
SWIM: Selective Write-Verify for Computing-in-Memory
Neural Accelerators

Zheyu Yan
zyan2@nd.edu

University of Notre Dame

Xiaobo Sharon Hu
shu@nd.edu

University of Notre Dame

Yiyu Shi
yshi4@nd.edu

University of Notre Dame

ABSTRACT
Computing-in-Memory architectures based on non-volatile emerg-
ing memories have demonstrated great potential for deep neural
network (DNN) acceleration thanks to their high energy efficiency.
However, these emerging devices can suffer from significant vari-
ations during the mapping process (i.e., programming weights to
the devices), and if left undealt with, can cause significant accuracy
degradation. The non-ideality of weight mapping can be compen-
sated by iterative programming with a write-verify scheme, i.e.,
reading the conductance and rewriting if necessary. In all existing
works, such a practice is applied to every single weight of a DNN
as it is being mapped, which requires extensive programming time.
In this work, we show that it is only necessary to select a small por-
tion of the weights for write-verify to maintain the DNN accuracy,
thus achieving significant speedup. We further introduce a second
derivative based technique SWIM, which only requires a single pass
of forward and backpropagation, to efficiently select the weights
that need write-verify. Experimental results on various DNN archi-
tectures for different datasets show that SWIM can achieve up to
10x programming speedup compared with conventional full-blown
write-verify while attaining a comparable accuracy.

1 INTRODUCTIONS
Deep Neural Networks (DNNs) have surpassed human performance
in various perception tasks including image classification, object
detection, and speech recognition. Deploying DNNs on edge de-
vices such as automobiles, smartphones, and smart sensors is a
great opportunity to further unleash their power. However, be-
cause edge platforms have constrained computation resources and
limited power budget, employing CPUs or GPUs to implement
computation-intensive DNNs on them is a great challenge.

Non-volatile Computing-in-Memory (nvCiM) DNN accelera-
tors [7] offer a great opportunity to edge applications by reduc-
ing data movement with an in-situ weight data access scheme [9].
By making use of emerging non-volatile memory (NVM) devices
(e.g., resistive random-access memories (RRAMs), ferroelectric field-
effect transistors (FeFETs) and phase-change memories (PCMs)),
nvCiM can achieve higher energy efficiency and memory density
compared with conventional MOSFET-based designs [1]. However,
NVM devices suffer from various non-idealities, especially device-
to-device variations due to fabrication defects and cycle-to-cycle
variations due to the stochastic behavior of devices. If not properly
handled, the weights actually mapped to the devices could deviate
significantly from the expected values, leading to large performance
degradation.

Different strategies have been proposed to tackle these issues.
Noise-aware training [4] and uncertainty-aware neural architecture
search [10–12] aim at fortifying DNNs so that their performance

remains mostly unaffected even in the presence of device variations.
However, these methods are not economical because they require
re-training DNNs from scratch and cannot make use of existing
pre-trained models. On-chip in-situ training [13], on the other hand,
directly fine-tunes the DNNs through additional training after they
are mapped to nvCiM platforms so that the impact caused by weight
variations during mapping can be alleviated. This method is quite
effective but requires extra hardware to support backpropagation
and weight update. In addition, it requires iterative training which
involves multiple cycles of write for each weight being updated
and can take quite some time.

As such, a widely adopted practice today is write-verify, which
applies iterative write and read (verify) pulses to make sure that the
weights eventually programmed into the devices differ from the
desired values by an acceptable margin. Write-verify can reduce the
weight deviation from the ideal value to less than 3% and the DNN
accuracy degradation to less than 0.5% [8]. However, write-verify
is time-consuming because each weight value needs to be written-
verified individually. Programming even a ResNet-18 for CIFAR-10
to an nvCiM platform can takemore than oneweek [8]. Considering
that the programming time grows linearly w.r.t. the number of
parameters in the DNN model and many state-of-the-art models
have far more weights than ResNet-18, an interesting question
is, whether we really need to write-verify every weight of a
DNN when mapping it to an nvCiM platform.

In this work, we show that the answer to the question isNO. It is
in fact only necessary to write-verify a small portion of the weights
to attain an accuracy very close to that assuming ideal mapping,
and as such, the programming time for nvCiM platforms can be
drastically reduced. Specifically, we propose Selective Write-verify
for computing-In-Memory neural accelerators (SWIM). Different
from the vanilla write-verify scheme that performs write-verify for
all the weights to be mapped, inspired by [5], SWIM uses second
derivatives of the weights as an indicator to select only a small
portion of the sensitive weights to write-verify. In addition, con-
sidering that straight-forward computation of second derivatives
through finite difference method is extremely expensive, we devise
a forward and backpropagation scheme similar to what is in gra-
dient computation, which only takes a single pass, to get all the
second derivative data. Experimental results on MNIST, CIFAR-10,
and Tiny ImageNet show that SWIM can achieve up to 10x, 5x,
and 9x programming speedup compared with the conventional
approach of writing-verifying all the weights, a magnitude based
selective write-verify heuristic, and a state-of-the-art in-situ train-
ing, respectively. To the best of our knowledge, this is the first
work that establishes the concept and verifies the effectiveness of
selective write-verify framework for programming nvCiM neural
accelerators.

ar
X

iv
:2

20
2.

08
39

5v
1

 [
cs

.L
G

]
 1

7
Fe

b
20

22

Zheyu Yan, Xiaobo Sharon Hu, and Yiyu Shi

2 RELATEDWORKS
2.1 Crossbar-based Computing Engine
Crossbar array is a key component of nvCiM DNN accelerators. A
crossbar array can be considered as a processing element for matrix-
vector multiplication where matrix values (e.g., DNN weights) are
stored at the cross point of each vertical and horizontal line with
resistive emerging devices such as RRAMs, FeFETs, and PCMs,
and each vector value (e.g., DNN inputs) is propagated through
horizontal data lines. The calculation in crossbar is performed in
the analog domain but additional peripheral digital circuits are
needed for other key DNN operations (e.g., pooling and non-linear
activation), so digital-to-analog and analog-to-digital converters
are used between different components.

Resistive crossbar arrays suffer from various sources of varia-
tions and noises. Two major ones include spatial variations and
temporal variations. Spatial variations result from fabrication de-
fects and have both local and global correlations. NVM devices
also suffer from temporal variations due to the stochasticity in the
device material, which causes fluctuations in conductance when
programmed at different times. Temporal variations are typically
independent from device to device and are irrelevant to the value to
be programmed [2]. In this work, as a proof of concept, we focus on
the impact of temporal variations in the programming process on
DNN performance. Temporal variation makes the programmed re-
sistance of a device to deviate from what is expected. The proposed
framework can also be extended to other sources of variations with
modification.

2.2 Handling Variations in Weight Mapping
Various approaches have been proposed to deal with the issue of
device variations on nvCiM DNN accelerators. Here we briefly
review the two most common ones that do not require training a
new model from scratch.

On-chip in-situ training, which fine-tunes a trained DNN di-
rectly on nvCiM platforms, can recover model performance in a
few iterations if device variations are small. In each iteration, the
forward and backpropagation process is performed on-chip under
the impact of device variations, and each weight is updated by
applying voltage pulses to the corresponding device. The number
of write pulses is determined by the gradient of that weight. Such
a scheme requires extra hardware support for training and can
be quite time-consuming due to multiple iterations of write for
each weight. More recent works propose to only fine-tune the fully
connected layers of DNN models [13], but the effectiveness of this
method on large models is unclear.

In write-verify, an NVM device is first programmed to an initial
state using a pre-defined pulse pattern, then the value of the de-
vice is read out to verify if its conductance falls within a certain
margin from the desired value (i.e., if its value is precise). If not,
an additional update pulse is applied, aiming to bring the device
conductance closer to the desired one. This process is repeated until
the difference between the value programmed into the device and
the desired value is acceptable. The process typically requires a
few iterations. More seriously, write-verify is performed individu-
ally for each weight as it is being mapped to a device. Therefore,
writing-verifying a large number of NVM devices requires much

0.0 0.2 0.4 0.6 0.8
Weight Magnitude

0

2

4

6

8

10

Ac
cu

ra
cy

 D
ro

p
(%

)

(a)

0 5 10 15 20 25 30
Second Derivative

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 D
ro

p
(%

)

(b)
Figure 1: Impact of LeNet weight variation on MNIST: (a)
Accuracy drop v.s. weight magnitude, where little correla-
tion exists. (b) Accuracy drop v.s. second derivative of each
weight, where strong correlation can be observed.

longer programming time than writing-without-verify which is
done in parallel.

3 SWIM FRAMEWORK
3.1 Overview of SWIM
In this paper, contrary to the practice of all existing works that
perform write-verify for every weight of a DNN, we establish and
explore answers to the following problem.
Selective Write-Verify: Given a DNN architecture with weights
W0 and a maximum acceptable accuracy drop 𝛿𝐴, identify the
smallest subset Ws ⊆ W0 so that, when mapping the DNN to
nvCiM platforms, by only writing-verifying weights in Ws, the
deployed network can have an accuracy no less than 𝛿𝐴 below that
of the original network.

One important feature for NVM devices is that the read pro-
cess takes much shorter time than write [7], especially for RRAMs
and FeFETs. As such, reading the values of weights programmed
into the devices and evaluating the corresponding accuracy of the
DNN takes negligible amount of time compared with the write-
verify process. We can leverage this feature to develop a heuristic
approach to address the selective write-verify problem through
iterative mapping, as shown in Alg. 1. For each weight in W0, we
can first evaluate the impact of its variation on the accuracy of
the DNN, which is referred to as its sensitivity in the remainder
of this paper. Then we sort all the weights in descending order of
sensitivity, and iteratively write-verify a group 𝑝 of the weights at a
time (called programming granularity in Alg. 1) until the accuracy
drop is below 𝛿𝐴. In our experiments, we find that setting 𝑝 to be
5% of the total number of weights is sufficient to provide the gran-
ularity for improving accuracy, while also avoiding too frequent
evaluation of the accuracy of the mapped DNN. A critical question
now is how to evaluate the sensitivity of a weight, which will be
discussed in the next section.

3.2 Sensitivity Analysis
Our goal is to find a way to evaluate the sensitivity for each weight.
Intuitively, one would think that the magnitude of a weight would
be a good indicator for sensitivity, and that, the larger the weight
is, the more impact on the accuracy it would have when it is being
perturbed. Unfortunately, our preliminary studies show that this is
not the case. From experimental results in [2], we assume a model
where the amount of variances of NVM devices are independent
of the value to be programmed. We perturb each weight in LeNet
with the same additive Gaussian noise based on [13] and evaluate

SWIM: Selective Write-Verify for Computing-in-Memory Neural Accelerators

Algorithm 1 SWIM (W0 ,Z, 𝐴, 𝛿𝐴, D, 𝑝)

1: // INPUT: A trained DNN architecture Z with weights W0,
original DNN accuracy𝐴, the maximum accuracy drop allowed
𝛿𝐴 after mapping to nvCiM, training dataset D, and program-
ming granularity 𝑝;

2: Program all weights in W0 based on their locations inZ to the
nvCiM platform;

3: Calculate the sensitivity of all the weights;
4: Sort W0 in the descending order of sensitivity.
5: for (𝑖 = 0; 𝑖 < (|W0 |/𝑝); 𝑖 + +) do
6: Write-verify the weights W0 [𝑖 × 𝑝 + 1 : (𝑖 + 1) × 𝑝] based

on their positions in Z;
7: Evaluate the accuracy 𝐴̃ of the mapped network on D;
8: if 𝐴 − 𝐴̃ ≤ 𝛿𝐴 then
9: Break;
10: end if
11: end for

the corresponding drop in the DNN accuracy for perturbing each
weight, averaged over 100 Monte Carlo runs. From Fig.1a, we can
see that there is very weak correlation, if any, between the magni-
tude of weights and the accuracy drop that their variations cause.
This observation is further confirmed in the experimental section,
where we show that magnitude based selection approach would
not yield good results. Below, we present a rigorous mathematical
analysis, to establish a quite effective metric that can reflect the
sensitivity of a weight.

As existing DNN optimization engines all map accuracy maxi-
mization to the minimization of a loss function, there is a strong
correlation between the impact of a weight’s variation on accuracy
and that on the loss function. As such, we resort to evaluating the
sensitivity based on the latter.

For a DNN with a given labeled training dataset, loss 𝑓 is a
function of a vector w formed by all the weights. Assume that the
training is completed and the optimal weights identified are w̃.
With small variations of the weights around w̃, i.e., w = w̃ + ∆w,
one can perform Taylor expansion on 𝑓 as follows:

𝑓 (w) = 𝑓 (w̃) + 𝜕𝑓

𝜕w̃
Δw + 1

2
Δw𝑇H(w̃)Δw + 𝑜 (Δw3) (1)

where we use the compact notation 𝜕𝑓

𝜕w̃ to represent 𝜕𝑓𝜕w |w=w̃. Simi-
lar notation will be used throughout the paper.H(w) is the Hessian
of w defined as

H(w) =



𝜕2 𝑓

𝜕𝑤2
1

· · · 𝜕2 𝑓

𝜕𝑤1𝜕𝑤𝑛
.
.
.

. . .
.
.
.

𝜕2 𝑓

𝜕𝑤𝑛𝜕𝑤1
· · · 𝜕2 𝑓

𝜕𝑤2
𝑛


(2)

with 𝑛 being the total number of weights, i.e., length of w.
As the neural network is trained to convergence through gradient

descent, we have 𝜕𝑓

𝜕w̃ = 0. Accordingly, based on Eq. 1 the change
in the loss function Δ𝑓 (w) brought by the weight variation Δw
around w̃ can be expressed as

Δ𝑓 (w) ≈ 1
2
Δw𝑇H(w̃)Δw (3)

where we have ignored the higher-order terms.
Recall that Δw is device-specific and independent of the magni-

tude of w [2]. It is now clear that for a trained model, it is in fact
the Hessian that plays a critical role in sensitivity. Unfortunately,
the number of elements in Hessian is quadratically proportional to
the number of weights. For example, a small neural network with
one million weights (106) would require a Hessian with one trillion
(1012) elements, which is computationally impractical to evaluate.

To explore potential simplification, we notice that Eq. 3 can be
expressed as

Δ𝑓 (w) ≈ 1
2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

H𝑖 𝑗Δ𝑤𝑖Δ𝑤 𝑗

=
1
2

𝑛∑︁
𝑖=1

H𝑖𝑖 (Δ𝑤𝑖)2 +
1
2

𝑛∑︁
𝑖≠𝑗

H𝑖 𝑗Δ𝑤𝑖Δ𝑤 𝑗

(4)

where Δ𝑤𝑖 is the 𝑖𝑡ℎ element of Δw andH𝑖 𝑗 is the element in the
𝑖𝑡ℎ row and 𝑗𝑡ℎ column ofH(w̃). To simplify Eq. 4, we assume that
the change in the loss function caused by the variations in multiple
weights is approximately the sum of those caused by each weight.
As such, we only have to deal with one weight variation at a time.
In this case, the cross terms can be discarded since either Δ𝑤𝑖 or
Δ𝑤 𝑗 is zero when 𝑖 ≠ 𝑗 , and we have

Δ𝑓 (w) ≈ 1
2

𝑛∑︁
𝑖=1

H𝑖𝑖 (Δ𝑤𝑖)2 =
1
2

𝑛∑︁
𝑖=1

𝜕2 𝑓

𝜕𝑤̃2
𝑖

Δ𝑤2
𝑖 (5)

where 𝑤̃𝑖 is the 𝑖𝑡ℎ element of w̃. Extensive experimental study is
conducted to confirm this approximation is acceptable.

Eq. 5 suggests that we only need to obtain the second derivative
of each weight 𝜕

2 𝑓

𝜕𝑤̃2
𝑖

to evaluate the impact of weight variation on
loss. By writing-verifying a weight 𝑤̃𝑖 , we are essentially reducing
Δ𝑤𝑖 . Therefore, it is apparent that we shall assign higher priority
to reduce the variation of those weights with higher second deriva-
tives 𝜕2 𝑓

𝜕𝑤̃2
𝑖

. In other words, the second derivative can be used as a
good sensitivity metric for SWIM. The effectiveness of this metric
is confirmed in Fig. 1b, where now with the same setting as in
Fig. 1a strong correlation can be observed between the accuracy
drop after a weight is perturbed and the second derivative of that
weight (Pearson Correlation Coefficient being 0.83).

Finally, when two weights have the same second derivative, we
use their magnitudes as the tie-breaker: the larger one will have a
higher priority.

3.3 Second Derivative Calculation
One straightforward way to compute second derivative is to use
finite difference method, i.e.,

𝜕2 𝑓

𝜕𝑤̃2
𝑖

≈ 𝑓 (𝑤̃𝑖 + Δ𝑤) − 2𝑓 (𝑤̃𝑖) + 𝑓 (𝑤̃𝑖 − Δ𝑤)
(Δ𝑤)2

(6)

where Δ𝑤 is a small positive number. However, in order to get
𝑓 (𝑤̃𝑖 +Δ𝑤) and 𝑓 (𝑤̃𝑖 −Δ𝑤), two passes of forward propagation are
needed, after replacing 𝑤̃𝑖 with 𝑤̃𝑖 + Δ𝑤 and 𝑤̃𝑖 − Δ𝑤 , respectively.
For a network with one million weights, this requires two million
passes of forward propagation.

Inspired by how the gradients of all the weights are efficiently
computed through a single pass of forward and backpropagation

Zheyu Yan, Xiaobo Sharon Hu, and Yiyu Shi

based on the chain rule and the chain rule approximation of second
derivatives presented in [5], below we present a method that can
obtain second derivatives of all the weights in a similar way.

Let us start with the last fully connected (FC) layer of a DNN.
The computation there can be expressed as

P = 𝑔𝑎 (I), O = W · P (7)

where 𝑔𝑎 is the activation function of the previous layer. I is the
input vector to the activation function. W is the matrix containing
the weights between the two layers. P is the output of the previous
layer. O is the output of the last layer. We did not include the
activation of the last layer as it can be merged into the loss function.

Consider a loss function 𝑓 (O) and we want to compute the
second derivative for weights 𝜕2 𝑓

𝜕𝑊 2
𝑗𝑖

and for inputs 𝜕
2 𝑓

𝜕𝐼 2
𝑖

. The former

will be used as sensitivity and the latter will be used for further
backpropagation to previous layers. Since O is a function of W and
P, we can apply the chain rule of the second derivative as

𝜕2 𝑓

𝜕𝑊 2
𝑗𝑖

=
𝜕2 𝑓

𝜕𝑂2
𝑗

(
𝜕𝑂 𝑗

𝜕𝑊𝑗𝑖

)2
+ 𝜕𝑓

𝜕𝑂 𝑗

𝜕2𝑂 𝑗

𝜕𝑊 2
𝑗𝑖

=
𝜕2 𝑓

𝜕𝑂2
𝑗

× 𝑃2𝑖 (8)

where the second equality comes from the fact that 𝑂 𝑗 is a linear

function of 𝑊𝑗𝑖 so
𝜕2𝑂 𝑗

𝜕𝑊 2
𝑗𝑖

= 0. Similarly, we can get the second

derivative of the input

𝜕2 𝑓

𝜕𝐼2
𝑖

= 𝑔′𝑎 (𝑃𝑖)2
|O |∑︁
𝑗=1

𝑊 2
𝑗𝑖

𝜕2 𝑓

𝜕𝑂2
𝑗

− 𝑔′′𝑎 (𝑃𝑖)
𝜕𝑓

𝜕𝐼𝑖
(9)

Assume we use ReLU as activation function. Then, 𝑔′𝑎 (𝑃𝑖) =

𝑠𝑖𝑔𝑛(𝑃𝑖) = 𝑠𝑖𝑔𝑛(𝐼𝑖) and 𝑔′′𝑎 = 0. Thus, second derivatives of the
input can be expressed as:

𝜕2 𝑓

𝜕𝐼2
𝑖

= 𝑠𝑖𝑔𝑛(𝐼𝑖)
|O |∑︁
𝑗=1

𝑊 2
𝑗𝑖

𝜕2 𝑓

𝜕𝑂2
𝑗

(10)

The backpropagation process of max pooling layers cancels deriva-
tives of the deactivated inputs (i.e., the second derivatives of the
deactivated inputs is zero). For ResNet and other models with skip
connections, similar to backpropagation process used to calculate
gradients, the second derivatives of different branches are summed
up. Convolution layers, average pooling, and batch normalization
layers can be cast in the same form as FC layers, so their backprop-
agation can share the same scheme as that for FC layers.

In summary, to get these second gradients, we simply need to
compute the second derivative of the loss functions with respect
to the output of the DNN, i.e., 𝜕

2 𝑓

𝜕𝑂2
𝑗

. For L2 loss, 𝜕
2 𝑓

𝜕𝑂2
𝑗

= 2. For cross-

entropy loss with softmax,

𝜕2 𝑓

𝜕𝑂2
𝑗

=

(
1 −

𝑂 𝑗∑
𝑗 exp(𝑂 𝑗)

) (
𝑂 𝑗∑

𝑗 exp(𝑂 𝑗)

)
(11)

We can then follow Eq. 8 and Eq. 10 to backpropagate layer by layer.
Note that the first order gradient can be computed as

𝜕𝑓

𝜕𝑊𝑗𝑖
=

𝜕𝑓

𝜕𝑂 𝑗
× 𝑃𝑖 (12)

𝜕𝑓

𝜕𝐼𝑖
= 𝑠𝑖𝑔𝑛(𝐼𝑖)

|O |∑︁
𝑗=1

𝑊𝑗𝑖
𝜕𝑓

𝜕𝑂 𝑗
(13)

Comparing Eq. 12 and Eq. 13 with Eq. 8 and Eq. 10, we can find
that the second derivative only requires an extra multiplication,
and the time needed is negligible compared with convolution op-
erations in forward propagation. If implemented efficiently, the
second derivative calculation process of SWIM takes approximately
the same amount of time and memory as conventional gradient
computation. In addition, unlike gradient computation that needs
to be repeated in each iteration of gradient descent, in SWIM only
second derivative computation is done only once.

4 EXPERIMENTAL EVALUTAION
In this section, we first define the device variation model we use.
Then, we describe a comprehensive study on the MNIST dataset
to show the effectiveness of SWIM over the state-of-the-art under
different device variations. After that, we use CIFAR-10 and Tiny
ImageNet datasets to show its effectiveness in larger models.

4.1 Mapping and Impact of Device Variations
This paper is a proof concept to show the effectiveness of SWIM
on temporal variations in the programming process, where the
variation of each device is independent, so we use a simple yet
realistic model to describe it.

For a weight represented by 𝑀 bits, let its desired value W𝑑𝑒𝑠

be:

W𝑑𝑒𝑠 =

𝑀−1∑︁
𝑖=0

𝑚𝑖 × 2𝑖 (14)

where𝑚𝑖 is the value of the 𝑖𝑡ℎ bit of the desired weight value. We
also assume the value programmed on each device is a Gaussian
variable ofN(𝑔, 𝜎2) where 𝑔 is the desired conductance value and 𝜎
describes the level of uncertainty under device variation. Note that𝜎
is independent ofW𝑑𝑒𝑠 according to experimental observations [2].

An 𝑀-bit weight can be mapped to 𝑀/𝐾 𝐾-bit devices1, with
the mapped value of the 𝑖𝑡ℎ (0 ≤ 𝑖 ≤ 𝑀/𝐾 − 1) device 𝑔𝑖 as:

𝑔𝑖 = N ©­«
𝐾−1∑︁
𝑗=0

𝑚𝑖×𝐾+𝑗 × 2𝑗 , 𝜎2ª®¬ (15)

Note that negative weights are mapped in a similar manner.
Thus, when a weight is programmed, the actual value W𝑚𝑎𝑝

mapped on the devices would be:

W𝑚𝑎𝑝 =

𝑀/𝐾−1∑︁
𝑖=0

2𝑖×𝐾N
(
𝑔𝑖 , 𝜎

2
)

= W𝑑𝑒𝑠 +
𝑀/𝐾−1∑︁
𝑖=0

2𝑖×𝐾N(0, 𝜎2)

= W𝑑𝑒𝑠 + N ©­«0, 𝜎2
𝑀/𝐾−1∑︁
𝑖=0

2𝑖×𝐾×2ª®¬
(16)

In the experiments below, we set 𝐾 = 4 as in [4] and follow
the above model in simulating the write-verify process. Same as
the standard practice discussed in Section 2.1, for each weight, we
iteratively program the difference between the value on the device
and the expected value until it is below 0.06. With the inherent
randomness, it may take different weights different number of
1Wihtout loss of generality, we assume that M is a multiple of K.

SWIM: Selective Write-Verify for Computing-in-Memory Neural Accelerators

Table 1: Comparison of accuracy (%) and normalized write cycles (NWC) between SWIM and the baselines on LeNet for MNIST
under different 𝜎 , the standard deviation specified in Eq. 16 before write-verify. Data are collected over 3,000 Monte Carlo
runs and reported in mean±std format. Write cycles are normalized to those needed to write-verify all the weights. NWC
= 0.0means no write-verify or in-situ training. NWC = 1.0 for the three write-verify methods corresponds to the conventional
method of writing-verifying all the weights.

𝜎 Method Normalized Write Cycles (NWC)
0.0 0.1 0.3 0.5 0.7 0.9 1.0

0.1

SWIM ↑ 98.49 ± 0.08 98.56 ± 0.08 98.57 ± 0.08 98.57 ± 0.08 98.57 ± 0.08 ↑
Magnitude 97.96 ± 0.31 98.20 ± 0.19 98.41 ± 0.12 98.50 ± 0.09 98.54 ± 0.08 98.56 ± 0.08 98.58 ± 0.08
Random 98.03 ± 0.26 98.17 ± 0.21 98.30 ± 0.16 98.42 ± 0.12 98.52 ± 0.09 ↓
In-situ ↓ 98.39 ± 0.21 98.46 ± 0.19 98.47 ± 0.17 98.48 ± 0.16 98.50 ± 0.17 98.51 ± 0.17

0.15

SWIM ↑ 98.30 ± 0.13 98.52 ± 0.09 98.57 ± 0.08 98.57 ± 0.08 98.58 ± 0.08 ↑
Magnitude 96.13 ± 1.23 97.33 ± 0.56 98.14 ± 0.21 98.43 ± 0.12 98.51 ± 0.10 98.56 ± 0.08 98.58 ± 0.08
Random 96.53 ± 1.04 97.20 ± 0.65 97.73 ± 0.39 98.12 ± 0.23 98.45 ± 0.12 ↓
In-situ ↓ 96.47 ± 1.00 96.59 ± 0.82 96.69 ± 0.84 96.72 ± 0.82 96.79 ± 0.85 96.84 ± 0.77

0.2

SWIM ↑ 98.12 ± 0.16 98.46 ± 0.09 98.55 ± 0.08 98.57 ± 0.08 98.58 ± 0.08 ↑
Magnitude 94.46 ± 2.16 96.20 ± 1.11 97.65 ± 0.39 98.29 ± 0.14 98.45 ± 0.10 98.54 ± 0.08 98.58 ± 0.08
Random 94.89 ± 1.90 96.13 ± 1.20 97.15 ± 1.43 97.88 ± 0.71 98.38 ± 0.20 ↓
In-situ ↓ 95.33 ± 1.75 95.96 ± 1.36 96.42 ± 1.18 96.49 ± 1.09 96.69 ± 0.94 96.82 ± 0.80

cycles to complete the write-verify: some may not need rewrite at
all; while others need a lot. Statistically, the above model results in
an average of 10 cycles over all the weights and a weight variation
distribution with 𝜎 = 0.03 after write-verify. These numbers are in
line with those reported in [8], which confirms the validity of our
model and parameters.

4.2 Baselines and Metrics
In addition to the common practice of writing-verifying all weights
the comparison with which is quite trivial, we choose three base-
lines for SWIM to compare with: 1) Random selection: each time
we randomly select a group of weights from the ones that have
not yet been selected to perform write-verify. 2) Magnitude based
approach: we sort all the weights based on their magnitude and
conduct write-verify with the largest ones first. 3) In-situ training:
retrain the networks on-chip following the same method as that
used in [13]. No write-verify is performed.

Because these methods have different programming mechanisms
(write-verify vs. on-device training), we use the total number of
write cycles as an indicator for the programming time, which is
fair as writing NVM devices takes far more time than reading them
and other operations. For the two write-verify baseline methods
and SWIM, the model in Section 4.1 is applied in simulating and
counting the number of write cycles. On the other hand, the number
of writes in each iteration of in-situ training is equal to the number
of weights that are selected for update in that iteration as no write-
verify is done. To better compare different methods, we normalize
the number of write cycles with respect to that used to write-verify
all the weights in the DNN model under the same setting.

Note that for SWIM, random selection and magnitude based
selection, 0.0 ≤ NWC ≤ 1.0, but for in-situ training, NWC can
exceed 1.0 because the model can be trained for many iterations
and need a large number of writes to update the weights. If we do
not do any write-verify or in-situ training, then NWC = 0.0. In our
experiments, we vary the maximum allowed accuracy drop 𝛿𝐴 for
each method and collect the resulting NWC needed.

All models presented are quantized to the proper data preci-
sion and trained to converge on GPU before mapping to nvCiM.
This training process is quantization-aware following [4] but does
not take device variations into considerations. The experiments
are conducted on GTX Titan-XP GPUs with the machine learning
framework of PyTorch 1.8.1. Considering the randomness in device
variations, all results shown in this paper are obtained over 3,000
Monte Carlo runs with verified convergence, and both mean and
standard deviation are reported.

4.3 Results for MNIST
We first show the effectiveness of SWIM on LeNet for the MNIST
dataset. Both the weights and activation are quantized to 4 bits. The
accuracy of this DNN model without the impact of device variation
is 98.68%. The total number of weights of this model is 1.05 × 105.

Although the typical standard deviation 𝜎 for device variation
model can be assumed to be 0.1 before write-verify for most devices,
certain emerging technologies may lead to higher variations espe-
cially before they become mature. To show the broad effectiveness
of SWIM, we compare the performance of SWIM with the baseline
methods over different 𝜎 values. The results are shown in Table. 1.
We can see that writing-verifying all the weights can mostly re-
cover the model accuracy (i.e., 98.58% when NWC = 1.0 for the
three write-verify methods). While all the methods show a decrease
in accuracy as NWC decreases, SWIM uses significantly fewer NWC
than others to attain the same accuracy across all different 𝜎 values.
In addition, it also achieves a significantly lower standard deviation
in accuracy than any other method over 3, 000 Monte Carlo runs,
indicating that the accuracy would barely fluctuate across different
devices.

Specifically, compared with the conventional practice of writing-
verifying all the weights (NWC = 1.0), with the typical variation
(𝜎 = 0.1), SWIM only needs 50% of the write cycles (NWC = 0.5,
or 2× speedup) to avoid any accuracy drop. Even with only 10% of
the write cycles (NWC = 0.1 or 10× speedup), SWIM can attain an
accuracy drop below 0.1%. On the other hand, the magnitude based

Zheyu Yan, Xiaobo Sharon Hu, and Yiyu Shi

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Write Cycles

60

65

70

75

80

85

90

Ac
cu

ra
cy

 (%
)

SWIM
Magnitude
Random
In-Situ

(a) ConvNet for CIFAR-10

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Write Cycles

90

91

92

93

94

95

96

97

Ac
cu

ra
cy

 (%
)

SWIM
Magnitude
Random
In-Situ

(b) ResNet-18 for CIFAR-10

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Write Cycles

10

20

30

40

50

60

70

Ac
cu

ra
cy

 (%
)

SWIM
Magnitude
Random
In-Situ

(c) ResNet-18 for Tiny ImageNet
Figure 2: Accuracy v.s. normalized write cycles (NWC) for SWIM and the baselines on three models: ConvNet and ResNet-18
for CIFAR-10 and ResNet-18 for Tiny ImageNet. Solid lines represent average accuracy and shadowed areas represent standard
deviation, over 3,000 Monte Carlo runs using the device variation model.
approach, the random approach, and the in-situ training need an
NWC close to 0.5, 0.9, and 0.9, respectively, for that accuracy. This
translates to a speedup for SWIM of 5×, 9×, and 9×, respectively.
SWIM remains effective even when 𝜎 reaches 0.2: compared with
writing-verifying all the weights, by using 10% of the write cycles,
it can achieve an accuracy drop of less than 0.5%. To achieve this ac-
curacy, random approach and magnitude based approach need 70%
and 50% of the write cycles respectively. And even with 10× writes
(NWC = 1.0), in-situ training cannot achieve the same accuracy,
indicating that it still needs more training iterations. While not
shown in Table. 1, in-situ training can fully recover model accuracy
(to 98.68%) using 32 NWC, which means it can achieve higher accu-
racy than the write-verify methods, but at the cost of a significantly
larger number of writes and thus significantly longer programming
time, as well as the additional hardware.

4.4 Results for CIFAR-10
We now show the effectiveness of SWIM on the CIFAR-10 dataset
with two models ConvNet [6] and ResNet-18 [3]. For these two
models, both the weights and activation are quantized to 6 bits and
𝜎 = 0.1 before write-verify. The accuracy without device variations
for ConvNet is 86.07% and for ResNet-18 is 95.62%. With device
variation and all the weights written-verified, the numbers are
85.19% and 95.36%. respectively. The total number of weights for
ConvNet and ResNet-18 are 6.40 × 106 and 1.12 × 107, respectively.

Fig. 2a shows the comparison between SWIM and the baselines
on ConvNets. Compared with writing-verifying all the weights, all
the methods except SWIM see an accuracy drop over 10% when
NWC is 0.1, while SWIM keeps the accuracy drop below 2.5%. From
this figure, we can clearly see that SWIM has the smallest standard
deviation in accuracy among all the methods, demonstrating its
superior robustness. While not shown in Fig. 2a, with NWC = 75,
in-situ training can fully recover model accuracy.

Fig. 2b shows the comparison between SWIM and the baselines
on ResNet-18. Similar conclusions can be drawn here. Compared
with writing-verifying all the weights, SWIM can preserve an ac-
curacy drop of less than 0.5% using only 10% of the write cycles,
while the other methods result in an accuracy drop of more than
2% for the same number of write cycles. In-situ training can fully
recover model accuracy with 115 NWC.

4.5 Experiments on Tiny ImageNet
Finally, we show the effectiveness of SWIM on Tiny ImageNet
with ResNet-18 [3], following the same quantization setting and 𝜎 .
The accuracy is 65.50% without device variation, and 64.84% with

device variation and all weight written-verified. The total number
of weights for this model is 1.13 × 107.

Fig. 2c shows the comparison between SWIM and the baselines
on ResNet-18 for Tiny ImageNet. As this is a more challenging
task than CIFAR-10, we can see that the accuracy drops for all the
methods are larger compared with those in Fig. 2b. Even so, SWIM
can achieve an accuracy less than 3% lower than that of writing-
verifying all the weights using only 10% of the write cycles, fewest
of all the methods. In-situ training can fully recover model accuracy
in 155 NWC.

5 CONCLUSIONS
In this work, contrary to the common practice that write-verify all
the weights of a DNN when mapping it to an nvCiM platform to
combat device non-idealities, we show that it is only necessary to
write-verify a small portion of themwhile maintaining the accuracy.
As such, the programming time can be drastically reduced. We fur-
ther introduce SWIM, which efficiently computes second derivatives
that can be used to select weights for write-verify. Experimental
results show up to 10x speedup compared with conventional write-
verify schemes with little accuracy difference.

REFERENCES
[1] Yu-Hsin Chen and et al. 2016. Eyeriss: A Spatial Architecture for Energy-Efficient

Dataflow for Convolutional Neural Networks. In Proc. of ISCA. IEEE, 367–379.
[2] Ben Feinberg and et al. 2018. Making memristive neural network accelerators

reliable. In HPCA. IEEE, 52–65.
[3] Kaiming He and et al. 2016. Deep residual learning for image recognition. In

CVPR. 770–778.
[4] Weiwen Jiang and et al. 2020. Device-circuit-architecture co-exploration for

computing-in-memory neural accelerators. IEEE Trans. Comput. 70, 4 (2020),
595–605.

[5] Yann LeCun and et al. 1990. Optimal Brain Damage. In Advances in Neural
Information Processing Systems, Vol. 2. Morgan-Kaufmann.

[6] Xiaochen Peng and et al. 2019. DNN+NeuroSim: An End-to-End Benchmark-
ing Framework for Compute-in-Memory Accelerators with Versatile Device
Technologies. In Proc. of IEDM.

[7] Ali Shafiee and et al. 2016. ISAAC: A convolutional neural network acceler-
ator with in-situ analog arithmetic in crossbars. In ACM SIGARCH Computer
Architecture News, Vol. 44. 14–26. Publisher: ACM New York, NY, USA.

[8] Wonbo Shim and et al. 2020. Two-step write–verify scheme and impact of the
read noise in multilevel RRAM-based inference engine. Semiconductor Science
and Technology 35, 11 (2020), 115026. Publisher: IOP Publishing.

[9] Vivienne Sze and et al. 2017. Efficient processing of deep neural networks: A
tutorial and survey. Proc. IEEE 105, 12 (2017), 2295–2329. Publisher: Ieee.

[10] Zheyu Yan, , and et al. 2022. RADARS: Memory Efficient Reinforcement Learning
Aided Differentiable Neural Architecture Search. In ASP-DAC.

[11] Zheyu Yan and et al. 2020. When single event upset meets deep neural networks:
Observations, explorations, and remedies. In ASP-DAC.

[12] Zheyu Yan and et al. 2021. Uncertainty Modeling of Emerging Device based
Computing-in-Memory Neural Accelerators with Application to Neural Archi-
tecture Search. In ASP-DAC. IEEE, 859–864.

[13] Peng Yao and et al. 2020. Fully hardware-implemented memristor convolutional
neural network. Nature 577, 7792 (Jan. 2020), 641–646.

	Abstract
	1 Introductions
	2 Related Works
	2.1 Crossbar-based Computing Engine
	2.2 Handling Variations in Weight Mapping

	3 SWIM Framework
	3.1 Overview of SWIM
	3.2 Sensitivity Analysis
	3.3 Second Derivative Calculation

	4 Experimental Evalutaion
	4.1 Mapping and Impact of Device Variations
	4.2 Baselines and Metrics
	4.3 Results for MNIST
	4.4 Results for CIFAR-10
	4.5 Experiments on Tiny ImageNet

	5 Conclusions
	References

