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ABSTRACT

Security verification is an important part of the hardware design

process. Security verification teams can uncover weaknesses, vul-

nerabilities, and flaws. Unfortunately, the verification process in-

volves substantial manual analysis to create the threat model, iden-

tify important security assets, articulate weaknesses, define security

requirements, and specify security properties that formally describe

security requirements upon the hardware. This work describes cur-

rent hardware security verification practices. Many of these rely

on manual analysis. We argue that the property generation process

is a first step towards scalable and reproducible hardware security

verification.
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1 INTRODUCTION

Most semiconductor manufacturers have dedicated security verifi-

cation teams that assess their hardware, uncover potential weak-

nesses, and perform redesigns to make it more secure. The teams

use a best effort approach to analyze the hardware and assess po-

tential weaknesses and vulnerabilities. They work with system

engineers to identify important security-sensitive assets. They use

Common Weakness Enumerations (CWEs) [14] to articulate the

relevant threats. They refine these threats into requirements and

properties. They verify that the hardware adheres to those security

properties using a mix of formal methods, simulation, emulation,

and manual code review at the pre-silicon phase.

Hardware security verificationmay uncover sophisticated and in-

tricate weaknesses, vulnerabilities, and flaws. However, its reliance

on manual analysis limits its scalability and reproducibility. Hard-

ware attacks are becoming more sophisticated and reach across

hardware and software. This requires system-level verification to

also cover the complex software and hardware interactions. System-

level properties quickly go beyond the verification engineers’ ability
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to easily reason about them. Additionally, verification efforts involv-

ing manual code review are often not well-documented or formally

described making it costly to assess and challenging to reproduce.

The ideal hardware security verification process is formal and au-

tomated. The assets are exactly specified to hardware resources. The

threats are well-documented, broadly understandable, and automat-

ically refined into requirements. The requirements are specified in a

formal language and then compiled into properties, which are also

described formally. And the hardware specification is automatically

verified to adhere to those properties or produce counterexamples

indicating security violations.

The ability to quickly, easily, and automatically develop secu-

rity properties based on the threat model, is an important part of

formalizing and automating hardware security verification. Trans-

lating security requirements into hardware properties is a complex,

mostly manual process that is a bottleneck in the hardware security

verification process. Techniques that automate property generation

are crucial to reduce the manual effort involved. Some tools exist

that automate parts of the process. We argue that more is required

to advance hardware security analysis.

This paper describes current hardware security verification prac-

tices. We use access control verification as an exemplar to highlight

key aspects of the verification process. Verification requires a large

investment of manual effort in order to translate from a threat

model to security properties. We argue that security property gen-

eration can and should be automated; this streamlines the hardware

verification process making it more scalable and reproducible. We

describe some important efforts in automated property generation

and discuss opportunities for future research directions.

2 HARDWARE SECURITY VERIFICATION

Hardware security verification involves simulation, emulation, for-

mal verification, code review, post-silicon penetration testing, and

a significant amount of manual analysis [15]. Careful and intense

verification can uncover critical weaknesses and vulnerabilities.

But the heavy reliance on manual analysis limits the ability to scale

the verification process. For example, understanding and verifying

behaviors within an IP core is feasible. However, it becomes much

more challenging to reason about system-on-chip architectures and

their interactions with firmware, system, and application software.

Large portions of the verification process are ad hoc and not

formally specified, making it challenging to assess its effectiveness

and difficult to replicate. For example, when performing code review,

a verification engineer proceeds based upon their experience. While

the end results may be documented, the verification process itself –

the different steps taken to uncover vulnerabilities and the process

by which the hardware is examined – is often vaguely described.
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2.1 Verification Process

There are many efforts to describe the steps of the hardware se-

curity verification process [2, 4, 11, 13]. In general, this process

involves: 1) Creating Threat Model, 2) Identifying Assets, 3) Articu-

lating Common Weaknesses, 4) Defining Security Requirements, 5)

Specifying Security Properties, and 6) Verifying Security Properties.

The first step of the security verification process creates the

threat model. This involves identifying important assets and defin-

ing how they can interact with the rest of the system. Assets may

be subject to threats related to confidentiality, integrity, and avail-

ability. Adversaries, their intents and starting privileges are also

enumerated to help compose the threats. Precisely and accurately

describing these threats and how they relate to the assets is a critical

component of the hardware security verification process.

Common Weakness Enumerations (CWEs) [14] play an impor-

tant role in the verification process. CWEs are a category system for

security weaknesses and provide understanding around common

security concerns. CWEs are a natural first step towards formalizing

the hardware verification process. Vulnerabilities, requirements,

and properties can be mapped to specific CWEs to enable under-

standing and reproducibility of the verification process.

After articulating potential weaknesses, each individual threat

will be elaborated to one or more security requirements to be im-

posed upon the hardware. Along with implementation details of the

actual design like signal and register names, each security require-

ment will be translated into one or more security properties. These

properties should be described in a formal language that can be ver-

ified using automated tools. Translating CWEs into requirements

and properties is largely a manual procedure. Thus, it presents a

bottleneck in scaling the hardware security verification process.

Trace properties and hyperproperties are two classes of security

properties. Trace properties are exhibited in a single trace of execu-

tion, and, similarly, falsified by a single trace of execution. Trace

properties are commonly used for functional verification and can be

formally described, e.g., as SystemVerilog Assertions (SVAs). Many

open-source and commercial functional hardware verification tools

exist to determine if hardware adheres to trace properties. Hyper-

properties model more complex behaviors like nondeterminism

and information flow [5]. Hardware information flow tracking (IFT)

tools are capable of verifying more complex security behaviors

related to confidentiality, integrity, and availability [12].

The final step in the verification process is determining if the

hardware adheres to the security properties. Commercial functional

verification tools analyze the hardware for security trace proper-

ties. Commercial IFT hardware verification tools verify security

hyperproperties using formal methods, simulation, and emulation.

Property specification is the bottleneck in the hardware security

verification process. Developing tools and methodologies that help

automate property generation will make the verification process

less reliant on manual analysis, making it more scalable and repli-

catable. Automated hardware security property generation is critical
for scalable hardware security verification.

2.2 Access Control Verification

To better articulate the hardware security verification process and

its status quo, wewalk through an example which performs security

verification of a hardware access control mechanism. Access control

is critical to help maintain integrity, privacy, and availability. Access

control mechanisms help to ensure that only authorized entities can

access cryptographic keys, lifecycle state, boot memory, firmware,

and other critical system information.

Access control verification is challenging. As evidence, 5 out of 12

of the 2021 CWE Most Important Hardware Weaknesses [1] relate

to access control systems. The difficulty stems from the complexity

of the on-chip communication networks where tens to hundreds

(or more) IPs communicate using a mix of modalities: memory

mapped I/O, streaming, packet routing, and direct transactions.

Access control mechanisms are often distributed across the chip,

adding more complexity to the verification process.

Access Control
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Figure 1: A system-on-chip (SoC) architecture with three IP

cores acting communication managers: Processor, hardware

root of trust (HWRoT), DMA. Three IP cores act as commu-

nication subordinates: Memory, Crypto core, and an Entropy

Source. Assets associated with IP cores will have policies

about how they can be accessed. Security verification aims

to ensure that only the specified communications occur.

.

Figure 1 provides a simple example of a SoC architecture that

requires access control. The three manager IP cores at the top have

the ability to make read/write requests to the three subordinate

IP cores at the bottom. Example manager IP cores include proces-

sors, hardware root of trust (HWRoT), DMA engines, graphics, and

other accelerators. Example subordinate IP cores include memories

(SRAM, flash, OTP), crypto accelerators, and entropy generator. IP

cores have assets that could be listed as part of the threat model,

e.g., keys in the crypto core and HWRoT.

Local access control mechanisms arbitrate communication at the

IP level. Access to the IP cores inputs, outputs, and control/status

registers may be subject to an access control policy, e.g., who can

read and write to these internal resources and under what condi-

tions. Local access control policies are relatively easy to reason

about and are amenable to formal methods.

Inferring global behaviors becomes challenging as additional IP

cores, each with their own local policies, are integrated into the SoC

architecture. An example is the confused deputy problem where
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an intermediary is used to legally access a resource for someone

who cannot directly access it [10]. In this case, the local access

control policies are not violated, but a series of accesses enable

more complex, global information flows. Global access policies

quickly become intractable to verify using manual analysis alone.

Access control vulnerabilities are dangerous – potentially ex-

posing keys and other confidential information or interfering with

integrity of critical data. Thus, access control systems require a rig-

orous security verification process. Unfortunately, the complexity

of on-chip communication makes it challenging to uncover access

control vulnerabilities using manual analysis. The security verifica-

tion process for access control mechanisms is ripe for automation.

2.3 Aker Access Control Framework

Aker is a design and verification framework for developing hard-

ware access control systems [16]. Aker is built upon two pillars:

the Access Control Wrapper (ACW) and a property-driven security

verification [11]. Aker uses CWEs to identify potential weaknesses,

templates to aid in the property generation process, and functional

and IFT verification tools to validate complex global SoC behaviors.

The ACW enforces a local access control policy by monitoring

requests from IP core managers. The ACWs are distributed across

the SoC architecture; each ACW is programmed with a local access

control policy that describe the address regions of subordinates

that are legally accessible by this manager. The local access control

policy is managed by a hardware root of trust. Figure 1 shows an

example SoC using Aker ACWs.

The access control system plays a crucial role in the security

and safety of the system. Thus, it requires security verification to

ensure safe and secure operation of the SoC. Aker uses the six-step

security verification process from Section 2.1. We discuss the IP-

level verification in the following. The security verification for the

firmware and system behaviors follows a similar procedure [16].

1) Create the ThreatModel:A controller𝐶 attempts to illegally

communicate with a peripheral 𝑃 in a manner that violates the

access control policy.

2) Identify the Assets: The assets are the M AXI signals in the

AXI channels connecting the ACW to 𝐶 and 𝑃 and the configura-

tion/control signals in the AXI configuration interface.

3) Articulate Common Weaknesses: We identified 17 CWEs

relevant to the IP-level verification [16]. The first group relates

to the Manager AXI interface. The second group relates to the

configuration registers storing the local access control policy, the

metadata on illegal requests, and the control logic.

4) Define the Security Requirements: Many CWEs result

from a failure to properly initialize, set, and clear of the contents of

security-critical registers/signals (e.g., 1258, 1266, 1269, and 1271).

5) Specify the Security Properties: Aker provides a property

generation tool that creates properties using templates. For example,

the following template generates properties that state no informa-

tion originating in a manager 𝑀 should flow to a subordinate 𝑆

during active reset.

`signal_from_M` //source
when (ARESETN == 0) //tagging condition
=/=> //no-flow operator
`signal_to_S` //destination

This template generates IFT properties that use a no-flow operator

=/=>. For the security requirements relevant to the config/control

group, we generate trace properties that specify what the value

of a specific signal/register should be different various conditions.

Aker provides 18 property templates. These are matched with the

assets provided in Step 2 to generate 316 security properties: 164

IFT properties and 152 trace properties.

6) Verify the Security Properties:We verify the properties us-

ing formal methods (Siemens Questa Secure Check) and simulation

(Tortuga Logic Radix-S).

3 AUTOMATING PROPERTY GENERATION

Now that we have described the status quo of hardware security

verification, we present some ideas for making verification more

scalable, reproducible, and efficient. Generating the formal security

properties is one major challenge. This is largely a manual process,

and thus does not scale. We believe that property generation is

ripe for automation. The remainder of this section presents some

approaches for automatic hardware security property generation.

3.1 Security Property Languages

The challenging and time consuming aspects of the verification

process reside in the steps between creating the threatmodel, match-

ing it to the relevant CWEs, and refining the CWEs into formally

described requirements and properties. Automating this process

requires formalizing of the security requirements and properties.

Security property languages are crucial for scalable and reproducible
hardware security verification. The major challenges relate to raising

the abstraction from low-level hardware signals and behaviors to

system-level, firmware, and software interactions.

The no flow operator =/=> offers an example on how a security

property language enables the specification of IFT properties. This

raises the level of abstraction and loosens the requirements for the

verification engineer to understand flow labels and their associ-

ated intricacies. The rules include other operators that determine

conditions under which to set labels (when), check for the occur-

rence of flows (unless), and explicitly downgrade flow (ignoring).
The rules are an important first step towards abstracting low-level

hardware information flows into behaviors on assets. More work

is necessary to further abstract IFT and other security concepts to

make it easier and more intuitive to specify properties.

Hardware security verification must build upon standards from

the functional hardware verification like Property Specification

Language (PSL), Universal Verification Methodology (UVM), and

SystemVerilog Assertions (SVA). Merging key security language

features into these standards is a natural next step. Abstracting

even further and developing language features and formalizations

closer to CWEs is another compelling direction.

Security properties tend to follow similar syntax with differ-

ent assets and conditions. Templates are natural way to automate

property generation. Section 2.3 provided an example template.

Templates exist for other threat models. For example, the leakage of

key materials from a cryptographic core often have a pattern where

information about the key should not flow except through the

output cipher text (key =/=> all.outputs ignoring cipher).
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3.2 Property Mining

One promising approach to generating security properties is to

mine relevant properties from the design itself [18]. Specification

mining simulates the design, collecting trace data about the value

of each signal of the design at each clock cycle, and mines the trace

data for behaviors captured as logical assertions [9, 17]. Security
specification mining uses the same workflow, but has the added

criteria that the mined properties should be critical to the security of

the design. This distinction is important. Naive specification mining

can produce hundreds of thousands of properties [8]. Prioritizing

these properties is an important and necessary procedure.

Isadora is a security specification mining tool that creates an

information-flow specification of a hardware design [7]. Automati-

cally generating information-flow properties is a challenge because,

unlike standard assertions, hyperproperties are not amenable to

trace-based mining techniques. Isadora combines IFT tools with se-

curity specification mining to enable security specification mining

of IFT properties. The IFT tools provide important meta-data about

information flows, i.e., whether a signal is affected, either explicitly

or implicitly, by the source signal (asset). Isadora performs specifi-

cation mining over the functional values and IFT labels. The mined

IFT properties are verified with existing hardware IFT tools.

We evaluated Isadora on the Aker ACW [7]. The result is a

full specification of how, and under which conditions, information

flows through the ACW. The specification consists of 153 properties.

Isadora demonstrates the automatic generation of information flow

specifications to enable the use of powerful formal verification tools

to validate the security of our hardware designs.

3.3 Benchmarks

Benchmarks are crucial for focusing the research community on

threat models, designs, and problems that are relevant to indus-

try. Benchmarking is a persistent challenge for the security and

hardware communities. Many hardware designs are proprietary.

Security weaknesses and vulnerabilities found during the hard-

ware verification process are often not disclosed publicly. Academic

benchmarks are often not representative of real-life industrial chal-

lenges. System-level security issues are much more challenging and

representative of industry concerns.

Open-source hardware movement makes it easier to get larger,

more realistic system-level benchmarks. Unfortunately, these do not

have well-articulated security weaknesses or vulnerabilities. There

needs to be more effort spent in providing security verification

specifications, frameworks, and tools for these open-source SoCs.

The Hack@Event provides vulnerabilities inspired by real issues

found in complex industrial SoCs [3, 6]. The competitions cover

different aspects of hardware security. These provide benchmarks

and vulnerabilities that should be used by the research community.

MIT Common Evaluation Platform is a surrogate SoC design for

trusted US government hardware. It assesses technologies related

to hardware Trojans, reverse engineering, side channels, and supply

chain, which are less important for non-government hardware.

TrustHub focuses primarily on IP related issues with a heavy

emphasis on lower-level physical hardware security. Trojans, PUFs,

and logic locking are well-documented here, but system-level is-

sues lack appropriate representation. The Security Property/Rule

Database is a nice initial effort to define security properties.

Aker represents a small but important benchmark for hardware

security verification. Aker can be used to create arbitrarily large

access control systems. Integrating Aker into larger open-source

SoCs would provide more examples of SoC security challenges.

OpenTitan is an open-source HWRoT representative of HWRoTs

used in commercial silicon. OpenTitan includes extensive security

verification specification and documentation. Further efforts to

standardize the security verification process using properties would

further enhance the security verification.

4 CONCLUSION

Security verification is an increasingly important part of the hard-

ware design process. Yet, this remains largely a manual effort that

limits its scalability and reproducability. Property generation is a

key part of formalizing the process. Initial efforts to automate this

process have emerged, and more techniques to generate security

properties is necessary to advance hardware security analysis.
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