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ABSTRACT

With the advent of modern embedded systems, logging as a process

is becoming more and more prevalent for diagnostic and analytic

services. Traditionally, storage and managing of the logged data are

generally kept as a part of one entity together with the main logic

components. In systems that implement network connections, this

activity is usually handled over a remote device. However, enabling

remote connection is still considered a limiting factor for many em-

bedded devices due to the demanding production cost. A significant

challenge is presented to vendors who need to decide how the data

will be extracted and handled for an embedded platform during the

design concept phase. It is generally desirable that logging memory

modules are able to be addressed as separate units. These devices

need to be appropriately secured and verifiable on a different sys-

tem since data compromise can lead to enormous privacy and even

financial losses. In this paper, we present two patterns. First, a

pattern that allows flexible logging operation design in terms of

module and interface responsibility separation. Second, a pattern

for the design of secure logging processes during the utilization of

constrained embedded devices. The introduced patterns fulfil the

following conditions: (i) flexibility – design is independent of the

chip vendors making the logging memory modules easily replace-

able, (ii) self-sufficiency – every logging controller is maintained as

a separate entity in a decentralized topology, (iii) security – through

providing authenticity, confidentiality, and integrity by means of

using a dedicated security module.
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1 INTRODUCTION

Even today,many embedded devices are still considered constrained,

offering only limited resources compared to some more complex

platforms. The constraints are presented through the limited size

of the provided internal memory (both volatile and non-volatile),

limitations on the processing power, reduced employment of com-

munication standards and ports, and even the lack of some extended

features (e.g., restrictions on the security capabilities). As the sys-

tems become more complex, a necessity arises to capture important

log data during its lifetime. The log data is usually used for control

and diagnostic purposes, but it can also have secondary uses being

a dataset for various machine learning algorithms. This integration

is often found today in many modern applications, ranging from

surveillance systems to smart grids and vehicles. In addition to hav-

ing an implemented logging procedure, an essential requirement

frommany users to vendors is to have the data sufficiently protected

so as not to be spied on or tampered with by malicious intruders.

These design considerations are becoming increasingly important

today, as the preservation of secured data and user’s privacy are

becoming an increasing topic of interest. From manufacturers of

these devices, a considerable effort is required to design a system

that fulfils challenges of having (i) limited or absent network capa-

bilities, (ii) security as a co-process, (iii) synchronization between

main logic, logging and security operations, (iv) options of porting

and changing devices, and (v) option of removing and handling the

logged data as a separate unit.

A few of the design patterns previously published in the original

Gang of Four (GoF) patterns book have already been in use for

the logging process [7]. Historically, this was often achieved using

the Chain of Responsibility pattern. Furthermore, the Factory

pattern was often used with a combination of Command or Me-

mento to handle the log messages. To supplement the security

constraint, some more specialized design patterns like the Secure

Logger were introduced as well [15]. They are generally handled

as implementation design patterns, and hence, they are not focused

on explaining the integration in higher-level designs, especially

those concerning modern embedded platforms. As we are going

to discuss in the problem statement, this is often a special case. In

fact, with the embedded platforms, the controller is often seen as

an independent unit from other components, such as sensors, actu-

ators, other controllers, central units, etc. Moreover, many modern

patterns are primarily focused on Cloud solutions and do not take

into account local and restricted devices. To overcome these restric-

tions, we introduce: (i) Embedded Platform to Memory (EP2M),

and (ii) Secure Embedded Logging (SEL) patterns. EP2M presents a

solution during the design process to handle the division of modular

tasks between individual units by proposing a methodology with

which both decentralisation and a streamlined production design
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can be achieved. SEL provides directions for establishing a secure

logging operation pipeline between an embedded controller device

and a memory unit. When applied together, they offer an affordable

solution for designing a secure logging operation on individual

embedded target devices.

The proposed patterns are intended primarily for vendors during

the device design and production cycle but also for users during

the deployment phase. Vendors are commonly embedded device

manufacturers, but they can also be service providers. Users are

customers, i.e., the side that integrates the provided embedded

devices into a new or an already established system. Both vendors

and users benefit from the pattern solutions. The patterns provide a

cost-efficient way to port and upgrade (using EP2M), and securely

verify (using SEL) the logging memory modules, even after their

initial installation.

2 EMBEDDED PLATFORM TO MEMORY

PATTERN

2.1 Intent

Adding data logging functionality to the constrained embedded

platforms by module distribution and role specification in the early

system design.

2.2 Context

You are developing a system that uses constrained embedded con-

trollers conceptualized to handle processing and memory opera-

tions locally rather than using some external infrastructure (e.g.,

cloud). In this case, the logging process is considered an internally

implemented function with a dedicated memory unit, communica-

tion channel, and processing logic on the controller side, handling

the status of a monitored device. The stored data is further used

for diagnostic purposes in case of safety or security issues or as

historic data for analytic purposes. It might also need to be shipped

together with the monitored embedded device when managing a

replacement procedure during the system’s lifetime.

2.3 Motivating Example

To better understand the importance and use-case of the EC2M

pattern, let us look at an example of an appliance in the automotive

domain. Electric vehicles contain specialized embedded platforms

called Battery Management System (BMS), dedicated for control

and management of battery cells used to power up the engine and

other components [1, 3]. Different derivations of BMS exist, with the

modular and distributed BMS being more common than the others.

Each Battery pack contains several dedicated sensors alongside

battery cells [1]. The battery packs are controlled through Battery

Cell Controllers (BCC), which are assigned to handle the immediate

data control and throughput of these individual packs. A central

BMS receives individual battery packs data from the BCCs. This

data ranges from the sensor data (e.g., temperature data) to the

voltage and current of a particular cell. They are used to extract

information like state of charge (SoC) or state of health (SoH) [16].

Based on the data received, BMS can also store and handle error

events.

When a battery pack gets depleted, it needs to be replaced. The

replaced battery pack can often still be used as an active component

for some other appliances, e.g., power grids. Here, battery packs

are aimed to be shipped together with their assigned BCCs. In

case the BCCs are to remain as part of the vehicle and its BMS, a

design compromise needs to be established to enable the logged

operational data to be shipped with the battery pack as well. Since

BMS would be mass-produced, a design needs to be made in the

earlier phases of the development.

2.4 Problem

Since embedded devices are difficult to upgrade after their

initial instalment, which module responsibilities, interface

connections, and architecture decisions would need to be

made during the design phase to enable flexible and portable

logging procedures?

Often, embedded devices keep the processing and logging of the

data on a local basis because of the performance constraints to keep

the production cost at a minimum. This means that for logging

functionality, an embedded device might have a dedicated non-

volatile memory module pre-installed. The memory module would

also have a pre-set task to log the recorded data from a monitored

device which can be an Internet of Things (IoT) device, smart sensor,

another embedded device, etc. When porting and changing of this

device happens, it is generally challenging to also port its logged

data, with the accumulated process and event data being kept closed

as part of the system. This comes from the difficulty of not having

an appropriately handled system architecture across all devices and

also of the missing necessary port interface options on both the

hardware and software levels.

2.4.1 Forces.

F1 Connectivity: An embedded controller needs to be able to,

through standard protocols and interfaces, easily access the

dedicated log memory module.

F2 Decentralization: There can be multiple monitored devices,

with each being handled as a separate unit.

F3 Scalability: The solution should correctly scale with each

new device. The impact of the new devices should be kept

at a minimum in relation to the overall system performance.

F4 Production cost: Introduced cost that comes with the extra

components and installations.

F5 Maintenance overhead: Additional cost and time delays for

changes and updates of the associated logging modules after

the deployment phase.

F6 Operational performance: Additional modules and design

concepts also need to deal with the added performance im-

pact. The focus is placed on the processing logic through

queuing, ordering, timing of log records, as well as the size

of the memory and computational resources.

F7 Software coherence: Allowing designers to adequately sepa-

rate software development from the underlying hardware

components as to allow for an easier update mechanism to

individual sub-modules.

F8 Security threats: System should be able to answer to the

common security pitfalls found when handling the logged

data, i.e., guarding against data tampering and spying.
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Figure 1: Block demonstration of the suggested modules and connection points during the design of the embedded logging

process on a generic device using the proposed solution through the Embedded Controller to Memory pattern.

2.5 Solution

Divide the core logging component into multiple distributed

individual embedded controllers, each containing interfaces

to the central control module, monitored device, and an ex-

ternal memory unit while keeping process handlers open for

relevant events.

A careful interface separation and task assignment during the

early system design is necessary to avoid cost increase. A designer

needs to identify which core module components are required in the

overall system design and what role they have. This role decoupling

needs to be done for two reasons: (i) higher responsiveness to faults;

in case the data source device gets damaged or corrupted, it is still

possible to retrieve the prior logged data, (ii) flexible interchange-

ability; local device groups appear independent from each other.

Therefore it is easier to replace individual components without the

added complexity.

Based on the set Forces, as part of the solution, we consider the

following devices:

• Embedded Controller (EC): The embedded device responsible

for the logging and data processing between the monitored

targeted device and the system’s central unit. This device

represents our main target of interest, where the design logic

for the embedded logging process is placed. It can mean an

expansion of an already existing standard device used for

process control as part of an embedded platform.

• Monitored Embedded Device (MED): The end-device of the

system that is responsible for the data gathering and event

action, i.e., it is the targeted device from which the log data

is extracted.

• External Memory Unit (EMU): The module that stores the log

data gathered from an MED, as well as the associated data

(configuration, metadata).

• Main Processing Unit (MPU): The device tasked for the main

system logic control, service providing, and connection to

the external services and sub-systems. Since the ECs are

designed to be constrained devices, usually found in a decen-

tralized network, a more powerful device is needed to control

all, or a group of, ECs in the system. In the system imple-

mentation, this device can be the same as one of the ECs as

long as the resources offered correspond to the requirements

presented by the overall system.

The proposed design is shown in Figure 1. A Microcontroller

Unit (MCU) can be used as the hardware control unit to construct

an EC. It is used to handle, through software, the logging logic,

MED process monitoring, and communication flow control, among

other assigned operations. Another function of this controller unit

is to handle the synchronization and sampling rate of the MED.

These also include administering the commands from the MPU and

controlling the internal operational states (e.g., active, idle, sleep).

Optionally, an EC can also internally incorporate volatile and non-

volatile memory, as it is indicated by the internal memory block.

3



These parts can, however, highly influence the end-design cost and

are recommended to be considered sparingly. Due to the limitation

in functions, an adequate Application-Specific Integrated Circuit

(ASIC) chip can also be provided instead of themore costlyMCU. An

EC also provides separate interfaces for the communicationwith the

MPU and the dedicated MED. These can either be wireless or wired,

depending on the design constraints. Examples of wired interfaces

would be Inter-integrated Circuit (I2C), Serial Peripheral Interface

(SPI), Universal Asynchronous Receiver-Transmitter (UART). For

the wireless communication interface we recommend Bluetooth

Low Energy (BLE), low-frequency Radio-frequency Identification

(RFID), and higher-frequency RFID, like Near-Field Communication

(NFC), among other standards. While the wireless interfaces offer

more applicability in their use-cases, it should be noted that they

also require additional handling and construction cost for error

corrections and cybersecurity preservation.

2.5.1 Log Memory Interconnection. The pattern establishes cheap,

flexible, and extensible handling of a memory module dedicated to

logging purposes. To this end, an interface is provided to the EC for

the logging handling. Here, we propose the use of an External Mem-

ory Unit (EMU) module. The EC needs to treat the added memory

module as an external unit rather than a pre-embedded component

that is part of the EC. This is done to achieve the portability and

flexibility in adding and removing the memory that houses the

logged data. It is recommended that the new EC device already has

a pre-built interface port for communication with the extensible

EMUs. These ports can use different communication standards. It is

recommended to use a well-established and long-term lasting stan-

dard. Among others, these include I2C, SPI, and UART (serial). A

wireless standard can also be used, although it is not recommended

for this interface. A wireless interface would add an additional in-

crease in cost and complexity, where it would also have less support

when porting it among the vendors.

2.5.2 Protocol Handling. As already noted, the programming logic

for the logging and memory handling should be appropriately han-

dled through software implementation as part of the controller unit

of the EC. The logging process should not interfere with the main

controlling procedures but rather work as an extension. Timing

delays are to be expected; hence the sampling rate for the logged

data needs to be adapted accordingly. Figure 2 illustrates the logic

behind the logging process and individual components. The log-

ging phase starts with first establishing the connection, followed by

an interactive communication between the EC, MED and the Log

Memory to catch and store the targeted data during the system’s

run-time. The last phase, closing of the communication, considers

the remaining processes that are carried out after the main logging

phase is over, e.g., calculating and storing associated operational

data. The manner in which the logging processes are managed is an

implementation task and is therefore left to the individual system

designers. Here, we only indicate the main principle behind the

logging procedure. At the end of the dedicated lifetime of a MED

in a system, it might be necessary to replace the component, and

with that, to also port the old one together with the previously

used EMU. This activity can be easily achieved since the system is

intended to be modular, with each unit having the capability to be

individually transported and replaced.

Figure 2: Sequence diagram with function calls for the start-

ing, run, and closing phase during the logging operation.

2.6 Consequences

To better assess the suggested pattern, we are going to list benefits

and liabilities corresponding to the Forces from Section 2.4.1.

The benefits when using the EP2M pattern are:

F2 Each pair of EC and MED is independent and unique, along

with the dedicated memory component.

F3 The main logic control of the embedded platform is managed

by a separate unit (MPU), that also controls which devices

are added and handled, but does not cover the actual logging

procedure. Therefore, it is possible to expand the system

by adding additional ECs and MEDs, as long as the number

adheres to the limitations set by the MPU.

F4 Since the solution proposes a modulated system, each com-

ponent can easily be processed in a streamlined production

line. The amount of the overall hardware and software nec-

essary for the cross-platform support on the EC would result

in its reduction as well.

F5 After the deployment, each memory module is easily replace-

able. Also, the overall complexity is reduced when handling

the logging procedure; it requires no special consideration,

other than the design points already implemented in a pre-

deployment phase.

F6 MPU, which represent the central logic, is free from the

logging process. This frees up the resources necessary for

the general system run.

F7 Through the careful hardware & software design separation

on the EC, the software is able to adequately access the

necessary resources on the underlying hardware layer.

4



The liabilities when using the EP2M pattern are:

F1 Since the production of the EC is handled separately from

the memory module dedicated for data logging, an additional

interface is needed for the EC for it to be able to communicate

with an external log memory module. This adds additional

cost and handling complexity.

F3 Expansion of the system is limited by the system resources

offered from the central MPU device. These are fairly prede-

fined during the design phase.

F5 Maintenance and manual covering of individual devices

could be an issue as the system scales. Additional devices

would put a lot of constrains when handling them.

F8 The pattern helps in protecting system availability through

its distributed solution. However, it is not focused on provid-

ing cybersecurity protection for secured log data.

2.7 Known Uses

The proposed solution can generally be found under two scenarios:

• End-consumer aimed applications: special home appliances,

mobile phones, and surveillance systems [10, 11].

• Mission critical industrial applications: process control sys-

tems, cellular base stations, medical systems, remote envi-

ronmental data loggers and monitors [8, 9].

Among these, the most common application today can be found

as part of the more prominent industrial solutions where the uti-

lization is necessary for traceable failure analysis. It is often used

in the aeronautic and automotive domain inside the control “Black

Boxes“. Initially, these systems were aimed to provide a removable

and safe memory module that logs the operational data during a

dedicated session, where today they are also intended to provide

sufficient security considerations [2]. Black Boxes are slowly be-

coming a norm in modern automobiles, designed to serve relevant

operational data in case of accidents [12].

2.8 Realized Example

To better understand where and how the EC2M pattern can be

employed, we are going back to the example specified in Section 2.3.

Here, we will apply our solution and analyze the outcome. As

already noted, it is necessary to use a design solution to the BMS that

covers the logging process for the sensor data received from battery

packs. The outcome of the integrated design modules can be seen in

Figure 3. As demonstrated, the BCC has beenmodified and extended

with an interface for communication with an external memory

module. Furthermore, the software in the MCU is developed to

handle channel control to the memory module and appropriately

cover the logging sample rate. The BCC communicates through

additional interfaces with a battery pack on one side and the central

BMS on the other end. In our applied solution, BMS is the MPU.

BCC represents the EC, memory module is the EMU, with the

battery pack being the MED. Each BCC and its assigned battery

pack are handled as an individual group unit. An important aspect

on why the solution had to be applied in the earlier stage of the

development cycle, as suggested by the pattern, is the design of the

essential interface connections. The system is expandable; hence

additional BCCs and their battery packs can be attached in a daisy

chain connection as indicated in Figure 3.

Figure 3: Realized motivating example using the Embedded

Controller to Memory architectural pattern. Employed

on a use-case concerning Battery Management System (BMS),

having the ECs represented through Battery Cell Controllers

(BCCs) that log the data from the Battery Packs.

2.9 Related Patterns

The Chain of Responsibility [7] is a behavioural design pattern

that is structurally similar to the presented EC2M pattern. It can also

be used to handle logging or auditing functionality. However, it does

not account on its own for the modular responsibility distribution

during the system’s design phase. It is primarily implementation-

oriented and can be applied on the software stack.

3 SECURE EMBEDDED LOGGING PATTERN

3.1 Intent

Answering to the security needs by extending the data logging

capabilities in the embedded platforms by adding security modules

and services. The proposed pattern can be used to add the logging

security features together with a design-focused logging solution.

An example for the embedded logging design solution would be the

Embedded Platform to Memory pattern described in Section 2.

3.2 Context

An embedded platform is being designed which uses local memory

devices to handle the storage of lifetime logging data. For the rea-

sons of the cost and memory size limitations, as well as not having,

or having limited, access to a wide network, it is intended for the

platform to rely on local solutions rather than remote services. Of-

ten, these types of systems are closed and protected under a specific

group. It is critical that the stored data maintains its integrity and

is only managed through authorized handlers in this environment.

The embedded system would consist of a selection of hardware

modules, interfaces, and implemented software functions. The hard-

ware modules are divided by their respective tasks and placement.

These are usually tied to a specific architecture and their upgrade

can be very difficult, or sometimes not even possible.
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3.3 Motivating Example

For a complete example of the usage of the pattern, we will focus on

the BMS use-case explained in Section 2.3. As stated, it is desirable

to enable the porting of the stored memory units together with the

battery packs as to be able to track the health of the used battery

packs or for any additional data post-processing. It is of critical

importance that only valid battery packs are being transported

and that it is possible to authenticate the memory units used with

the previous battery packs. This constraint is essential to make

sure that no malicious attacks through a modified memory unit

are possible. Additionally, the data that is stored needs also to be

secured. The reason for making it secure is to guard it against

any potential malicious attacks or even faults that can arise from

oversights during service and maintenance.

The constraint is still present to handle these design steps in the

initial development phase. This is done for the fact that the battery

packs would be mass-produced. Any change that would otherwise

be done later could jeopardize the security of the battery packs and

add an additional cost.

3.4 Problem

How to design an embedded platform that is able to securely

handle, but also port and verify, logging data from its source

to a designated entity?

In embedded platforms that use distributed module placement,

logging process and porting of the logged data often introduce

security risks. Porting would need to be done either by using a

manual external device or having a connection to a network, both

of which might be difficult, or even not feasible, under the platform

constraints. Additionally, changes introduced to the system on

a physical layer may hamper security during the transfer of the

saved data and present a high level of porting complexity. Modules

used would need to account for security functionality and have

pre-defined elements that supplement them. These considerations

result in making it a very challenging and expensive task.

Different malicious attacks can be mounted aimed directly at the

content of the logged data during both the active logging period

and during the offload transfer period. It is challenging to derive a

definite list of threats, as these are usually use-case or application

dependant. Here we focus primarily on generic threats that are

found in embedded logging systems. Specifically, we consider the

following main threats:

• Spying on the targeted process: If not properly secured, an

attacker can derive information, and even knowledge, from

the stored log data by a direct port access.

• Logged data tampering: Unauthorized change of the current,

or previously stored, log content. This includes active attacks

on the communication points during the ongoing logging

process, but also direct tamper attacks on the devices.

• Counterfeited sources: Each logged data is tied to an affiliated

monitored device that is also supplied from a certified man-

ufacturer. During the offload transfer period of the device,

i.e., when the change of the targeted monitored device hap-

pens, the device can be replaced with a counterfeited or a

malicious one. A different attack would be by using the same

device but replacing the data inside it.

3.4.1 Forces.

F1 Streamlined HW/SW integration: Implementation of the hard-

ware and software elements associated with the security

functionality need to be easily replicated across multiple

devices and vendors.

F2 Production cost: Changes made to the hardware and software

design of the embedded systems can result in an increased

manufacturing cost.

F3 Limited resources: The embedded system needs to be able to

execute all necessary functions under different constraints.

F4 Security - confidentiality and integrity: Necessary measures

need to be taken which should prevent the logged data to be

tampered or spied on.

F5 Security - authenticity: The logged data that is stored needs

to be able to be properly identified and verified that it comes

from a valid source entity. This authenticity is also necessary

each time the data needs to be accessed during the active

period, i.e., when the data is retrieved for the analytic or

other operational purposes.

3.5 Solution

Ensure that the monitored logged data will be securely pro-

tected through an integrated security module relaying data

to the memory module and authenticated by using neces-

sary hardware and software critical components embedded

during the deployment phase.

When implementing a logging procedure as part of the con-

strained embedded platform, the security requirement is achieved

by integrating a Security Module (SM) as part of the EC. While

adding the SM to individual EC devices adds to the overall cost, it

does make the system more decentralized. Furthermore, this en-

sures that the security operations are distributed without heavily

impacting the performance. EC device vendors could also not guar-

antee that the logged data would be secured since the EC itself

would not handle that constraint. Therefore, it is necessary to also

couple the security operations as part of the EC to appropriately

address the security design and attest that the information stored

will be protected. Figure 4 depicts the design behind the solution

and shows the recommended building blocks. The following com-

ponents are listed:

• Embedded Controller (EC): Contains necessary interfaces for

the communication, main driver logic, and the control bridge

between the data that is to be stored and the security driver.

• Logging Memory Unit (LMU): Dedicated device for storing

the encrypted data; contains necessary description data, en-

crypted security keys, and the encrypted data.

• Security Module (SM): Provides security operations; works

as a security bridge between the EC and the LMU.

• Source Verification Device (SVD): Device tied to a particular

LMU and used for the authentication purpose; can contain

necessary authentication data, i.e., private-public key pair,

and/or a certificate. It is also generally seen as the device

from which logging process data is retrieved (data source).

Software functions and associated security data would be handled

by the SM itself. At the same time, it would use the logic controller

of the EC to drive the overall processing and data preparation when
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Figure 4: Design-based solution in task separation for han-

dling security logging by providing secure operations and

device authentication.

storing it as part of the logging. It is necessary to keep the SM cheap

in design. As a minimum security requirement when storing the log-

ging data, we propose to use encryption and authentication for the

stored data. These can either be achieved by using separate security

functions or applying a suite like Authenticated Encryption (AE) to

handle this process. The data integrity check (additional AE data or

a separate operation) would be saved in a separate memory block

inside the LMU. These, however, do not need to be secured, but

they do need to be checked by the EC from the SM each time a new

LMU is authenticated. They also need to be periodically updated

from the SM after new data is written. The SM should also offer

the functionality of storing and handling the key data used by the

security operations. Additionally, an EC together with its SM could

also provide a Key Derivation Function (KDF). The basic principle

of deriving and delivering the keys between the parties is left to the

designers. The keys are generally securely encrypted and stored

in the LMU secure section. The authentication operations can ei-

ther be managed using symmetric-based authentication, e.g., AES

challenge/response mechanism or by using asymmetric authentica-

tion, e.g., Public Key Infrastructure (PKI). The security operations

can be handled entirely through software or be hardware-derived,

where the hardware operations usually offer better performance,

e.g., hardware implementation of the Advanced Encryption Stan-

dard (AES). While we consider using the integrated security engine

through a dedicated SM as the most cost-effective solution, other

dedicated hardware security components can also be examined.

These include Secure Elements (SE) and Trusted Platform Module

(TPM). However, unlike the integrated secure engine, SE and TPM

are more complex to incorporate and much more costly.

The pattern is additionally aimed at providing an affordable and

secure solution when transporting and then replacing an LMU.

This process is depicted in Figure 5. Here, a user would receive

the LMU together with the SVD from a previous socket. When

integrating it into the new system, it might be necessary to verify

this memory unit alongside the newly installed SVD, which has

been formerly taken out from the older system. This is achieved

by using the previously explained security verification functions

that the new EC, through its design with SM, would possess as well.

The verification process needs to be successfully completed for the

LMU to be further used, be it just for the analytic or for continuing

operations.

Figure 5: Sequence diagram describing the verification pro-

cess during the porting of LMU and a SVD from a previous

to a new embedded device platform.

3.6 Consequences

This section lists the benefits and liabilities found when applying

the SEL architectural pattern based on the Forces from Section 3.4.1.

The benefits of the SEL pattern are:

F1 As the pattern suggests using a dedicated security module

and predefined security functions per EC, the general pro-

duction design can be applied on a larger scale.

F4 The pattern proposes the use of a dedicated SM that should

allow, at a minimum, encryption and integrity check for

handling the security of the stored data.

F5 Additionally, the SM needs to allow for a method of authen-

tication and verification of individual memory modules that

were previously tied to a specific pair of EC and MED.

The liabilities when using the SEL pattern are:

F1 As long as the security logging is only handled in a closed

local embedded platform, further system updates and con-

figurations are not handled with the proposed pattern.

F2 Each device in the suggested embedded platform is handled

as a separate unit, meaning that each embedded controller
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comes with their own security module. This advantage at

flexibility comes also with a drawback, and that is the in-

crease of the general production cost.

F3 Many embedded devices today are limited in terms of the

extension capabilities, i.e., either not containing their own

security modules or not providing additional interfaces.

3.7 Realized Example

Based on the open design question presented in Section 3.3, we

present a solution in form of a module extension. Here, security

is applied to guarantee: (i) confidentiality - protecting necessary

system data by only providing data associated to the BMS opera-

tional cycle, (ii) repudiation – an action can be tied to the entity

that caused it, and (iii) integrity – data has not been modified.

The resulted block design is shown in Figure 6. The security

functionality is controlled by an internal SM service engine. The

SM communicates directly with the EC and the memory interface.

Figure 6: Realized example based on the Secure Embedded

Logging pattern. Applied on a BCC of a BMS by extending

its applicability for the secure logging process.

When the need arises for a battery pack to be replaced, using

this design, it is possible to also easily port the whole BCC or

just the memory module with the logged data, as indicated in the

pattern solution. Based on the implementation, the BMS would

verify the newly added BCCs, while a BCC can independently

run the verification operation on the connected battery pack and

memory module.

3.8 Related Patterns

A pattern that is similar in design but different in intent and context

would be the Security Logger and Auditor [6]. It is focused on

logging security-sensitive actions from different users. Hence, this

pattern offers a security solution in tying recorded information with

the particular users of a system on an architectural level. Another

similar pattern would be the Secure Logger which is traditionally

used for capturing targeted application events [15]. It is an imple-

mentation design pattern that can be applied on the software level

in situations where otherwise system constraints are of no concern

and are not taken into the design consideration.

4 RELATEDWORK

The patterns presented in this work are focused on delivering a

design-level solution when processing data logging by providing

task separation and secure handling in embedded devices. To suc-

cessfully use the secure logging functions, it is necessary to im-

plement them. This process can be done by expanding their use

through one of the software-focused patterns. Several logging, and

even secure logging, design patterns were already previously re-

searched and published. Among them we have:

• The Secure Logger [15], which is prominent, as it provides

a simple solution for handling logging in different systems

on an implementation level.

• Security Logger and Auditor [6] is an another pattern

that provides a conceptual solution for the logging and audit-

ing with protection mechanisms for the logged information.

It deals with the repudiation aspects of information by track-

ing and linking the users with the logged actions.

• Traditionally, Chain of Responsibility pattern [7] is also

often used for logging implementations as well. To make

sure that the condition is met which guarantees that logging

will be made in a secure manner, the secure variant of the

Chain of Responsibility pattern can be applied [4].

During the deployment, the communication interface between

MPU, EC, and MED might remain insecure. Work presented in [13]

presents an answer, where the Symmetric Key Cryptography

pattern can be used for establishing a secure communication chan-

nel. Based on the system use-case, it might also be necessary to

supervise and store the secured logging data online rather than

locally. Collaborative Monitoring and Logging can be used

as a template to handle the remote side of service, with an addi-

tional pattern like Secure External Cloud Connection used to

establish the now necessary secure connection [5]. Furthermore,

the work presented in [14] lists three distinct but related design

patterns that can be utilized to build a remote messaging interface.

These can be applied to the presented EC2M pattern to extend the

abstraction on the memory unit, which in this case would mean

replacing the extensible memory module with a cloud service.

5 CONCLUSION

In this paper, we have demonstrated how it is possible to imple-

ment a secure and efficient logging solution even in closed and

constrained embedded systems through a careful design and sep-

aration of tasks and modules. Furthermore, necessary steps are

proposed where, in case of faults or unauthorized actions, the se-

curity side would be adequately handled by giving a guide on the

placement and use of a security module. This becomes increasingly

important when the need for replacement and update of the active

embedded devices arises, as it is necessary to also port history log

data of the device’s lifetime. Lastly, the work presented in this paper

is meant to encourage different vendors to consider the implemen-

tation of the secure logging functionality in local devices by not

breaking the initial cost and size limitations and to help users in

employing and maintaining the provided logging services for the

continuing device utilization. More importantly, it streamlines the

availability of the logged data to the users through simplification

of transfer and security verification of memory units.
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