
Optimizing Quantum Circuit Synthesis for Permutations Using
Recursion

Cynthia Chen
Caltech

Pasadena, USA
cchen6@caltech.edu

Bruno Schmitt
EPFL

Lausanne, Switzerland
bruno.schmitt@epfl.ch

Helena Zhang, Lev S. Bishop,
Ali Javadi-Abhar

IBM Quantum
Yorktown Heights, NY, USA

{helena.zhang,ali.javadi}@ibm.com

ABSTRACT
We describe a family of recursive methods for the synthesis of
qubit permutations on quantum computers with limited qubit
connectivity. Two objectives are of importance: circuit size and
depth. In each case we combine a scalable heuristic with a non-
scalable, yet exact, synthesis.

ACM Reference Format:
Cynthia Chen, Bruno Schmitt, and Helena Zhang, Lev S. Bishop, Ali Javadi-
Abhar. 2022. OptimizingQuantumCircuit Synthesis for Permutations Using
Recursion. In Proceedings of the 59th ACM/IEEE Design Automation Confer-
ence (DAC) (DAC ’22), July 10–14, 2022, San Francisco, CA, USA. ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/3489517.3530654

1 INTRODUCTION
There is a strong belief that quantum computers will be able to solve
certain problems beyond the reach of classical computers [3, 14].
Typically, researchers describe quantum algorithms in high levels
of abstraction: from purely mathematical description to high-level
quantum circuits—a sequence of operators acting on qubits. While
these high-level circuits assume all-to-all connectivity, in practice,
the qubits in most quantum hardware are not fully connected due
to noise and interconnect challenges. Therefore, not every qubit
pair can participate in the same gate operation. These connectivity
restrictions are known as coupling constraints.

The task of finding a mapping from virtual instructions to al-
lowed physical instructions is known as quantum circuit mapping.
Completing this task is not always possible without applying addi-
tional operators to the circuit. These additional operators enable
the execution of gates on non-adjacent qubits by permuting their
place in the coupling graph. Their cost, however, can dominate
the total cost for many applications. This work focuses on fam-
ilies of circuits permute qubits on a coupling graph. Also, these
permutation circuits appear prominently in quantum computing
benchmarks [6].

The size and depth of a circuit are two important metrics to
evaluate the quality of a synthesis process. Size refers to the number
of gates and is relevant since each gate is noisy, andmany gates can
cause errors to accumulate. Depth refers to the number of timesteps
(or layers) in the circuit. Since qubits have limited coherence, they
retain information for a short time. Hence, deep circuits can get

DAC ’22, July 10–14, 2022, San Francisco, CA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9142-9/22/07.
https://doi.org/10.1145/3489517.3530654

Figure 1: High-level view of our hybrid approach for syn-
thesizing permutations on arbitrary topologies. It takes as
input a graph and the desired permutation. These are given
to either ROWCOL [15] or LR-Synth, depending on whether
CNOT or SWAP is used as primitive. Both generate a partial
solution that is combined with an optimal solution synthe-
sized by a SAT-based technique.

overwhelmed by noise. Note that there is often a tradeoff between
size and depth optimization.

An intuitive procedure for the physical synthesis of permuta-
tions is to perform SWAP operations between pairs of qubits. The
size-optimizing version of this problem is known as token swap-
ping [16], and the depth-optimizing version is known as routing
via matchings [1]. Finding optimal solutions to either of these prob-
lems takes exponential time. While swapping qubits is the most
common model employed to solve this problem due to its analogy
to graph algorithms, we can improve by leveraging fundamental
quantum gates such as CNOT. Since permutations are a special
class of linear functions over F2, they are computable using a series
of XOR operations (i.e., CNOTs).

Broadly, existing methods for synthesizing permutation circuits
either optimize for size or depth, using either SWAPs or CNOTs.
Some methods are exact but non-scalable, some are tailored to
certain topologies, and some are general-purpose heuristics. In Ta-
bles 1 and 2 we summarize prior literature, ordered chronologically
and separated by whether they optimize for size or depth.

1.1 Our Contributions
In this work, we utilize recursive heuristics for the synthesis of
permutations. They have two key advantages: first, they reduce the
problem at each stage, making high-quality solutions easier to find
and can be used in conjunction with optimal methods in the inner

7

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3489517.3530654
https://doi.org/10.1145/3489517.3530654
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3489517.3530654&domain=pdf&date_stamp=2022-08-23

DAC ’22, July 10–14, 2022, San Francisco, CA, USA Cynthia Chen, Bruno Schmitt, and Helena Zhang, Lev S. Bishop, Ali Javadi-Abhar

Description Primitive Op. Topologies Size bounds
Patel (’08) [10] Grouped Gaussian elimination CNOT Fully connected 𝑂

(
𝑛2

log𝑛

)
Kissinger (’19) [8],
Gheorghiu (’20) [7]

Gaussian elimination with Steiner trees CNOT Any 𝑂 (𝑛2)

Wu (’19) [15] Recursive elimination of 𝑅𝑂𝑊𝑖 /𝐶𝑂𝐿𝑖 CNOT Any 2𝑛2
Schmitt (’20) [12] A* search with admissible heuristic SWAP Any Optimal (small 𝑛)
Ours SAT formulation CNOT Any Optimal (small 𝑛)

Table 1: Summary of size-optimizing methods. Bounds are in terms of the operation the method is based on. 1 SWAP = 3 CNOTs.

Description Primitive Op. Topologies Depth bounds
Alon (’94)[1] Graph matchings SWAP Tree, cartesian prod., etc. 3𝑛
Zhang (’97) [17] Caterpillar partition and matchings. SWAP Tree 3

2𝑛 +𝑂 (log𝑛)

Kutin (’07) [9]
Odd-even transposition sort (+ manual
for specific permutations)

CNOT Line 𝑛

Wu (’19) [15] Using 𝑛2 ancillas CNOT 2D grid 𝑂 (log𝑛)
Schmitt (’20) [12] SAT formulation SWAP Any Optimal (small 𝑛)
de Brugiere (’21) [4] Divide and conquer CNOT Fully connected 4

3𝑛 + 8 log2 (𝑛)
Bapat (’21) [2] Divide and conquer Reversal Any 𝑂 (𝑘2) + 2

3𝑟
Ours SAT formulation CNOT Any Optimal (small 𝑛)
Ours Divide and conquer SWAP Any 2𝑛 + 2 log𝑛

Table 2: Summary of depth-optimizing methods. Bounds are in terms of operation the method is based on. 1 SWAP = 3 CNOTs.

stages of recursion (Figure 1). Second, with depth optimization,
it is important to parallelize the circuit as much as possible, and
recursive methods can be parallelized at each stage. Our approach
scales to thousands of qubits and applies to any qubit connectivity
topology, and yields better results than state-of-the-art approaches.

First, we propose a SAT encoding of the problem, which can find
circuits with optimal size or depth using CNOTs. This technique
improves over prior SWAP-based optimal solvers [12] and can be
used to synthesize any linear function, not just permutations.

Equipped with optimal solvers (hereafter referred to as CNOT-
size-optimal,CNOT-depth-optimal, SWAP-size-optimal, SWAP-depth-
optimal), we use them in recursive heuristics and scale to much
larger problem instances. For size, we rely on a modified version
of the ROWCOL heuristic by Wu et al. [15], which outperforms
other size-oriented algorithms and lends itself to recursion. No
such algorithm exists for depth, so we propose LR-Synth, a novel
depth-optimizing divide-and-conquer heuristic for general graphs.

ROWCOL is a recursive algorithm that reduces the problem by
removing one non-cut vertex/qubit from the connectivity graph
at a time. We observe that the order of vertex elimination is im-
portant and optimize for that. Combining ROWCOL with CNOT-
size-optimal for the inner stages of recursion yields our hybrid
algorithm, which significantly outperforms prior work.

Our second recursive algorithm, LR-Synth, is a novel algorithm
that routes qubits to the correct half of the topology in each step
then recurses on the left and right subgraphs of the topology. Since
we can always divide a topology into two parts, an advantage of
LR-Synth is that it can be applied to any topology connectivity, ad-
dressing a current limitation of depth optimization approaches. We
benchmark LR-Synth against Schmitt’s SAT-based token swapping

solver [12], which solves for optimal SWAP depth. We also bench-
mark LR-Synth against state-of-the-art heuristics that exist for
specific topologies (paths, trees, and lattices). Overall we find that
LR-Synth achieves close to optimal circuit depth while being much
more scalable than exact solvers and applicable to any topology.
We emphasize the generality of the method since many realistic
quantum architectures are not built using regular topologies.

We note that there are two gaps in prior work which we fill.
First, while exact solvers exist for size-optimal and depth-optimal
synthesis based on SWAPs [12] (and available in software pack-
age Tweedledum [11]), no CNOT-optimal synthesizers are known.
Since each SWAP is equivalent to three CNOTs, direct usage of
CNOTs in synthesis can yield better circuits. Second, to our knowl-
edge, there are no scalable heuristics for depth minimization on
general topologies (with one recent exception [2], which assumes
the existence of fast reversal operations that may not be available
on some architectures).

Finally, we use our exact algorithm to disprove a 15-year-old
conjecture by Kutin et al. [9] that reversal is at least as depth-
intensive to synthesize with CNOTs as any permutation on a path.

2 OPTIMAL SAT-BASED ALGORITHM FOR
CNOT CIRCUITS

We formulate the problem of finding an optimal-depth circuit for
a linear matrix representing a reversible function as instances of
the Boolean satisfiability problem. In our encoding, we use two
kinds of variables. Matrix variables,𝑚𝑑

𝑖,𝑘
, which indicate whether

a matrix entry (𝑖, 𝑘) is 0 or 1 at depth 𝑑 ; and CNOT gate variables,
𝑔𝑑𝑐→𝑡 , which indicate that a CNOT between qubits 𝑐 and 𝑡 took
place at depth 𝑑 . For example a 3-qubit linear function synthesis

8

OptimizingQuantum Circuit Synthesis for Permutations Using Recursion DAC ’22, July 10–14, 2022, San Francisco, CA, USA

would be encoded as such, where a 3× 3 Boolean matrix represents
the linear function over 3 bits, and a CNOT application transforms
the matrix by XOR-ing two rows.

𝑚𝑑

0,0 𝑚𝑑
0,1 𝑚𝑑

0,2
𝑚𝑑

1,0 𝑚𝑑
1,1 𝑚𝑑

1,2
𝑚𝑑

2,0 𝑚𝑑
2,1 𝑚𝑑

2,2

 −−−−→𝑔𝑑0→2

𝑚𝑑

0,0 𝑚𝑑
0,1 𝑚𝑑

0,2
𝑚𝑑

1,0 𝑚𝑑
1,1 𝑚𝑑

1,2
𝑚𝑑

0,0 ⊕𝑚𝑑
2,0 𝑚𝑑

0,1 ⊕𝑚𝑑
2,1 𝑚𝑑

0,2 ⊕𝑚𝑑
2,2

Our encoding uses four different types of clauses to constrain

the problem such that the solution corresponds to a valid linear
reversible circuit:

• C1. Each depth that does not hold the target transformation
must have at least one CNOT.

∀{𝑑 : ∃(𝑑 + 1)},
∑︁
(𝑐,𝑡) ∈𝐸

𝑔𝑑𝑐→𝑡 + 𝑔𝑑𝑡→𝑐 ≥ 1.

• C2. At each depth that has at least one CNOT, each qubit
can only be involved in one CNOT.

∀{𝑑 : ∃(𝑑 + 1)}, ∀𝑐 ∈ 𝑉 ,
∑︁

𝑡 ∈𝛿 (𝑐)
𝑔𝑑𝑐→𝑡 + 𝑔𝑑𝑡→𝑐 = 1.

where 𝛿 (𝑐) is the set of qubits adjacent to 𝑐 .
• C3. If at depth 𝑑 the variable indicating a𝐶𝑁𝑂𝑇 (𝑖, 𝑘) is true,
then all elements of the 𝑘-th row at depth 𝑑 + 1 must be
XOR-ed between the element and its corresponding element
in the 𝑖-th row at the previous depth 𝑑 .

𝑔𝑑𝑐→𝑡 =⇒
∧
𝑗

(
𝑚𝑑+1
𝑡, 𝑗 =𝑚𝑑

𝑡,𝑗 ⊕𝑚
𝑑
𝑐,𝑗

)
• C4. If at depths 𝑑 and 𝑑 + 1 a matrix entry in the 𝑖-th row
has different values, then exactly one of the CNOT variables
that has 𝑖 as target must be true.

𝑚𝑑+1
𝑡, 𝑗 ≠𝑚𝑑

𝑡,𝑗 =⇒
∑︁

𝑐∈𝛿 (𝑡)
𝑔𝑑𝑐→𝑡 = 1

The SAT solver only answers whether a given formula is sat-
isfiable or unsatisfiable. Therefore, we need to translate our op-
timization objective into a series of queries to the SAT solver. In
this case, each query “asks” the solver if there exists a circuit that
implements the desired transformation using a specified depth.
Our implementation incrementally solves the problem: first, we
build a formula that encodes a solution with a specified depth
using the above constraints; then, if the formula is unsatisfiable,
we increment the depth by adding new variables and constraints.
We keep incrementing the depth until we find a satisfiable formula
to decode and build a linear reversible circuit.

We can use a slightly different encoding to find reversible CNOT
circuits with optimal size. In such a case, the only difference lies in
the first type of constraints: Instead of requiring depths to have at
least one CNOT, we restrict the number to exactly one.

As we will show, these SAT-based solutions can be applicable
with scalable heuristics to improve their quality, but, they are also
useful on their own. For example, we studied CNOT-depth-optimal
solutions for permutations on a path, which was the focus of Kutin
et al.’s paper [9]. They conjectured that reversals are at least as hard
as any other permutation, and that reversals are synthesizable with
depth 2𝑛+2CNOTs. However, by solving for all instances of 8-qubit
permutations, we found a specific permutation that required depth
2𝑛 + 3 = 19, as shown in Figure 2, thus disproving the conjecture.

(7, 6, 5, 2, 3, 4, 0, 1)

Figure 2: Optimal depth of all permutations on an 8Q path
synthesized by CNOT-depth-optimal.

3 SIZE OPTIMIZATION: ROWCOL-HYBRID
3.1 Algorithm Description
We propose and implement a hybrid CNOT circuit synthesis al-
gorithm that combines a modification on Wu’s ROWCOL algo-
rithm [15] with optimal SAT-based methods, a generalizable ap-
proach (Figure 1).

In [15], non-cut vertices are iteratively removed from the graph,
though choosing the order of removing non-cut vertices is not
discussed. We find that removal order has a non-trivial effect on
circuit size and depth (Figure 3). We run Wu’s algorithm for all
possible non-cut vertex orders to reduce circuit size. For each per-
mutation, select an optimal ordering, defined as one that results in
the smallest CNOT circuit size, with depth as a tie-breaker.

Figure 3: Effect of vertex removal order on average circuit
size synthesized by ROWCOL for an 8Q path.

Since the ROWCOL algorithm reduces the problem size by one
qubit in each iteration, it lends itself to hybridization with exact
solvers. We thus terminate the heuristic early when the graph has
only four qubits left (threshold chosen empirically), then call our
CNOT-size-optimal solver on the reduced graph to finish synthe-
sizing the circuit. (Note that SWAP-size-optimal is not an option
since the sub-problems may not be permutations). We combine
the circuits obtained by both methods to obtain the final result.

3.2 Results
We compare our approach to three previous CNOT-based meth-
ods: “Steiner-Gauss" by Kissinger et al. [8], “Linear-TF-Synth" by
Gheorghiu et al. [7] and “ROWCOL" by Wu et al. [15], over all
8-qubit permutations on a path topology, as shown in Figure 4. Our
ROWCOL-Hybrid algorithm with optimal vertex order achieves a
smaller CNOT count than the size-optimal SWAP-based method
for 88.8% of all permutations. At the same time, Kissinger et al. [8],
Wu et al. [15], and Gheorghiu et al. [7] synthesize smaller CNOT

9

DAC ’22, July 10–14, 2022, San Francisco, CA, USA Cynthia Chen, Bruno Schmitt, and Helena Zhang, Lev S. Bishop, Ali Javadi-Abhar

circuits than the optimal SWAP-based method for 12.5%, 54.8%,
and 6.6% of all permutations, respectively.

We find this CNOT-based approach to be a surprisingly large im-
provement over using SWAPs, which naively seem to be naturally
suited for permutations. While our approach primarily optimizes
for circuit size, there is also an improvement in circuit depth com-
pared to the three other algorithms.

Figure 4: Comparison of howCNOT-size-optimizingmethods
improve upon SWAP-size-optimal methods (permutations
on a path of 8). Our hybrid with optimal ordering approach
achieves smaller CNOT count for 88.8% of all permutations.

4 DEPTH OPTIMIZATION: LR-SYNTH
Due to low qubit coherence times, circuit depth is often the most
limiting factor in near-term quantum experiments. Existing depth-
optimizing synthesis methods scale exponentially [12], assume
full connectivity [4], are restricted to certain topologies [1, 9, 17],
or assume non-standard primitive operations [2]. We propose a
polynomial-time divide-and-conquer algorithm, LR-Synth, for syn-
thesizing permutations on any limited-connectivity topology, opti-
mizing for depth of SWAPs. Our algorithm may also be of indepen-
dent interest for general network routing.

4.1 Algorithm Description
Given a permuted graph 𝐺𝑝 and a target graph 𝐺𝑡 , the goal is to
convert 𝐺𝑝 to 𝐺𝑡 through a series of SWAPs, parallelizing as many
SWAPs as possible. The high-level idea is as follows (see Figure 5):
We partition 𝐺𝑝 into two connected subgraphs as close in size as
possible, then we move qubits to the correct half using maximal
matchings. Once all qubits are on the correct half, we recursively
call the algorithm on each half. Since the left and right halves
are disjoint, their circuitry is parallelized on chip. The complete
algorithm is given in Algorithm 1, where 𝐷 (𝐺, 𝑎, 𝑏) denotes the
shortest distance between vertices 𝑎 and 𝑏 in 𝐺 .

The first step is partitioning 𝐺𝑝 into two connected subgraphs,
𝑙𝑒 𝑓 𝑡𝐺 and 𝑟𝑖𝑔ℎ𝑡𝐺 , as balanced as possible (step 1). This is the bal-
anced connected 2-partition problem is NP-hard [5], so we use a
heuristic to perform the partition. We use a simple heuristic that
performs a depth first search starting from each node until half
of the graph is traversed, removing the visited node each time to
put into 𝑙𝑒 𝑓 𝑡𝐺 , while keeping 𝑟𝑖𝑔ℎ𝑡𝐺—the part of the graph not

traversed—connected. We find that this heuristic finds adequate
splits for most topologies of interest. To maximize parallel routing
across the partition, we select partitions resulting from removing
vertex disjoint edges from 𝐺 if possible (let 𝑟𝑒𝑚𝑜𝑣𝑒𝑑𝐸𝑑𝑔𝑒𝑠 be all
edges in 𝐺𝑝 but not in 𝑙𝑒 𝑓 𝑡𝐺 or 𝑟𝑖𝑔ℎ𝑡𝐺), because if two or more
edges share a vertex, that vertex would become the bottleneck
for routing vertices across the partition. In cases where no such
partitions exist, we let 𝑟𝑒𝑚𝑜𝑣𝑒𝑑𝐸𝑑𝑔𝑒𝑠 be edges that form a maxi-
mal matching. Since trying every partition is infeasible for larger
topologies, we sample up to 𝑆 partitions.

Next, we assign each vertex that needs to be moved to the other
half a path to take, specified by one of the removed edges (step 8).
There are many possible heuristics for 𝑎𝑠𝑠𝑖𝑔𝑛𝑃𝑎𝑡ℎ. Our heuristic
assigns 𝑣 ∈ 𝑚𝑜𝑣𝑒𝑇𝑜𝑅𝑖𝑔ℎ𝑡 to a path by choosing the (𝑙, 𝑟) that
minimizes

𝐶𝑜𝑠𝑡 =max{𝐷 (𝑙𝑒 𝑓 𝑡𝐺, 𝑣, 𝑙), 𝐷 (𝑟𝑖𝑔ℎ𝑡𝐺,𝑤, 𝑟)} + 𝑛 (𝑙,𝑟)/2,

where 𝑤 is the unassigned vertex in𝑚𝑜𝑣𝑒𝑇𝑜𝐿𝑒 𝑓 𝑡 closest to (𝑙, 𝑟)
and 𝑛 (𝑙,𝑟) is the number of nodes assigned to (𝑙, 𝑟). 𝐷 (𝑙𝑒 𝑓 𝑡𝐺, 𝑣, 𝑙)
and𝐷 (𝑟𝑖𝑔ℎ𝑡𝐺,𝑤, 𝑟) are the number of swaps needed to move 𝑣 and
𝑤 respectively to the removed edge. Since this can be performed
in parallel, we take the maximum distance. We add the term 𝑛 (𝑙,𝑟)
because 𝑣 and 𝑤 cannot be routed to the other side until qubits
already assigned to the path (𝑙, 𝑟) are routed, so 𝑛 (𝑙,𝑟) penalizes
moving too many qubits via one path.

After assigning paths, we iterate and add swaps until all qubits
are routed to the correct side of the topology via their assigned
paths (step 11). Let 𝐸 be a set of potential edges to swap in a
given iteration. At each iteration, we prioritize adding a swap by
assigning it a weight of 1.3 if the swap moves vertex 𝑣 to its final
destination and all vertices on the path from 𝑣 to a terminal node
of 𝐺 are already correctly positioned because making the swap
effectively reduces the size of the topology we work with (step 12).

To explain steps 13 - 25, we consider, WLOG, 𝑢 ∈ 𝑚𝑜𝑣𝑒𝑇𝑜𝑅𝑖𝑔ℎ𝑡 ,
where𝑢 is routed across the removed edge (𝑙, 𝑟). For any vertex𝑢 ∈
𝑚𝑜𝑣𝑒𝑇𝑜𝑅𝑖𝑔ℎ𝑡 , we would want to add a potential SWAP between 𝑢
and 𝑣 when 𝐷 (𝐺,𝑢, 𝑟) > 𝐷 (𝐺, 𝑣, 𝑟) (step 16), since this would bring
𝑢 closer to the 𝑟𝑖𝑔ℎ𝑡𝐺 . If 𝑣 ∈𝑚𝑜𝑣𝑒𝑇𝑜𝑅𝑖𝑔ℎ𝑡 and 𝑣𝑒𝑟𝑡𝑒𝑥𝑇𝑜𝑃𝑎𝑡ℎ[𝑣] =
(𝑙, 𝑟) and 𝐷 (𝐺𝑡 , 𝑢, 𝑟𝑇) ≤ 𝐷 (𝐺𝑡 , 𝑟𝑇), 𝑢 is closer to the removed edge
in the target graph, implying it should be routed to the right after
𝑣 is routed, so we do not add (𝑢, 𝑣) to 𝐸 in this iteration (step 17).
If no possible SWAPs are present in a given iteration, step 18 fixes
this in the next iteration by swapping 𝑢 and 𝑣 if there is a neighbor
𝑏 of 𝑣 that is not in𝑚𝑜𝑣𝑒𝑇𝑜𝑅𝑖𝑔ℎ𝑡 and 𝑏 is closer than 𝑢 to 𝑟 , since
then in a subsequent iteration, swapping 𝑢 and 𝑏 would move 𝑢
closer to its target location.

If 𝑣 ∈𝑚𝑜𝑣𝑒𝑇𝑜𝑅𝑖𝑔ℎ𝑡 and 𝑣 ’s path is different from𝑢, then we add
(𝑢, 𝑣) to 𝐸 if the swap brings both 𝑢 and 𝑣 closer to their respective
paths (step 19). If 𝑣 is already on the correct side in 𝑙𝑒 𝑓 𝑡𝐺 , then we
add (𝑢, 𝑣) to 𝐸 because this would bring 𝑢 closer to its destination
without moving 𝑣 to the wrong side (step 22). Finally, we swap 𝑢 to
the right side if 𝑣 ∈𝑚𝑜𝑣𝑒𝑇𝑜𝐿𝑒 𝑓 𝑡 ; otherwise, extra swaps would be
needed to move 𝑣 back to 𝑟𝑖𝑔ℎ𝑡𝐺 in a future iteration. We prioritize
swaps that bring vertices to the correct side since this would allow
more vertices to be routed via the same path, so we weight these
swaps by 1.2 (step 23).

After steps 13 - 25, we find a maxMatching to minimize depth
(step 26). In step 28, if 𝐺 is a path or a ring topology, for each edge

10

OptimizingQuantum Circuit Synthesis for Permutations Using Recursion DAC ’22, July 10–14, 2022, San Francisco, CA, USA

(𝑢, 𝑣) in 𝐺 , if 𝑢 and 𝑣 are not in𝑚𝑜𝑣𝑒𝑇𝑜𝐿𝑒 𝑓 𝑡 or𝑚𝑜𝑣𝑒𝑇𝑜𝑅𝑖𝑔ℎ𝑡 and
their orders are flipped in 𝐺𝑡 , we add (𝑢, 𝑣) to 𝑚𝑎𝑥𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔 if
adding the edge still results in a matching. This adds swaps that
would otherwise occur later in the algorithm and takes advantage
of earlier matchings to reduce depth.

Once𝑚𝑜𝑣𝑒𝑇𝑜𝑅𝑖𝑔ℎ𝑡 and𝑚𝑜𝑣𝑒𝑇𝑜𝐿𝑒 𝑓 𝑡 are emptied, all vertices are
on the correct half of the topology. After sampling 𝑆 partitions, we
choose the partition that empties𝑚𝑜𝑣𝑒𝑇𝑜𝑅𝑖𝑔ℎ𝑡 and𝑚𝑜𝑣𝑒𝑇𝑜𝐿𝑒 𝑓 𝑡

in the least number of iterations (lowest depth) and use how close
𝐺 ’s state is to 𝐺𝑡 as a tiebreaker (step 32). Finally, we recursively
call the algorithm on 𝑙𝑒 𝑓 𝑡𝐺 and 𝑟𝑖𝑔ℎ𝑡𝐺 (steps 33, 34). Since 𝑙𝑒 𝑓 𝑡𝐺
and 𝑟𝑖𝑔ℎ𝑡𝐺 contain disjoint vertices, the two calls are parallelized.

Figure 5: Algorithm steps on an 8Q ring topology. In steps 1
and 2, there are two possible paths to move a qubit from one
side to another (yellow and blue edges). Qubits that must
be routed to the other side have the same color as the path
they are assigned, and the algorithm recurses in steps 3 and
4 until the target graph is achieved.

4.2 Results
We benchmark our algorithm by comparing LR-Synth to Twee-
dledum’s SWAP-depth-optimal SAT solver [11, 12] for randomly
sampled permutations on increasing qubit numbers. Due to the
NP-complete nature of the SAT problem, the solver does not ter-
minate quickly for certain permutations even at relatively small
qubit numbers, although the specific number is topology depen-
dent. To save computational time and resources, we run the SAT
solver until the average circuit synthesis time exceeds 10 seconds
on a typical personal computer. While LR-Synth can be applied to
any limited connectivity topology, we perform our benchmarking
on paths, trees, rings, and grids, commonly found on current phys-
ical devices. For line, tree and grid topologies, which have existing
depth-optimizing heuristics, we also compare LR-Synth to them.
For rings, there are many possible partitions for LR-Synth, so we

Algorithm 1: LR-Synth
Data: (i) Permuted graph𝐺𝑝 , (ii) Target graph𝐺𝑡 , (iii) Number of

splits to sample S
Result: List of SWAPs taking𝐺𝑝 to𝐺𝑡

1 leftGs, rightGs, removedEdges← partitionGraph;
2 Swaps← [];
3 for split i = 1 to S do
4 G←𝐺𝑝 .copy; leftG← leftGs[i]; rightG← rightGs[i];

removedEdges← removedEdges[i];
5 left𝐺𝑡 , right𝐺𝑡 ← corresponding left and right graphs of𝐺𝑡 ;
6 moveToLeft← {v : v ∈ rightG and v ∈ left𝐺𝑡 }; ;
7 moveToRight← {v : v ∈ leftG and v ∈ right𝐺𝑡 };
8 vertexToPaths← assignPath;
9 GL← leftG ∪ removedEdges; GR← rightG ∪ removedEdges;

10 lockL← False; lockR← False;
11 while moveToRight + moveToLeft ≠ ∅ do
12 E = {(u, v, 1.3) : (u, v) ∈ G s.t. swapping u and v makes all

vertices from 𝑢 to terminal of G in correct positions};
13 for (u, v) ∈ G s.t. u ∈ moveToRight + moveToLeft do
14 (l, r)← vertexToPaths[u];
15 (lT, rT)← corresponding edge in𝐺𝑡 ;
16 if u ∈ moveToRight and D(GL, u, r) > D(GL, v, r) then
17 if v ∈ moveToRight and vertexToPath[v] = (l, r) and

D(𝐺𝑡 , u, rT) ≤ D(𝐺𝑡 , v, rT) then continue;
18 if lockL and 𝑣 ∈ moveToRight and vertexToPath[v]

≠ (l, r) and ∃ neighbor 𝑏 of 𝑣 s.t.
𝑏 ∉𝑚𝑜𝑣𝑒𝑇𝑜𝑅𝑖𝑔ℎ𝑡 and D(GL, u, r) > D(GL, b, r)
then E.add(u, v, 1); lockL← False;

19 if v ∈ moveToRight and vertexToPath[v] ≠ (l, r)
then

20 (a, b)← vertexToPath[v];
21 if D(GL, v, b) > D(GL, u, b) then E.add(u, v, 1);
22 else if u ≠ l then E.add(u, v, 1);
23 else if (u, v) = (l, r) and v in moveToLeft and

vertexToPath[v] = (l, r) then E.add(u, v, 1.2);
24 if u ∈ moveToLeft and D(GR, u, l) > D(GR, v, l) then

Do similar logic as steps 16 - 23 ;
25 end
26 maxMatching← maximum weight matching for E;
27 if maxMatching = ∅ then lockL← True; lockR← True;
28 if G is a path or ring then addToMatching;
29 for (u, v) ∈ maxMatching do SWAP u and v in𝐺 ;
30 Update moveToLeft and moveToRight;
31 end
32 Swaps← SWAPs from best split;
33 if size(leftG) > 1 then Swaps += LR-Synth(leftG, left𝐺𝑡);
34 if size(rightG) > 1 then Swaps += LR-Synth(rightG, right𝐺𝑡);
35 end
36 return Swaps

compare the performance of randomly sampling a single partition
versus selecting the best partition. We also hybridize LR-Synth
with the SWAP-depth-optimal solver, analogous to the process for
ROWCOL-Hybrid.

4.2.1 Path. We compare LR-Synth to Kutin’s odd-even transposi-
tion sort algorithm and SWAP-depth-optimal by sampling 100 ran-
dom permutations from 4Q to 100Q (Figure 6a). We use Schoute’s

11

DAC ’22, July 10–14, 2022, San Francisco, CA, USA Cynthia Chen, Bruno Schmitt, and Helena Zhang, Lev S. Bishop, Ali Javadi-Abhar

Figure 6: Depth comparison of four topologies for permutations synthesized using LR-Synth (hybrid, single, and all partitions),
SWAP-depth-optimal, and tailored algorithms where one exists.

implementation of Kutin’s algorithm [13]. Kutin and LR-Synth
achieve same sized circuits and similar depth circuits, which are bet-
ter in average size than SWAP-Depth-optimal and slightly worse in
average depth than SWAP-Depth-optimal. SWAP-Depth-optimal’s
average circuit synthesis time exceeded 10 seconds at 84Q.

4.2.2 Tree. We compare LR-synth to Zhang’s tree algorithm and
SWAP-Depth-optimal by sampling 10 random trees for each tree
size ranging from 4Q to 100Q For each tree topology, we sample
10 random permutations. We use Schoute’s implementation of
Zhang’s algorithm [13]. SWAP-depth-optimal’s average circuit
synthesis time exceeds 10 seconds at 20Q. LR-Synth performs
slightly better on average in terms of depth than Zhang.

4.2.3 Ring. We compare LR-Synth, sampling a single and all parti-
tions, to SWAP-depth-optimal, averaging the results of 100 random
permutations from 4Q to 100Q. The average circuit synthesis time
of LR-Synth sampling all partitions exceeds 10 seconds at 44Q,
compared to 28Q for SWAP-depth-optimal. The average circuit
depths and sizes of sampling a single partition are comparable to
those of all partitions, while the run time is significantly better.

4.2.4 Grid. Since grids have a well-defined structure, we partition
𝐺𝑝 into two subgraphs by performing a cut midway along the 𝑥 or
𝑦 direction. We benchmark LR-Synth against SWAP-Depth-optimal
and Alon’s Cartesian algorithm for grid sizes (2, 2) to (10, 10). For
each grid size, we sample 100 random permutations. Compared to
other topologies, permutations on grids yield smaller average size
and depth circuits. We observe this behavior for both LR-Synth
and SWAP-Depth-optimal, and it is an intuitive result because
there are more paths to route qubits that can be parallelized. We
also note that the hybrid algorithm sees significant performance
improvements on this topology.

5 CONCLUSION AND OPEN QUESTIONS
We proposed two algorithms for synthesis on limited-connectivity
quantum computers. Using a modified ROWCOL algorithm hy-
bridized with our optimal size solver for CNOTs, we show that
permutations synthesized using CNOTs can significantly outper-
form the optimal circuit sizes achievable by SWAP-based methods.
It follows that an important open question is whether there is a
depth-optimizing algorithm for general topologies using CNOTs
and how much improvement it can yield.

We proposed LR-Synth as a scalable depth-optimizing algorithm
applicable to any topology. It achieves similar circuit depth as state-
of-the-art heuristics tailored to paths, trees, and grids, and scales
much better than optimal solvers. How much can LR-Synth be
improved with better heuristics for partitioning the graph and
choosing which path each qubit is routed through?

Finally, worst-case depth for permutation on a path remains an
open question.We have shown a counter-example to the conjecture
that reversal is the hardest permutation. What is the worst-case
CNOT depth? We conjecture this to be 2𝑛 +𝑂 (1), rather than the
known upper bound of 3𝑛.

REFERENCES
[1] N. Alon, F. R. K. Chung, and R. L. Graham. 1993. Routing permutations on graphs

via matchings. In STOC ’93.
[2] Aniruddha Bapat, Andrew M. Childs, Alexey V. Gorshkov, Samuel King, Ed-

die Schoute, and Hrishee Shastri. 2021. Quantum routing with fast reversals.
Quantum 5 (Aug. 2021), 533. https://doi.org/10.22331/q-2021-08-31-533

[3] Ethan Bernstein and Umesh Vazirani. 1997. Quantum complexity theory. SIAM
Journal on computing 26, 5 (1997), 1411–1473.

[4] Timothée Goubault de Brugière, Marc Baboulin, Benoît Valiron, Simon Martiel,
and Cyril Allouche. 2021. Reducing the Depth of Linear Reversible Quantum
Circuits. IEEE Transactions on Quantum Engineering 2 (2021), 1–22. https:
//doi.org/10.1109/TQE.2021.3091648

[5] Janka Chlebíková. 1996. Approximating the maximally balanced connected
partition problem in graphs. Inform. Process. Lett. 60, 5 (1996), 225–230. https:
//doi.org/10.1016/S0020-0190(96)00175-5

[6] Andrew W. Cross, Lev S. Bishop, Sarah Sheldon, Paul D. Nation, and Jay M.
Gambetta. 2019. Validating quantum computers using randomizedmodel circuits.
Physical Review A 100, 3 (Sep 2019). https://doi.org/10.1103/physreva.100.032328

[7] Vlad Gheorghiu, Sarah Meng Li, Michele Mosca, and Priyanka Mukhopadhyay.
2021. Reducing the CNOT count for Clifford+T circuits on NISQ architectures.
arXiv:2011.12191 [quant-ph]

[8] Aleks Kissinger and Arianne Meijer van de Griend. 2019. CNOT circuit extraction
for topologically-constrained quantum memories. arXiv:1904.00633 [quant-ph]

[9] Samuel Kutin, David Moulton, and Lawren Smithline. 2007. Computation at a
distance. Chicago Journal of Theoretical Computer Science 13 (02 2007).

[10] Ketan N Patel, Igor L Markov, and John P Hayes. 2008. Optimal synthesis of
linear reversible circuits. Quantum Inf. Comput. 8, 3 (2008), 282–294.

[11] Bruno Schmitt. 2021. tweedledum. https://github.com/boschmitt/tweedledum.
[12] Bruno Schmitt, Mathias Soeken, and Giovanni De Micheli. 2020. Symbolic

Algorithms for Token Swapping. In 2020 IEEE 50th International Symposium on
Multiple-Valued Logic (ISMVL). 28–33.

[13] Eddie Schoute. 2019. arct. https://gitlab.umiacs.umd.edu/amchilds/arct.
[14] P.W. Shor. 1994. Algorithms for quantum computation: discrete logarithms and

factoring. In Proceedings 35th Annual Symposium on Foundations of Computer
Science. 124–134. https://doi.org/10.1109/SFCS.1994.365700

[15] Bujiao Wu, Xiaoyu He, Shuai Yang, Lifu Shou, Guojing Tian, Jialin Zhang, and
Xiaoming Sun. 2019. Optimization of CNOT circuits on topological supercon-
ducting processors. arXiv:1910.14478 [quant-ph]

[16] Katsuhisa Yamanaka, Erik D Demaine, Takehiro Ito, Jun Kawahara, Masashi Kiy-
omi, Yoshio Okamoto, Toshiki Saitoh, Akira Suzuki, Kei Uchizawa, and Takeaki
Uno. 2015. Swapping labeled tokens on graphs. Theoretical Computer Science
586 (2015), 81–94.

[17] Louxin Zhang. 1997. Optimal Bounds for Matching Routing on Trees. In Pro-
ceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms.

12

https://doi.org/10.22331/q-2021-08-31-533
https://doi.org/10.1109/TQE.2021.3091648
https://doi.org/10.1109/TQE.2021.3091648
https://doi.org/10.1016/S0020-0190(96)00175-5
https://doi.org/10.1016/S0020-0190(96)00175-5
https://doi.org/10.1103/physreva.100.032328
https://arxiv.org/abs/2011.12191
https://arxiv.org/abs/1904.00633
https://github.com/boschmitt/tweedledum
https://gitlab.umiacs.umd.edu/amchilds/arct
https://doi.org/10.1109/SFCS.1994.365700
https://arxiv.org/abs/1910.14478

	MAIN MENU
	Go to Previous View
	Help
	Search
	Print
	Author Index
	Table of Contents

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryList_V1
 qi2base

