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ABSTRACT
On-chip training improves model accuracy on personalised user
data and preserves privacy. This work proposes REACT, an AI accel-
erator for wearables that has heterogeneous cores supporting both
training and inference. REACT’s architecture is NoC-centric, with
weights, features and gradients distributed across cores, accessed
and computed efficiently through software-configurable NoCs. Un-
like conventional dynamic NoCs, REACT’s NoCs have no buffer
queues, flow control or routing, as they are entirely configured by
software for each neural network. REACT’s online learning realises
upto 75% accuracy improvement, and is upto 25× faster and 520×
more energy-efficient than state-of-the-art accelerators with similar
memory and computation footprint.
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1 INTRODUCTION
There have been a plethora of specialized hardware accelerators
for inference targeted for deployment at the edge[1][5]. However,
neural network training is still largely done on the cloud, as it
is extremely compute-intensive. Yet, on-chip training support on
the edge is becoming increasingly important as the model can be
personalized to the user’s own data, improving the accuracy while
also averting the need to share private user data over the cloud.

Modern Convolutional Neural Networks (CNNs) consist of a set
of convolutional and pooling layers, used for feature extraction
followed by a set of fully connected (FC) layers, used for classi-
fication. During transfer learning for edge deployment, feature
extracting CNN layers do not require significant changes. Hence,
on-chip learning has largely focused on re-training of the FC layers
[17] to personalise the model for the user, improving the accuracy.
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Backward propagation for training uses inference output to calcu-
late weight and error gradient of previous layers, which help to
calculate the updated weights. We leverage this in our design of
REACT, an AI accelerator that supports both training and inference
within the tight area/power budgets of wearables.

The REACT accelerator comprises a heterogeneous mix of GIGA
cores architected to handle training and inference of FC layers, and
nano cores that are designed to accelerate inference of convolutional
layers. These cores are then interconnected by three specialized
NoCs, which efficiently add and propagate weights, output feature
maps (during inference) for both nano and GIGA cores and error
gradients (during training) for GIGA cores.

Here we summarize the key contributions and results of REACT.
(i) This work introduces REACT, an accelerator targeting neural
network inference and training for wearables. REACT’s efficiency
is due to a unique fully distributed architecture with heterogeneous
cores specialized for different layers, interconnected by three spe-
cialized software-configurable NoCs that can efficiently move error
gradients, weights, and feature maps on-chip, reducing costly off-
chip accesses. Unlike prior works, REACT’s NoCs need no hardware
support for buffer queues, flow control or routing, relying fully on
software synthesis for mapping to diverse neural networks. (ii)
Our results show the benefits of on-chip training, with pre-trained
model accuracy improved by up to 75% across multiple datasets, and
speedup of more than 900× over software training on edge CPUs,
enabled by the on-chip training acceleration of REACT. (iii) Our
architectural evaluations also show that besides accelerating train-
ing, REACT can perform on-chip inference for the given datasets
and benchmarks 2.4× faster at 2× better energy consumption on
average, in comparison to state-of-the-art baselines with similar
footprint, thus providing a full on-chip solution for accelerating
on-device training and learning for wearables.

Section 2 discusses the motivation for on-chip training. Section
3 details the proposed REACT accelerator design. Section 4 de-
scribes the software mapping for different neural network types
onto REACT. Section 5 evaluates REACT, and compares it with the
state-of-the-art. Section 6 briefly surveys the related works while
Section 7 concludes the paper.

2 MOTIVATION
REACT is designed for on-chip learning for wearables, where the
user data is similar to the dataset on which network was pre-trained
on the cloud (source dataset), just personalized to the user (target
dataset). On-chip learning of a pre-trained network is performed
on the target dataset, as has been performed in [3][2]. For our
evaluations (see experimental details in Section 5), we emulate
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transfer learning [17] for the CNN benchmarks and perform on-
chip learning for the Multi-layer Perceptron (MLP) benchmarks.
Figure 1 shows how on-chip training on target dataset can improve
model accuracy by up to 14% and 75% forMLP and CNN respectively.
The accuracy prior to on-chip training is shown in Figure 1 (at epoch
0).

Figure 1: Accuracy improvement using on-chip training.

3 REACT ARCHITECTURE
3.1 Architectural Overview
REACT comprises a mix of GIGA cores, optimized for accelerating
training and inference of fully-connected layers and nano cores,
optimized for inference of the convolutional layers. This allows
REACT to balance the needs for training and inference within
the tight area/power constraints of wearables. REACT performs
all computation using bfloat16 arithmetic which has been shown
to be more efficient for deep learning applications. Only GIGA
cores have additional hardware support for training: A 1D systolic
array of multipliers that calculate weights gradients, and the GIGA
neuron core concurrently calculates the error gradients. The neuron
core updates the weights using the calculated weight gradients. A
homogeneous architecture where every core has training support
will lead to fewer cores within the same area constraints, and much
lower utilization, nullifying the benefits of CNN acceleration since
CNNmapping on GIGA core would involve much higher replication
and lower utilisation of weights.

REACT cores are interconnected by three types of Networks-
on-Chip (NoCs). The NoCs are all fully software configurable, syn-
thesised by the software mapper (see Section 4), like FPGA switch-
boxes. They thus save on hardware support for buffering, flow
control or routing. The NoCs are specialized for specific functions
for efficiency. All cores (GIGA and nano) are interconnected with
per-neuron partial sum (PS) NoCs that can perform in-network
partial sum computation for inference and training [16]. All cores
are also connected by per-neuron weighted-sum (WS) NoCs with a
ReLU engine for inference, which routes outputs during inference
and on-chip training. The nano cores have a third type of NoC,
an adder tree NoC connecting the multipliers and adders within,
allowing configuration of the compute units to match the exact
CNN kernels. The partial sum and weighted-sum NoCs are meshes
as the mesh topology maps readily to the grid floorplanning of
REACT cores. The adder tree NoC is a tree topology as that allows
prefix addition of variable-sized adds. The PS and WS NoCs are
interfaced to small network interface (NIC) buffers to facilitate core
reuse and reduce off-chip accesses for input/output feature maps,
partial sum values and error gradients. The training buffer is a

small memory to support the training process by buffering the fully
connected layers’ outputs during the forward propagation stage,
since the GIGA cores are reused for fully connected layers. REACT
has local configuration memories for each core. In Figures 3 and 4,
the configuration memory is fed by the control unit which decodes
instructions and sends the respective control signals to each core.

Figure 2 shows the REACT architecture with 8 nano cores and 2
GIGA cores, each with 256 neurons, connected to 256 10-node PS
mesh NoCs, and 256 10-node WS mesh NoCs. Within each nano
core is a six-level adder tree NoC to reduce the 7 × 7 multiplier
outputs. Since number of filters in convolutional layers are typically
multiples of 8, such a configuration improves mapping efficiency.

Figure 2: REACT architecture with 2 GIGA cores and 8 nano
cores (each with an adder tree NoC), interconnected by 256
per-neuron partial sum NoCs and 256 weighted sum NoCs

3.2 GIGA Core
GIGA neuron cores accelerate fully-connected layers. A GIGA core
comprises of three logical memories storing upto 256×256 synaptic
weights, the transposed weights and the weights gradient values. It
has 256 MAC(multiply-accumulate) compute units and associated
control logic. The micro-architecture of the GIGA neuron core is
shown in Figure 3(a).

The GIGA neuron core was specifically designed to efficiently
perform matrix-vector multiplications, as is required during infer-
ence and training. During inference, GIGA neuron core multiplies
the input feature maps to weights. The partial output feature maps
are sent to the 256 per-neuron PS or WS NoCs depending on the
mapping. During back propagation phase of training, the input
error gradient values, sent from the input port of weighted-sum
NoC are multiplied with the transposed weight matrix values to
generate the output error gradient feature. The output error gradi-
ent may be sent to the weighted-sum NoC directly or to the partial
sum NoC based on the mapping. The GIGA neuron core updates
weights using the on-chip stored weights, and its gradients after
the backpropagation phase of training.

1D systolic array. The GIGA core also houses a 1D systolic ar-
ray which accelerates training. The systolic array of 256 multipliers
is shown in Figure 3(d). It multiplies the error gradient values (row
vector) and inference inputs (column vector) streamed in from the
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Figure 3: Micro architecture of (a) GIGA neuron core, (b) partial sum router, (c) weighted sum router with the ReLU Unit and
(d) 1-D systolic array

local activation input or the training buffer, producing the weight
gradient values, which are sent to the GIGA neuron core.

3.3 Nano Core with Adder Tree NoC
The nano neuron core accelerates the convolution neural network
layer and consists of two parts: A systolic data setup unit which
is responsible for streaming in receptive field(s) for convolution
at every clock cycle; and a 7 × 7 multiplier array feeding an adder
tree NoC. The multiplier array outputs are fed into a tree of adders
to perform convolution effectively. At each level of the adder tree
NoC, a bypass path allows software to map multiple receptive fields
for smaller kernels. We discuss the basic mapping of different sized
kernels in Section 4. Each core can concurrently hold 64 different
kernels with each kernel up to a maximum size of 7 × 7.

During inference, the inputs to the nano neuron core are the
input feature maps and the weights to the SRAM bank from the
CPU. The outputs from the core are then sent to each neuron’s
partial sum NoCs when neuron core outputs are partial sum values
or to the weighted sum NoCs if the neuron core outputs are full
sum values.

Figure 4: Microarchitecture of (a) nano neuron core with (b)
PS NoC routers, (c) WS NoC routers and (d) adder tree NoC

3.4 Partial-Sum NoC
The partial-sum (PS) NoC is leveraged from the Shenjing inference
accelerator [16]. Each neuron has its own PS NoC, so each core has
256 PS routers.The PS NoC routers have adders within its datapath
to perform in-network summation and aggregation of the feature
values (during inference) and error gradient values (during training).
It is designed to perform partial sum within a layer mapped to a
core. The partial sum routers are configured by the software mapper
to add sums coming from any of the nearby cores and any previous
result(s) stored in the router.

As shown in Figures 3(b) and 4(b), a 5 × 2 input crossbar fetches
input data from a port (North, South, East, West or PS NIC Buffer)
and either registers it for local addition or bypasses the given router
to adjacent router using the output links. The 3 × 6 output crossbar
ejects the data to the desired output port or the ReLU unit of the
WS NoC.

3.5 Weighted-Sum NoC
The Weighted-Sum(WS) NoC is architected to support both for-
ward propagation of the full-weighted output feature maps (during
inference) and error gradients (during back-propagation phase of
training), so a single NoC can be software-configured for use along
opposite directions during forward and backward passes which
occur at different times, essentially time multiplexing the NoC for
better utilization and efficiency (see Fig 3(c)). The weighted-sum
NoC routers send the error gradient values across different cores.
For the last layer, the error gradient is received as an input from
off-chip. Otherwise, the 6 × 6 crossbar routes the error gradient
value from its output port and is sent to the systolic array and
the GIGA neuron core to calculate the weight gradient and output
error gradient values respectively. The output error gradient values
are then sent to other core(s) based on the mapping through the
input port of the 6 × 6 crossbar and ejecting it through one of the
output ports (North, South, East, West or the Weighted-sum NIC
Buffers). The Weighted-sum NIC Buffers are designed to store one
set of error gradients feature to reduce the off-chip accesses during
training.

4 MAPPING ANN ONTO REACT
REACT’s software mapping algorithm enables automated mapping
of diverse target neural networks onto REACT, and synthesises
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the configuration signals for REACT cores and NoCs. It essentially
schedules the cycle-by-cycle operation of the cores and NoCs, en-
suring efficient, contention-free use of the resources.
4.1 Mapping for Fully Connected Layers
To map an 𝑚 × 𝑛 FC layer with m inputs and n outputs where
both m and n exceed the core size, we need 𝑖𝑛𝑣 invocations, where
𝑖𝑛𝑣 = ⌈⌈𝑚/𝑣 ∗ 𝑛/𝑣⌉/(𝑛𝑟𝑜𝑤 ∗ 𝑛𝑐𝑜𝑙 )⌉ and 𝑣 are the number of input
and output neurons of one core. We arrange the 𝑛row × 𝑛col cores
in a rectangle. The rows receive the m inputs and columns produce
n outputs. Algorithm 1 shows the logical scheduling of partial-sum
NoCs to produce the total weighted sum.

Algorithm 1: Mapping of fully-connected layer onto REACT’s
NoC
Input :𝑛row × 𝑛col cores in rectangle with local partial-sum

subroutine PS.Send(i, j, input), and weighted-sum
WS.Send(i, j, input)

Output :Network trace N
1 𝑁 ← 0, 𝑖𝑛𝑣 ← ⌈⌈𝑚/𝑣 ∗ 𝑛/𝑣⌉/(𝑛𝑟𝑜𝑤 ∗ 𝑛𝑐𝑜𝑙 ) ⌉

// Loading data from WS buffer for inter-layer communication
2 N.add( WS.Send(WS.Buffer(..) to 𝐼𝑛𝑝_𝑑𝑎𝑡𝑎) )

// Partial Sum Computation
3 for 𝑓 ← 1 to 𝑖𝑛𝑣 // Partial Sum Computation
4 do
5 𝐿 ← 0
6 for 𝑖 ← 1 to 𝑛𝑟𝑜𝑤 and 𝑗 ← 1 to 𝑛𝑐𝑜𝑙 do
7 L.add( PS.Send(𝑖 , 𝑗 , (Output(𝑖 , 𝑗 ) to PS.Buffer(𝑖 ,𝑗 )) ) )
8 end
9 N.add(L)

10 end
// Send PS output to WS input for all cores

11 N.add( WS.Send(PS.Buffer(..) to WS.Buffer(..)) )

12 if train == 1 then
13 N.add( WS.Send(WS.Buffer(..) to 𝐼𝑛𝑝_𝑑𝑎𝑡𝑎) )
14 for 𝑓 ← 1 to 𝑖𝑛𝑣 do
15 𝐿 ← 0
16 for 𝑖 ← 𝑛𝑟𝑜𝑤 to 2 and 𝑗 ← 1 to 𝑛𝑐𝑜𝑙 do
17 L.add( PS.Add(𝑖 , 𝑗 ) to PS.Add(𝑖 − 1, 𝑗 ) )
18 L.add( PS.Send(𝑖 − 1, 𝑗 , PS.Buffer(𝑖 − 1, 𝑗 )) )
19 end
20 N.add(L)
21 end
22 N.add( WS.Send(PS.Buffer(..) to WS.Buffer(..)) )
23 end

4.2 Mapping Convolution Layer
To map a convolution layer with input size ℎ ×𝑤 × 𝑐 in and kernel
size 𝑘 × 𝑘 × 𝑐 in × 𝑐out onto 𝑛row × 𝑛col cores, 𝑖𝑛𝑣 invocations are
performed in a time-multiplexed fashion. Each neuron core can
perform convolution on 𝐼 × 𝐼 sized partition of the image, thus
the number of invocations required to cover all input and output
channels are 𝑖𝑛𝑣 = ⌈(ℎ ×𝑤)/(𝐼 × 𝐼 × 𝑛𝑟𝑜𝑤 × 𝑛𝑐𝑜𝑙 )⌉.

Each nano neuron core can fit upto 64 output channel filters.
The weights are mapped such that each neuron completes the
convolution in one input channel before moving to the next.

To deal with the underutilization of the multiplier array, we de-
signed an adder tree NoC that has software-configurable bypass
links at each level of the adder tree as discussed in section 3.3. These
links help to spatially schedule multiple computations correspond-
ing to a kernel and bypass the rest of the adder tree. The software
mapper can thus configure and schedule multiple smaller kernels
spatially, or one kernel with size equal to or larger than 5 × 5.

Algorithm 2: Mapping of convolution layers onto REACT’s NoC
Input :𝑛row × 𝑛col cores, with 𝐹 × 𝐹 multiplier array, with

PS.Send(i, j, input), and WS.Send(i, j, input).
And the convolution layer of input size ℎ × 𝑤 × 𝑐𝑖𝑛 ,
and kernel size 𝑘 × 𝑘 × 𝑐𝑐𝑖𝑛 × 𝑐𝑜𝑢𝑡 .

Output :Network trace N
1 𝑁 ← 0

// Adder tree NoC bypass logic
2 𝑖𝑛𝑡𝑟𝑎_𝑓 𝑜𝑙𝑑 ← ⌊(𝐹 ∗ 𝐹 )/2 ⌈𝑙𝑜𝑔2 (𝑘 ∗ 𝑘 )⌉ ⌋
3 𝑠𝑐ℎ ← ⌈𝑙𝑜𝑔2 (𝑘 ∗ 𝑘) ⌉ // Map weights spatially for utilization
4 𝑠𝑐ℎ_𝑎𝑟𝑟 ← [𝑖*2⌈𝑙𝑜𝑔2 (𝑘 ∗ 𝑘 )⌉ for 𝑖 in range(𝑠𝑐ℎ)]
5 𝑖𝑛𝑣 ← ⌈ℎ∗𝑤

𝐼∗𝐼 ∗
1

𝑛𝑟𝑜𝑤∗𝑛𝑐𝑜𝑙 ⌉ // Number of invocations
6 N.add( WS.Send(WS.buffer(..) to 𝐼𝑛𝑝_𝑑𝑎𝑡𝑎) )
7 for 𝑓 ← 1 ; 𝑓 < 𝑖𝑛𝑣 ; 𝑓 = 𝑓 + 1 // Mapping onto Nano cores
8 do
9 for 𝑖𝑛_𝑐ℎ ← 1 to 𝑐 in do
10 for 𝑜𝑢𝑡_𝑐ℎ ← 1 to ⌈𝑐𝑜𝑢𝑡 /64⌉ do
11 for 𝑖𝑛𝑡𝑟𝑎_𝑜𝑢𝑡_𝑐ℎ ← 1 to

𝑚𝑖𝑛 (64, 𝑐𝑜𝑢𝑡 − (64 ∗ 𝑜𝑢𝑡_𝑐ℎ)) do
12 𝐿 ← 0
13 for 𝑥, 𝑦 ← 1 to 𝑛𝑟𝑜𝑤 , 𝑛𝑐𝑜𝑙 // Nano core operation
14 do
15 L.add( PS.Send(𝑥 , 𝑦, (𝑖𝑛𝑝𝑢𝑡𝑠 [𝑖𝑛_𝑐ℎ] [..],

𝑘𝑒𝑟𝑛𝑒𝑙𝑠 [𝑖𝑛_𝑐ℎ] [𝑜𝑢𝑡_𝑐ℎ], 𝑏𝑦𝑝𝑎𝑠𝑠 ,
𝑠𝑐ℎ_𝑎𝑟𝑟 )) )

16 end
17 end
18 end
19 N.add(L)
20 end
21 end
22 N.add( WS.Send(PS.buffer(..) to WS.Buffer(..)) )

As a convolution layer scans through the input image, there will
be overlap at the boundary of each core. To produce the convolution
sum, along each channel, the neighbouring cores first exchange
their partial-sums to produce the convolution of the boundary
pixels. Then, among the channels, the partial sums are accumulated
to complete the convolution.

The mapping between nano and GIGA cores is similar to the way
FC layers are mapped. The nano core outputs are directly mapped
to the same number of GIGA cores receiving these outputs as their
input axons.

5 EVALUATION
5.1 Target Neural Networks
In our experiments, we use 7 different benchmarks to evaluate
REACT architecture, representative of real world workloads. They
are 2-layered MLP and 4-layered CNN neural network architectures
for the MNIST[11] dataset, a 5-layered MLP neural network for
the MIT-BiH ECG dataset and 9-layered CNN for CIFAR-10 [8]
dataset. REACT is able to fit neural network layers of varying sizes
without accuracy loss due to the partial sum NoCs. The MIT-BiH
[9] MLP network was chosen as the MIT-BiH dataset [13] is used to
detect cardiac arrythmia, a key application on wearables. We also
use another CNN network with 6 layers targeting the EMNIST [4]
dataset and use the VGG-16 and MobileNet v1 benchmarks with the
CIFAR-10 dataset. We also evaluate MobileNet v1 on ImageNet to
show the scalability of REACT. MobileNet v1 illustrates that REACT
can support deeper networks as well on wearables.
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5.2 Experimental methodology
To emulate transfer learning, CNN benchmarks targeting CIFAR-
10 and MNIST (target datasets) are pre-trained on ImageNet and
EMNIST (source datasets) respectively. The on-chip training and
inference evaluations are performed on the target datasets. For all
other benchmarks, we emulate on-chip learning of a pre-trained
model by training the FC layers on a subset of their respective
source datasets.

We modeled REACT in RTL, then faithfully replicated the opera-
tions performed by the RTL during forward and backward passes of
the training process in a high-level simulator using python libraries
to ensure tractable simulation times. REACT was synthesized at
120 MHz for real-time inference for the given benchmarks. The
accuracy results (Figure 1) were obtained using these simulations
where pre-trained models were obtained from pytorch.

The power and area results of REACT’s cores and NoCs are
obtained through RTL modelling and synthesis. The design was
implemented and verified on SystemVerilog HDL and its function-
ality was verified using the Synopsys VCS tool. The synthesis was
run using the Synopsys Design Compiler to synthesize the RTL
design to gate-level netlists on a commercial 22nm CMOS process
and SRAMs used were foundry’s memory-compiled SRAM cells.

5.3 Architecture Synthesis Results
5.3.1 Area. Each GIGA core (GIGA Neuron Core, NoC routers and
the 1D systolic array) in the REACT architecture is synthesized
at 0.8V, obtaining a core size of 1.993𝑚𝑚2. Each nano core (nano
Neuron Core and NoC routers) in the REACT architecture is also
synthesized at 0.8V and takes 1.148 𝑚𝑚2. The total area of the
REACT configuration in Figure 2 is 13.17𝑚𝑚2. Table 1 shows the
area distribution of the GIGA and nano core.

5.3.2 Power. The power consumption is obtained from synthesis
as mentioned above. The total power consumed by a GIGA core
is 114.7mW when synthesized at 120MHz. The power distribution
of the GIGA neuron core is shown in Table 1. The GIGA neuron
core takes a significant percentage of the power as it has have the
majority of the computational elements in the architecture. The
1D systolic array and the WS NoC are gated during the inference
phase and are only operational during on-chip training.

The total power consumed by a nano core is 91.78 mWwhen syn-
thesized at 120MHz. The power distribution of the nano neuron core
has been shown in the Table 1. As expected, power consumption of
a nano core is lower than GIGA core due to its lower complexity.
Since the nano cores can process upto 64 different output channels,
the PS and WS NoCs in the nano cores have 64× larger NIC buffers
than the respective buffers in the GIGA cores. These NIC buffers
hold neural network data on-chip while cores are reused.

5.4 Evaluation Results
Table 2 shows the latency for on-chip training on REACT, in com-
parison to ARM CPU, Nvidia GPU on the Jetson nano[6] board
(power output of 5W) and Edge-TPU board[5] (power output of
2W) timing measurements. The Edge-TPU can only train the last
classifier layer, unlike others which can train all FC layers. REACT
is faster than the CPU and GPU baselines by 426× and 183× respec-
tively on average for all given benchmarks. Edge-TPU board is 15%
faster than REACT, with 4.6× higher average power consumption

Core Sub-module Active Power
(mW)

Active Power
(% per core)

Area
(𝑚𝑚2)

Area
(% per core)

GIGA
core

GIGA neuron core 76.031 66.29 1.552 77.87
256 per-neuron PS NoC routers 14.133 12.32 0.188 9.43
256 per-neuron PS NIC buffers 1.439 1.25 0.0098 0.49
256 per-neuron WS NoC routers 12.448 10.85 0.126 6.32
256 per-neuron WS NIC buffers 1.439 1.25 0.0098 0.49
1D systolic array 2.013 1.75 0.058 2.91
Training Buffer 5.759 5.02 0.04 1.98
Config. Memory 1.440 1.26 0.010 0.50

nano
core

nano neuron core 8.28 9.02 0.265 23.09
256 per-neuron PS NoC routers 26.59 28.97 0.188 16.38
256 per-neuron PS NIC buffers 15.28 16.65 0.371 32.32
256 per-neuron WS NoC routers 24.91 27.14 0.126 10.98
256 per-neuron WS NIC buffers 15.28 16.65 0.188 16.38
Config. Memory 1.440 1.57 0.010 0.86

Table 1: Synthesis results for GIGA and nano cores

but Edge-TPU achieves only a 5% accuracy improvement using its
on-chip training.

Benchmarks REACT
@120MHz

ARM CPU
@921.6MHz

Jetson Nano
GPU @153MHz

Edge TPU
@500MHz

2-layer MLP (MNIST) 0.0382 12.935 4.833 2.03
4-layer CNN (MNIST) 0.0176 7.444 6.683 1.19
6-layer CNN (EMNIST) 0.1243 152.245 15.788 4.26
5-layer MLP (MIT-BiH) [9] 0.0680 50.592 11.158 -
9-layer CNN (CIFAR-10) 0.1429 169.557 18.551 4.52
MobileNet v1 (CIFAR-10) 6.9109 5135.592 2817.617 6.22
MobileNet v1 (ImageNet) 31.1612 10854.013 4161.098 10.74
VGG-16 (CIFAR-10) 53.51 1934.52 295.79 23.56

Table 2: REACT Training Latency (in ms)

For performance comparison against architectural baselines, we
used the SCALE-SIM [14] and the MAESTRO [10] architectural
simulators to get the latency and utilization numbers for the other
baselines. The four baselines are Eyeriss (modelled in MAESTRO)
and systolic arrays having similar computational elements and
memory as REACT but with weight stationary (WS), output sta-
tionary (OS) (similar to ShiDianNao[7]) and input stationary (IS)
dataflows respectively, since these are the key dataflows used in
neural network accelerators. For the sake of brevity, we shall refer
to the configurations as Eyeriss-like, TPU-like, ShiDianNao-like
and Sys. Array-IS respectively. For the REACT performance num-
bers, we use the high-level Python functional simulator described
earlier, utilising the mapping algorithm.

Figure 5 shows the inference latency of REACT and the 4 base-
lines described above. REACT is faster by 3.5×, 2.25×, 1.5× and 2.2×
on average over all given benchmarks in comparison to Eyeriss,
TPU, ShiDianNao-like and Sys. Array-IS respectively. REACT has a
much higher mapping efficiency for FC layers because of its GIGA
cores in comparison to the baselines. Owing to its NoCs, REACT has
higher utilization than the TPU configuration because of its better
utilisation of its on-chip memory. REACT has an average of 56.9%
compute utilization in comparison to the 10.1% utilization for the
ShiDianNao-like, which has the highest utilization among all the
baselines. The Systolic Array configurations also suffer from lower
utilization in comparison to REACT, since systolic array architec-
tures are not as effective for matrix-vector computations. REACT’s
NoCs provide 8× higher on-chip bandwidth in comparison to Sys-
tolic Array configurations with similar compute resources.

For energy comparisons, we obtained the RTL model of a TPU-
like architecture from [15] to model power and area. The TPU-like
architecture is also synthesized at the same clock frequency as
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Figure 5: Inference Latency Comparison of REACT with
baselines

REACT (120 MHz). In Figure 6, We can see the inference energy
distributions for REACT and TPU, normalized to the TPU inference
energy. REACT has a significantly lower energy consumption for
shallower networks, which are typically ones targeted forwearables,
it has lower energy by 2.1× on an average for all given benchmarks
in comparison to the baselines respectively. This shows that RE-
ACT’s specialized cores and software-configurable NoCs enable
highly energy-efficient distributed computation on chip.

Figure 6: Energy Consumption during inference for given
benchmarks
6 RELATED WORKS
There have been many custom hardware accelerator chips devel-
oped for ANN acceleration. We focus on the few that support on-
chip training. As an apples-to-apples comparison of REACT with
other training accelerators is difficult given the different technology
node, datasets, neural networks, we briefly mention the differences
between some of these prior accelerators and REACT.

TrainWare [2] is an on-device training accelerator for CNNs
which focuses specifically on the weight update operation. The
two key features are a specialized local buffer to reduce off-chip
memory access and unique dataflow with a PE array. TrainWare
only focuses on accelerating the weight updates stage unlike RE-
ACT, which accelerates all the stages of training while also having
better area efficiency. Choi et. al.[3] propose an accelerator that
supports inference and training for CNNs. The architecture is het-
erogeneous, with different types of cores for inference and training
computation for CNNs and MLPs. This work has lower accuracy
in comparison to REACT since it uses 8b fixed point arithmetic,
which has much lower precision. Lu et. al.[12] also propose an ac-
celerator that supports inference and training for CNNs by having
multiple PS clusters and activation computation units. REACT’s
NoC-centric design leads to better area efficiency and higher uti-
lization. Sticker[18] has an architecture that performs inference for
sparse neural network models while also supporting tuning for FC
layers. It has three major modules, a sparsity-aware controller, a

multi-sparsity compatible convolution PE array and an efficient on-
line tuning PE for sparse FC layers. This work has lower precision
data in comparison to REACT which would lead to lower accuracy
for inference and on-chip training.

A primary difference between the REACT accelerator’s architecture
and these prior accelerators is that the REACT architecture distributes
the weights, output feature maps and error gradients across the cores
and interconnects them with specialized NoCs rather than primarily
relying on a single unified buffer. In short, REACT has a NoC-centric
design which allows for higher utilization of memory and compute
elements at finer granularity, key constraints on edge devices which
improve battery life.
7 CONCLUSION
This work introduces REACT, a neural network accelerator for
wearables that can support on-chip training and inference. REACT
specialises its cores to specific neural network layers, and inter-
connects them with specialised software-configurable NoCs with
in-network compute, thus enabling very lean, efficient hardware
that is scheduled cycle-by-cycle by REACT’s software mapper for
different neural network applications. We see REACT as a full on-
chip solution for personalized learning and inference for wearables.
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