
NobLSM: An LSM-tree with Non-blocking Writes for SSDs
Haoran Dang, Chongnan Ye, Yanpeng Hu, and Chundong Wang∗

School of Information Science and Technology, ShanghaiTech University, China
{danghr, yechn, huyp, wangchd}@shanghaitech.edu.cn

ABSTRACT
Solid-state drives (SSDs) are gaining popularity. Meanwhile, key-
value stores built on log-structuredmerge-tree (LSM-tree) arewidely
deployed for data management. LSM-tree frequently calls syncs to
persist newly-generated files for crash consistency. The blocking
syncs are costly for performance. We revisit the necessity of syncs
for LSM-tree. We find that Ext4 journaling embraces asynchronous
commits to implicitly persist files. Hence, we design NobLSM that
makes LSM-tree and Ext4 cooperate to substitute most syncs with
non-blocking asynchronous commits, without losing consistency.
Experiments show that NobLSM significantly outperforms state-of-
the-art LSM-trees with higher throughput on an ordinary SSD.

CCS CONCEPTS
• Software and its engineering→ File systems management;
• Information systems → Key-value stores.

KEYWORDS
LSM-tree, Key-Value Store, Fsync, Asynchronous Commit

1 INTRODUCTION
Solid-state drives (SSDs) are gaining wide popularity for storage [1–
3]. Computer scientists have ported critical data management sys-
tems into SSDs, including the key-value (KV) store built on log-
structured merge tree (LSM-tree) [4–12]. LSM-tree employs a log to
back up arriving KV pairs before putting them into an in-memory
mutable memtable. A full memtable is made immutable and LSM-
tree creates a new memtable along with an empty log. LSM-tree
also has several on-disk levels (𝐿𝑛 , 𝑛 ≥ 0) for persistent storage.
Each level contains SSTable files composed of KV pairs. When LSM-
tree uses up the memtable space, it does a minor compaction that
converts an immutable memtable to an 𝐿0 SSTable. LSM-tree de-
fines a fixed capacity limit for any 𝐿𝑛 , which is usually one tenth
of the capacity limit of 𝐿𝑛+1, thereby resembling a tiered tree-like
structure. A full 𝐿𝑛 triggers a major compaction: LSM-tree selects
a few 𝐿𝑛 and 𝐿𝑛+1 SSTables, merge-sorts KV pairs stored in them,
and orderly packs sorted KV pairs into new 𝐿𝑛+1 SSTables.

To rule out inconsistency due to a failed major compaction,
LSM-tree enforces a strict order in handling new and old SSTables.
In short, only after persisting new SSTables via syncs (fsync or
fdatasync), can LSM-tree delete old ones that have been kept for

∗Corresponding author (wangchd@shanghaitech.edu.cn)

DAC ’22, July 10–14, 2022, San Francisco, CA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9142-9/22/07.
https://doi.org/10.1145/3489517.3530470

backup in case of a sudden crash. However, sync is a blocking write
operation that persists data directly with storage device and enforces a
barrier to stall subsequent I/O operations until it completes [1, 13, 14].

The cost of sync is severe for LSM-trees since it inflicts stalls on
the critical path of LSM-tree operations [4, 10, 12, 14]. For example,
LevelDB, a typical LSM-tree-based KV store [15], would suspend in
the foreground if a major compaction between 𝐿0 and 𝐿1 has not
finished while the immutable memtable is waiting for conversion.
With LevelDB we quantitatively study the impact of syncs. We
record the execution time of randomly putting 10 million 1KB-
sized KV pairs within the original LevelDB and a ‘volatile’ LevelDB
with all syncs disabled. The volatile LevelDB reduces the execution
time by 53.2% compared to the original one. Hence, albeit losing
consistency, the volatile LevelDB achieves superb performance. The
aim of this paper, however, is to develop an LSM-tree variant that
preserves crash consistency but minimizes the use of syncs.

Not much research work has been done to particularly mitigate
the cost of syncs for LSM-trees. He et al. [1] reported that syncs
hinder LevelDB and RocksDB [16] from efficiently utilizing the
bandwidth of SSD. Kim et al. [14] designed BoLT that tries to reduce
the barrier effect of syncs for LSM-trees by outputting one large
factual SSTable per compaction and flushing KV pairs grouped in
the large file via one sync. Yet whenever KV pairs are involved in
a future compaction, BoLT must call sync again to re-persist them.

The design proposed by this paper, nonetheless, mainly relies on
non-blocking writes and syncs each KV pair only once for crash con-
sistency. It is named NobLSM (non-bocking LSM-tree) that seeks
aid from the file system for the minimum use of syncs. LSM-tree
stores SSTables as files via an underlying file system, which has to
guarantee system-level crash consistency [2, 3, 13, 17]. The preva-
lent journaling file system Ext4, in its default data=ordered mode,
secures the consistency of file system metadata (e.g., inodes) by or-
derly committing the inode of a file into a journal after persistently
writing back the file’s modified data. Ext4 initiates a commit either
synchronously due to an explicit call of sync, or asynchronously, i.e.,
every a period or upon the shortage of DRAM page cache [13, 17].
Once a commit succeeds, Ext4 guarantees that both metadata and
data of a committed file are crash-recoverable. Consequently, if we
can precisely track when Ext4 commits new SSTables generated for
a major compaction, we do not bother to forcefully sync them with
substantial performance penalties. This is the essence of NobLSM.

The main ideas of NobLSM are summarized as follows.

• NobLSM yields a crash-consistent LSM-tree without using syncs
on the critical path of major compaction. We enhance Ext4 with
two system calls (syscalls) based on its asynchronous commit
mechanism, for NobLSM to perceive the durability of new SSTa-
bles. NobLSM abides by a strict order of persistently committing
new SSTables prior to removing old ones for crash consistency.

• NobLSM syncs KV pairs packed in an 𝐿0 SSTable only once when
it makes the 𝐿0 SSTable from an immutable memtable during a

403

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://orcid.org/0000-0003-0750-5223
https://doi.org/10.1145/3489517.3530470
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3489517.3530470&domain=pdf&date_stamp=2022-08-23

Mutable
MemTableMemory

Storage Write-Ahead Log

Immutable
MemTable

Full

(65, 438) (19, 398)L0

(142, 168)

(5, 46)L1

Write Request

(410, 477)Major Compaction

(138, 200)

(1, 68)L2 (387, 456)

Ln (57, 88)(7, 52) (345, 513)

Minor Compaction

(5, 46)
An SSTable holding
KV pairs with keys in
the range of 5 to 46

Figure 1: An Illustration of LSM-tree Architecture

minor compaction. While waiting for Ext4 to asynchronously
commit new SSTables, NobLSM transiently retains compacted
old SSTables to back up new ones after a major compaction.

• NobLSM deprives compacted SSTables of serving search requests
and discards them at a proper time, as they are short-lived and
volatile after the major compaction.
NobLSM is a simplistic approach that avoids incurring many

changes to Ext4 and LSM-tree. We build a prototype for it on Lev-
elDB and Ext4 with just about 330 lines of code in all. However,
extensive experiments confirm that NobLSM significantly boosts
the performance of LevelDB with about halved execution time for
write-intensive workloads, while achieving the same crash con-
sistency. It also generally outperforms state-of-the-art LSM-trees
including BoLT. These justify the efficacy and efficiency of NobLSM.

The rest of this paper is as follows. We briefly show LSM-tree,
Ext4, and syncs in Section 2. We illustrate a motivational study in
Section 3. In Section 4, we detail the design of NobLSM. We analyze
evaluation results in Section 5 and conclude the paper in Section 6.

2 BACKGROUND
2.1 Crash Consistency of LSM-Tree
Figure 1 illustrates the architecture of typical LSM-trees. As men-
tioned, LSM-tree maintains in-memory memtables to absorb arriv-
ing KV pairs, and multiple on-disk levels (𝐿𝑛 , 𝑛 ≥ 0) to persistently
store KV pairs. LSM-tree leverages a write-ahead log to record ar-
riving KV pairs before putting them into memtable. Once KV pairs
are dumped into 𝐿0, LSM-tree secures their consistency through
backup copies and syncs. After a minor compaction converting
an immutable memtable to an 𝐿0 SSTable, LSM-tree persists the
SSTable by calling sync before the deletion of corresponding log.
As to a major compaction between 𝐿𝑛 and 𝐿𝑛+1, LSM-tree first
generates and syncs new 𝐿𝑛+1 SSTables. Then it safely removes
compacted 𝐿𝑛 and 𝐿𝑛+1 SSTables. To sum up, LSM-tree continually
calls syncs to persist KV pairs during both minor and major com-
pactions. Furthermore, whenever a KV pair is involved in a future
compaction, LSM-tree would sync it again.

2.2 Blocking sync and Ext4 Journaling
Many KV stores rely on syncs (fsync or fdatasync) for durability
and consistency [13, 18]. In Linux, LSM-trees like LevelDB by de-
fault call fdatasync that functions almost the same as fsync [13,
15]. The impact of syncs on performance is detrimental. A sync not
only persists data forcefully with storage device, but also imposes an
ordering barrier that blocks subsequent I/O operations [13, 14, 18].

The sync is performed by an underlying file system, which se-
cures system-level crash consistency to support applications. Ext4,

0.83 1.72

8.18

16.42

10.06

22.44

0

5

10

15

20

25

4GB 8GB

Ex
ec

ut
io

n
Ti

m
e

(s
)

Size

Async
Direct
Sync

(a) Execution time of Async, Di-
rect and Sync

601
753

226
330 281

366

123 134

0

500

1000

fillrand
2MB

overwrt
2MB

fillrand
64MB

overwrt
64MB

Ex
ec

ut
io

n
Ti

m
e

(s
)

Table Size

Sync
No-Sync

(b) Impact of SSTable size and
syncs on execution time

Figure 2: An Illustration of Testing the Impact of syncs

as a prevalent file system leveraging JBD2 for journaling [2, 13, 17],
guarantees the consistency of file system metadata, e.g., the inodes
of files, and enforces a writing order of file metadata and data in
its default data=ordered mode. When data blocks of a file named,
for example, ‘dac22.txt’ are modified, Ext4 commits the metadata
block holding the file’s inode into a persistent journal. Before do-
ing so, Ext4 demands that modified data blocks of ‘dac22.txt’ must
have been written back to storage device. Hence, once an inode is
committed, all data blocks related to it should be already persisted.

3 MOTIVATION
SSDs are widely deployed today. Concerning the necessity and cost
of syncs, we aim to reduce the use of them for LSM-tree ported into
SSDs but without losing crash consistency. Previous studies have
explored how to alleviate the impact of syncs in the perspective of
system or applications. For instance, Ext4 is being enhanced with a
feature called fast commit in line with the idea of iJournaling [13,
19]. This paper, however, considers a collaborative practice across
system (Ext4) and application (LSM-tree) to reduce the use of syncs.

The Impact of syncs on SSD. A sync makes applications by-
pass DRAM page cache and render data durable directly with the
storage device. Worse, it also hinders subsequent operations from
proceeding [1, 14]. We measure the cost of syncs on SSDs with
three writing strategies, i.e., Async (asynchronous write), Direct
(write via direct I/O), and Sync (write with sync). We successively
generate 4GB and 8GB data in mutliple files, with 2MB per file,
same as LevelDB’s default SSTable size. We write these files to an
ordinary SSD mounted as Ext4. As shown by Figure 2a, the exe-
cution time increases by 9.5× from Async to Direct, and further
deteriorates by 36.7% to Sync. The overall performance drop of
13.0× from Async to Sync clearly indicates that the impact of
syncs is significant on SSDs. If we could remove most syncs for
LSM-trees, we should approach the high performance of Async.

The Impact of syncs on LSM-tree. We conduct another test to
observe the actual impact of syncs on real LSM-trees. We disable
all syncs for LevelDB, thereby rendering it ‘volatile’ without con-
sistency guarantee. Yet it yields the optimal performance we try to
reach by reducing the use of syncs. We use the micro-benchmark
db_bench embedded in LevelDB to randomly put 10 million 1KB-
sized KV pairs (fillrandom) and then overwrite them (overwrite). As
shown in the left half of Figure 2a, without sync, the execution time
shortens by 53.2% and 51.4%, respectively, for fillrandom and over-
write with 2MB SSTables. Hence, the frequent, repeated syncing
of KV pairs badly degrades the performance of LSM-trees.

404

The Impact of Different Sizes for SSTable. Besides 2MB, we also
test with 64MB SSTables. 64MB is the default size for RocksDB [16]
and also used by Kim et al. [14] to verify the impact of syncs. As
shown by Figure 2b, from 2MB to 64MB, the execution time of
original LevelDB decreases by 62.4% and 56.2% for fillrandom and
overwrite, respectively. Larger SSTable leads to aggregated flush
with fewer barriers. Though, even with 64MB SSTables, employing
syncs still degrades performance by 45.6% and 59.4%, respectively,
for two workloads. Thus, using large SSTables alone without a
substantial reduction of syncs cannot fully mitigate the cat-
astrophic cost of syncs. In this paper, we take a holistic approach
and develop NobLSM that substitutes most syncs with asynchro-
nous commit implicitly embraced by Ext4 journaling.

4 DESIGN OF NOBLSM
NobLSM is made by a simplistic but effectual collaboration between
LSM-tree and Ext4. It mainly relies on non-blocking writes for
crash consistency and uses syncs only once when converting an
immutable memtable to 𝐿0 SSTable in a minor compaction. As to a
major compaction, NobLSM takes advantage of the asynchronous
journal commit of Ext4, rather than syncs, to implicitly persist new
SSTables. On the success of commit, NobLSM safely removes old
SSTables for SSD space efficiency. It demands a holistic cooperation
between LSM-tree and Ext4 across user- and kernel-spaces. By
doing so, NobLSM manages to avoid the blocking syncs on the
critical path of major compaction, thereby improving performance
and achieving consistency simultaneously.

4.1 LSM-tree with Minimum syncs
Write and Read Requests. In the foreground, NobLSM handles
Put, Get, and Delete requests the same as conventional LSM-trees.
On receiving a Put request, NobLSM appends the arriving KV
pair to a log and then puts it into the mutable memtable. On a Get
request, NobLSM orderly searches from memtables to in-SSD levels.

Minor Compaction. NobLSM turns a full mutable memtable
to be immutable. It initiates a minor compaction upon running out
memtable space and dumps an immutable memtable to be an 𝐿0
SSTable. It persists 𝐿0 SSTables by calling sync. This is the only one
occasion when NobLSM syncs KV pairs. After syncing, NobLSM
removes corresponding log and frees up the immutable memtable.

Major Compaction. In a major compaction between 𝐿𝑛 and
𝐿𝑛+1, NobLSM merge-sorts all KV pairs from selected SSTables. It
then packs them into new 𝐿𝑛+1 SSTables. NobLSM neither syncs
new SSTables nor immediately remove old ones. It asynchronously
writes new files. Next it leverages syscalls we have developed with
Ext4 to precisely track when new SSTables become durable in SSD
(cf. Section 4.2), the effect of which is identical to persisting files via
syncs. Consequently, NobLSM eliminates direct I/Os and barriers
caused by syncs from the critical path of major compactions.

NobLSM transiently retains old SSTables as backup copies for
crash recoverability, since new SSTables are being asynchronously
committed. To manage SSTable files, NobLSM maintains a global
pair of sets as predecessors and successors. Given a major compaction
generating 𝑞 new SSTables from 𝑝 old ones (𝑝 > 0, 𝑞 > 0), NobLSM
fills them in corresponding sets and tracks the 𝑝-to-𝑞 dependency
mapping in between. Only when all 𝑞 successors are committed can

NobLSM delete 𝑝 predecessors. The reason of using a global pair of
sets is twofold. Firstly, Ext4’s asynchronous commit implies tem-
poral uncertainty and NobLSM needs a structure to consecutively
delete obsolete SSTables. Secondly, NobLSM’s reduction of syncs
brings up throughput and in turn entails more compactions. Such a
trend needs a global structure to accumulate multiple simultaneous
𝑝-to-𝑞 mappings. Hence, NobLSM utilizes the mappings between
two sets to monitor ongoing and historical major compactions for
which Ext4 has not finished committing their new SSTables.

4.2 Ext4 with Asynchronous Commit
The Implication of Ext4 Journaling. Ext4 uses a two-phase pro-
tocol of JBD2, i.e., commit and checkpoint, for journaling [2, 13, 17].
The unit of journaling is a transaction made of multiple modified
blocks. Ext4 commits each transaction to a journal and then check-
points files in place. It initiates a commit either synchronously due
to syncs, or asynchronously, i.e., every a period (five seconds by
default) or when dirty pages in DRAM page cache reaches a thresh-
old (10% by default), whichever is earlier. File metadata or data is
crash-recoverable once successfully committed to the journal.

The change of file data leads to the change of file metadata, partic-
ularly the file’s inode. In its default data=orderedmode, Ext4 jour-
nals metadata only. Given a file with modified data, data=ordered
mode forcefully persists data to the file before committing the file’s
inode to journal. As a result, once Ext4 commits a transaction con-
taining a file’s inode, the file must be durable, since both the file’s
data and metadata have been successively persisted.

The native Ext4 does not give the information of whether a
specific inode is committed or not.We enhance Ext4with structures
and interfaces for NobLSM to inquire the commit status of an inode.

TwoKernel-space Tables. Ext4 relies on the writeback thread
of Linux kernel to commit transactions. Yet Ext4 journaling is glob-
ally shared by system and all applications over time. A transaction
may consist of inodes not belonging to NobLSM. Also, the inodes
of new SSTables generated in one major compaction are possibly
pending in different transactions. To resolve these issues, we main-
tain two tables in the kernel space for Ext4 to record whether each
new SSTable is persisted or not. The Pending Table records inodes
of all new SSTables being tracked by NobLSM while the Committed
Table holds ones that have been committed. On the completion of
committing a transaction, Ext4 journaling transfers inodes covered
by that transaction from Pending Table to Committed Table.

TwoNewSyscalls. Weadd a syscall (check_commit) for NobLSM
to tell Ext4 what inodes the latter shall start tracking. Hence,
check_commit fills inodes addressed by NobLSM in the Pending
Table. The other syscall (is_committed) is for NobLSM to inquire if
Ext4 hasmoved a specific inode toCommitted Table.WhenNobLSM
realizes that all new SSTables are factually committed for a major
compaction, it safely removes compacted old ones (cf. Section 4.3).

The two kernel-space tables support the global pair of user-space
sets maintained by NobLSM’s LSM-tree at runtime. Connected
through two syscalls, they jointly function at system and application
levels. This systematic design enables NobLSM to efficientlymanage
SSTables without losing consistency guarantee. Moreover, NobLSM
conducts all acts in the background, thereby incurring the minimum
cost on the critical path of LSM-tree operations.

405

4.3 The Management of Compacted SSTables
NobLSM needs to attend two issues in managing compacted SSTa-
bles. One is depriving them of serving search requests. The other
one is discarding them at a proper time for SSD space efficiency.

Transient Duplicate Copies of KV Pairs. As NobLSM tran-
siently retains both new and old SSTables, there is a moment at
which one valid KV pair exists in two SSTables. Conventional LSM-
trees maintain an in-memory Version backed by a Manifest file to
track all valid SSTables. As old SSTables are potentially volatile,
using them to serve search requests is infeasible. Thus, NobLSM
labels them as ‘shadow’ and directs no search request to them.

Reclamation of Obsolete SSTables. On a successful commit
of journaling, NobLSM asks Ext4 to delete relevant shadow SSTables.
We set a frequency of every five seconds for NobLSM to inquire
Ext4 on the commit of new SSTables via an is_committed syscall.
Such a match between inquiry interval and Ext4’s commit interval
reduces unnecessary checks across the user- and kernel-spaces.

Old SSTables used to be committed for past major compactions.
Ext4 removes their inodes from the Commtted Table upon deletion.
This gains time and space efficiencies of managing kernel-space
tables and avoids inter-table cyclic dependency due to inode reuse.

4.4 Crash Consistency of NobLSM
NobLSM logs an arriving KV pair and later persistently stores
it via sync into an 𝐿0 SSTable during a minor compaction. Any
subsequent major compaction between 𝐿𝑛 and 𝐿𝑛+1 (𝑛 ≥ 0) depends
on that sync. NobLSM guarantees that, since the first time a KV pair
is made durable, it would never be lost after a crash. The rationale
is that, in a major compaction, NobLSM strictly abides by the order
of implicitly persisting new SSTables prior to removing compacted
ones. To sum up, NobLSM achieves the same crash consistency as
conventional LSM-trees but calls the minimum number of syncs.

4.5 Putting Everything Together
Let us use an example shown in Figure 3 to summarize how NobLSM
works. NobLSM’s LSM-tree selects and compacts SSTables 127 and
123 at 𝐿1 and 𝐿2, respectively, into new 𝐿2 SSTables 230 and 231 (1).
Ext4 asynchronously writes them (2) and LSM-tree obtains their
inode numbers #4567 and #4568. LSM-tree asks Ext4 to fill two
inodes in the Pending Table via the syscall check_commit (3) and
updates the 𝑝-to-𝑞 dependency (4). Simultaneously, Ext4 writes
back data into SSD for two new SSTables (5) and commits two
inodes alongside a transaction into the journal (6).

On the success of commit, Ext4 moves inodes to the Committed
Table (7) so that LSM-tree can perceive the durability of two new
SSTables via the syscall is_committed (8). Next, LSM-tree deletes
obsolete SSTables 123 and 127 (9). Ext4 accordingly removes two
files and erases corresponding entries in the Committed Table (10).

5 EVALUATION
5.1 Evaluation Setup
Platform. We run all experiments on a server with two Intel
Xeon Gold 6342 processors and 2TB DRAM memory. The operating
system is Ubuntu 20.04.3 with Linux kernel 5.14.7, and the compiler
is GCC/G++ 9.3.0. All LSM-trees store data into a 960GB Samsung

SSTable 127L1
SSTable 123

SSTable 231
SSTable 230

Insert
L2

L2

LSM-tree

Kernel

SSD SSTable 231

(ino #4568)

SSTable 230

(ino #4567)

Page Cache

4

Pending Table

Async Write2

Data
Writeback

5

 Transaction Commit6

SSTable Dependency
p = 2

123, 127
q = 2

230, 231

SSTable 231

(ino #4568)

SSTable 230

(ino #4567)

 Remove Old
SSTables and
Dependency

9

SSTable 123
(ino #3124)

SSTable 127
(ino #3135)

Syscall
is_committed

8

Compaction1

 Syscall check_commit3

Committed Table

Move Entries7

Async
Write

Complete
... #4568 #4567 ...

... #4568 #4567 ... #3135 ... #3124 ...

... TxnStart ... #4567 #4568 ... TxnEnd
Journal of Ext4 Erase #ino
10

Figure 3: An Example of NobLSM’s Major Compaction

PM883 SSD formatted and mounted in the data=ordered mode of
original Ext4 except that NobLSM uses its customized version.

Competitors. We have implemented a prototype of NobLSM
based on LevelDB (version 1.23) and Linux kernel 5.14.7 with about
200 and 130 lines of code (LOC) added or changed, respectively.
We compare it to original LevelDB, BoLT (based on LevelDB),
L2SM [20], HyperLevelDB [21], PebblesDB [22], and RocksDB [16].
They represent different approaches to reduce the performance
cost of LSM-trees, especially in the process of compactions, with-
out losing consistency. BoLT outputs a large factual SSTable per
compaction so as to sync the bundled KV pairs only once. L2SM
handles hot KV pairs separately from cold ones, as the former are
more frequently updated and likely to inflict unnecessary I/Os in
compactions. RocksDB and HyperLevelDB consider fine-grained
and parallelized tactics for acceleration, e.g., multi-threaded com-
pactions. PebblesDB segments each level in non-overlapping key
ranges and writes KV pairs to the appropriate range of a target
level for only once. We note that all these LSM-trees sync a KV pair
over again whenever the KV pair is selected for future compactions.
Also they mainly embrace more complex designs than NobLSM.

Benchmarks & Setting. We use db_bench and YCSB [23], re-
spectively, as micro- and macro-benchmarks. We compile all LSM-
trees under the Release mode. We set the SSTable in 64MB for all
LSM-trees (cf. Section 3) unless some of them, like HyperLevelDB,
hardcode sizes in source codes. The performance metric is average
execution time per operation. Less time means higher throughput.

5.2 Micro-benchmark (db_bench)
We use db_bench’s four workloads, i.e., fillrandom (random write),
overwrite (random update), readseq (sequential iteration of all KV
pairs), and readrandom (random read of one KV pair). They repre-
sent access patterns commonly found in realistic workloads. For
each workload, db_bench issues overall 10 million requests. Within
each request, we configure keys in a length of 16 bytes while vary-
ing the value size to be 256B, 512B, 1KB, 2KB, and 4KB.

Write Performance. Figure 4a and Figure 4b show the aver-
age execution time for fillrandom and overwrite, respectively, in
the logarithmic scale. Take 1KB value size for example. Built on Lev-
elDB, NobLSM reduces the execution time with fillrandom by up to
43.6%, which is close to the reduction ratio of 45.6% achieved by the
volatile LevelDB without consistency (cf. Section 3 and Figure 2b).
With fillrandom and 2KB values, NobLSM makes the highest boost
over LevelDB, by up to 47.1%. A similar performance improvement

406

LevelDB BoLT L2SM RocksDB HyperLevelDB PebblesDB NobLSM

1

10

100

1000

256 512 1024 2048 4096

Ti
m

e
/ O

p
(μ

s)

Value Size (Bytes)

(a) fillrandom (Log scale)

1

10

100

1000

256 512 1024 2048 4096

Ti
m

e
/ O

p
(μ

s)

Value Size (Bytes)

(b) overwrite (Log scale)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

256 512 1024 2048 4096

Ti
m

e
/ O

p
(μ

s)

Value Size (Bytes)

(c) readseq

0

5

10

15

20

25

256 512 1024 2048 4096

Ti
m

e
/ O

p
(μ

s)

Value Size (Bytes)

47.122

(d) readrandom

Figure 4: A Comparison between Seven LSM-tree Variants with Write and Read Workloads of Micro-benchmarks

Table 1: No. of syncs and Size of Data Synced for LSM-trees

LSM-tree LevelDB BoLT L2SM RocksDB Hyper- PebblesDB NobLSMLevelDB
No. of syncs 1,061 659 1,046 606 2,684 713 160
Size (GB) 61.55 55.15 60.98 35.82 47.43 42.61 9.82

is also obtained between NobLSM and LevelDB with overwrite. For
instance, NobLSM almost halves the execution time with 4KB val-
ues and overwrite (47.5%). In summary, by replacing blocking syncs
with non-blocking writes on the critical path of major compactions,
NobLSM significantly boosts the write performance of LSM-tree.

A comparison between NobLSM and other LSM-trees on the
write performance further confirms the effectiveness of NobLSM’s
simplistic design. Both BoLT and NobLSM aim to reduce the im-
pact of syncs. For example, with 2KB values, BoLT consistently
spends about 2.0× execution time that of NobLSM in fillrandom
and overwrite tests. BoLT’s strategy of generating one large factual
SSTable for each compaction does not remove syncs from the criti-
cal path. Worse, BoLT still repeatedly syncs the same KV pairs over
again when they are compacted into lower levels. The maintenance
of logical SSTables used by BoLT also incurs performance cost.
Comparatively, NobLSM performs only one sync plus subsequent
asynchronous writes for each KV pair. This simplistic strategy with
about 330 LOC also makes NobLSM yield higher or close write
performance than other LSM-trees with more complex designs.

The Reduction of syncs. To comprehensively verify the per-
formance of NobLSM, we have collected the number of syncs and
the volumes of data synced by all LSM-trees with fillrandom and
1KB values. As shown in Table 1, NobLSM has called the least syncs
and flushed the least data compared to other LSM-trees. For exam-
ple, the number of syncs of NobLSM is 84.9% and 75.7% less than
that of LevelDB and BoLT, respectively. These in turn justify why
NobLSM achieves high write performance.

Consistency Test. To test our theoretical justification of the
recoverability of NobLSM, we input the command ‘halt -f -p -n’
when putting running db_bench’s fillrandom to suddenly power
off Linux without flushing dirty data blocks. We repeat this test
for three times successively with LevelDB and NobLSM. We find
that, for both of them, KV pairs stored in SSTables are intact while
some ones in the logs are broken. The reason is that, LSM-trees
like LevelDB and RocksDB sync SSTables for minor and major
compactions, but, to avoid syncs on the critical path of putting
down KV pairs, they neither persist every KV pair after logging it,
nor sync the entire log when rendering a memtable immutable. KV
pairs in the log hence take a risk of being lost on a crash. LSM-trees

covered in this section all abide by this consistency guarantee. Our
practical test reaffirms that NobLSM achieves the same consistency.

Read Performance. Figure 4c and Figure 4d present the av-
erage read time of seven LSM-trees. The two diagrams tell that
NobLSM also achieves higher or comparable read performance
than other LSM-trees. Note that NobLSM does not explicitly change
the read procedure of LevelDB, but its altered major compaction
without syncs implicitly affects the read performance. Take read-
random with 1KB values for example. NobLSM spends 24.0% less
time than original LevelDB. This improvement is because of the
seek compaction that LevelDB initiates when many misses have hap-
pened to an SSTable in serving search requests. LevelDB deems such
an SSTable to be infrequently used and shall send it to the lower
level by compaction, so as to reuse space at the current level. Evi-
dently NobLSM has high efficiency at handling seek compactions. A
similar phenomenon of improving read performance with reduced
syncs also has been observed by BoLT developers [14].

5.3 Macro-benchmark (YCSB)
Single-threaded Testing. YCSB emulates some real-world work-
loads. We run YCSB workloads in the order of Load-A, A, B, C, F, D,
Load-E and E as recommended in [14, 22, 23]. Load-A and Load-E
clear data sets and then fill up with 50 million 1KB KV pairs, in an
approximate total size of 50GB. Each of A to F workloads contains
10 million requests, with read, update, insert, and scan operations
mixed in different proportions and distributions. The KV pair in-
cluded in one request also takes the size of 1KB by default. We first
issue all the requests from one thread.

Among these workloads, Load-A, A (50%/50%, write/read), F
(50%/50%, read-modify-write/read) and Load-E are write-intensive.
In Figure 5a, the average execution time per request of NobLSM
is 48.0%, 50.1%, 12.1% and 49.4% less than that of LevelDB. As to
other LSM-trees, on, for example, workload A, NobLSM costs 54.6%,
51.2%, 57.9%, 64.9%, and 67.5% less execution time than BoLT, L2SM,
RocksDB, HyperLevelDB, and PebblesDB, respectively. As to read-
intensive workloads, NobLSM still yields high or comparable perfor-
mance. To sum up, running these YCSB workloads further proves
that the strategy of NobLSM in leveraging non-blocking asynchro-
nous commit for major compaction is effective and efficient.

Multithreaded Testing. We also use YCSB to test the mul-
tithreading performance of NobLSM. We run four threads while
keeping the total amount of requests the same as single-threaded
tests. Figure 5b presents the average execution time of seven LSM-
trees. For workloads Load-A, A, Load-E, and F, the execution time

407

LevelDB BoLT L2SM RocksDB HyperLevelDB PebblesDB NobLSM

0

20

40

60

80

100

Load-A A B C F D Load-E E

Ti
m

e
/ O

p
(μ

s)

YCSB Workload

(a) The average execution time with a single thread

0

20

40

60

80

100

Load-A A B C F D Load-E E

Ti
m

e
/ O

p
(μ

s)

YCSB Workload

(b) The average execution time with four threads

Figure 5: A Comparison of LSM-trees with YCSBWorkloads

of NobLSM is still 30.3%, 40.7%, 34.4% and 38.8% less than that of
LevelDB, respectively.

We note that original LevelDB only uses one background thread
to proceed all compactions, resulting in suboptimal performance
in handling multithreading write and update requests. NobLSM is
a simplistic solution that focuses on the reduction of syncs and
has no change to this mechanism. RocksDB, HyperLevelDB, and
PebblesDB, also built on LevelDB, yet include mechanisms such as
fine-grained synchronization and multi-threaded compactions to
support multithreading. Even so, they do not particularly attend
the cost caused by syncs like NobLSM. As a result, with write-
intensiveworkloads under four threads, NobLSMgenerally achieves
comparable or slightly inferior performance to other LSM-trees.

As to read-intensive workloads under four threads, say the read-
only workload C (100% read), the performance of NobLSM is out-
standingly higher than all others. For example, its execution time
is just half of LevelDB’s. By analyzing the output of running C,
we find that, at runtime, LevelDB, NobLSM and BoLT have per-
sisted approximately 6.5GB data. HyperLevelDB, for instance, has
yet synced 13.4GB data. These are caused by the aforementioned
seek compactions. An ongoing compaction with syncs blocks other
accesses to the SSD except for NobLSM, which conducts a seek com-
paction without syncs. As multi-threads are simultaneously issuing
read requests, other LSM-trees suffer from sync stalls and spend
longer execution time. As shown in Figure 5b, a similar observation
can also be obtained with workloads B (95%/5%, read mostly/write),
D (95%/5%, read latest/insert), and E (95%/5%, range query/insert).

6 CONCLUSION AND FUTUREWORK
We study the impact of syncs on LSM-tree ported into SSD. Ac-
cordingly, we propose NobLSM that mainly relies on asynchronous
commit of Ext4 journaling and syncs KV pairs only once for crash
consistency. Experiments confirm that NobLSM greatly reduces the
execution time of LevelDB and generally outperforms state-of-the-
art LSM-trees, with the same consistency level guaranteed.

NobLSM’s minimum use of syncs complements research of re-
ducing write amplifications for LSM-trees [4, 20, 22]. In addition,
there are studies integrating LSM-trees with SSDs [5–8]. These ad-
vise promising areas we can explore in the future with our findings
on asynchronous commit and syncs.

ACKNOWLEDGEMENT
The authors sincerely appreciate the anonymous reviewers for their
meaningful feedbacks. This work was supported by STCSM Grant
No. 22ZR1442000 and ShanghaiTech Startup Funding.

REFERENCES
[1] J. He et al. The unwritten contract of solid state drives. In Proceedings of the

Twelfth European Conference on Computer Systems, EuroSys ’17, page 127–144,
New York, NY, USA, 2017. ACM.

[2] P. Daekyu et al. OFTL: Ordering-aware FTL for maximizing performance of
the journaling file system. In 2018 55th ACM/ESDA/IEEE Design Automation
Conference (DAC), pages 1–6, 2018.

[3] R. Zhang et al. LOFFS: A low-overhead file system for large flash memory on
embedded devices. In 2020 57th ACM/IEEE Design Automation Conference (DAC),
pages 1–6, 2020.

[4] L. Lu et al. WiscKey: Separating keys from values in SSD-conscious storage. In
14th USENIX Conference on File and Storage Technologies (FAST 16), pages 133–148,
Santa Clara, CA, February 2016. USENIX Association.

[5] Y. Jin et al. KAML: A flexible, high-performance key-value SSD. In 2017 IEEE
International Symposium on High Performance Computer Architecture (HPCA),
pages 373–384, 2017.

[6] J. Zhang et al. FlashKV: Accelerating KV performance with open-channel SSDs.
ACM Trans. Embed. Comput. Syst., 16(5s), September 2017.

[7] P. Wang et al. An efficient design and implementation of LSM-Tree based key-
value store on open-channel SSD. In Proceedings of the Ninth European Conference
on Computer Systems, EuroSys ’14, New York, NY, USA, 2014. ACM.

[8] S.-M. Wu et al. KVSSD: Close integration of LSM trees and flash translation layer
for write-efficient KV store. In 2018 Design, Automation Test in Europe Conference
Exhibition (DATE), pages 563–568, 2018.

[9] Y. Chai et al. LDC: A lower-level driven compaction method to optimize SSD-
oriented key-value stores. In 2019 IEEE 35th International Conference on Data
Engineering (ICDE), pages 722–733. IEEE, 2019.

[10] Y. Kang et al. Towards building a high-performance, scale-in key-value storage
system. In Proceedings of the 12th ACM International Conference on Systems and
Storage, SYSTOR ’19, page 144–154, New York, NY, USA, 2019. ACM.

[11] Y. Wang et al. Temperature-aware persistent data management for LSM-tree
on 3-D NAND flash memory. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 39(12):4611–4622, 2020.

[12] T. Yao et al. MatrixKV: Reducing write stalls and write amplification in LSM-tree
based KV stores with matrix container in NVM. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20), pages 17–31. USENIX Association, July 2020.

[13] D. Park and D. Shin. iJournaling: Fine-grained journaling for improving the
latency of fsync system call. In 2017 USENIX Annual Technical Conference (USENIX
ATC 17), pages 787–798, Santa Clara, CA, July 2017. USENIX Association.

[14] D. Kim et al. BoLT: Barrier-optimized LSM-tree. In Proceedings of the 21st
International Middleware Conference, Middleware ’20, page 119–133, New York,
NY, USA, 2020. Association for Computing Machinery.

[15] Google. LevelDB, March 2021. https://github.com/google/leveldb.
[16] Facebook. RocksDB, October 2021. https://github.com/facebook/rocksdb.
[17] T.-Y. Chen et al. Enabling write-reduction strategy for journaling file systems over

byte-addressable NVRAM. In Proceedings of the 54th Annual Design Automation
Conference 2017, DAC ’17, New York, NY, USA, 2017. ACM.

[18] Y.Won et al. Barrier-enabled IO stack for flash storage. In 16th USENIX Conference
on File and Storage Technologies (FAST 18), pages 211–226, Oakland, CA, February
2018. USENIX Association.

[19] R. Marta. Fast commits for Ext4, January 2021. https://lwn.net/Articles/842385/.
[20] K. Huang et al. Less is more: De-amplifying I/Os for key-value stores with a log-

assisted LSM-tree. In 2021 IEEE 37th International Conference on Data Engineering
(ICDE), pages 612–623. IEEE, April 2021.

[21] R. Escriva and J. Fitzhardinge. HyperLevelDB, February 2016. https://github.
com/rescrv/HyperLevelDB.

[22] P. Raju et al. PebblesDB: Building key-value stores using fragmented log-
structured merge trees. In Proceedings of the 26th Symposium on Operating
Systems Principles, SOSP ’17, page 497–514, New York, NY, USA, 2017. ACM.

[23] B. F. Cooper et al. Benchmarking cloud serving systems with YCSB. In Proceedings
of the 1st ACM Symposium on Cloud Computing, SoCC ’10, page 143–154. ACM,
2010.

408

https://github.com/google/leveldb
https://github.com/facebook/rocksdb
https://lwn.net/Articles/842385/
https://github.com/rescrv/HyperLevelDB
https://github.com/rescrv/HyperLevelDB

	MAIN MENU
	Go to Previous View
	Help
	Search
	Print
	Author Index
	Table of Contents

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 18.00 points
 Normalise (advanced option): 'original'

 32

 D:20160112132206
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 18.0000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 18.00 points
 Normalise (advanced option): 'original'

 32

 D:20160112132206
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 18.0000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

