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ABSTRACT
Various logic-locking schemes have been proposed to protect hard-

ware from intellectual property piracy and malicious design modi-

fications. Since traditional locking techniques are applied on the

gate-level netlist after logic synthesis, they have no semantic knowl-

edge of the design function. Data-driven, machine-learning (ML)

attacks can uncover the design flaws within gate-level locking. Re-

cent proposals on register-transfer level (RTL) locking have access

to semantic hardware information. We investigate the resilience

of ASSURE, a state-of-the-art RTL locking method, against ML at-

tacks. We used the lessons learned to derive two ML-resilient RTL

locking schemes built to reinforce ASSURE locking. We developed

ML-driven security metrics to evaluate the schemes against an RTL

adaptation of the state-of-the-art, ML-based SnapShot attack.
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1 INTRODUCTION
Integrated circuits (ICs) are a critical layer for security in mod-

ern electronic systems. However, there are security concerns due

to third parties in the supply chain. As external design houses

and foundries have full access to the IC intellectual property (IP)

during production, attackers could reverse engineer the IP for mali-

cious purposes, such as IP theft and hardware Trojan insertion [19].

Design-for-trust methodologies aim to counteract such threats.

Logic locking has been recognized as a premier technique to safe-

guard ICs throughout the supply chain [10]. Logic locking builds

∗
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Figure 1: Machine learning vs. logic locking: impact on RTL?

on the concept of design obfuscation [2, 9, 15–17], where designers

insert key-driven logic to functionally and structurally alter ICs,

thus concealing functional intent. Only the correct activation key

unlocks the intended functionality of the IC.

Recently, machine learning (ML) techniques have challenged the

security of gate-level locking [8]. ML-driven attacks exploit the

predictable relation between the key value and the functional or

structural aspects of locking. This has led to potent attacks that can

either predict the correct key value or remove the locking circuitry

from the netlist [6, 11, 12, 18]. While ML-driven attacks often lack

output certainty, their applicability adds another requirement for

logic locking success—prevention of key-related residue within the
locking mechanics. As long as the structural change is related to

key values, it is possible to use ML to guess the keys.

Traditional gate-level locking schemes are limited to local changes

and do not use the semantic information of the circuit, as logic syn-

thesis and optimization disperse the semantics to a low granularity.

Therefore, gate-level locking schemes operate “blindly” on the de-

sign without considering its functional traits. In response, RTL

locking has emerged as a way to overcome this issue [1, 5]. At the

RTL, locking can use the full spectrum of semantic information,

including operations, constants, and control flow constructs. Hence,

RTL locking is a promising basis to build ML-resilient locking. How-

ever, compared to gate-level locking, ML attacks on RTL locking

remain unexplored as shown in Fig. 1.

Contributions: This study explores ML resilience of RTL lock-

ing focusing on operation obfuscation, where we:

• Introduce theoretical concepts to evaluate ML-resilience of

RTL locking.

• Expose security faults in ASSURE RTL locking [5].

• Define ML-resilience security metrics for RTL locking.

• Introduce two ML-resilient locking algorithms: (1) ERA:

Exact ML-Resilient Algorithm and (2) HRA: Heuristic ML-

Resilient Algorithm.

• Evaluate the locking algorithms against an RTL adaptation

of the ML-based SnapShot attack.

To the best of our knowledge, the presented concepts and locking

procedure are the first to address the challenges of ML resilience on

RTL. The implementation of this study will bemade available
to the community once published.
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Figure 2: ML-driven SnapShot attack flow.

2 BACKGROUND
2.1 Threat Model
The threat model includes the following assumptions. (1) The at-

tacker has only access to the locked design in the form of a locked

gate-level netlist. As an activated chip is not available, this attack

model is often referred to as oracle-less (OL) [6]. Starting from the

provided design level, the attacker can perform reverse engineer-

ing to recover the RTL design. To simulate the best-case scenario
for the attacker, we assume the attacker can retrieve an exact copy
of the initial, locked RTL design. (2) The attacker is aware of the

algorithmic details of the applied locking scheme. (3) The location

of the key pins is known (distinct ambiguity [10]). In the rest of this

study, we refer to the locked RTL design under attack as the target.

2.2 ML-Driven Structural Attacks
In the OL model, an attacker has only access to the target design

without I/O patterns. An ML-based attack has to exploit structural
key-related patterns to produce a (correct) key prediction. Thus,

we selected the OL SnapShot attack [6] as a basis for the evalua-

tion. SnapShot was initially designed to attack locked gate-level

netlists, following four major steps (Fig. 2). First, the attack prepares

a set of locked samples by relocking (self-referencing) the target

benchmarks with new keys. Second, a training set is assembled by

extracting a netlist sub-graph for each single-bit key input from

all data samples. The extracted sub-graphs are transformed into a

vector of numbers, where each entry encodes a single gate from

the derived sub-graphs. These vectors are referred to as localities.
In essence, a locality represents a key-affected portion of the netlist.
Next, the attack trains a dedicated ML model to associate localities

with their respective key values. Finally, the trained ML model is

deployed to predict the key of the target design. Since SnapShot has

previously only been applied on gate level, we adjust the extraction

and ML model of SnapShot to support RTL locking in this work.

Besides SnapShot, the most prominent OL, ML-based attacks on

gate-level locking are OMLA [12], GNNUnlock [11], and SAIL [18].

OMLA and GNNUnlock use graph neural networks, thus relying

on a graph representation of the input design that is natural to gate-

level netlists. SAIL exploits the deterministic and local changes

of gate-level locking by learning to reverse the transformations

induced by logic synthesis. Since we operate on RTL and assume a

perfect reconstruction of the locked RTL, SAIL is not considered.

2.3 The Concept of RTL Locking
We focus on the locking techniques proposed in ASSURE [5]—one

of the latest RTL locking policies. ASSURE offers three locking

techniques: constant, branch, and operation obfuscation. Constant

obfuscation extracts constants into the activation key. For example,

a = 4’b1101 is locked as a = 𝐾 , where𝐾 is the 4-bit constant stored

correct key

true false

true false
true false
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True
operation
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Implement.
Relocked locking pair

representation Implementation

true op.

Figure 3: ASSURE operation locking and representation.

as the key. Branch locking works by XOR-ing the condition of the

branch with a key bit, thereby inverting the condition if the value

is 1. For example, the condition a > b is locked as (a <= b)∧𝐾 .
Operation locking inserts a key-controlled multiplexer to choose

between a real and dummy operation. For example, a = b + c can

be locked either as a = 𝐾 ? (b + c) : (b - c) or a = 𝐾 ? (b
- c) : (b + c), depending on the value of 𝐾 . In terms of security,

constant obfuscation does not offer any apparent attack vectors, as

the secret is fully omitted from the attacker. Branch obfuscation

only affects the existing control flow based on the key, without

inserting additional logic. Operation obfuscation manipulates the

design by inserting additional logic depending on the existing one.
This dependence offers the potential for an attack. Therefore, we
focus on the security of operation obfuscation.

Operation obfuscation: The security of this locking concept

lies in the assumption that the attacker cannot guess which oper-

ation of the observed pair is the correct one. The paired real and

dummy operations are called locking pairs. Locking pairs are de-

fined as (𝑇,𝑇 ′), where𝑇 and𝑇 ′ are the real and dummy operations,

respectively. On RTL, a locking pair is implemented in the form

of a ternary operator. For instance, as depicted in Fig. 3a, the real

operation + can be locked in the form of (+,−) for the correct key
value 1, or in the form of (−, +) for the correct key value 0. Hence,

an addition is always locked in pair with a subtraction, and vice

versa. Note that all operations have predefined locking pairs [5].

If a locked pair is relocked, both 𝑇 and 𝑇 ′ are locked separately.

As shown in Fig. 3b, relocking results in a tree of multiplexers,

i.e., nested ternary operators. The compact notation of locked pairs

from Fig. 3 is used in the rest of this study for visualization purposes.

3 LEARNING RESILIENCE FOR RTL LOCKING
Learning attacks make predictions about the key by studying the

locked design. A scheme that is secure against learning attacks is

considered learning-resilient [7]. As discussed in [7], netlists that

exhibit regular, repetitive structures maximize the exposure of a
locking scheme’s mechanics, making it is easy to identify potential

leakage points. This is because key-related structural changes are

more likely to be identified within repetitive constructs. To evaluate

RTL locking for structural leakage, let us consider its workings on

a structurally regular design that only contains connected + oper-
ations. The following challenge arises: how do we lock it without
suggesting anything about the correctness of the key? Let us consider
the two methods of operation selection in ASSURE: serial and ran-
dom. Furthermore, we need to take two data sets into account: test

and training. The test set consists of locking samples for which

the key is unknown and represents the design under attack. The

training set comprises locking samples that are added in additional

relocking rounds of the target with known keys. This process is also
known as self-referencing [6, 18]. The attacker uses the training set
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Figure 4: Impact of operation selection on learning resilience in RTL locking.

to collect observations about the relation between the locking pairs
and the key. The ensuing discussion follows visualizations in Fig. 4,

where we consider different locking scenarios using locking pairs

and symbols from Fig. 4a, and the + operation network.

Serial selection is the standard selection in ASSURE. As shown

in Fig. 4b, the initial locking (test set) selects + operations for locking
to create locking pairs in the form of (+,−) and (−, +) (encoded
with a single symbol for simplicity). This "serial" selection always

selects the operations in a serial manner w.r.t. the design topology.

Due to the serial selection, the subsequent locking rounds (training

set) select the same operations as the test set for relocking; already-
locked + operations are extended with additional locking pairs. In

the example, the left operation is selected for key value 1 and the

right for key value 0, according to the rule of ternary expressions. As

portrayed in Fig. 4e, both the + and − operations are equally related
to the key value 0 and 1, resulting in confusing observations. This

suggests that ASSURE is, in principle, learning-resilient. However,

this case arises only due to the deterministic order of selecting

operations—it can easily be broken by either using a longer training

key to ensure locking untouched operations during training or by

randomizing the order of selection. Hence, the standard ASSURE

procedure is not secure w.r.t. data-driven attacks.

Random selection is depicted in Fig. 4c. Here, the samples

from the test and training set are likely to overlap only to some

extent. Hence, the observations of the training set are contaminated

by some contradictory observations. By analyzing the training set

(Fig. 4f), one can learn that the + operation is more likely to be
the correct one. The random selection might result in a favorable

outcome for the attacker when training and test samples do not

overlap (Fig. 4d). In this scenario, all observations from the training

set (Fig. 4g) suggest that the + operation is always the correct one.
This knowledge can be used to infer a correct key.

3.1 Observations
(1) Learning resilience on RTL can be achieved if the likelihood of

any operation in a locking pair is equally related to key value 0 and

1. (2) Operation selection impacts learning resilience. (3) The initial
distribution of operation types determines if learning-resilience is

achievable. Evidently, the effectiveness of learning-resilient locking

should not depend on circuit features. Even if real-world designs

are not represented by the + network, focusing on this biased case

ensures that the scheme offers security even in general cases.

Based on the above observations, we can conclude that learning
resilience on RTL is achievable if the occurrence frequency of every
operation within a locking pair is equal for all operations in the
pairings. This is the case if the design has the same number of + and
− operations after locking. In that case, any selection procedure for

training results in an equal number of contradictory observations.

In the next section, we introduce two locking algorithms that use

this rule for learning resilience on RTL.

3.2 ASSURE Leakage Points
We analyzed the serial selection of ASSURE [5], and the current
pairing of operations is leaky as operations are incorrectly paired.

For example, ASSURE assumes these pairs: (∗, +), (+,−), and (−, +).
Here, * is paired with a +, but + is also paired with -. Hence, if the

locked pair (∗, +) is encountered, the attacker can infer * as the

correct operation, as (+, ∗) does not exist. Similarly, leakage exists

for modulo, xor, power, and division. Thus, currently ASSURE can be
broken by analyzing operation pairs. Hence, every operation must

exist as a real and dummy operation with the same pair, e.g., (∗, /)
and (/, ∗). This fix applies to all evaluations in this study.

4 ML-RESILIENT RTL LOCKING
Based on the discussion, we introduce the following definition:

Definition 1. An RTL design is learning-resilient w.r.t. oper-
ation locking if the number of operations of type 𝑇 is equal to the
number of operations of type 𝑇 ′ for each locking pair for which at
least one operation of type 𝑇 or 𝑇 ′ is locked.

If neither 𝑇 nor 𝑇 ′ are involved in locking, the locked design is

learning-resilient even if the number of 𝑇 and 𝑇 ′ operations is not
balanced. The reason is that, during training, locking “untouched”𝑇

and𝑇 ′ operations does not provide feedback for the target samples.

Henceforth, secure refers to security in the context of Def. 1. Next,

we introduce two ML-resilient locking algorithms built on top

of ASSURE: ERA: Exact ML-Resilient Algorithm and Heuristic

ML-Resilient Algorithm. ERA guarantees security w.r.t. Def. 1, but

requires a large key budget. HRA trades-off key length with security,

yielding less secure solutions if the key budget is limited.

Operation distribution: The first step in ERA and HRA is to

analyze operation distribution in the input RTL. We store this infor-

mation in an operation distribution table (𝑂𝐷𝑇 ). For each𝑇 , the table
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Algorithm 1: Lock
Input: Locking type𝑇 , operation distribution table𝑂𝐷𝑇 , RTL design D, and

pair mode P

Output: Number of used bits

1 𝑛 ← 0 // Initialize used bits var

2 𝑇 ′ ← GetPairType(𝑇 )
3 𝑜𝑖 ← RndSelect(𝐷.𝑜𝑝𝑠 [𝑇 ]) // Select a T-type op.

4 𝑜 𝑗 ← RndSelect(𝐷.𝑜𝑝𝑠 [𝑇 ′ ])
5 if 𝑂𝐷𝑇 [𝑇 ] > 0 and !𝑃 then
6 AddPair(𝐷,𝑜𝑖 ,𝑇

′) // Add T’ node to 𝑜𝑖
7 𝑂𝐷𝑇 [𝑇 ] ← 𝑂𝐷𝑇 [𝑇 ] − 1
8 𝑂𝐷𝑇 [𝑇 ′ ] ← 𝑂𝐷𝑇 [𝑇 ′ ] + 1
9 𝑛 ← 𝑛 + 1

10 else if 𝑂𝐷𝑇 [𝑇 ] < 0 and !𝑃 then
11 AddPair(𝐷,𝑜 𝑗 ,𝑇 ) // Add T node to 𝑜 𝑗

12 𝑂𝐷𝑇 [𝑇 ] ← 𝑂𝐷𝑇 [𝑇 ] + 1
13 𝑂𝐷𝑇 [𝑇 ′ ] ← 𝑂𝐷𝑇 [𝑇 ′ ] − 1
14 𝑛 ← 𝑛 + 1
15 else
16 AddPair(𝐷,𝑜𝑖 ,𝑇

′) // Add T’ node to 𝑜𝑖
17 AddPair(𝐷,𝑜 𝑗 ,𝑇 ) // Add T node to 𝑜 𝑗

18 𝑛 ← 𝑛 + 2
19 end
20 return 𝑛

stores a number representing the difference between the distribu-

tion of 𝑇 -type and the locking-pair 𝑇 ′-type operations. Assuming

the pair (+,−), a design with 7 "+" and 5 "−" has the following𝑂𝐷𝑇
entries: 𝑂𝐷𝑇 [+] = +2 and 𝑂𝐷𝑇 [−] = −2. A positive (negative)

𝑂𝐷𝑇 value indicates that the operation type has more (less) oper-

ations than its locking-pair type. The 𝑂𝐷𝑇 entries can inform a

secure design by balancing the number of 𝑇 and 𝑇 ′ operations.
The locking step: Algorithm 1 outlines Lock, the common

locking step for HRA and ERA. For a selected type 𝑇 , the RTL 𝐷

is locked following three cases. If 𝑂𝐷𝑇 [𝑇 ] is positive (lines 6-9),
pair a new 𝑇 ′-type operation with an existing 𝑇 -type to reduce

the excess of 𝑇 . If 𝑂𝐷𝑇 [𝑇 ] is negative (lines 11-14), pair a new

𝑇 -type operation with an existing 𝑇 ′-type to reduce the deficiency

of 𝑇 . Otherwise (lines 16-18), pair new 𝑇 - and 𝑇 ′-type operations
with existing operations. This is used by specific operation-selection
algorithms to derive HRA and ERA. Before describing the locking

algorithms, we introduce a security metric for resilience w.r.t. Def. 1.

4.1 Security Metric for Learning Resilience
𝑂𝐷𝑇 entries can be used as a vehicle to measure security in the

context of Def. 1. To design ametric that indicates how "far" a locked

design is from the optimal distribution, let us consider the following

notation. The content of 𝑂𝐷𝑇 in iteration 𝑗 of a selected locking

algorithm can be represented as the vector 𝒗𝒋 = [𝑥0, . . . , 𝑥𝑙−1],
where 𝑙 is the number of available locking pairs, and 𝑥𝑖 = |𝑂𝐷𝑇 [𝑇 ] |.
Note that |𝑂𝐷𝑇 [𝑇 ] | ≡ |𝑂𝐷𝑇 [𝑇 ′] |. A secure solution is reached if all

entries of 𝑂𝐷𝑇 = 0. Hence, the optimal distribution can be defined

as 𝒗𝒐 = [𝑦0, . . . , 𝑦𝑙−1], where 𝑦𝑖 = 0 for 𝑖 ∈ [0, 𝑙 − 1]. Using this

notation, we can define the learning-resilience security metric as:

𝑀𝑠𝑒𝑐 = 100 ·
(
1 −

𝑑𝑒 (𝒗𝒋 , 𝒗𝒐)
𝑑𝑒 (𝒗𝒊, 𝒗𝒐)

)
, (1)

where 𝑑𝑒 is a modified version of the Euclidean distance, 𝒗𝒊 the
initial distribution vector of the target design, 𝒗𝒐 the optimal distri-

bution vector, and 𝒗𝒋 the distribution vector after the 𝑗-th locking

Algorithm 2: 𝑑𝑒 : Modified Euclidean Distance

Input: Current vector 𝒗𝒋 and optimal vector 𝒗𝒐
Output: Distance

1 𝑠 ← 0 // Initialize sum var

2 for 𝑖 ← 0; 𝑖 < |𝒗𝒐 |; 𝑖 + + do
/* Check if value should be considered */

3 if 𝒗𝒐 ≠ ’x’ then
4 𝑠 ← 𝑠 + (𝒗𝒐 [𝑖 ] − 𝒗𝒋 [𝑖 ])2
5 end
6 return

√
𝑠

Algorithm 3: ERA: Exact ML-Resilient Algorithm

Input: Key budget 𝑘𝑏 and RTL design 𝐷

Output: Locked RTL design

1 LoadODT(𝐷) // Populate ODT

2 𝑛 ← 0 // Initialize used bits var

3 Θ← {(𝑇1,𝑇 ′
1
), . . . , (𝑇𝑛,𝑇 ′𝑛) } // Valid locking pairs

4 while 𝑛 < 𝑘𝑏 do
5 𝜗 ← RndSelect(Θ) // Select a pair

6 𝑇 ← RndSelect(𝜗) // Select a type

7 while |𝑂𝐷𝑇 [𝑇 ] | > 0 do
8 𝑠 ← Lock(𝑇,𝑂𝐷𝑇,𝐷, 𝐹𝑎𝑙𝑠𝑒) // Apply lock (Algorithm 1)

9 𝑛 ← 𝑛 + 𝑠
10 end
11 end
12 return 𝐷

iteration. Note that 𝑀𝑠𝑒𝑐 ∈ [0, 100], where the highest value in-

dicates 𝒗𝒋 ≡ 𝒗𝒐 . In that case, all locking-pair operation types are

equally represented within the locked design, disabling the ability

of ML to learn from relocking (as discussed in Section 3). Further-

more, the formulation of the Euclidean distance was adjusted as

presented in Algorithm 2. For a selected 𝒗𝒐 , the algorithm allows the

exclusion of selected |𝑂𝐷𝑇 | values from the calculation, enabling

two metric variants: restricted and global learning resilience.

Global security metric (𝑀
𝑔
𝑠𝑒𝑐 ) considers all 𝑂𝐷𝑇 entries to

determine 𝑑𝑒 , regardless of whether operations from a selected

locking pair are affected by locking or not. This metric is suitable

to guide heuristics when it is not clear which operation types will

be locked. Thus,𝑀
𝑔
𝑠𝑒𝑐 describes the potential for exploitation within

a design. Since𝑀𝑔
𝑠𝑒𝑐 considers all 𝑂𝐷𝑇 values, 𝒗𝒐 does not contain

any ’x’ values. Hence,𝑀
𝑔
𝑠𝑒𝑐 is monotonic.

Restricted security metric (𝑀𝑟
𝑠𝑒𝑐 ) only considers 𝑂𝐷𝑇 entries

in which either 𝑇 or 𝑇 ′ are affected by locking. The reason is that

an ML model cannot learn from operations from a selected locking

pair if neither 𝑇 nor 𝑇 ′ operations are locked. In this sense, 𝑀𝑟
𝑠𝑒𝑐

captures the security of the design when only considering locked

operations, i.e., the actual exploitability of the design. If a selected
locking pair is included during a locking procedure, certain ’x’

values in 𝒗𝒐 are set to 0. Thus,𝑀𝑟
𝑠𝑒𝑐 is not monotonic.

If all types in𝑂𝐷𝑇 are affected by locking,𝑀𝑟
𝑠𝑒𝑐 ≡ 𝑀

𝑔
𝑠𝑒𝑐 . Further-

more,𝑀𝑟
𝑠𝑒𝑐 = 100 does not imply𝑀

𝑔
𝑠𝑒𝑐 = 100, since some operation

types are not affected by locking. However, if 𝑀
𝑔
𝑠𝑒𝑐 = 100 then

𝑀𝑟
𝑠𝑒𝑐 = 100. These metrics are used by the locking algorithms.

4.2 Exact ML-Resilient Algorithm (ERA)
ERA (Algorithm 3) ensures that locking always yields a secure

design even if the key budget is exceeded. While the key budget

is not exceeded (line 4), ERA randomly selects a type 𝑇 from a
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Algorithm 4: HRA: Heuristic ML-Resilient Algorithm

Input: Key budget 𝑘𝑏 and RTL design 𝐷

Output: Locked RTL design

1 LoadODT(𝐷) // Populate ODT

2 𝑛 ← 0 // Initialize used bits var

3 𝒗𝒊 ← ExtractVector(𝐷.𝑂𝐷𝑇 ) // Initial vector

4 Θ← {(𝑇1,𝑇 ′
1
), . . . , (𝑇𝑛,𝑇 ′𝑛) } // Valid locking pairs

5 while 𝑛 < 𝑘𝑏 do
6 𝑀

𝑔
𝑠𝑒𝑐 ← 0 // Track max metric value

7 𝑗 ← 0 // Track operation index

8 𝑃 ← RndBoolean() // Include randomness

9 if 𝑃 then
10 𝑗 ← RndSelect( |Θ |)
11 else
12 Shuffle(Θ)
13 for 𝑖 ← 0; 𝑖 < |Θ |; 𝑖 + + do
14 Lock(Θ[𝑖 ] [0],𝑂𝐷𝑇,𝐷, 𝐹𝑎𝑙𝑠𝑒)
15 𝒗𝒋 ← ExtractVector(𝐷.𝑂𝐷𝑇 )
16 𝑀𝑖 ← EvalMetric(𝒗𝒊, 𝒗𝒋 )
17 UndoLock(𝐷) // Undo last lock

18 if 𝑀𝑖 > 𝑀
𝑔
𝑠𝑒𝑐 then

19 𝑀
𝑔
𝑠𝑒𝑐 ← 𝑀𝑖

20 𝑗 ← 𝑖

21 end
22 end
23 𝑠 ← Lock(Θ[ 𝑗 ] [0],𝑂𝐷𝑇,𝐷, 𝑃 ) // Apply lock (Algorithm 1)

24 𝑛 ← 𝑛 + 𝑠
25 end
26 return 𝐷

randomly selected pair 𝜗 from valid locking pairs Θ (lines 5-6). To

ensure a secure solution after each selection, the algorithm repeats

the locking for the selected type until 𝑂𝐷𝑇 [𝑇 ] reaches 0 (lines 7-
10). This way the selected operation pairs yield a balanced solution.

Thus,𝑀𝑟
𝑠𝑒𝑐 = 100 after each locking round even if the cost is more

than allowed. Hence, ERA prioritizes security over cost. ERA always

locks all selected pairs until 𝑂𝐷𝑇 [𝑇 ] reaches 0—all affected pairs

are guaranteed to be balanced. The security evaluation of an ERA-

locked design will result in 𝑀𝑟
𝑠𝑒𝑐 = 100%, but not necessarily in

𝑀
𝑔
𝑠𝑒𝑐 = 100%. The former states that all affected pairs are perfectly

balanced. The latter indicates that other parts of the design are

exploitable by ML if not locked properly (if𝑀
𝑔
𝑠𝑒𝑐 < 100%).

4.3 Heuristic ML-Resilient Algorithm (HRA)
HRA (Algorithm 4) performs iterative fine-grained balancing of

locking-pairs in the target design to get closer to the secure solution

at every step without exceeding the key budget. While key bits are

available (line 5), HRA randomly chooses (line 8). Either a random

operation type is chosen (line 10) or the best type is chosen (lines 12-

21). The latter case evaluates all locking pairs inΘ and checks which

one yields the highest increase in𝑀𝑔
𝑠𝑒𝑐 . In both cases, the selected

pair is locked by the Lock function (line 23). As HRA performs fine-

grained design adjustments, it uses the exact key budget and trades

off against the guarantee to reach a secure solution. Since HRA

ensures that every step increases security and decreases operation

imbalances, it must be guided by the monotonic𝑀
𝑔
𝑠𝑒𝑐 metric.

4.4 Metric-Guided Design
The proposed metrics can be used to design various locking algo-

rithms targeting learning resilience. Let us consider a design with

the following𝑂𝐷𝑇 entries: |𝑂𝐷𝑇 [(+,−)] | = 25 and |𝑂𝐷𝑇 [(<<, >>
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HRA

ERA

(a) (b)
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Figure 5: Security metrics: (a) search space and (b) evolution.

)] | = 10. As depicted in Fig. 5a, 𝑀
𝑔
𝑠𝑒𝑐 represents a smooth, mono-

tonic surface. Fig. 5b presents the evolution of the metric in each

step. The goal of locking is to move the target design from the initial

point (bottom right) to the secure point (top left). The path between

these two points represents different heuristic approaches. ERA

forces selected𝑂𝐷𝑇 values to 0, thus jumping in two steps to the se-

cure solution alongside the edges of the surface. HRA travels in the

steepest direction, taking small steps and remaining on the highest

line across the surface. A greedy approach (same as HRA where 𝑃

in line 8 is always false) traverses the same points as HRA. Fig. 5b

suggests that a greedy approach is more efficient than HRA since it

reaches full security (i.e., metric equal to 100) with fewer key bits.

However, a greedy approach has a negative consequence: reversibil-

ity. An attacker can reverse the locking procedure alongside the

steepest decreasing direction. Therefore, including random locking

decisions within HRA (variable 𝑃 ) thwarts reversibility—even if it

takes longer to get to the secure solution. Similar observations hold

for𝑀𝑟
𝑠𝑒𝑐 since𝑀

𝑟
𝑠𝑒𝑐 ≡ 𝑀

𝑔
𝑠𝑒𝑐 when all 𝑂𝐷𝑇 entries are affected.

5 EVALUATION
We evaluate ASSURE-based locking policies against the state-of-

the-art ML-based SnapShot attack on a subset of the benchmarks

used in [5]. Some benchmarks were excluded due to the low num-

ber of operations. We also composed two synthetic benchmarks:

N_2046 and N_1023, representing a fully imbalanced (biased) de-

sign (a network of 2046 + operations) and a fully balanced design (a

network with 1023 + and − operations), respectively. We consider

ASSURE (serial implementation), HRA, and ERA. Note that the cost

of the proposed algorithms are in line with the original ASSURE,

as the cost of a locking pair per key bit has not changed [5].

SnapShot for RTL: We adapted SnapShot (Fig. 2) to learn RTL

key leaks by extracting all key-controlled pairs [𝐾 [𝑖],𝐶1,𝐶2], where
𝐾 [𝑖] is the key-bit value, and𝐶1,𝐶2 are encodings for an operation

pair. Each type is assigned a unique integer. The extractor is based

on Pyverilog [21]. Instead of one neural network type as in [6],

we use auto-sklearn [13], a library for automatic ML (auto-ml)

model exploration. Auto-ml searches for a suitable ML model and

optimizes the hyperparameters. We selected 600 seconds per attack

iteration as this was enough for the attack to converge.

Attack setup: The test set for each algorithm comprises every

benchmark locked 10 times with different keys. We assembled the

training set by relocking each test sample 1,000 times with different

keys. Relocking was performed with random ASSURE locking so

that all parts of the design were used for learning; thus, simulating

the most effective attack. Both test and training keys are set to 75%



DAC ’22, July 10–14, 2022, San Francisco, CA, USA

DES3 DFT FIR IDFT IIR MD5 RSA SHA256 SASC SIM_SPI USB_PHY I2C_SL N_2046 N_1023
0

25

50

75

100

Random guess

Benchmarks

K
P
A
(
%
)

ASSURE HRA ERA

(a) KPA per benchmark

ASSURE HRA ERA

0

25

50

75

100

7
4
.7
8

7
4
.2
6

4
7
.9
2

RTL locking algorithms

K
P
A
(
%
)

(b) Average KPA

Figure 6: Evaluation results for the ML-based SnapShot attack on RTL locking.

of the available operations. This was exceeded for N_2046, as its
perfect imbalance requires a 100% key budget for ERA.

Accuracy metric: Key Prediction Accuracy (KPA) is used to

measure attack success [6]. N% KPA indicates that N% of the key

bits are correctly predicted. A random guess results in 50% KPA.

5.1 Results and Discussion
Results: Fig. 6a presents the KPA evaluation results per locking

algorithm and benchmark, and Fig. 6b presents the average KPA

across all benchmarks. SnapShot correctly predicts 74.78% key bits

for the original ASSURE implementation, on average. The average

KPA for HRA is slightly lower, 74.26%. ERA averages ∼47.92% KPA

with consistent KPA values around (or lower) than a random guess.

Lessons learned: SnapShot’s success on HRA is at first surpris-

ing since it is supposed to have a higher level of security than non-

ML-driven serial locking. However, since we use a key budget of 75%

of the available operations, parts of the design remain unaffected

by locking. Hence, the training step can extract knowledge about
the design for an educated guess (∼24 percentage points better than
random). Once all operations are fully balanced—as guaranteed by

ERA—the training fails to extract useful observations. The above

leads to a significant conclusion: when it comes to ML-driven
attacks, half measures are not effective. Data-driven approaches

can exploit even the slightest imbalance. In contrast, half-way mea-

sures can mitigate non-ML-driven attacks, e.g., slightly increasing

the key length can deteriorate a brute-force attack. While HRA

appears less promising, the heuristic is useful if multiple security

objectives must be reached, such as learning-resilience, output cor-

ruptibility, and Boolean Satisfiability (SAT)-resistance [3]. Since

ERA makes coarse-grained modifications, it might create radical

changes in the design. HRA improves learning resilience of locked

designs alongside other objectives in smaller and controlled locking
steps as it only decreases operation imbalance.

Limitations and opportunities: This study exploits individ-

ual locking pairs—but is there a "global bias" among designs? If

so, this bias could help determine the correct function of locked

designs. The metric in Section 4.1 can extract the initial distance

for selected designs by considering the distance between the ini-

tial distribution and the optimal one. Are the locking algorithms

resilient to oracle-guided attacks? Moreover, locking has recently

been explored in combination with high-level synthesis [4, 14, 20].

Future efforts should evaluate the problem of learning resilience

on this abstraction level and address the mentioned challenges.

6 CONCLUSION
We introduced the first concepts on designing and evaluating RTL

locking using ML-based attacks on operation obfuscation, and pro-

posed two ML-resilient locking algorithms. The heuristic algorithm

is a controlled procedure that decreases the imbalance of operations

in an RTL design in small steps, adhering to the allowed key budget.

The exact algorithm guarantees ML resilience but can exceed a key

budget. We presented a security metric to assess resilience of RTL

locking to ML attacks that can guide the design process of heuristic

locking. Finally, we presented the first ML-based oracle-less attack

on RTL locking by adapting the state-of-the-art SnapShot attack.
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