
Improving Compute In-Memory ECC Reliability
with Successive Correction

Brian Crafton1, Zishen Wan1, Samuel Spetalnick1, Jong-Hyeok Yoon2, Wei Wu3,
Carlos Tokunaga3, Vivek De3, and Arijit Raychowdhury1

1Georgia Institute of Technology2Daegu Gyeongbuk Institute of Science and Technology 3Intel Labs

Abstract—Compute in-memory (CIM) is an exciting technique
that minimizes data transport, maximizes memory throughput,
and performs computation on the bitline of memory sub-arrays.
This is especially interesting for machine learning applications,
where increased memory bandwidth and analog domain compu-
tation offer improved area and energy efficiency. Unfortunately,
CIM faces new challenges traditional CMOS architectures have
avoided. In this work, we explore the impact of device variation
(calibrated with measured data on foundry RRAM arrays) and
propose a new class of error correcting codes (ECC) for hard
and soft errors in CIM. We demonstrate single, double, and triple
error correction offering over 16,000× reduction in bit error rate
over a design without ECC and over 427× over prior work, while
consuming only 29.1% area and 26.3% power overhead.

I. INTRODUCTION

The ever growing performance gap between main memory
and logic coupled with trends towards data-centric appli-
cations poses a signficant challenge for modern computing
systems. These applications demand higher memory capacity
and bandwidth, while also lacking signficant data re-use that
on-chip SRAM cache has historically exploited to reduce
bandwidth requirements. To further this challenge, applications
of machine learning are trending towards more memory inten-
sive operations [1] on smaller, resource constrained devices
[2]. These challenges have motivated widespread adoption of
hardware accelerators and high bandwidth memory (HBM)
to maximize the compute throughput under modern memory
constraints. Despite strong improvements, we face limitations
that have inspired new memory technologies and techniques
to enable future workloads on future computing systems.

CIM is one such research thread that reads and accumulates
multiple memory cells onto the same bitline (BL). This
increases memory bandwidth and performs (binary) multipli-
cation and addition without the use of CMOS logic. At the
same time, various eNVM such as RRAM are being actively
developed to enable high density non-volatile storage while
being both logic and process compatible [3]. Despite these
benefits, both CIM and eNVM face several challenges not
before faced by traditional CMOS designs. First, because CIM
accumulates several cells on the same bitline, it increases total
noise and reduces sensing margin for each state. Conventional
digital memory such as SRAM overcomes this challenge using
differential sensing and a large ratio between the ‘0’ and ‘1’
states. However, when reading multiple memory cells at the
same time with an analog-to-digital converter (ADC), high
variation between resistive states results in sum-of-products

errors accumulated on the bitline. Therefore, CIM will in-
herently have a higher bit error rate (BER) than traditional
memory arrays which read a single wordline (WL) at a time.

Recent work has attempted to mitigate the impact of these
errors in several different ways. Iterative write-verify methods
have been proposed to reduce the cell-to-cell variation [4].
These methods write the device until the resistance falls
inside a specified range. However these methods require high
write energy and latency, and greatly reduce the endurance
of the device. Another method is variation-aware training [5].
This method trains models while simulating errors that may
occur during inference. Statistical methods have been used
to maximize CIM performance (active wordlines) under error
constraints [6]. Lastly, several recent ECC techniques have
been proposed for CIM [7]–[9]. These techniques make use
of new encodings and device properties to enable ECC.

In this work, we present a new class of ECC schemes for
hard and soft CIM errors based off of traditional single error
correction, double error detection (SECDED) used in DRAM
and SRAM today. We achieve this with a few key observations
which we demonstrate using experimental data collected from
a 40nm foundry RRAM test-chip array, whose circuit details
appear in [10]. We build off of prior work that demonstrated
SECDED for CIM [9], and propose a new technique called
successive correction which can be used to correct soft errors
in CIM. Successive correction enables single, double, and
triple error correction offering over 16,000× BER reduction,
while consuming only 29.1% area and 26.3% power overhead.

II. BACKGROUND AND MOTIVATION

A. Compute In-Memory (CIM)

To implement VMM (y⃗ = Wx⃗), CIM systems encode the
input vector x⃗ as wordline voltages and the weight matrix W
as conductance states in a memory cell. The current through
each cell is proportional to the product of the programmed
conductance (Wij) and applied voltage (x⃗i). The resulting
currents that are summed along the columns of the crossbar
are proportional to the product of the matrix and vector, (y⃗).

Typically, each memory cell only stores 1 or 2 bits and
thus weights (Wij) requiring higher precision are encoded as
several cells on the same wordline. Similarly, input voltages
are limited to 1 bit and vector values (x⃗i) are input to the
wordline over several cycles. Therefore, to implement 8-bit
VMM with 1-bit cells and 1-bit voltages, we must use 8
adjacent cells for each weight (Fig. 1) and 8 voltage pulses for

DAC '22, July 10–14, 2022, San Francisco, CA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9142-9/22/07…
https://doi.org/10.1145/3489517.3530526

745

This work is licensed under a Creative Commons Attribution International 4.0 License.

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3489517.3530526&domain=pdf&date_stamp=2022-08-23

Fig. 1. 256×320 RRAM array architecture. 8 adjacent cells form an 8-bit
weight and share a 3-bit ADC through a 8-to-1 multiplexer. Shift and add
logic accumulate partial sums and apply corresponding magnitude.

each input. This encoding scheme results in 64 (8 cells × 8
cycles) partial sums that we must shift and sum to generate the
full 8-bit VMM. In Figure 1, we illustrate our ECC-equipped
RRAM macro design. This macro contains 256×320 RRAM
cells, 3b ADCs, shift-and-add logic, and an ECC decoder. The
additional 64 RRAM cells per WL (256+64 = 320) are check
bits required for the ECC schemes we implement in this work.

B. Characterizing Device Variation in RRAM

CIM seeks to read and accumulate several states on a bitline
at once, and therefore a key obstacle to enabling CIM is
cell-to-cell variation. These variations are typically normally
distributed [4], [10] and measured as the standard deviation (σ)
from the mean (µ) resistance value. For binary (2-level) cells,
a digital ‘0’ is encoded as the high resistance state (HRS) and a
digital ‘1’ is encoded as the low resistance state (LRS). Ideally,
current from reading a cell in the HRS could be ignored if
the difference between the HRS and LRS (on/off ratio) were
several orders of magnitude. Unfortunately, this is not the case
as recent RRAM [10] and PCM [4] demonstrate an on/off ratio
between 10× to 100×. To quantify the variation and on/off
ratio, we measure the resistance values of RRAM cells from a
recent RRAM test-chip prototype on a 40nm foundry RRAM
array [10]. The array contains 256×256 RRAM cells (64Kb).
The details of the read and write circuit of the array are beyond
the scope of this paper and interested readers are pointed to
[10] for further discussions.

Fig. 2. CDF of measured resistance values for various write voltages for (A)
set operation and (B) reset operation [10].

Fig. 3. Confusion matrix between measured and expected ADC outputs during
CIM for measured data using 1.7V.

In Figure 2, we show measured resistance distributions for
both the set (LRS) and reset (HRS) operations. We use 3
different write voltages for both set and reset, and find that
higher write voltage decreases LRS variation, increases HRS
variation, and increases on/off ratio. However, it should be
noted that higher write voltage lowers device endurance and
increases power. For LRS, we find that between 3.5% (σ/µ)
and 11.7% cell-to-cell variation can be achieved depending on
write voltage. For HRS, cell-to-cell variation is between 25.2%
and 49.7% depending on write voltage. For on/off ratio, we
observe between 3.1× and 12.9× depending on both set and
reset voltages. We use these parameters as the basis for our
simulations in Section V.

To understand how these parameters yield errors when
performing CIM, we randomly program the cells such that
a uniform distribution of values is achieved (0-8 LRS) and
perform multi-row read. Figure 3 shows this result in the
form of a confusion matrix where the expected ADC output
code is on y-axis and the measured ADC output code is on
the x-axis. It should be noted that we adjust ADC reference
voltages to account for IR-drop along the bitlines of the array.
Each bin shows the percent of measured ADC output codes
were obtained for the expected ADC output code. When the
number of LRS states is low (<5) the result is always correct
for the experiment’s sample size (8192 total). This behavior
occurs because LRS variation (σLRS/µLRS) has more impact
than HRS variation. On the right, we show a histogram of
samples measured for the 7 LRS states. The colored regions
show where references are set for 6, 7, and 8 LRS states.

C. Stuck-At Faults in RRAM

Stuck-at faults (SAF) are present in all memories used today,
and occur when a memory cell is stuck in the ‘0’ or ‘1’ state
and cannot be overwritten. RRAM is no exception, and several
works have studied and characterized the SAF for RRAM [11].
The SAF is categorized as a hard error because it cannot be
corrected by tuning the cell. This is fundamentally different
from soft faults observed during CIM that occur as sum-of-
product errors due to device variation. In RRAM, SAF occur
for a variety of reasons. First, process variation lowers yield
and can cause some cells to be incorrectly fabricated. Next,
RRAM suffers from relatively low endurance [11]. Lastly,
RRAM cells require a forming step. During this forming step,
a large voltage is applied across the device to create the

746

filament that serves as the memory. Prior work [11] observes
that the high voltage applied during forming can cause SAF
for some of RRAM cells.

D. ECC for CIM

In addition to IWV and variance-aware training methods,
several works have proposed new ECC schemes for CIM [7]–
[9]. In [7], arithmetic codes are applied to CIM for ECC.
Arithmetic codes are a special class of ECC that protect
arithmetic operations from faults. The main difference between
arithmetic codes and standard ECC is the type of errors they
detect and correct. Arithmetic codes protect against additive
syndromes rather than bit flips. When applied to CIM, arith-
metic codes correct single errors after summation, but cannot
localize where an error occurs. For this reason, they cannot
be applied to arbitrary blocks of data like traditional ECC.
Instead, they must be applied to the operands of the operation
they protect. So for 8-bit matrix multiplication (standard in
DNN inference), 5-bits of check bits are padded to the weights
(62.5% overhead).

In [9], the traditional SECDED ECC applied to commercial
memory systems today is extended to support CIM. It is well
known that SECDED cannot protect CIM because errors in the
multi-level outputs cannot be localized or corrected. However,
[9] observes that only ±1 errors occur in CIM. These ±1
errors are equivalent to bit flips (0→1, 1→0) in traditional
memory systems and allow localization to be performed. We
re-create this behavior on our test macro in Figure 3, where
all errors occur only ±1 from the correct result. To correct
the ±1 error, [9] also requires a 2-bit checksum to compute
the sign of the error. Fortunately, the double error detection bit
serves as 1-bit of this checksum so that the modified SECDED
requires only 1 additional bit.

III. ERROR CORRECTION & DETECTION FOR CIM

A. Successive Correction by Detection

As we have seen in Section II, soft errors occur in CIM
due to accumulated device variations that ultimately lead to a
±1 error. The simplest way to control accumulated variation-
induced errors is to enable just 1 WL at time. Of course, this
will unfortunately compromise the performance and energy
efficiency of using CIM. One way to improve this trade-off is
through error detection. If we can detect an error during CIM,
we can re-read the WLs that led to the error at fewer WLs per
cycle. This idea would allow us to maintain high performance
by reading several WLs per cycle, but also reduce sum-of-
product errors by reading fewer WLs upon error detection.

Fortunately, single error detection (SED) is inexpensive to
implement. To illustrate SED, we break down the implemen-
tation steps required in Figure 4 using an example problem.
First, we can pad each word in the array with a parity bit. This
bit is ‘0’ if the sum of the bits in the word is even, and ‘1’
if odd. During CIM, this parity bit is read and accumulated
just like the other bits on the wordline. After the CIM result is
latched by the ADCs, detection is performed. In our example,
an error occurs in the 2nd data bit because there exists 2

LRS cells but our ADC reads only 1. We detect this error
by comparing the parity bit result with the XOR (LSB only)
of the ADC outputs.

Upon detecting the error, correction is performed by re-
reading the WLs. For each error that is detected, we divide
the target WLs into 2 sets. Thus, in our example we read
WLs 1 and 2 in step 1 and WLs 3 and 4 in step 2. Because
another error occurs during step 1, we again breakdown the
WLs into 2 more sets. This time performing only a single WL
at a time, we read WL 1 in step 3 and WL 2 in step 4. Because
step 2 did not result in error, the process ends not requiring
any additional steps. For this small example, we could have
read each WL serially and achieved the same performance (4
cycles) as recursively breaking down the WLs in 2 sets after
each error. However, soft errors are typically corrected after
the first recursion. Furthermore, if a hard error occurs, then
it is quickly localized along one branch and also minimizes
WLs re-reading time. This technique is especially powerful
when many WLs are enabled (≥32) which is demonstrated in
Section V.

It should be noted that this technique relies on a relatively
low BER. If errors are detected frequently, CIM performance
will reduce towards 1 WL/cycle. Furthermore, this technique
cannot correct SAF errors. To enhance the correction capabil-
ity, successive correction can be paired with CIM-SECDED
[9]. This combination can enable both double error correction
(DEC) and triple error correction (TEC) after detection. This
idea is the basis of our work, and in the following sections
we discuss the implementation of DEC and TEC.

B. Double Error Correction

So far we have demonstrated how error detection can be
used to correct soft errors in CIM. Furthermore, we have
shown how a single parity bit can be used to achieve error
detection in CIM. Using this idea, we can extend SECDED
[9] to enable DEC. By definition, SECDED corrects single
errors and detects double errors. The only purpose of double
error detection is to prevent 2-error syndromes from being

Fig. 4. Example of successive correction applied to 8b data with 1b parity

747

erroneously interpreted during SECDED. However, 2-error
syndromes can be corrected using successive correction. So
during CIM, SECDED is performed the same as [9]. But upon
double error detection, successive correction is performed.
At each recursive step of successive correction, SECDED
is performed and the process continues until only 1 WL is
enabled.

Using successive correction, DEC can be implemented
using the same encoding and decoding logic as SECDED, the
only difference is how double error detection is handled. This
scheme can perform DEC for all 2-error syndromes, but for
many >2-error syndromes, it can correct significantly more
hard or soft errors. For example, consider a scenario where
a 4-error syndrome occurs during CIM and DED is asserted.
Successive correction will break down the WLs into 2 sets and
re-try CIM. As this process continues, successive correction
corrects all 4 errors. It should be noted that not all 4-error
syndromes will be corrected by successive correction. Many
will be misinterpreted as 1-error syndromes and erroneously
”corrected” using SECDED. However, this reveals a powerful
observation. By enabling more detection capability, successive
correction can provide greater correction capability. Next, we
discuss how TED can be used to implement TEC.

C. Triple Error Correction

To perform SECDED, we require an ECC code with a
hamming distance of 4. Because SECDED has a hamming
distance of 4, it can also be used perform triple error detection.
For most practical applications, triple error detection has no
utility, but using successive correction this code can be used to
correct 3 (hard or soft) errors. To do so, we use our SECDED
code for TED during CIM. Instead of decoding syndromes as
1-error or 2-error like SECDED, TED simply detects any non-
zero syndrome as an error. So during CIM, our SECDED code
is used to perform TED. Upon any error detection, successive
correction is performed. At each recursive step of successive
correction, TED is again performed and the process continues
until only 1 WL is enabled. If only 1 WL is enabled, then
SECDED is performed so that errors can be corrected.

In Figure 5, we present a schematic that serves as the
decoder for both DEC and TEC. There are several XOR trees
that detect the syndrome and perform traditional DED. The
output from these modules are then used to perform TED and
DED. TED is asserted when any non-zero syndrome occurs
and DED is asserted when a non-zero syndrome occurs and

Fig. 5. Digital logic schematic of DEC & TEC decoder module.

Fig. 6. Area and power breakdown by component in RRAM macro.

the XOR of all inputs is zero. The result of detection controls
the next state of the NWL state machine. This is used to
keep track of state in successive correction. When NWL=1,
we perform SECDED because there is no utility in using
successive correction.

IV. HARDWARE IMPLEMENTATION

To architect each of our ECC permutations, we consider
a typical 256×256 RRAM macro based on the design we
have measured data for. A schematic for this macro is given
in Figure 1. Built around the RRAM array are necessary
peripheral circuits. There is 1 3-bit ADC for every 8 columns
where a single column is pitch-matched with a comparator. In
standard CIM implementations [12], the ADCs feed into shift
and add logic. However, for each ECC scheme we evaluate
(besides arithmetic codes) the ADCs feed into the ECC
decoder. After which shift-and-add is performed to implement
matrix multiplication. It should be noted that for arithmetic
codes [7], the decoder follows the shift-and-add logic.

To evaluate the area and power overhead of each ECC
scheme, we first measure the area and power breakdown of
our test macro [10]. The result of this is shown in Figure
6 as pie charts. Area is split across the 256×256 RRAM
array and several peripheral circuits. For power, we observe
a similar breakdown with ADCs consuming the majority of
power during CIM operation. A major difference is that the
write drivers account for zero power during CIM operation,
but still account for a large fraction of area.

Using this measured data as baseline, we evaluate each
ECC scheme by synthesizing and simulating RTL (Verilog)
implementation. The area in µm2 and percentage (%) of total
macro area is given in Table 1. SECDED and DEC have
the same implementation, so their overheads are identical.
TEC requires slightly more area and slightly lower average
power because correction logic is disabled during detection.
Arithmetic codes require a 70.9% area overhead because the
ratio between data bits and check bits is high for a 8-bit
operation. Lastly, SEC has the lowest overhead (3.3%) because
only 1 check bit and an XOR tree for detection is required. For
power, we see similar results. However, the power overhead
of the decoders is much smaller than their area overhead.
It is important to note that for SEC, DEC, and TEC the
energy consumed per correction would be higher than the other
schemes because of sequential readout. This cost would be
dependent on the number of errors detected during run time.

748

For our simulation experiments we adopted a similar archi-
tecture to previous work [12]. Our basic processing element
(PE) contains 32 256×256 RRAM arrays. The activation
inputs to the RRAM sub-arrays are stored in on-chip SRAM,
while the input images are read in from external DRAM.
Matrix multiplication is performed by the PEs, while custom
vector units are used to perform vector-wise accumulation,
bias addition, quantization, and ReLU. Because all inputs in
ResNet18 are positive valued, we can use two’s complement
representation for our weights and avoid offset format.

V. RESULTS

To benchmark our three ECC schemes (SEC, DEC, TEC),
we compare against two prior works [7], [9] and a design
without any ECC. We empirically evaluate performance, BER,
and accuracy degradation on ImageNet using ResNet18. To
perform these evaluations we construct a simulator capable
of executing tensor operations using CIM with non-idealities
(variation, SAF) based on our measured data. The ResNet18
model uses 8-bit weights and activations.

A. Simulation Framework

Our simulator performs cycle-accurate implementations of
convolutional and fully connected layers. It is based in Python,
but runs array level operations in C for faster evaluation. We
model components in the design in object oriented fashion,
iterating through all components in all PEs each cycle. Each
ECC is implemented within the simulator by padding the
check bits to the matrices encoded in the array. After each
CIM operation, the ECC localization and correction is run
on the result. We embed performance counters in our ADC
and sub-array objects to track cycles, errors, and ECC events.
As output, the simulator produces a table with performance
counters and all intermediate layer activations that are verified
against a TensorFlow implementation for correctness.

B. Simulation Results

To evaluate our ECC schemes, we sweep over expected
ranges for both soft errors and hard errors. For soft er-
rors, we consider LRS variation (σLRS/µLRS), HRS variation
(σHRS/µHRS), and on/off ratio (µHRS/µHRS) from our measured
devices. For hard errors, we sweep over a wide range of SAF
rates because existing data is sparse and likely not consistent
with state-of-the-art devices [11]. For our simulations we

ECC Arithmetic SEC SECDED
& DEC TEC

Data Bits 8 32 32 32
Check Bits 5 1 8 8

Data Area (µm2) 6750 27000 27000 27000
Check Area (µm2) 4219 845 6750 6750

Decoder Area (µm2) 570 49 1087 1097
Area Penalty (%) 70.9 3.3 29.0 29.1

Data Power (µW) 475 1900 1900 1900
Check Power (µW) 297 60 475 475

Decoder Power (µW) 17.2 1.1 25.4 23.5
Power Penalty (%) 66.1 3.2 26.3 26.2

Table 1. Area and power overhead using various ECC schemes.

Fig. 7. Classification accuracy, BER, and normalized performance versus
cell-to-cell variation (σLRS/µLRS) for ResNet18 on ImageNet.

assume 8 WLs are enabled per cycle (except Figure 9) and
zero-skipping is utilized to exploit sparsity.

C. Soft Errors

Starting with soft errors, we simulate ImageNet & ResNet18
over the range of measured LRS variation and plot the result
in Figure 7. We consider LRS variation because the measured
range of LRS variation has significantly more impact on BER
than the measured range of HRS variation or on/off ratio. We
fix HRS variation at 35% and on/off ratio at 12. We also
consider a fixed SAF rate of 10−5. In Figure 7, we display
BER, accuracy, and performance. For performance, we show
normalized performance against the baseline implementation
without ECC. To normalize the ECC implementations, we also
consider their area overhead from check bits. For example,
SEC requires 1 parity bit and a decoder characterized in Table
1. Therefore, we normalize performance by 3.1% to account
for the reduced computational efficiency in a scaled design.

DEC and TEC yield the lowest BER for all LRS variation
cases. For lower LRS variation, they yield nearly the same
performance as SECDED because they seldom need to re-
read the WLs. However, for higher LRS variation, perfor-
mance greatly decreases because errors occur and WLs are
frequently re-read. Interestingly, arithmetic codes yield lower
performance and higher BER than both DEC and TEC. This
is because of the high overhead required for arithmetic codes
on 8-bit operations. At 4% LRS variation (1.7V in Fig. 2),
TEC achieves 34.5× and 14.9× BER reduction over CIM-
SECDED and arithmetic codes. TEC yields a 1.8% slowdown
over CIM-SECDED and a 27.8% speedup over arithmetic
codes at 4% LRS variation. At 6% LRS variation (1.5V in
Fig. 2), TEC achieves 636.0× and 427.1× BER reduction
over CIM-SECDED and arithmetic codes. TEC yields a 5.4%
slowdown over CIM-SECDED and a 23.2% speedup over

749

Fig. 8. Classification accuracy, BER, and normalized performance versus
SAF rate for ResNet18 on ImageNet.

arithmetic codes at 6% LRS variation. Lastly, TEC enables
full accuracy on ImageNet up to 10% device variation despite
coming at a severe performance penalty.

D. Hard Errors

Next, we perform the same experiments while sweeping
over SAF rate and plot the results in Figure 8. We fix LRS
variation at 4%, HRS variation at 35% and on/off ratio at 12.
We observe similar results to those in Figure 7 with a few
major differences. First, SEC yields nearly the same BER as
the design without any ECC. This is because it cannot correct
hard errors by reading 1 WL per cycle. Next, DEC and TEC
also produce nearly the same BER. This is again because hard
errors cannot be corrected by reading 1 WL per cycle. For
higher SAF rates, we find that all ECC schemes produce very
poor results. However, for lower SAF rates DEC and TEC
yield significantly better BER than prior work while achieving
same or better performance.

E. BER vs Performance Tradeoff

Because the proposed ECC requires overhead in terms of
both check bits and re-read latency, it will naturally have lower
performance than a design without ECC. However, ECC can
greatly reduce BER and thus we can enable more parallel
WLs while achieving the same BER. To understand how our
ECC scales to more parallel WLs, we perform soft error
experiments operating at various numbers of WLs. We run
these experiments at 8, 16, and 32 parallel WLs for designs
with TEC ECC and designs without any ECC. The result of
this experiment is shown in Figure 9. We find that TEC can
enable 32 parallel WLs at lower BER than 8 parallel WLs with
no ECC for all experiments. At 3.5% variation, we observe a
2.32× speedup and greater than 200× reduction in BER. Thus
TEC ECC can achieve higher peak performance for a given

Fig. 9. BER and normalized performance for increasing # parallel WL.

BER over the range of measured device variation on our 40nm
foundary RRAM array.

VI. ACKNOWLEDGEMENT

This work was funded by the U.S. Department of Defense’s
Multidisciplinary University Research Initiatives (MURI) Pro-
gram under grant number FOA: N00014-16-R-FO05 and the
Semiconductor Research Corporation under C-BRIC.

REFERENCES

[1] U. Gupta et al., “The architectural implications of facebook’s dnn-based
personalized recommendation,” in 2020 IEEE International Symposium
on High Performance Computer Architecture (HPCA), pp. 488–501,
IEEE, 2020.

[2] V. Sze et al., “Efficient processing of deep neural networks: A tutorial
and survey,” Proceedings of the IEEE, pp. 2295–2329, 2017.

[3] S. Yu et al., “Compute-in-memory chips for deep learning: Recent trends
and prospects,” IEEE Circuits and Systems Magazine, vol. 21, no. 3,
pp. 31–56, 2021.

[4] J. Wu et al., “A 40nm low-power logic compatible phase change memory
technology,” in 2018 IEEE International Electron Devices Meeting
(IEDM), pp. 27–6, IEEE, 2018.

[5] Y. Long et al., “Design of reliable dnn accelerator with un-reliable
reram,” in 2019 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pp. 1769–1774, IEEE, 2019.

[6] B. Crafton et al., “Statistical optimization of compute in-memory
performance under device variation,” in 2021 IEEE/ACM International
Symposium on Low Power Electronics and Design (ISLPED), pp. 1–6,
IEEE, 2021.

[7] B. Feinberg et al., “Making memristive neural network accelerators
reliable,” in 2018 IEEE International Symposium on High Performance
Computer Architecture (HPCA), pp. 52–65, IEEE, 2018.

[8] Q. Lou et al., “Embedding error correction into crossbars for reliable
matrix vector multiplication using emerging devices,” in Proceedings of
the ACM/IEEE International Symposium on Low Power Electronics and
Design, pp. 139–144, 2020.

[9] B. Crafton et al., “Cim-secded: A 40nm 64kb compute in-memory rram
macro with ecc enabling reliable operation,” in 2021 IEEE Asian Solid-
State Circuits Conference (A-SSCC), pp. 1–2, IEEE, 2021.

[10] J.-H. Yoon et al., “29.1 a 40nm 64kb 56.67 tops/w read-disturb-tolerant
compute-in-memory/digital rram macro with active-feedback-based read
and in-situ write verification,” in 2021 IEEE International Solid-State
Circuits Conference (ISSCC), vol. 64, pp. 404–406, IEEE, 2021.

[11] C.-Y. Chen et al., “Rram defect modeling and failure analysis based on
march test and a novel squeeze-search scheme,” IEEE Transactions on
Computers, vol. 64, no. 1, pp. 180–190, 2014.

[12] A. Shafiee et al., “Isaac: A convolutional neural network accelerator
with in-situ analog arithmetic in crossbars,” ACM SIGARCH Computer
Architecture News, vol. 44, no. 3, pp. 14–26, 2016.

750

	MAIN MENU
	Go to Previous View
	Help
	Search
	Print
	Author Index
	Table of Contents

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

