,m

≤ p1µ1

(
1−

M∑
r=2

s1,r

)
−
m−1∑
r=2

(1− pr)µrs1,r − µms1,m

= p1µ1

(
1−

M∑
r=m+1

s1,r

)
−
m−1∑
r=2

(1− pr)µrs1,r − (p1µ1 + µm)
m∑
r=2

s1,r + µm

m−1∑
r=2

s1,r.

Given s1,m ≥ L1,m, ∀m and
∑m−1

r=2 s1,r ≤ Um−1, we have

m∑
r=2

ṡ1,r ≤ p1µ1

(
1−

M∑
r=m+1

L1,r

)
−
m−1∑
r=2

(1− pr)µrL1,r − (p1µ1 + µm)

m∑
r=2

s1,r + µmUm−1,

which implies at the equilibrium point,

m∑
r=2

s1,r ≤ Um ,
p1µ1

(
1−

∑M
r=m+1 L1,r

)
−
∑m−1

r=2 (1− pr)µrL1,r + µmUm−1

p1µ1 + µm

11



because otherwise,
∑m

r=2 s1,r will continue to decrease because
∑m

r=2 ṡ1,r < 0.
By invoking L1,m = vm

vm−1
L1,m−1, we have

M∑
r=m+1

L1,r =
M∑

r=m+1

vr
v1
L1,1,

m−1∑
r=2

(1− pr)µrL1,r = p1µ1L1,1 − µmL1,m = p1µ1L1,1 −
µmvm
v1

L1,1.

Therefore, we have

Um =
p1µ1

p1µ1 + µm
− p1µ1

p1µ1 + µm

(
1 +

M∑
r=m+1

vm
v1

)
L1,1 +

µm
p1µ1 + µm

vm
v1
L1,1 +

µm
p1µ1 + µm

Um−1

=
p1µ1

p1µ1 + µm
−

(
p1µ1

p1µ1 + µm

(
1 +

M∑
r=m+1

vm
v1

)
− µm
p1µ1 + µm

vm
v1

)
L1,1 +

µm
p1µ1 + µm

Um−1

= 1− am − bmL1,1 + amUm−1.

where the last equality holds by the definitions of am and bm.

5.2 ISSP: An illustrative example

To demonstrate ISSP, we consider JSQ with Erlang-3 distribution and no buffer, i.e., Erlang-3 with
b = 1.

The mean-field model under JSQ with Erlang-3 and b = 1.
With the Erlang-3 service time distribution, we have

p1 = p2 = p3 = 1 and µ1 = µ2 = µ3 = 3.

So the MFM in this case is

ṡ1,1 = λI{s1<1} − 3s1,1

ṡ1,2 = 3s1,1 − 3s1,2

ṡ1,3 = 3s1,2 − 3s1,3

si,m ≡ 0,∀i ≥ 2,∀m.

ISSP for JSQ with Erlang-3 and b = 1. The values of the key parameters in iterative
equations in this case are a1 = a2 = a3 = 1

2 , b1 = 1, b2 = 1
2 , b3 = 0, and v1 = v2 = v3 = 1

3 . The
corresponding iterative equations are

L1,1(n+ 1) ≈ min

{
λ

3
, 1− U3(n)

}
L1,2(n+ 1) ≈ L1,1(n+ 1), and L1,3(n+ 1) ≈ L1,2(n+ 1)

U2(n+ 1) ≈ 1

2
− 1

2
L1,1(n+ 1), and U3(n+ 1) ≈ 1

2
+

1

2
U2(n+ 1)

The iterative relation in terms of L1,1(n) is

L1,1(n+ 1) = min

{
λ

3
,
1

4
+

1

4
L1,1(n)

}
which implies that L1,1(n)→ λ

3 as n→∞, and

L1,1(n)→ λ

3
, L1,2(n)→ λ

3
, L1,3(n)→ λ

3
, U2(n)→ λ

3
, U3(n)→ 2λ

3
.
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The iterative procedure has been visualized in Figure 5. In each iteration n, we first establish
L1,1(n+1) in light red based on U3(n) from the last iteration; then obtain L1,1(n+1) ≈ L1,2(n+1) ≈
L1,3(n + 1) in light (blue, green); and finally refine U2(n + 1) and U3(n + 1) in light purple, which
in turn will improve L1,1 in the next iteration.

In the following sections, we formalize the ISSP, which is then combined with Stein’s method to
prove Theorems 1 and 2. A roadmap can be found in Figure 6 that demonstrates the relationship
of the key lemmas and theorems.

ISSP

Figure 6: A Roadmap for Proving Theorems 1 and 2: Lemmas 1, 2, and 3 establish the iterative
upper and lower bounds, which are used to establish Lemma 4, 5 and Theorem 1. Together with
Stein’s method in Lemma 7, zero-waiting is established in Lemma 6 and Theorem 2.

6 Proof of Theorem 1 based on ISSP

In this section, we present the formal statements of the iterative equations (10)-(12) as individual
lemmas, which are used to prove Theorem 1.

Recall that the positive constant C =
√

2v̄2 log(1/ξ)
3M+(3M+4) log(1/ξ) , whose value is chosen to control the

tail probability as we will see it later. Recall am = µm
p1µ1+µm

, bm = (1−am)
(

1 +
∑M

r=m+1
vr
v1

)
− amvm

v1
,

and v̄ = minm vm. Recall cm = 5(1−am)
∑M

r=m+1(r−1)vr+5am
∑m−1

r=2
µrvr
µm

+5(m−2)amvm+5−am,
CM =

∑M
m=2 cm

∏M
j=m+1 aj , and ∆ = logN√

N
. We further define

ε1(n+ 1) =e−
log2 N

C2 +

(
C

∆
+ 1

)
σM (n)

εm(n+ 1) =e−
v2
m log2 N

C2 +

(
C

vm∆
+ 1

)
εm−1(n+ 1)

σm(n+ 1) =e−
log2 N

C2 +

(
C

∆
+ 1

)(
σm−1(n+ 1) +

M∑
m=1

εm(n+ 1)

)

with initial values εm(0) = σm(0) = 0, ∀m. These are the constants used in the tail probabilities in
the following lemmas. We only state the lemmas and their proofs can be found in Appendix B.

6.1 A lower bound on L1,1(n+ 1) given
∑M

m=2 S1,m ≤ UM(n).

The following lemma is the rigorous statement of (10).

Lemma 1. Given

P

(
M∑
m=2

S1,m > UM (n)

)
≤ σM (n),

13



Figure 5: Illustrations of ISSP under Erlang-3 service time distribution. The lower bounds of
s1,m, ∀m, keep increasing and the upper bounds of s1,2 and s1,2 + s1,3 keep decreasing until reaching
the equilibriums: the initial values (at iteration 1) are L1,m(1) = 0, ∀m,U2(1) = 1, U3(1) = 1; the
lower bounds L1,m increase as 0 → 1

4 →
11
32 → · · · →

λ
3 ; the upper bound U2 of s1,2 decreases as

1→ 3
8 →

21
64 → · · · →

λ
3 ; the upper bound U3 of s1,2 + s1,3 decreases as 1→ 11

16 →
85
128 → · · · →

2λ
3 .
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and defining

L1,1(n+ 1) = min

{
s∗1,1 −

6∆

C
, 1− UM (n)− 1− ξ

2µ1Nα
− 6∆

C

}
,

we have
P (S1,1 < L1,1(n+ 1)) ≤ ε1(n+ 1).

6.2 A lower bound on S1,m given S1,m−1 ≥ L1,m−1.

The following lemma is the rigorous statement of (11).

Lemma 2. Consider m ≥ 2. Given

P (S1,m−1 < L1,m−1(n+ 1)) ≤ εm−1(n+ 1),

and defining

L1,m(n+ 1) =
vm
vm−1

L1,m−1(n+ 1)− 5vm
C

∆,

we have
P (S1,m < L1,m(n+ 1)) ≤ εm(n+ 1).

6.3 An upper bound on
∑m

r=2 S1,r given
∑m−1

r=2 S1,r ≤ Um−1 and S1,m−1 ≥ L1,m−1.

The following lemma is the rigorous statement of (12).

Lemma 3. Consider m ≥ 2. Given

P

(
m−1∑
r=2

S1,r ≥ Um−1(n+ 1)

)
≤ σm−1(n+ 1)

P (S1,r < L1,r(n+ 1)) ≤ εr(n+ 1) 1 ≤ r ≤M

and defining

Um(n+ 1) = 1− am − bmL1,1(n+ 1) + amUm−1(n+ 1) +
cm
C

∆,

we have

P

(
m∑
r=2

S1,r ≥ Um(n+ 1)

)
≤ σm(n+ 1).

6.4 Convergence of L1,1(n).

Based on Lemmas 1, 2, and 3, we will show {L1,1(n)}n is an increasing sequence and approaches
s∗1,1.

Lemma 4. Recall that ξ =
∑M

m=2 bm
∏M
j=m+1 aj . Given P(S1,1 < L1,1(n)) ≤ ε1(n) and L1,1(n) ≤

s∗1,1 − 6∆
C , we have

P(S1,1 < L1,1(n+ 1)) ≤ ε1(n+ 1),

where

L1,1(n+ 1) =
1

µ1
− CM∆

C(1− ξ)
− 1

2µ1Nα
+ ξ

(
L1,1(n)− 1

µ1
+

CM∆

C(1− ξ)
+

1

2µ1Nα

)
and ε1(n+ 1) = ε1(n)(M2 + 2)( 2C

v̄∆ + 1)2M . Furthermore, L1,1(n+ 1) > L1,1(n) holds when L1,1(n) ≤
s∗1,1 − 6∆

C .
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6.5 Proving Theorem 1

Based on the monotonicity of L1,1(n), we can apply Lemma 4 a sufficient number of times so that
L1,1(n) is close to s∗1,1 − 6∆

C , which is formalized in the following lemma.

Lemma 5.

P
(
S1,1 < s∗1,1 −

6∆

C

)
≤
(

1√
N

)M+6

.

Proof. To prove this lemma, we apply Lemma 4 n times iteratively with n =
⌈

logN
2 log(1/ξ)

⌉
such that

ξn ≤ ∆. We obtain

P
(
S1,1 <

1

µ1
− CM∆

(1− ξ)C
− 1

2µ1Nα
− ∆

µ1

)
≤ε1(0)(M2 + 2)n

(
2C

v̄∆
+ 1

)2Mn

≤ε1(0)(M2 + 2)
logN

log(1/ξ)
+1
N

2M logN
log(1/ξ)

+2M

≤e−
v̄2 log2 N

C2 (M2 + 2)
logN

log(1/ξ)
+1
N

2M logN
log(1/ξ)

+2M

=N
− v̄

2 logN

C2 + 2M logN
log(1/ξ)

+2M
(M2 + 2)

logN
log(1/ξ)

+1

≤N−
v̄2 logN

C2 + 3M logN
log(1/ξ)

+2M+1
,

where the third inequality holds because ε1(0) ≤ e−
v̄2 log2 N

C2 , and the last inequality holds because
N ≥M2 + 2.

Recalling C =
√

2v̄2 log(1/ξ)
3M+(3M+4) log(1/ξ) and noting N ≥ 1/ξ, we have

P
(
S1,1 ≤

1

µ1
− CM∆

(1− ξ)C
− ∆

µ1
− 1

2µ1Nα

)
=P
(
S1,1 ≤

λ

µ1
− CM∆

(1− ξ)C
− ∆

µ1
+

1

2µ1Nα

)
≤
(

1√
N

)M+8

,

which implies

P
(
S1,1 < s∗1,m −

6∆

C

)
≤
(

1√
N

)M+8

because N0.5−α ≥ 2µ1CM
C(1−ξ) logN.

The result above established that

S1,1 ≥ s∗1,1 −
6∆

C
= λv1 −

6∆

C
,

with probability 1−
(

1√
N

)M+8
.

Combining with Lemma 2, we next prove that S1,m ≥ s∗1,m − Ω(∆),∀m ≥ 2 holds with a high
probability. Applying Lemma 2 iteratively for S1,m,∀m ≥ 2, we have

L1,m(n) =
vm
v1
L1,1(n)− 5(m− 1)vm∆

C

=
vm
v1

(
λv1 −

6∆

C

)
− 5(m− 1)vm∆

C

=λvm −
6µ1vm + 5(m− 1)vm∆

C
,
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and S1,m ≥ L1,m(n) holds with the probability εm(n). Note εm(n) ≤ εM (n),∀m and εM (n) is
bounded as follows

εM (n) ≤Mε1(n)

(
C

v̄∆
+ 1

)M−1

= M

(
1√
N

)M+8( C

v̄∆
+ 1

)M−1

≤ 1

N3
.

Therefore, we have proved the lower bound in the theorem.
Define the event K = {S1,m ≥ s∗1,m + θm logN√

N
,∀m}. We have P(Kc) ≤ M

N3 according to the union

bound. We now establish the upper bound in Theorem 1 as follows

1 = P

S1,m ≤ 1−
∑
r 6=m

S1,r


≤ P

S1,m ≤ 1−
∑
r 6=m

S1,r | K

+ P(Kc)

≤ P

S1,m ≤ 1−
∑
r 6=m

(
s∗1,r +

θr logN√
N

)+
M

N3
.

The proof is completed because 1−
∑M

r 6=m s
∗
1,r = s∗1,m + 1

Nα .

7 Proof of Theorem 2

Theorem 1 shows that S1,m is “close” to s∗1,m with a high probability. However, it is not clear
whether the average total queue length or the waiting probability is small under an LB-zero policy.
To establish Theorem 2, we first prove an important lemma on the upper bound of the average total
queue, which is used to establish the waiting probability in Theorem 2. The proof of this lemma
can be found in Appendix 7.3.

Lemma 6. Define wm = (1 − pm)µm, wu = maxmwm, wl = minmwm, µmax = maxm µm, ζ =
4wub
wl

(
( 1
wl
− 1

wu
)
∑

m θmwm + 1
wl

+ 6
)

and k =
∑
m θmwm
wu

+ (1 + wl
4wub

)ζ −
∑

m θm. Under a load

balancing policy in LB-zero, the following bound holds

E

[
max

{
b∑
i=1

Si − λ−
k logN√

N
, 0

}]
≤ 5µmax + 2√

N logN
,

when N satisfies

min

{
2kµ1,

M∑
m=1

θm,
C(1− ξ)
2µ1CM

}
N0.5−α ≥ logN ≥ max

{
log

(
1

ξ

)
,

2µ1

1− ξ
,

4b

wlζ
,
C

µ1

}
.

�

Lemma 6 establishes an upper bound on the average total queue length. Recall Theorem 1 in-
dicates the service rate under an LB-zero policy in Π is close to arrival rate λN at steady state
because

∑M
m=1(1 − pm)S1,m ≈

∑M
m=1(1 − pm)s∗1,m = λ. Therefore, it is reasonable to couple the

distributed load balancing system with a simple centralized server system with a similar arrival
rate and service rate. This coupling will be done via Stein’s method [11, 43, 10]. Stein’s method
allows us to understand the key performance metrics (e.g., average queue length) of a complicated
load balancing system from the performance of a simple fluid system (to be introduced in the next
section). Formally, we study the generator difference between the distributed load balancing system
and a simple centralized system within a small state space identified by ISSP. This idea of coupling
a simple (and almost trivial) fluid model, without ISSP, has been also used in [24, 25, 22]. We will
introduce it next so the paper is self-contained.
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7.1 Generator Coupling with a Single Server System

Denote ∆ = logN√
N
. We consider a single server queue with arrival rate λ and service rate λ+ ∆. The

fluid model with respect to the queue length x is

ẋ =
dx

dt
= −∆. (18)

Let function g(x) be the solution of the following Stein’s equation or Poisson equation [43] for the
fluid system above and distance function h(x) such that:

dg(x)

dt
= g′(x)(−∆) = h(x), ∀x, (19)

where g′(x) = dg(x)
dx . Because (19) has a very simple form, both g′ and g′′ can be easily solved which

is different from other applications of Stein’s method, e.g., [11], where establishing the gradient
bounds is a key difficulty.

To analyze the total queue length at steady-state under an LB-zero policy in Π, we choose a
truncated distance function:

h

(
b∑
i=1

Si

)
= max

{
b∑
i=1

Si − η, 0

}
, η = λ+ k∆.

The distance h
(∑b

i=1 Si

)
can be viewed as a proxy to measure the total queue length (N

∑b
i=1 Si)

at steady state.
To couple the one-dimensional fluid system in (18) with the b×M -dimensional stochastic system,

we define

f(s) = g

(
b∑
i=1

si

)
= g

(
b∑
i=1

M∑
m=1

si,m

)
. (20)

Note f(s) is bounded for s ∈ S(N), we impose the generator of stochastic system G on function
f and have the basic adjoint relationship for the stationary distribution S such that

E[Gf(S)] = E

[
Gg

(
b∑
i=1

M∑
m=1

Si,m

)]
= 0. (21)

Combining (19) and (21), we connect the performance metric h(·) with the generator difference
between the simple single-server system and G as follows

E

[
h

(
b∑
i=1

M∑
m=1

Si,m

)]
= E

[
g′

(
b∑
i=1

M∑
m=1

Si,m

)
(−∆)−Gg

(
b∑
i=1

M∑
m=1

Si,m

)]
. (22)

In the following lemma, we provide an upper bound on (22) which includes two terms: the first
term is from the gradient bounds and the second term is from ISSP. The proof of this lemma can
be found in Appendix C.

Lemma 7. Define the regions T = {x | x > η + 1
N } and denote the normalized service rate

D1 =
∑M

m=1(1− pm)µmS1,m, we have

E

[
h

(
b∑
i=1

Si

)]
≤ J1 +

5µmax + λ√
N logN

, (23)

with

J1 =E

[
g′

(
b∑
i=1

Si

)
(λAb(S)− λ−∆ +D1) I∑b

i=1 Si∈T

]
. (24)
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To establish Lemma 6 and Theorem 2 based on the lemmas above, we need to provide the
upper bounds on (24), which is related to the difference between the normalized arrival rate and
the normalized service rate, which will be bounded based on the ISSP result that shows the the
normalized service rate at the steady-state is close to the zero-waiting equilibirium value.

7.2 State Space Peeling on
∑M

m=1(1− pm)S1,m

In this subsection, we analyze J1 in (24):

J1 =E

[
1

∆
h

(
b∑
i=1

Si

)
(−λAb(S) + λ+ ∆−D1) I∑b

i=1 Si>η+ 1
N

]

≤E

[
1

∆
h

(
b∑
i=1

Si

)
(λ+ ∆−D1) I∑b

i=1 Si>η+ 1
N

]
, (25)

where the first equality is due to the definition of g′ in Stein’s equation (19), and the inequality

holds because 1
∆h
(∑b

i=1 Si

)
I∑b

i=1 Si>η+ 1
N
≥ 0. We focus on(

λ+ ∆−
M∑
m=1

(1− pm)µms1,m

)
I∑b

i=1 si>η+ 1
N
, (26)

where we recall η = λ + k∆ and d1 =
∑M

m=1(1 − pm)µms1,m is the total service rate when the
system is in the state s. Though we have established S1,m ≈ s∗1,m in Theorem 1, it is not sufficient
for showing (25) is small enough because λ + ∆ −D1 may be larger than ∆, which will make (25)
very large. In fact, we need one more state space peeling to show (25) is non-positive.

We define two regions Sssp1 and Sssp2

Sssp1 =
{
s | s1 ≥ λ+ (k − ζ − 6) ∆, s1,m ≥ s∗1,m − θm∆

}
,

Sssp2 =

{
s |

b∑
i=1

si ≤ λ+ k∆

}
,

where Sssp1 is the region with sufficient many busy servers and Sssp2 is the region with bounded
total queue length. We further define a region

Sssp = Sssp1

⋃
Sssp2 ,

and consider two cases: s ∈ Sssp and s 6∈ Sssp,

• Case 1: In Lemma 13 in the appendix, we show any s ∈ Sssp1 satisfies

M∑
m=1

(1− pm)µms1,m ≥ λ+ ∆.

It implies
(
λ+ ∆−

∑M
m=1(1− pm)µms1,m

)
I∑b

i=1 si>η+ 1
N
≤ 0 for any s ∈ Sssp1 . For any s ∈

Sssp2 , we have
I∑b

i=1 si>η+ 1
N

= 0.

It implies
(
λ+ ∆−

∑M
m=1(1− pm)µms1,m

)
I∑b

i=1 si>η+ 1
N

= 0 for any s ∈ Sssp2 .

• Case 2: In Lemma 14 in the appendix, we show that

P (S /∈ Sssp) ≤
2

N2

by using an ISSP approach on S1 and
∑b

i=2 Si.
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7.3 Proving Lemma 6

Based on the two cases above, we split (25) into two regions s ∈ Sssp and s /∈ Sssp and obtain

(25) =E

[
1

∆

(
b∑
i=1

Si − η

)
(λ+ ∆−D1) IS∈SsspI∑b

i=1 Si>η+ 1
N

]

+ E

[
1

∆

(
b∑
i=1

Si − η

)
(λ+ ∆−D1) IS/∈SsspI∑b

i=1 Si>η+ 1
N

]

≤E

[
1

∆

(
b∑
i=1

Si − η

)
(λ+ ∆−D1) IS/∈SsspI∑b

i=1 Si>η+ 1
N

]

≤ 2b

N1.5 logN
, (27)

where the first inequality holds because of Lemma 13 and the second inequality holds because the
average total number of jobs per server is at most b and (λ+ ∆−D1) IS/∈SsspI∑b

i=1 Si>η+ 1
N
< 1.

By combining (23) and (27), we can now establish Lemma 6 in the following

E

[
max

{
b∑
i=1

Si − η, 0

}]
≤ 2b

N1.5 logN
+

5µmax + λ√
N logN

≤ 5µmax + 2√
N logN

.

7.4 Proving Theorem 2

Once we have Lemma 6, we can prove Theorem 2 with the property of LB-zero and the Markov
inequality. For an LB-zero policy in Π, the waiting probability satisfies

P(W) =P

(
W|

b∑
i=1

Si ≤ 1− 1

Nα logN

)
P

(
b∑
i=1

Si ≤ 1− 1

Nα logN

)

+ P

(
W|

b∑
i=1

Si > 1− 1

Nα logN

)
P

(
b∑
i=1

Si > 1− 1

Nα logN

)

≤P

(
W|

b∑
i=1

Si < 1− 1

Nα logN

)
+ P

(
b∑
i=1

Si > 1− 1

Nα logN

)
where the first term is bounded by 1√

N
because of the definition of LB-zero. For the second term,

we have

P

(
b∑
i=1

Si > 1− 1

Nα logN

)
≤P

(
max

{
b∑
i=1

Si − λ−
k logN√

N
, 0

}
>

1

Nα

(
1− 1

logN

)
− k logN√

N

)

≤
E
[
max

{∑b
i=1 Si − λ−

k logN√
N

, 0
}]

1
Nα

(
1− 1

logN

)
− k logN√

N

≤
E
[
max

{∑b
i=1 Si − λ−

k logN√
N

, 0
}]

1
2Nα

≤ 10µmax + 4

N0.5−α logN

where the second inequality holds because of the Markov inequality; the third inequality holds
because logN ≥ 2 and N0.5−α

logN ≥ 2k; and the last inequality holds because of Lemma 6.
Finally, we remark that we choose k = Ω(b) to prove Lemma 15, which is the technical reason

we assumed b is finite. We, however, believe our results hold even for b =∞.
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8 Simulations

In this section, we confirm our theoretical results of ISSP in Theorem 1 and the large system
insensitivity in Theorem 2 with simulations. We considered two policies, JSQ and JIQ, and λ =
1 − Nα We conjecture that our results hold even for α = 0.5 because it holds for any α < 0.5. To
confirm this, we used α = 0.5 in our simulations.

8.1 Large System Insensitivity under JSQ and JIQ

We first studied the average total queue length (per server) E[
∑b

i=1 Si] and the waiting probability
P(W) under a Coxian-4 service time distribution with the parameters p = [0.5, 0.5, 0.5, 1.0] and
µ = [1.875, 1.875, 1.875, 1.875]. We plotted E[

∑b
i=1 Si] and P(W) versus the number of servers N. The

results are obtained with 10 trials and each trial has 107 steps. From Figure 7, the waiting probability
tends to zero when N increases as we expected and JIQ almost has the identical performance as
JSQ.
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Figure 7: Asymptotic zero waiting under JSQ and JIQ
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Figure 8: Large System Insensitivity under JSQ and JIQ

We then investigated E[
∑b

i=1 Si] and P(W) versus Coxian-M with various number of phases
M and fixed N = 104. In particular, we consider Coxian-M with p = [p1, p2, · · · , 1] and µ =
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[µ1, µ2, · · · , µM ], where pm = 0.5,∀1 ≤ m ≤ M − 1 and µ̄ = µm, ∀m (identical service times). We
plotted E[

∑b
i=1 Si] and P(W) versus M. From Figure 8, we can observe that the average queue

length and the waiting probability remain roughly the same under different Ms, which confirms the
insensitivity.

8.2 ISSP under JSQ and JIQ

In this section, we investigated ISSP by studying the trajectory of S1,m(t), ∀m under JSQ and JIQ.
We considered N = 10, 000 and a Coxian-4 service time distribution with p = [0.5, 0.5, 0.5, 1.0] and
µ = [1.875, 1.875, 1.875, 1.875]. We plotted S1,m(t) of JSQ and JIQ in Figure 9. The results are
obtained with 10 trials and each trial has 106 steps. We observed that S1,m(t) under both policies
concentrates around dash lines s∗1,m,∀m, which confirms the high probability bounds in 1. Note
that the system was initialized with the zero-waiting equilibrium, instead of the empty state, in our
simulations.
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Figure 9: The evolution of the system states under JSQ and JIQ

9 Conclusions and Discussions

In this paper, we studied a distributed queueing system under Coxian service time distributions in
the sub-Halfin-Whitt regime. We established that a set of load balancing policies, named LB-zero,
achieves asymptotic zero-waiting, i.e. insensitive in the large-system regime. To tackle the non-
monotonicity under general service time distributions, we developed a technique, called iterative
state-space peeling (ISSP), which iteratively removes the low-probability states, and results in a
small state-space that can be analyzed using a simple mean-field model. This ISSP approach may
be used for other problems as well. One possible application is to study load-balancing in many server
systems with heterogeneous servers or jobs belonging to multiple priority classes. For heterogeneous
servers, we can use ISSP to identify the “typical” load of each type of the servers; and for jobs with
different priorities, we can use ISSP to identify the “typical” distribution of job types in the system.
In the reduced state space based on the typical load of the typical distribution at the steady-state,
the steady-state performance of the many server system may become tractable like in this paper.
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A The Properties of the Constants

The following two lemmas show that the constants am, bm, cm, (∀m ≥ 2,) and CM are positive, and
0 < ξ < 1.

Lemma 8. The constants am, bm, cm,∀m ≥ 2, and CM are positive.

Proof. 1 < am < 1,∀2 ≤ m ≤M holds by the definition. Therefore, it is easy to verify cm, ∀m ≥ 2,
and CM are positive.

Next, we prove bm, ∀m ≥ 2, is positive as follows:

bm =(1− am)

(
1 +

M∑
r=m+1

vr
v1

)
− amvm

v1

=1− am −
amvm
v1

+ (1− am)

M∑
r=m+1

vr
v1

=
p1µ1

p1µ1 + µm

(
1−

m−1∏
i=2

pi

)
+ (1− am)

M∑
r=m+1

vr
v1

>0

where the first equality holds by the definition of bm; the third equality by substituting the definition
of am and vm; the last inequality holds because

∏m−1
i=2 pi ≤ 1,∀m ≥ 2 and 0 < am < 1, ∀m ≥ 2.

Lemma 9. 1− ξ = µ1
∏M
m=2 am.
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Proof. Recall the definition of ξ =
∑M

m=2 bm
∏M
j=m+1 aj . We have

1−
M∑
m=2

bm

M∏
j=m+1

aj =1−
M∑
m=2

(
(1− am)

(
1 +

M∑
r=m+1

vr
v1

)
− am

vm
v1

)
M∏

j=m+1

aj

=1−
M∑
m=2

(1− am)
M∏

j=m+1

aj −
M∑
m=2

(
(1− am)

M∑
r=m+1

vr
v1
− am

vm
v1

)
M∏

j=m+1

aj

=
M∏
j=2

aj −
M∑
m=2

(
M∑

r=m+1

vr
v1
− am

M∑
r=m

vr
v1

)
M∏

j=m+1

aj

=

M∏
j=2

aj −
M∑
m=2

M∑
r=m+1

vr
v1

M∏
j=m+1

aj +

M∑
m=2

M∑
r=m

vr
v1

M∏
j=m

aj

=
M∏
j=2

aj +
M∑
m=2

vm
v1

M∏
j=2

aj =
M∏
j=2

aj +
1− v1

v1

M∏
j=2

aj = µ1

M∏
m=2

am.

B Proof of the Lemmas for Theorem 1

We first prove Lemmas 1, 2, 3, and 4 used in ISSP.

B.1 A tail bound from [36]

We introduce Lemma 10 from [36], which is an extension of the tail bound in [5] and is the key to
establish ISSP. Lemma 10 allows us to apply the Lyapunov drift analysis to iteratively reduce the
state space.

Lemma 10. Let (S(t) : t ≥ 0) be a continuous-time Markov chain over a finite state space S and is
irreducible, so it has a unique stationary distribution π. Consider a Lyapunov function V : S → R+

and define the drift of V at a state s ∈ S as

∇V (s) =
∑

s′∈S:s′ 6=s
qs,s′(V (s′)− V (s)),

where qs,s′ is the transition rate from s to s′. Assume

νmax := max
s,s′∈S:qs,s′>0

|V (s′)− V (s)| <∞ and q̄ := max
s∈S

(−qs,s) <∞

and define

qmax := max
s∈S

∑
s′∈S:V (s)<V (s′)

qs,s′ .

Assume there exists a set E with B > 0, γ > 0, δ ≥ 0 such that the following conditions hold

(i) ∇V (s) ≤ −γ when V (s) ≥ B and s ∈ E .

(ii) ∇V (s) ≤ δ when V (s) ≥ B and s /∈ E .

Then
P (V (S) ≥ B + 2νmaxj) ≤ αj + βP (S /∈ E) , ∀j ∈ N,

with

α =
qmaxνmax

qmaxνmax + γ
and β =

δ

γ
+ 1.

26



According to Lemma 10, the critical step in establishing the tail bound is to construct proper
Lyapunov functions. In the following sections, we construct a sequence of Lyapunov functions and
apply Lemma 10 to prove Lemmas 1, 2, 3, and 4. In the following proofs, we ignore the iteration
number n for a clean notation.

B.2 Proof of Lemma 1: A lower bound on L1,1(n+ 1) given
∑M

m=2 S1,m ≤ UM(n)

Lemma 1. Given

P

(
M∑
m=2

S1,m > UM (n)

)
≤ σM (n),

and defining

L1,1(n+ 1) = min

{
s∗1,1 −

6∆

C
, 1− UM (n)− 1− ξ

2µ1Nα
− 6∆

C

}
,

we have
P (S1,1 < L1,1(n+ 1)) ≤ ε1(n+ 1).

To prove Lemma 1 using Lemma 10, we consider the following Lyapunov function

V (s) = L̃1,1 − s1,1, (28)

where L̃1,1 = min
{

1− 1−ξ
2µ1Nα − UM , s∗1,1

}
and define

E =

{
s

∣∣∣∣∣
M∑
m=2

s1,m ≤ UM

}
and B =

2∆

C
.

When V (s) = L̃1,1 − s1,1 ≥ B and s ∈ E , we have

s1 =
M∑
m=1

s1,m ≤ UM + L̃1,1 −
2∆

C
= 1− 1− ξ

2µ1Nα
− 2∆

C
≤ 1− 1

Nα logN
,

where the last inequality holds due to logN ≥ 2µ1

1−ξ . Therefore, the drift of V (s) satisfies

∇V (s) =− λ(1−A1(s)) + µ1s1,1 −
∑
m

(1− pm)µms2,m

(a)

≤ 1√
N
− λ+ µ1s1,1

(b)

≤ 1√
N
− λ+ µ1

(
L̃1,1 −

2∆

C

)
=

1√
N
− (λ− µ1L̃1,1)− 2µ1∆

C

(c)

≤ 1√
N
− 2µ1∆

C

(d)

≤ − µ1∆

C

where

• (a) holds because A1(s) ≤ 1√
N

when s1 ≤ 1− 1
Nα logN for a LB-zero policy in Π and s2,m ≥ 0;
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• (b) holds because V (s) = L̃1,1 − s1,1 ≥ 2∆
C ;

• (c) holds because L̃1,1 ≤ s∗1,1 = λ
µ1

;

• and (d) holds because logN ≥ C
µ1
.

Moreover, we have

∇V (s) = −λ(1−A1(s)) + µ1s1,1 −
∑
m

(1− pm)µms2,m ≤ µ1.

Define γ = µ1∆
C and δ = µ1. We now apply Lemma 10 with j = 2

√
N logN
C . Since qmax = µ1N and

νmax = 1
N , we have

α =
1

1 + ∆
C

and β =
C

∆
+ 1,

and

P (S1,1 < L1,1(n+ 1)) ≤P (S1,1 ≤ L1,1(n+ 1))

(a)
=P (V (S) ≥ B + 2νmaxj)

(b)

≤

(
1

1 + ∆
C

) 2
√
N logN
C

+ βP (S /∈ E)

(c)

≤
(

1− ∆

2C

) 2
√
N logN
C

+ βσM

≤e−
log2 N

C2 + βσM

where

• (a) holds by substituting B = 2∆
C , νmax = 1

N and j = 2
√
N logN
C ;

• (b) holds based on Lemma 10;

• and (c) holds because 1
C ≤

1
∆ and the assumption of the lemma on P (S /∈ E) .

B.3 Proof of Lemma 2: A lower bound on S1,m given S1,m−1 ≥ L1,m−1 for m ≥ 2

Lemma 2. Consider m ≥ 2. Given

P (S1,m−1 < L1,m−1(n+ 1)) ≤ εm−1(n+ 1),

and defining

L1,m(n+ 1) =
vm
vm−1

L1,m−1(n+ 1)− 5vm
C

∆,

we have
P (S1,m < L1,m(n+ 1)) ≤ εm(n+ 1).

To prove Lemma 2, consider Lyapunov function

V (s) =
vm
vm−1

L1,m−1 − s1,m. (29)

and define
E = {s | s1,m−1 ≥ L1,m−1} .
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Given V (s) ≥ vm
C ∆, we have

s1,m ≤
vm
vm−1

L1,m−1 −
vm
C

∆.

Therefore, the drift of V (s) when V (s) ≥ vm
C ∆ and s ∈ E is

∇V (s) =µms1,m − pm−1µm−1s1,m−1

(a)
=µm

(
s1,m −

vm
vm−1

s1,m−1

)
(b)

≤µm
(
s1,m −

vm
vm−1

Lm−1

)
(c)

≤ − µmvm
C

∆

where

• (a) holds according to the definition of vm =
∏m−1
i=1 pi
µm

;

• (b) holds because s1,m−1 ≥ L1,m−1;

• and (c) holds because s1,m ≤ vm
vm−1

L1,m−1 − vm
C ∆.

Moreover, we have
∇V (s) = µms1,m − pm−1µm−1s1,m−1 ≤ µm.

Define B = vm
C ∆, γ = µmvm

C ∆, and δ = µm. Combining qmax = µmN and νmax = 1
N , we have

α =
1

1 + vm
C ∆

and β =
C

vm∆
+ 1.

Applying Lemma 10 with j = 2vm
√
N logN
C , we have

P (S1,m < L1,m(n+ 1))
(a)

≤P (V (S) ≥ B + 2νmaxj)

(b)

≤
(

µm
µm + µmvm

C ∆

) 2vm
√
N logN
C

+ βP (S /∈ E)

(c)

≤
(

1− vm
2C

∆
) 2vm

√
N logN
C

+ βεm−1

≤e−
v2
m log2 N

C2 + βεm−1,

where

• (a) holds by substituting B = vm
C ∆, νmax = 1

N and j = 2vm
√
N logN
C ;

• (b) holds based on Lemma 10;

• and (c) holds because vm
C ≤

1
∆ .
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B.4 Proof of Lemma 3: An upper bound on
∑m

r=2 S1,r given
∑m−1

r=2 S1,r ≤ Um−1,∀m ≥
2 and S1,m ≥ Lm,∀m ≥ 1

Lemma 3. Consider m ≥ 2. Given

P

(
m−1∑
r=2

S1,r ≥ Um−1(n+ 1)

)
≤ σm−1(n+ 1)

P (S1,r < L1,r(n+ 1)) ≤ εr(n+ 1) 1 ≤ r ≤M

and defining

Um(n+ 1) = 1− am − bmL1,1(n+ 1) + amUm−1(n+ 1) +
cm
C

∆,

we have

P

(
m∑
r=2

S1,r ≥ Um(n+ 1)

)
≤ σm(n+ 1).

Consider Lyapunov function

V (s) =

m∑
r=2

s1,r −Bm, (30)

where

Bm =
p1µ1(1−

∑M
r=m+1 L1,r)−

∑m−1
r=2 (1− pr)µrL1,r + µmUm−1

p1µ1 + µm
,

and define

E =

{
s

∣∣∣∣∣
m−1∑
r=2

s1,r ≤ Um−1, and s1,r ≥ L1,r, ∀r ≥ 1

}
.

Given V (s) ≥ p1µ1

p1µ1+µm
∆
C and s ∈ E , we have

∇V (s) =
m∑
r=2

(pr−1µr−1s1,r−1 − µrs1,r)

=p1µ1s1,1 − µms1,m −
m−1∑
r=2

(1− pr)µrs1,r

(a)

≤p1µ1 − p1µ1

M∑
r=2

s1,r − µms1,m −
m−1∑
r=2

(1− pr)µrs1,r

=p1µ1 − p1µ1

M∑
r=2

s1,r − µm
m∑
r=2

s1,r + µm

m−1∑
r=2

s1,r −
m−1∑
r=2

(1− pr)µrs1,r

=p1µ1 − (p1µ1 + µm)

m∑
r=2

s1,r − p1µ1

M∑
r=m+1

s1,r −
m−1∑
r=2

(1− pr)µrs1,r + µm

m−1∑
r=2

s1,r

(b)

≤p1µ1

(
1−

M∑
r=m+1

L1,r

)
− (p1µ1 + µm)Bm −

m−1∑
r=2

(1− pr)µrL1,r + µmUm−1 −
p1µ1∆

C

(c)
= − p1µ1∆

C
,

where
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• (a) holds because s1,1 = s1 −
∑M

r=2 s1,r and s1 ≤ 1;

• (b) holds because s1,r ≥ L1,r for any 1 ≤ r ≤ M,
∑m−1

r=2 s1,r ≤ Um−1 and
∑m

r=2 s1,r ≥
Bm + p1µ1

p1µ1+µm
∆
C implied by V (s) ≥ p1µ1

p1µ1+µm
∆
C ;

• and (c) holds by the definition of Bm =
p1µ1(1−

∑M
r=m+1 L1,r)−

∑m−1
r=2 (1−pr)µrL1,r+µmUm−1

p1µ1+µm
.

Moreover, we have

∇V (s) = p1µ1s1,1 − µms1,m −
m−1∑
r=2

(1− pr)µrs1,r ≤ p1µ1s1,1 ≤ p1µ1.

We now apply Lemma 10 with j = 2
√
N logN
C . Define B = p1µ1

p1µ1+µr
∆
C , γ = p1µ1∆

C , and δ = p1µ1.

Since qmax = p1µ1N and νmax = 1
N , we have

α =
1

1 + ∆
C

and β =
C

∆
+ 1,

and

P (V (S) ≥ B + 2νmaxj)
(a)
=P

(
r∑

m=2

S1,m −Br ≥
p1µ1

p1µ1 + µm

∆

C
+

4∆

C

)

(b)

≤

(
1

1 + ∆
C

) 2
√
N logN
C

+ βP (S /∈ E)

(c)

≤
(

1− ∆

2C

) 2
√
N logN
C

+ β

(
σm−1 +

M∑
m=1

εm

)

≤e−
log2 N

C2 + β

(
σm−1 +

M∑
m=1

εm

)

where

• (a) holds by substituting B = p1µ1

p1µ1+µm
∆
C , νmax = 1

N and j = 2
√
N logN
C ;

• (b) holds based on Lemma 10;

• amd (c) holds because 1
C ≤

1
∆ and union bounds on P(S /∈ E).

Now we prove Um = Bm +
(

p1µ1

p1µ1+µm
+ 4
)

∆
C , which serves the upper bound on

∑m
r=2 S1,r and

we represent Um with L1,1. Recall the definition of L1,m from the previous subsection that

L1,m =
vm
vm−1

L1,m−1 −
5vm
C

∆,∀m ≥ 2, (31)

which implies that

L1,m =
vm
v1
L1,1 −

5(m− 1)vm
C

∆, ∀m ≥ 2. (32)

Therefore, we have

M∑
r=m+1

L1,r =

M∑
r=m+1

vr
v1
L1,1 −

M∑
r=m+1

5(r − 1)vr
C

∆, (33)
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and

m−1∑
r=2

(1− pr)µrL1,r =

m−1∑
r=2

pr−1µr−1L1,r−1 − prµrL1,r −
5µrvr
C

∆

=p1µ1 − µmL1,m +
5µmvm
C

∆−
m−1∑
r=2

5µrvr
C

∆

=

(
p1µ1 −

µmvm
v1

)
L1,1 −

m−1∑
r=2

5µrvr
C

∆ +
5(m− 2)µmvm

C
∆ (34)

where the first and second equalities hold by substituting (31) and the last equality holds by sub-
stituting (32). Finally we have

Bm +

(
p1µ1

p1µ1 + µm
+ 4

)
∆

C
(35)

=
p1µ1(1−

∑M
r=m+1 Lr)−

∑m−1
r=2 (1− pr)µrL1,r + µmUm−1

p1µ1 + µm
+

(
p1µ1

p1µ1 + µm
+ 4

)
∆

C
(36)

=
p1µ1 −

(
p1µ1 − µmvm

v1
+ p1µ1

∑M
r=m+1

vr
v1

)
L1,1 + µmUm−1

p1µ1 + µm
+
cm
C

∆ (37)

=
p1µ1

p1µ1 + µm
−

(
p1µ1

p1µ1 + µm

(
1 +

M∑
r=m+1

vr
v1

)
− µm
p1µ1 + µm

vm
v1

)
L1,1 +

µm
p1µ1 + µm

Um−1 +
cm
C

∆

(38)

=1− am − bmL1,1 + amUm−1 +
cm
C

∆ (39)

=Um (40)

where

cm =
5p1µ1

∑M
r=m+1(r − 1)vr

p1µ1 + µm
+

5
∑m−1

r=2 µrvr − 5(m− 2)µmvm
p1µ1 + µm

+
p1µ1

p1µ1 + µm
+ 4.

B.5 Proof of Lemma 4: Convergence of L1,1(n)

Lemma 4. Recall that ξ =
∑M

m=2 bm
∏M
j=m+1 aj . Given P(S1,1 < L1,1(n)) ≤ ε1(n) and L1,1(n) ≤

s∗1,1 − 6∆
C , we have

P(S1,1 < L1,1(n+ 1)) ≤ ε1(n+ 1),

where

L1,1(n+ 1) =
1

µ1
− CM∆

C(1− ξ)
− 1

2µ1Nα
+ ξ

(
L1,1(n)− 1

µ1
+

CM∆

C(1− ξ)
+

1

2µ1Nα

)
and ε1(n+ 1) = ε1(n)(M2 + 2)( 2C

v̄∆ + 1)2M . Furthermore, L1,1(n+ 1) > L1,1(n) holds when L1,1(n) ≤
s∗1,1 − 6∆

C .

Starting from L1,1(n) ≤ s∗1,1 − 6∆
C , we can apply Lemma 11 to obtain lower bounds L1,m(n) for

m ≥ 2 and then apply Lemma 12 to obtain upper bounds Um(n) for all m ≥ 2, including UM (n).
Then from UM (n), we obtain new lower bound L1,1(n+1). This iterative process implies that UM (n)
and L1,1(n+1) are both a function of L1,1(n), as shown below. Recall that in Lemma 3, we obtained

Um = 1− am − bmL1,1 + amUm−1 +
cm∆

C
.
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By recursively substituting Um, we can write UM as a function of L1,1 as follows:

UM =
M∑
m=2

(1− am)
M∏

j=m+1

aj − L1,1

M∑
m=2

bm

M∏
j=m+1

aj +
∆

C

M∑
m=2

cm

M∏
j=m+1

aj

Let us consider

L1,1(n+ 1) =1− 1− ξ
2µ1Nα

− UM (n)− 6∆

C

=

M∏
m=2

am + L1,1

M∑
m=2

bm

M∏
j=m+1

aj −
∆

C

 M∑
m=2

cm

M∏
j=m+1

aj + 6

− 1− ξ
2µ1Nα

where we use
∑M

m=2(1−am)
∏M
j=m+1 aj =

∑M
m=2(

∏M
j=m+1 aj−

∏M
j=m aj) = 1−

∏M
m=2 am. In Lemma

9, we will show 1− ξ = µ1
∏M
m=2 am. We now center L1,1 around 1

µ1
− CM∆

C(1−ξ) −
1

2µ1Nα and have

L1,1(n+ 1)− 1

µ1
+

CM∆

C(1− ξ)
+

1

2µ1Nα
= ξ

(
L1,1(n)− 1

µ1
+

CM∆

C(1− ξ)
+

1

2µ1Nα

)
,

where ξ =
∑M

m=2 bm
∏M
j=m+1 aj and CM =

∑M
m=2 cm

∏M
j=m+1 aj + 6.

Next we study the probability of ε1(n+ 1) given ε1(n). From Lemma 2, we have

εm =e−
v2
m log2 N

C2 +

(
C

vm∆
+ 1

)
εm−1

≤e−
v̄2 log2 N

C2 +

(
C

v̄∆
+ 1

)
εm−1

By expanding the above inequality from εM until ε1, it implies that

εM ≤
M∑
m=2

e−
v̄2 log2 N

C2

(
C

v̄∆
+ 1

)M−m
+ ε1

(
C

v̄∆
+ 1

)M−1

≤

(
M∑
m=2

e−
v̄2 log2 N

C2 + ε1

)(
C

v̄∆
+ 1

)M−1

≤Mε1

(
C

v̄∆
+ 1

)M−1

where the inequality holds because ε1 ≥ e−
v̄2 log2 N

C2 . From Lemma 3, we have

σm =e−
log2 N

C2 +

(
C

∆
+ 1

)(
σm−1 +

M∑
m=1

εm

)

≤e−
log2 N

C2 +MεM +

(
C

∆
+ 1

)
σm−1

which implies that

σM ≤
(
e−

log2 N

C2 +MεM

)(
C

∆
+ 1

)M
≤

(
e−

log2 N

C2 +M2ε1

(
C

v̄∆
+ 1

)M)(C
∆

+ 1

)M−1

≤ε1(M2 + 1)

(
C

v̄∆
+ 1

)2M−1
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Therefore, we have

e−
log2 N

C2 +

(
C

∆
+ 1

)
σM ≤e−

log2 N

C2 + ε1(M2 + 1)

(
C

v̄∆
+ 1

)2M

≤ε1(M2 + 2)

(
C

v̄∆
+ 1

)2M

= ε1(n+ 1)

Lastly, we prove the “monontocity” improvement of {L1,1(n)}n by studying

L1,1(n+ 1)− L1,1(n) = (1− ξ)
(

1

µ1
− CM∆

C(1− ξ)
− 1

2µ1Nα
− L1,1(n)

)
,

which is positive for L1,1(n) < λ
µ1
− 6∆

C < 1
µ1
− CM∆

C(1−ξ) −
1

2µ1Nα .

C Proof of Lemma 7

According to the definition of ej,m and f(s) in (20), we have

f(s+ ej,m) = g

(
b∑
i=1

M∑
m=1

si,m +
1

N

)
and

f(s− ej,m) = g

(
b∑
i=1

M∑
m=1

si,m −
1

N

)
for any 1 ≤ j ≤ b. Therefore,

Gg

(
b∑
i=1

M∑
m=1

si,m

)

=Nλ (1−Ab(S))

(
g

(
b∑
i=1

M∑
m=1

si,m +
1

N

)
− g

(
b∑
i=1

M∑
m=1

si,m

))

+N

(
M∑
m=1

(1− pm)µms1,m

)(
g

(
b∑
i=1

M∑
m=1

si,m −
1

N

)
− g

(
b∑
i=1

M∑
m=1

si,m

))
,

where the first term represents the transitions when a job arrives and the second term represents
the transitions when a job departures from the system. Note (1− pm)µms1,m is the rates at which

jobs leave the system when in phase m in the state s. Therefore,
∑M

m=1(1 − pm)µms1,m is the

total departure rate. Define d1 =
∑M

m=1(1 − pm)µms1,m and its stochastic correspondence D1 =∑M
m=1(1− pm)µmS1,m for simple notations.
Substituting the generator equation above to (22), we have

E

[
h

(
b∑
i=1

M∑
m=1

Si,m

)]

=E

[
g′

(
b∑
i=1

M∑
m=1

Si,m

)
(−∆)

−Nλ(1−Ab(S))

(
g

(
b∑
i=1

M∑
m=1

Si,m +
1

N

)
− g

(
b∑
i=1

M∑
m=1

Si,m

))

−ND1

(
g

(
b∑
i=1

M∑
m=1

Si,m −
1

N

)
− g

(
b∑
i=1

M∑
m=1

Si,m

))]
. (41)
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According to (19), it is easy to verify

g(x) = g′ (x) = 0.

Also note that when x > η + 1
N ,

g′(x) = −x− η
∆

, (42)

so for x > η + 1
N ,

g′′(x) = − 1

∆
. (43)

By using mean-value theorem in the region T1 = {x | η − 1
N ≤ x ≤ η + 1

N } and Taylor theorem
in the region T2 = {x | x > η + 1

N }, we have

g(x+
1

N
)− g (x) =

(
g

(
x+

1

N

)
− g (x)

)
(Ix∈T1 + Ix∈T2)

=
g′(ξ)

N
Ix∈T1 +

(
g′(x)

N
+
g′′(ζ)

2N2

)
Ix∈T2 (44)

g(x− 1

N
)− g (x) =

(
g

(
x− 1

N

)
− g (x)

)
(Ix∈T1 + Ix∈T2)

=− g′(ξ̃)

N
Ix∈T1 +

(
−g
′(x)

N
+
g′′(ζ̃)

2N2

)
Ix∈T2 (45)

where ξ, ζ ∈ (x, x+ 1
N ) and ξ̃, ζ̃ ∈ (x− 1

N , x). Substitute (44) and (45) into the generator difference
in (41), we have

E

[
h

(
b∑
i=1

Si

)]
= J1 + J2 + J3, (46)

with

J1 =E

[
g′

(
b∑
i=1

Si

)
(λAb(S)− λ−∆ +D1) I∑b

i=1 Si∈T2

]
, (47)

J2 =E

[(
g′

(
b∑
i=1

Si

)(
− logN√

N

)
− λ(1−Ab(S))g′(ξ) +D1g

′(ξ̃)

)
I∑b

i=1 Si∈T1

]
, (48)

J3 =− E
[

1

2N

(
λ(1−Ab(S))g′′(ζ) +D1g

′′(ζ̃)
)
I∑b

i=1 Si∈T2

]
. (49)

Note that in (48) and (49), we have that

ξ, ζ ∈

(
b∑
i=1

Si,

b∑
i=1

Si +
1

N

)
and ξ̃, ζ̃ ∈

(
b∑
i=1

Si −
1

N
,

b∑
i=1

Si

)

are random variables whose values depend on
∑b

i=1 Si. We do not include
∑b

i=1 Si in the notation
for simplicity. The proof of Lemma 7 is completed by upper bounding J2 and J3, for which, we
establish gradient bounds on g′ and g′′ in Lemma 11 and Lemma 12.

Lemma 11. Given x ∈
[
η − 2

N , η + 2
N

]
, we have

|g′(x)| ≤ 2√
N logN

.
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Proof. From the definition of g function in (19), we have

g′(x) =
max {x− η, 0}
− logN√

N

.

Hence, for any x ∈
[
η − 2

N , η + 2
N

]
, we have

|g′(x)| ≤ |x− η|
logN√
N

≤
2
N

logN√
N

=
2√

N logN
.

Lemma 12. For x > η, we have

|g′′(x)| ≤
√
N

logN
.

Proof. From the definition of g function in (19), we have

g′(x) =
max {x− η, 0}
− logN√

N

.

For x > η, we have

g′(x) =
x− η
− logN√

N

,

which implies

|g′′(x)| =

∣∣∣∣∣∣ 1

− logN√
N

∣∣∣∣∣∣ =

√
N

logN
.

Based on gradient bounds in Lemma 11 and 12 and note
∑

m(1− pm)µms1,m ≤ µmaxs1 ≤ µmax,
then we have

J2 + J3 ≤E

[(
g′

(
b∑
i=1

Si

)(
− logN√

N

)
+ λ|g′(ξ)|+ µmax|g′(ξ̃)|

)
I∑b

i=1 Si∈T1

]

+ E
[

1

N

(
λ|g′′(η)|+ µmax|g′′(η̃)|

)
I∑b

i=1 Si∈T2

]
≤ 4µmax√

N logN
+
λ+ µmax

N

√
N

logN

=
5µmax + λ√
N logN

D Lemma 13 and the Proof

Lemma 13. For any s ∈ Sssp1 ,(
λ+ ∆−

M∑
m=1

(1− pm)µms1,m

)
I∑b

i=1 si>λ+k∆+ 1
N
≤ 0.

�
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Proof. We consider the following linear programming problem

min
s1,m∈Sssp1

M∑
m=1

(1− pm)µms1,m,

with Sssp1 defined by

Sssp1 =
{
s | s1 ≥ λ+ (k − ζ − 6) ∆, s1,m ≥ s∗1,m − θm∆

}
.

Recall wm = (1− pm)µm. The minimum value is achieved when the maximum mass is allocated to
m∗ such that wm∗ = wl = minmwm. Therefore, we have

M∑
m=1

wms1,m

(a)

≥
M∑

m6=m∗
wm(s∗1,m − θm∆) + wm∗

s∗1,m∗ +

k − ζ − 6 +
M∑

m6=m∗
θm

∆


(b)
=λ+ wl

(
k − ζ − 6 +

∑
m

θm

)
∆−

∑
m

wmθm∆

(c)
=λ+ ∆

where

• (a) holds because s1 ≥ λ+ (k − ζ − 6)∆ and s1,m,∀m 6= m∗ takes L1,m = s∗1,m − θm∆;

• (b) holds because
∑

mwms
∗
1,m = λ;

• and (c) holds because wl(k − ζ − 6 +
∑

m θm) −
∑

mwmθm = 1 given carefully chosen ζ =
4wub
wl

[( 1
wl
− 1

wu
)
∑

m θmwm + 1
wl

+ 6] and k =
∑
m θmwm
wu

+ (1 + wl
4wub

)ζ −
∑

m θm.

E Lemma 14 and the Proof

Lemma 14. For a large N such that , we have

P (S /∈ Sssp) ≤
2

N2
.

�

Proof. The proof of Lemma 14 again relies on iterative state space peeling, which is based on
Theorem 1 and Lemma 15 below.

Lemma 15 (A Lower Bound on S1 via
∑b

i=2 Si).

P

(
min

{
λ+ k∆− S1,

b∑
i=2

Si

}
≤ (ζ + 6)∆

)
≥ 1− 1

N2
,

where ζ = 4wub
wl

[( 1
wl
− 1

wu
)
∑

mwmθm + 1
wl

+ 6] and k =
∑
m wmθm
wu

+ (1 + wl
4bwu

)ζ −
∑

m θm.

Based on Theorem 1 and Lemma 15, we define sets S̃1 and S̃2 such that

S̃1 =
{
s | s1,m ≥ s∗1,m − θm∆

}
(50)

S̃2 =

{
s |min

{
η − s1,

b∑
i=2

si

}
≤ (ζ + 6)∆

}
. (51)
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According to the union bound and Theorem 1 and Lemma 15, we have

P
(
S /∈ S̃1 ∩ S̃2

)
≤ M

N3
+

1

N2
≤ 2

N2
.

We note that S̃1 ∩ S̃2 is a subset of Sssp. This is because for any s which satisfies

min

{
λ+ k∆− s1,

b∑
i=2

si

}
≤ (ζ + 6)∆,

we either have
λ+ k∆− s1 ≤ (ζ + 6)∆,

which implies
s1 ≥ λ+ (k − ζ − 6) ∆;

or
b∑
i=2

si ≤ η − s1,

which implies
b∑
i=1

si ≤ η.

Note that
S̃1 ∩ {s | s1 ≥ λ+ (k − ζ − 6) ∆} = Sssp1

and

S̃1 ∩

{
s

∣∣∣∣∣
b∑
i=1

si ≤ η

}
⊆ Sssp2 .

We, therefore, have
S̃1 ∩ S̃2 ⊆ Sssp,

and

P (S /∈ Sssp) ≤ P
(
S /∈ S̃1 ∩ S̃2

)
≤ 2

N2
,

so Lemma 14 holds.

Next, we prove Lemma 15.

E.1 Proof of Lemma 15

Recall wu = max1≤m≤M (1 − pm)µm, wl = min1≤m≤M (1 − pm)µm, and Lm = s∗1,m − θm∆. Let

ζ = 4wub
wl

(
( 1
wl
− 1

wu
)
∑

mwmθm + 1
wl

+ 6
)

and k =
∑
m wmθm
wu

+ (1 + wl
4bwu

)ζ −
∑

m θm.

Consider Lyapunov function

V (s) = min

{
λ+ k∆− s1,

b∑
i=2

si

}
(52)

and define
E = {s | s1,m ≥ Lm, ∀1 ≤ m ≤M} .
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When V (s) ≥ ζ∆, the following two inequalities hold

s1 ≤ λ+ (k − ζ)∆ ≤ 1− 1− ξ
2µ1Nα

, (53)

b∑
i=2

si ≥ ζ∆. (54)

We have two observations based on (53) and (54):

• (53) implies that A1(s) ≤ 1√
N

under any policy in Π;

• (54) implies that s2 ≥ ζ∆
b because s2 ≥ s3 ≥ · · · ≥ sb, and we have

M∑
m=1

(1− pm)µms2,m ≥ wls2 ≥
wlc1∆

b
, (55)

where a finite buffer size is required such that the lower bound wls2 ≥ wlc1∆
b is meaningful.

We next study the Lyapunov drift when V (s) ≥ ζ∆ and s ∈ E by considering two cases:

• Suppose λ+ k∆− s1 ≥
∑b

i=2 si ≥ ζ∆. In this case, V (s) =
∑b

i=2 si and

∇V (s) ≤λ(A1(s)−Ab(s))−
M∑
m=1

(1− pm)µms2,m (56)

(a)

≤ 1√
N
−

M∑
m=1

(1− pm)µms2,m

(b)

≤ 1√
N
− wlc1∆

b

(c)

≤ − wlc1∆

2b

where

– (a) holds because A1(s) ≤ 1√
N

under any policy in Π;

– (b) holds because of (55);

– and (c) holds because logN ≥ 4b
wlc1

.
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• Suppose
∑b

i=2 si > λ+ k∆− s1 ≥ ζ∆. In this case, V (s) = λ+ k∆− s1 and

∇V (s) ≤− λ(1−A1(s)) +
M∑
m=1

(1− pm)µms1,m −
M∑
m=1

(1− pm)µms2,m (57)

≤ 1√
N
− λ+ wus1 −

M∑
m=1

(wu − wm) s1,m −
M∑
m=1

wms2,m

(a)

≤ 1√
N
− λ+ wu

(
s1 −

M∑
m=1

Lm

)
+

M∑
m=1

wmLm −
M∑
m=1

wms2,m

(b)
=

1√
N

+

(
wu

(
k − ζ +

M∑
m=1

θm

)
−

M∑
m=1

wmθm

)
∆−

M∑
m=1

wmµms2,m

(c)

≤ 1√
N

+

(
wu

(
k − ζ +

M∑
m=1

θm

)
−

M∑
m=1

wmθm

)
∆− wlc1∆

b

=
1√
N
− 3wlc1∆

4b
(58)

(d)

≤ − wlc1∆

2b

where

– (a) holds because s1,m ≥ Lm, ∀m ≥ 1;

– (b) holds because s1 ≤ λ+ (k − ζ)∆ and Lm = s∗1,m − θm∆,∀m ≥ 1;

– (c) holds because wu(k − ζ +
∑M

m=1 θm)−
∑M

m=1wmθm = −wlc1
4b given k and ζ;

– and (d) holds because logN ≥ 4b
wlc1

.

Next, we further show ∇V (s) ≤ wu based on the upper bounds (56) and (57).

• Consider the upper bound in (56). We have

∇V (s) ≤ λ(A1(s)−Ab(s))−
M∑
m=1

(1− pm)µms2,m ≤ 1 ≤ wu,

where 1 ≤ wu holds because
∑M

m=1 vm = 1.

• Consider the upper bound in (57). We have

∇V (s) ≤− λ(1−A1(s)) +

M∑
m=1

(1− pm)µms1,m −
M∑
m=1

(1− pm)µms2,m

≤
M∑
m=1

(1− pm)µms1,m ≤ wu,

where the last inequality holds because
∑

m s1,m = s1 ≤ 1.

We now apply Lemma 10. Define B = ζ∆, γ = wlζ∆
2b and δ = wu. Combining qmax = wuN and

νmax = 1
N , we have

α =
wu

wu + wlζ∆
2b

and β =
2wub

wlζ∆
+ 1.
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Choosing j = 3
√
N logN, we have

P (V (S) ≥ B + 2νmaxj)
(a)
=P (V (S) ≥ (ζ + 6)∆)

(b)

≤

(
1

1 + wlζ∆
2wub

)3
√
N logN

+ βP (S /∈ E)

≤
(

1− wlc1∆

3wub

)3
√
N logN

+ βP (S /∈ E)

(d)

≤e−
wlc1
wub

log2N +

(
2wub

wlζ∆
+ 1

)
P (S /∈ E)

(d)

≤e−
wlc1
wub

log2N +

(
2wub

wlζ∆
+ 1

)
M

N3

(e)

≤ 1

N2

where

• (a) holds by substituting B = ζ∆, νmax = 1
N and j = 3

√
N logN ;

• (b) holds based on Lemma 10;

• (c) holds because wlc1
wub
≤ 1

∆ ;

• (d) holds by union bounds on P (S /∈ E) ;

• and (e) holds because wlc1
wub
≥ 24 and 2

(
2Mbwu
wlζ∆

+M
)
≤ N.
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