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Figure 1: Interactive comparison of embeddings for 50,000 words from three different corpora (a), using Emblaze within a
Jupyter notebook. Given a selection, in this case a group of words about winemaking (b), the Star Trail visualization (c) high-
lights points near the group in the high-dimensional space whose neighborhoods change significantly. The plot can be manu-
ally interpolated between the two embedding spaces using a slider (d). In the sidebar, the neighborhood comparisons for the
current selection (e) show a greater emphasis on recreational wine-related activities in Twitter data, such as “tastings” and
“Sonoma.” The sidebar can alternatively display Suggested Selections relevant to the current visualization state (f), including
clusters of wine varieties and other beverages.

ABSTRACT
Modern machine learning techniques commonly rely on complex,
high-dimensional embedding representations to capture underlying
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structure in the data and improve performance. In order to char-
acterize model flaws and choose a desirable representation, model
builders often need to compare across multiple embedding spaces,
a challenging analytical task supported by few existing tools. We
first interviewed nine embedding experts in a variety of fields to
characterize the diverse challenges they face and techniques they
use when analyzing embedding spaces. Informed by these perspec-
tives, we developed a novel system called Emblaze that integrates
embedding space comparison within a computational notebook en-
vironment. Emblaze uses an animated, interactive scatter plot with
a novel Star Trail augmentation to enable visual comparison. It also
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employs novel neighborhood analysis and clustering procedures
to dynamically suggest groups of points with interesting changes
between spaces. Through a series of case studies with ML experts,
we demonstrate how interactive comparison with Emblaze can help
gain new insights into embedding space structure.

CCS CONCEPTS
• Human-centered computing → Visualization systems and
tools; • Computing methodologies → Learning latent repre-
sentations.
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1 INTRODUCTION
Most state-of-the-art machine learning (ML) techniques work by
learning an expressive representation of their input data in a high-
dimensional vector space. This representation, also known as an em-
bedding, reflects both the structure of the dataset and the task used
to train the model. Embedding representations have increasingly
been used to improve performance on a plethora of tasks thanks to
deep neural networks such as transformers, which leverage vast
quantities of often-unlabeled data to learn highly nuanced represen-
tations. However, embedding spaces can acquire unpredictable and
undesirable structural features during training, learning shortcuts
or biases in the data to perform better on the learning task [5, 42].
Model builders and data scientists need effective tools to probe the
structure of their embeddings and to help them choose the best
representation for their task.

Although a variety of tools have been developed to visualize
and probe embeddings, the problem of extending these techniques
to compare across multiple embedding spaces remains an open
challenge. For instance, many popular embedding analysis tools use
dimensionality reduction (DR) techniques such as tSNE and UMAP
to generate 2D scatter plots of the embedding space [22, 33, 40].
These visualizations are well-suited to give a high-level overview of
an individual embedding space, particularly when combined with
augmentations that highlight distortions due to DR [32]. However,
visualizations that juxtapose two DR visualizations side-by-side
(e.g. [1, 4, 10]) may become visually taxing and confusing when
there are thousands of points displayed and different degrees of
distortion in each plot. This juxtaposition approach is also typically
limited to two embedding spaces to avoid overwhelming the user,
but comparing more than two spaces may be necessary for some
model comparison tasks (such as diachronic word embeddings [15]).

To mitigate the complexity of comparing embedding spaces at
a global scale using DR, comparison tools such as the Embedding
Comparator [4] and embComp [18] have incorporatedmore focused
visualizations that enable comparisons on small neighborhoods of

points. These features do address the need for users to analyze
local differences between embedding spaces, but the task of finding
relevant neighborhoods to compare remains challenging. In the
absence of pre-formed hypotheses about where in the embedding
space to look, a tool that can adaptively guide analysts to interesting
comparisons may be necessary.

In this work, we first present findings from interviews with nine
embedding space experts from domains such as language modeling,
computational biology, and dimensionality reduction. These inter-
views showed that model builders tend to rely on ad hoc workflows
to analyze embedding spaces, partially because many are skepti-
cal of DR’s ability to support their analytical needs. In particular,
experts desire tools to build a much richer understanding of their
embedding spaces, moving beyond the fixed distance metrics often
assumed in DR towards much more complex and nuanced notions
of similarity and uncertainty. These observations, combined with
the areas of opportunity we identified from prior embedding com-
parison systems, led us to develop a visual embedding analysis tool
that unifies common needs for comparison throughout the pro-
cesses of model building and dimensionality reduction (see Table
1).

The resulting system, which we call Emblaze, is a Python frame-
work and web-based visual interface that can be run within a com-
putational notebook environment, making it easy to import and
visualize heterogeneous data in tandem with ad hoc workflows.
Emblaze is centered around an animated, interactive DR scatter
plot, which can be filtered and aligned in place to support naviga-
tion of different regions of the space. It incorporates novel visual
augmentations that summarize changes for both pairs and larger
sets of embedding spaces, and it dynamically suggests clusters of
points that exhibit interesting changes. Through case studies with
ML experts, we demonstrate the utility of these capabilities not just
for comparing models, but also for understanding individual model
behavior and reasoning about the effects of 2D projection.

Concretely, the contributions of this work are the following:

(1) A series of semi-structured interviews with nine embedding
experts in a variety of fields, including natural language pro-
cessing, computational social science, computer vision, and
computational biology. The resulting qualitative analysis
expands upon prior need-finding studies by probing experts’
viewpoints on specific embedding analysis and comparison
techniques (such as clustering, dimensionality reduction, and
embedding space alignment), and by identifying practition-
ers’ perspectives and challenges as pertaining to their unique
fields.

(2) A comprehensive system, called Emblaze, to compare embed-
ding spaces within a computational notebook environment.
The tool improves on previous embedding comparison sys-
tems by supporting comparison across several spaces and
at many stages of the model building pipeline. It also intro-
duces new techniques to surface points and clusters with
interesting changes, and facilitates rapid iteration through
its lightweight notebook-based interface. Emblaze is open
source and publicly available.
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Comparison Target Example Research Question

Representation Input data What differences in learned entity relationships would
arise from training on different datasets?

Pre-trained models Which pre-trained model best captures the structure in
my domain-specific dataset?

Fine-tuning procedure How does fine-tuning affect the embedding space of my
pre-trained model?

Model architecture Which type of model results in the most sensible clus-
tering of my validation dataset?

Model hyperparameters How many parameters does my model need to ade-
quately represent the structure in my data?

Intermediate layer representations How do the neural network’s activation patterns for
the training data differ from layer to layer?

Random effects from model initializa-
tion

What patterns in my embedding space are reliable, and
which ones are likely due to noise?

Projection Dimensionality reduction (DR) tech-
nique

Which DR technique produces a more expressive depic-
tion of my data?

DR parameters Which value of the tSNE perplexity parameter creates
the best visual clustering for my data?

Random effects from DR initialization How consistent are the neighborhoods and clusters cre-
ated by this DR algorithm?

Table 1: Use cases for embedding space comparison that arise during ML model development and visualization, generated
from formative interviews, case studies, and practical experience using Emblaze. In each of these comparison tasks, model
builders seek to understand the effect of the comparison target on the overall structure and relationships encoded in their
embedding spaces. Emblaze supports comparison for all of these tasks through a unified set of visualization techniques.

2 BACKGROUND AND RELATEDWORK
In this paper, we specifically focus on the problem of embedding
space comparison, which can be defined as the comparison of multi-
ple high-dimensional representations of the same set of N objects.
When designing for comparison, it is important to note that com-
parative tasks often demand fundamentally different approaches
than more general exploratory or analytical ones [14]. However,
we hypothesize that given the complexity and opaqueness of em-
bedding spaces, comparison may be beneficial or even necessary to
help users understand individual embedding spaces. Therefore, in
the following sections we briefly review strategies for visualizing
dimensionally-reduced data and embeddings alongside the relevant
efforts to extend those methods to comparative tasks.

2.1 Dimensionality reduction visualization
All dimensionality reduction techniques attempt to project anN ×D
matrix of N observations in D dimensions to a lower-dimensional
N × d representation, while attempting to preserve relationships
between observations [44].1 Because d is usually much too low
to capture all of the meaningful variation in the dataset, DR tech-
niques typically make tradeoffs on the fidelity of the projection at
different distance scales. For example, PCA (principal component
analysis) and classical MDS (multidimensional scaling) are consid-
ered better at capturing global structure, while tSNE (t-distributed

1In this paper, we use embeddings to refer to high-dimensional vector representa-
tions of objects, and projections for dimensionally-reduced representations of those
embeddings.

Stochastic Neighbor Embedding) and UMAP (Uniform Manifold
Approximation and Projection) prioritize nearest-neighbor struc-
ture and clusters [31]. Even for a single DR technique, parameter
choices and random initializations can often dramatically affect the
result, creating a boundless array of possible projections to choose
from.

Visual interaction techniques to help analysts explore and eval-
uate DR projections have been reviewed extensively elsewhere
[32, 38], so we provide only a brief summary of relevant approaches
here. For example, visual augmentations to highlight distortions
in DR projections have included superimposed heat maps [2, 39],
lines whose lengths indicate the degree of projection error [41],
and animations between projection axes [12]. In addition, a few sys-
tems have incorporated multiple projections, either for interactive
parameter selection [13, 34] or to compare proximity relationships
in different variants [10]. In this work, we attempt to extend some
of these techniques to the problems specific to embeddings in ML,
including dataset scale and the need to compare more than two
spaces.

2.2 Embedding comparison across domains
Visual analytics work on learned embedding spaces (using DR or
otherwise) has most frequently focused on textual embeddings
[17, 24], particularly in light of the hidden biases often found in
word embeddings [5]. Some comparison tools have been devel-
oped to analyze and improve word embedding methods [7, 37], but
the more common use case for word embedding comparison is in
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holding the modeling procedure constant and analyzing seman-
tic differences from different corpora [15, 21, 43]. For example, an
early prototype of Emblaze was used as part of a visual interface to
compare semantic changes in clinical concepts related to COVID-
19 [30]. Note that prior qualitative comparison techniques have
typically only been able to visualize small, curated subsets of the
embedding spaces, and do not well support comparison of groups
of points.

In the life-sciences domain, embeddings are frequently used to
represent gene expression levels in cells [3] and human genetic
profiles [23], among other applications. Visual comparison tools
have been developed for the common task of clustering and inter-
preting feature values in these embeddings [20, 27]. However, the
widespread use of static DR-based visualizations in computational
biology has prompted criticism, including new proposed DR tech-
niques [11, 29] and calls to avoid DR-based analysis entirely [6].
It is worth noting that with the notable exception of Sleepwalk,
an interactive R-based tool for global-scale embedding exploration
[33], the potential for interactive visualizations that enable com-
parison of multiple DR projections appears to be under-explored in
computational biology.

Large-scale embedding spaces for images, such as those learned
by convolutional neural networks, are an important application
area for which few systems have specifically been developed. The
difficulty of auditing such large spaces as well as the presence of
class labels may explain why embedding visualization is typically
eschewed in favor of other model inspection strategies [19]; tools
that do incorporate DR have primarily focused on probing image
models during training [8, 35]. However, image models can still be
analyzed using general-purpose embedding visualization systems,
such as the Embedding Projector [40] and Latent Space Cartography
[25].

2.3 Visual tools for embedding comparison
This work builds upon a small number of research systems that have
been developed to support general-purpose embedding comparison.
Systems by Li et al. [22] and Heimerl et al. [18], for example, utilize
summary visualizations of embeddingmetrics, neighborhood views,
and DR plots to facilitate comparison. Meanwhile, Parallel Embed-
dings [1] utilizes a novel clustering-based visualization to highlight
correspondences between embeddings, and the Embedding Com-
parator [4] features PCA plots of the neighborhoods around selected
points that change the most. The latter two approaches offer greater
simplicity, but limit analysis to two embedding spaces at the cluster
or individual-point level, respectively.

Notably, all of these systems require the user to spend time
browsing the visualizations in order to find meaningful compar-
isons, which may be difficult for large datasets. Moreover, when
these systems do surface candidate points for comparison, the tech-
niques used are limited to individual points and cannot easily be
generalized to clusters [4]. As we discuss in our expert interviews,
direct paths to interesting comparisons at varying granularities
may be a key factor in gaining better insight into large unlabeled
datasets.

Participant Role Domain(s)

P1 graduate student computational social science
P2 graduate student language
P3 industry researcher language, computer vision
P4 industry researcher language
P5 graduate student computational biology
P6 industry researcher signal processing
P7 graduate student computational biology
P8 industry researcher language, signal processing
P9 professor computer vision, multimodal ML

Table 2: Summary of roles and application domains of inter-
view participants.

3 EXPERT INTERVIEWS
To characterize how embedding spaces are currently analyzed and
compared, we conducted semi-structured interviews with 9 embed-
ding experts across a variety of domains. As listed in Table 2, the
majority of participants worked with language-based models, while
others were experts in computational biology, computer vision, mul-
timodal machine learning, and signal processing. All participants
except one (P7, a DR expert) were situated within machine learning
practice rather than DR, consistent with our goal of examining
how experts understand embeddings beyond visually projecting
them. Interviews were conducted on Zoom and lasted 53 minutes
on average. Transcripts were coded and analyzed to answer three
primary research questions:

(1) What are domain experts’ overall perspectives on the role
of embedding analysis in their work? (Sec. 3.1)

(2) What techniques do experts use to analyze embedding spaces
individually, and what challenges are posed by those tech-
niques? (Sec. 3.2)

(3) What are experts’ current approaches and needs for embed-
ding space comparison? (Sec. 3.3)

Finally, we synthesized across these three sub-analyses to produce
a set of themes and design goals, which we present in Sec. 3.4.

3.1 Overall perspectives on embedding analysis
Most of the embedding experts we interviewed expressed a largely
unmet need for tools to help them understand their models: “the
tools are very crude, and you’re kind of just getting small clues from
those little [ad hoc] techniques” (P8). However, consistent with the
diversity in their backgrounds, participants varied considerably in
the purposes and associated levels of granularity that understanding
embedding spaces entailed.

In some cases, embedding analysis plays a distant secondary
role to task-specific performance metrics; understanding the em-
bedding space is often only useful to debug an underperforming
model (P4). Participants who voiced this opinion do feel that other
validation techniques are sometimes necessary, but they fall back
to quantitative performance metrics because they do not have clear
ways to evaluate embedding quality on very large datasets (P4, P8).
However, as P8 noted, the way quantitative metrics are defined
can sometimes obscure large-scale properties of the data, rendering
them as “fuzzy” and incomplete as qualitative examples.
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Other participants expressed that embedding analysis was an
important, even essential aspect of their work (P1, P2, P6, P7). These
experts advocated for a fairly rigorous approach to embedding anal-
ysis, in which they would define hypotheses about the structure of
the embedding space and test them using a combination of existing
tools and ad hoc algorithms. However, these participants are also
concerned that the methods they are currently using are too “hand-
wavy” (P1) and that their observations may not reflect real patterns
in the embedding space structure (P1, P2). Furthermore, their an-
alytical techniques depend on the presence of previously-known
points of interest, which they may not have when exploring new
datasets (P7).

3.2 Approaches and needs for single
embedding space analysis

We spent considerable time probing participants’ general approaches
to embedding analysis because as discussed in the next section, their
experience with embedding comparison was much more limited.
The techniques that these experts employ for embedding analysis
therefore present useful starting points for our proposed compari-
son techniques.

3.2.1 Dimensionality reduction visualization. All participants de-
scribed having used DR techniques such as tSNE and UMAP in
their current or past work to assess the overall structure of an em-
bedding space. Experts in computational biology in particular use
DR extensively, not only to validate that their embedding models
place similar cells close together but also to “create the figures
that biologists can appreciate” (P5). However, several participants
were skeptical of assessing the quality of a model by looking at
how tightly clustered its DR plot is. For example, P3 and P8 were
concerned about the tendency of nonlinear DR techniques to create
spurious clustering effects, while P5 noted that a poorly-clustered
DR plot does not necessarily signify a bad model. Another potential
limitation of (static) DR plots is that theymay offer little incremental
value beyond confirming existing hypotheses:

“I would say I don’t use tSNE that much, because it’s
hard for me to pose different questions to it... If it’s
already in a very beautiful space, like if it’s already
learned what I wanted it to learn, then tSNE is very
useful.... what it’s showing you is interpretable, be-
cause you’ve already interpreted it before.... But other
than that — [if] you’ve learned an embedding, and
you don’t know what it does... then tSNE is not that
useful. Because the clusters usually tend to be mixed.
If you have an embedding that doesn’t do well, let’s
say, then the projections are all mixtures of things...
What is the axis that it’s combining on? Maybe you
don’t know that. And it doesn’t really give you those
answers.” (P6)

Other participants echoed a similar sentiment relating to datasets
with large numbers of unlabeled points, where the lack of known
structure leads to a “blob of points” in the visualization (P2, P7).

Participants’ doubts about DR may be surprising, particularly
given that several techniques have been developed to visualize
distortions and errors in DR [32, 39, 41]. This consensus may have

arisen because participants were not experts in DR, although a
few participants had occasionally used visual DR tools such as
Embedding Projector [40] and Sleepwalker [33] (P6, P7, P8). Overall,
participants perceived limitations in the fixed, error-prone distance
transformations induced by DR, which led them to rely on their
own handmade code snippets to probe embeddings.

3.2.2 Nearest neighbors. One of the most common methods that
participants used to analyze embeddings, especially in the natural-
language domain, was to identify points of interest and examine
their nearest neighbors in the high-dimensional space (P1, P2, P3, P6,
P8).When asked about the importance they placed in understanding
embeddings at an individual-point level, participants gave a wide
variety of responses depending on their roles and intended use
cases. Those who were explicitly performing qualitative analyses
on embeddings (P1, P2) used nearest neighbors extensively. For
some participants who were building and validating models for
downstream use, nearest neighbors were seen as an essential tool
for exploration and debugging, even “the most important tool we
have” (P5, P6). However, others who work with more heavyweight
models and larger datasets (especially in industry) saw it as too time-
consuming except to produce concrete demonstrations of results
(P4, P9). In other words, while nearest neighbors serve as a very
useful indicator of quality, it may currently be too difficult without
a priori points of interest to find samples that can be subjectively
incorporated into a larger analysis.

3.2.3 Clustering and feature analysis. In addition to looking at in-
dividual points, some participants also considered groups of points
as units of analysis, often naming standard techniques such as
k-means and hierarchical clustering (P5, P8). For example, P9 de-
scribed characterizing an image embedding model’s weaknesses by
probing the defining features of its clusters:

“We were seeing that things were clustering based
on surface-level features, and we wanted it to be...
clustering based on more semantic features. So we
were looking at clusters as a way to understand what
notion of similarity the feature representation is cap-
turing, and whether that’s the notion of similarity
that we actually want to capture.” (P9)

In addition to understanding why points were grouped into a single
cluster, participants were also interested in explaining whymultiple
clusters were close to each other; for example, in computational
biology, cell types that cluster close together in an embedding space
could reveal an underlying biological similarity (P5, P7). Overall,
participants were interested in using clustering techniques, but
tended to rely on simple programmatic tools to do so.

3.2.4 Other techniques. Two participants mentioned using axis-
based analysis to understand embedding model behavior, i.e. study-
ing the characteristics of points embedded along an axis between
two words in the space, such as “man” versus “woman” (P2, P6).
Similarly, P6 described probing generative image models by inter-
polating along an axis in the feature space between two images.
Participants also described attempting or wanting to computation-
ally assess the embedding topology, for example by characterizing
the smoothness, continuity, or density of the space (P1, P6, P9). For
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simplicity and to adopt well-established techniques, we focus on
the three main techniques described above as our design focus.

3.3 Needs and makeshift strategies for
embedding comparison

Unlike the techniques that participants use to understand indi-
vidual embedding spaces, approaches for comparing more than
one embedding space at a time were “very rudimentary” (P8) and
few in number. Below, we discuss some common needs that ex-
perts expressed for embedding comparison, and the often-makeshift
strategies they used to address them.

3.3.1 Finding points that differ between spaces. When asked about
the types of comparative analyses they would like to conduct, one
participant answered that they would simply like to “identify the
points that move the most” (P5). Two of the NLP practitioners
echoed a similar need (P1, P2); one described a strategy to sample
pairs of points at different distances in one space, then calculate the
distances between those points in another space. Similarly, while
working on an image representation learning problem, P9 compared
a new model against a baseline by examining point pairs with the
smallest ratio of distances between the new embedding space and
the baseline. Participants wanted to use this type of analysis both
to gain insight into different datasets (P1, P2), and to qualitatively
explain why a model works better or worse than another (P4, P9).

3.3.2 Alignment and multimodal embeddings. Because different
embedding spaces usually have very different feature axes even
if trained on the same data, a few participants mentioned that it
would be helpful to be able to align embedding spaces, particularly
for multimodal embeddings (e.g. joint embeddings of images and
text, or texts from different languages). Embedding space alignment
is an active area of research; nevertheless, participants did use some
simple alignment techniques, such as aligning with respect to a sin-
gle center point or performing a Procrustes alignment (minimizing
root-mean-square distance between points) (P3, P5).

3.3.3 Effects of modeling choices throughout the model-building
pipeline. Many model-builder participants expressed a desire to
understand how model architectures and parameters were affecting
the results at a more granular level than macroscopic accuracy met-
rics. For example, P7 was studying a novel dimensionality reduction
technique, and wondered whether there was a better way to help
users choose parameters than just looking at several visualizations
side-by-side. P6 noted that when choosing a model architecture
among many disparate options, they would generally compare
the results manually before running a grid search over hyperpa-
rameters for the best architecture. Most participants’ approaches
to comparing model variants were limited to top-level accuracy
numbers, which became insufficient in light of more subjective or
instance-level requirements on the learned representations.

3.4 Implications and design goals
Based on the techniques and needs that participants described to
us, we generated four overarching themes and associated design
goals to guide the development of our system:

Goal 1. Facilitate greatermodel understanding by simplifying
the process of comparing across multiple embedding
spaces. Participants described a fundamental desire to intu-
itively understand how a model is working and what notion
of similarity an embedding space is capturing. However, char-
acterizing embedding structure and similarity is challenging
to do within a single embedding space. Some participants
described validating embedding spaces by comparing exam-
ples to their prior knowledge about the specific data (P6, P7),
while others develop a more long-term “intuition around
what’s going on across different models and across different
approaches” (P8). We propose that supporting exploratory
comparison between embedding spaces can help users un-
derstand individual embedding spaces better by providing
reference points from which to differentiate an embedding
of interest.

Goal 2. Support exploration of large datasets by guiding the
user to points and clusters that change meaningfully
between embedding spaces. Some participants enter the
embedding analysis process equipped with specific points to
analyze, but many do not extensively inspect the embeddings
despite believing that it would be beneficial to do so. This
discrepancy may arise because for many large datasets, the
lack of labels to differentiate clusters makes it difficult to
visually or programmatically pinpoint areas of interest. For
example, after developing a new dimensionality reduction
technique, P7 described the challenge of interpreting the
results on a new dataset: “We run this embedding, [and]
we get this cloud of all blue points because we don’t know
how to color them. What do we do next?” We propose to
mitigate this complexity by developing recommendation
features that guide the user to meaningful changes, which
may also provide a form of clustering.

Goal 3. Support exploration of high-dimensional neighborhoods
so users can avoid being misled by distortions due to
DRprojections.As discussed above, participantswere largely
skeptical of the ability of DR to accurately capture the struc-
ture of an embedding space. In fact, many tended to avoid
DR-based tools entirely in order to avoid drawing misin-
formed conclusions. However, participants did find DR help-
ful to get an initial impression of the embedding space, and to
communicate their results. We hypothesize that when com-
plemented by appropriate comparison tools, DR plots can
serve as an effective “map” of the data that enables intuitive
navigation and exploration.

Goal 4. Support integration into custom embedding analysis
workflows. The diversity of techniques we observed in the
interviews indicates that embedding analysis and compari-
son often require custom, task-specific routines. For exam-
ple, experts tend to have predefined hypotheses about what
characteristics of points to search for, and they utilize spe-
cific downstream analyses to assess the embeddings of those
points. An effective analysis tool will need to not only pro-
vide prebuilt methods for exploration and analysis, but allow
them to move between the system’s and their own analysis
routines.
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4 SYSTEM DESIGN
We now introduce Emblaze, a system we developed based on the
above design goals that seeks to help model builders compare no-
tions of similarity and reliability in embedding spaces. Although
Emblaze can be run as a standalone application, it is primarily de-
signed as a widget that can be displayed in an interactive notebook
environment. The tool integrates most of the major techniques de-
scribed in the interviews, including nearest-neighbor analysis, clus-
tering, and embedding space alignment. In fact, nearest neighbors
form the backbone of most of the algorithms embedded in Emblaze,
echoing previous embedding comparison efforts [18] and reflect-
ing the importance of nearest neighbors to interviewees across
domains. Below, we provide an overview of Emblaze’s interface
followed by the features we developed to support each of the four
design goals.

As depicted in Fig. 1, Emblaze centers a dimensionality-reduction
plot of the dataset that facilitates navigation and selection of points
of interest. DR maps can be generated using common techniques
(PCA, tSNE, and UMAP) along with a variety of distance metrics
(cosine distance is the most common). To control for visual dif-
ferences due to DR, Emblaze allows users to generate projections
using AlignedUMAP, a variant of UMAP that adds a similarity
constraint to the objective function [28]. Additionally, the projec-
tions are optimally scaled and rotated using Procrustes alignment
to minimize coordinate differences [31]. To the left of the main
scatterplot is a panel listing the embedding spaces being compared,
which we term “frames”; clicking once on a thumbnail opens the
comparison interface, and clicking again animates the points in
the scatterplot smoothly to their locations in the new embedding
space. Meanwhile, the right-hand sidebar contains a variety of tools
to manage and analyze selections in the interface, including the
nearest neighbors of the current selection, a browser for saved and
recent selections, and Suggested Selections.

Neighbor-based metrics are the primary way to compare em-
bedding vectors in Emblaze, because they can be computed in the
high-dimensional space and are compatible with any quantitative
distance metric. For a point x , we define NE (x) as the set of k near-
est neighbors to x in the embedding space E (k is a constant that
can be configured by the user, but is set to 100 by default). The rank
of a neighbor y in the neighbor set of x is denoted rankE (y;x) and
ranges from 0 (first neighbor) to k − 1. We frequently employ the
Jaccard distance, denoted J (·, ·), to compare neighbor sets.

4.1 Goal 1: Interactive embedding comparison
views

Emblaze’s primary function, addressing Goal 1, is the ability to
compare embedding spaces using a combination of animation and
explicit encodings. The tool’s point selection features complement
the animations by helping the user control the scope of the visual-
ization, facilitating comparison at both instance-level and global
scales. Screenshots of the various comparison views are shown in
Fig. 2.

4.1.1 Animation and Star Trails. When designing the animation
between frames, we drew inspiration from the well-known Gapmin-
der tool and other animated visualizations [16], which tap into the

perceptual system’s ability to track objects and identify motion out-
liers. However, some studies have found that animation introduces
perceptual inaccuracy compared to small multiples and overlays
[36], and that motion outliers may be difficult to reliably perceive
[46]. These concerns may be exacerbated in DR plots, which often
contain tens of thousands of points (orders of magnitude more than
the scatter plots tested in the aforementioned studies). Therefore,
we introduce an augmentation that we call a Star Trail2: a series
of widening lines that show the paths of points from a source frame
A to a destination frame B, as shown in Fig. 2a. To draw the user’s
eye to larger changes, the opacity and width of each point x ’s trail
is set according to the proportion of nearest neighbors that have
changed between the two frames, 1− |NA(x) ∩NB (x)|/k . Finally, a
slider in the comparison view controls the animation progress from
frame A to B, allowing the user to drive the motion of the points
along their respective Star Trail paths.

4.1.2 Align and Isolate. The scatter plot’s behavior in the compari-
son view can be adjusted based on the current selection, enabling
the user to manage the visualization complexity and make many
distinct comparative analyses between the same pair of frames.
First, similar to the TensorFlow Embedding Projector [40], the user
can Isolate to the current selection S to limit the visible points to
the selection and its immediate vicinity in every frame. Second, the
visualization can be Aligned to the selected points’ coordinates in
the current frame, which recomputes the Procrustes transformation
of every other frame such that the deviation of only the selected
points is minimized. The combination of Aligning and Isolating to
a selection effectively creates a smaller space for comparison and
mitigates uninformative motion while animating the scatter plot.

4.1.3 Neighborhood differences and Common Changes. The sidebar,
which normally displays neighborhood information for the current
selection, also shows comparison-specific information while the
user is comparing two frames A and B. First, a simple neighbor
differences view shows the nearest neighbors of the selection in
each frame (Fig. 2b); points are highlighted in magenta if they
are present in A but not B, and green if present in B but not A.
When multiple points are selected, an additional table of Common
Changes lists the neighbors that are most commonly added to or
removed from the nearest-neighbor sets of the selection S (Fig. 2c).
To compute Common Changes, we define a function to measure the
inverse rank of the neighbors of S that are present in one embedding
but not another:

Change(y;A,B) =
∑
x ∈S

{
k − rankB (y;x), if y ∈/ NA(x) and y ∈ NB (x)

0, otherwise
(1)

Given this score function, the Common Change points can be com-
puted as the top 5 and bottom 5 points in the union of all S’s
neighbors

⋃
x ∈S (NA(x) ∪ NB (x)), scored using the criterion value

Change(y;A,B) − Change(y;B,A). When the number of nearest
neighbors k is sufficiently large (typically 50-100), these Common
Changes can reveal change patterns that shed light on how frames
A and B embed the selected points differently.

2A star trail in astrophotography is a long-exposure image that shows “trails” of stars
as they move through the sky due to Earth’s rotation.
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Figure 2: Comparison views for Google News vs. Twitter as in Fig. 1, with a selection of drug-related words clustered by our
suggestion algorithm. (a) The Star Trail visualization shows lines from each point’s location in the Google News to its location
in Twitter; line opacity indicates the proportion of nearest neighbors that have changed between the two spaces. Here, the
diverging lines indicate that this neighborhood is breaking apart, creating clusters for illegal drugs, prescription pain medica-
tions, and others. (b) The neighbor differences view highlights the overall nearest neighbors of the selection in each space. (c)
Common Changes indicate which neighbors are most commonly added and removed for this selection in Twitter (green and
magenta, respectively). This highlights the addition of “weed” and “acid” as colloquial drug-related words in Twitter, and the
removal of drug category names more characteristic of journalistic writing (“narcotic”, “amphetamines”).

4.2 Goal 2: Finding interesting comparisons
While the features described above help manage complexity and
facilitate comparison given a previously-defined selection, we also
sought to help the user find selections that yield interesting com-
parisons. For example, the Star Trail visualization preferentially
highlights points with large nearest-neighbor differences that are
also in the vicinity of the current selection, leading them to po-
tentially interesting similar selections. We also developed a visual
summary of change across frames, and an adaptive technique for
suggesting selections, which we discuss below.

4.2.1 Summary Color Stripes. We hypothesized that having a fast
visual way to assess the amount of change in a group of points
across all frames would accelerate the discovery of selections worth
focusing on. Therefore, we developed a Color Stripe visualization
that uses perceptual color similarity to encode similarity between
frames for a given selection S . Color Stripes are determined by
clustering the frames using a distance metric that captures both
how much S changes as a group with respect to its external neigh-
borhood, and how much the neighborhoods within S change. More

formally, the distance between frames A and B is computed as

dframes(A,B; S) =
1

2|S |

(∑
x ∈S

∆inner(x ;A,B, S) + ∆outer(x ;A,B, S)

)
(2)

where ∆inner and ∆outer reflect the change in the “inner” and “outer”
neighbor sets of x with respect to S :

∆inner(x ;A,B, S) =
1

1 + |NA(x) ∩ NB (x) ∩ S |
(3)

∆outer(x ;A,B, S) =
1

1 + |NA(x) ∩ NB (x) \ S |
(4)

To visualize the clustering of frames generated by this distance
metric, we assign each frame to a color along a ring in the CIELAB
color space (a system in which Euclidean distance approximates
perceptual distance). While the relative distances between frames
around the ring correspond to differences in hue, the saturation
of the colors is determined by the maximum distance between
any of the frames. This results in highly consistent selections being
represented as indistinguishable grayish hues, while highly varying
selections feature bright colors. Examples of the Color Stripes can
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be seen next to the frame thumbnails to the left of the scatter plot
(see Fig. 1), as well as in the Suggested Selections pane (Fig. 3, right).

4.2.2 Suggested Selections. Finding groups of points that exhibit
meaningful, consistent neighborhood changes in large embedding
spaces is challenging, particularly for groups of points that are not
tightly clustered or labeled in the DR projection. Tightly clustered
groups pose an additional problem: if a group shifts drastically
between two spaces while remaining closely interconnected, the
nearest neighbors of each point individually may be largely similar
even though the neighborhood around the cluster has changed. To
help users identify and navigate to such groups quickly, we created
the Suggested Selections feature, which can be accessed through
one of the sidebar tabs.

As shown in Fig. 3, the suggestion algorithm proceeds in two
steps: one to precompute clusters, and one to rank and filter those
clusters according to an interest function. In the precomputation
step, a clustering of points is generated for each pair of framesA and
B using a distance metric that measures the changes in neighbors
gained and lost in B compared to A:

dpoints(x ,y;A,B) =
1
2
(J (NB (x) \ NA(x),NB (y) \ NA(y)) +

J (NA(x) \ NB (x),NA(y) \ NB (y))) (5)

The effect of this formulation is that pairs of points which gain (or
lose) a similar set of neighbors from frame A to B will have a small
distance. The points are clustered using hierarchical clustering,
with a variety of distance cutoffs to produce suggestion results of
varying sizes. It is important to note that this clustering is quite
different from a clustering performed within an embedding space,
as is typically used [1, 27]. Instead, the distance metric in Eqn. 5
explicitly clusters points based on how they change from one frame
to another, thereby directly codifying the types of change that we
consider most “interesting.”

In the suggestion phase, the clusters are ranked both bymeasures
of a priori interest and relevance to the current visualization state,
resembling a classic degree-of-interest function [45]. The a priori
interest function is the sumof threemetrics: consistency of neighbor
gains and losses, changes in the cluster’s inner neighbor structure
(see Eqn. 4), and amount of neighbor overlap within the cluster.
The clusters are then further filtered and ranked based on which
frame(s) are being viewed, the currently-selected points and their
neighbors, as well as the current bounds of the viewport. This
enables the user to pan and zoom around the scatterplot and see
Suggested Selections for each area they visit.

Note that we have now proposed two distinct distance functions
for seemingly similar purposes, namely dframes (Eqn. 2) and dpoints
(Eqn. 5). While the distance metric for Suggested Selections, dpoints,
helps to group together points within a fixed pair of frames, the
metric for Color Stripes, dframes, helps to group together frames
with respect to a fixed set of points. This relationship is mirrored in
how each clustering is used in the interface: users can select clusters
surfaced by the Suggested Selections for a particular pair of frames,
then use the Color Stripes to get a sense of their variations across
all frames. By splitting the task of finding interesting comparisons
into two complementary interactions, Emblaze extends the notions

of interest established in prior work [4, 18] to support both groups
of points and more than two embedding spaces.

4.3 Goal 3: Browsing high-dimensional
neighborhoods

Since Emblaze is subject to the caveats of dimensionality reduction
expressed in our formative interviews, we took care to distinguish
the projection from the original high-dimensional space through
visual augmentations and selection operations. These affordances
are intended to encourage the use of the DR projection as a naviga-
tion tool by which users can find subspaces of interest, as described
in Goal 3.

4.3.1 High-dimensional neighbors. When a point is hovered upon
or selected, lines radiate outward from the point to its nearest
neighbors in the high-dimensional space (by the distance metric
pre-configured by the user). By assessing how far the lines extend
while panning over the plot, the user can quickly see the fidelity
of the 2D projection and find points that are far from their nearest
neighbors.

The sidebar’s neighbor list view, which has been established in
prior embedding analysis systems [4, 33, 40], also supports showing
neighborhoods for multiple-point selections. A selection S ’s nearest
neighbors in frameA are the top 10 points in the full set of neighbors⋃
x ∈S (NA(x)) that attain the best total inverse neighbor ranks with

respect to the points in S . Note that simply listing the neighbors can
be misleading if points have very disparate neighbor sets. Therefore,
we also display a bar next to each neighbor indicating how many
points in S have that point as a neighbor; high values indicate a
consistent neighborhood.

4.3.2 High-dimensional radius select. Emblaze provides a lasso
selection tool to select points that are close together in 2D, which
works well when a neighborhood is tightly clustered in the DR
projection. For neighborhoods that are not well preserved by the
projection, however, the user can use the Radius Select feature to
find points within a configurable distance of a center point in the
high-dimensional space.

4.4 Goal 4: Computational notebook
integration

Towards the fourth goal, integrating embedding comparison into
custom data science workflows, we implemented Emblaze as a
widget that can be run in a Jupyter environment (as shown in Fig.
1). This leads to unique benefits for users as compared to standalone
applications. First, importing embedding data into Emblaze is made
extremely simple, requiring only a set of coordinate arrays and
images and/or text to describe each point. Second, once the viewer
widget is instantiated within a Jupyter cell, the user can interact
with the state of the system by manipulating either the interface or
the underlying Python objects. For example, the emblaze.Viewer
object exposes bidirectional properties for the current visible frame,
comparison frame, selection, filter, and display settings. This enables
interactions in which the user can visually identify a selection
of interest, computationally analyze that selection using custom
functions, identify new points of interest, then instantly navigate
to the new selection in the interface.
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Figure 3: Process for generating Suggested Selections. First, pairwise point distances are precomputed to measure consistency
of nearest-neighbor changes, and hierarchically clustered. Three cluster score metrics are used along with the current visual-
ization state to filter and rank the clusters by their estimated degree of interest to the user. Finally, suggestions are displayed
in the interface along with a Color Stripe to inform the user which frames have the most substantial variation. The example
suggestions at right are drawn from the word embeddings comparison in Fig. 1 as well as a comparison of face recognition
models on the CelebA celebrity faces dataset [26].

4.5 Availability and implementation details
Emblaze is open-source and available on PyPI and GitHub3. The
system consists of a Python backend, which performs most of the
computationally-intensive analyses, and a Svelte frontend4, which
enables reactivity. The scatter plot is implemented using PIXI.js5, a
popular WebGL-based graphics framework. By implementing most
plot rendering in custom shaders, Emblaze is able to display and
animate tens of thousands of points smoothly on typical hardware.

5 CASE STUDIES
As embedding comparison is a relatively nascent task in the liter-
ature on ML model analysis, we conducted case studies with ML
experts to gain a preliminary understanding of how they might
use Emblaze on real-world datasets. We recruited three ML expert
researchers who were experienced in, and currently working with,
embedding models or dimensionality reduction. The three users
(whomwe denote U1-3) prepared datasets from their work, installed
Emblaze in their own programming environment, then engaged in
a loosely scaffolded think-aloud analysis of their dataset. Partici-
pants spent 2-2.5 hours working with the investigators, and were
compensated 20 USD per hour. The resulting audio transcripts and
usage logs were used to build sequences of actions, which revealed
how participants were using each Emblaze feature as part of their
analyses.

Note that because Emblaze simply requires a set of embedding
matrices and object descriptions, it is not limited to visualizing the

3https://github.com/cmudig/emblaze
4https://svelte.dev
5https://pixijs.com

final outputs of an embedding model. As depicted in Table 1, Em-
blaze also supports other tasks such as comparing across different
DR techniques, layers of a neural network, training data subsets, or
corpora (e.g. for distributional semantic analysis [30]). The three
experts’ use cases and workflows discussed below represent just a
few examples of how Emblaze can be utilized in practice.

5.1 U1: Dimensionality reduction parameter
selection

U1’s research centers around developing improved dimensional-
ity reduction techniques, which necessitates comparisons of new
techniques against existing ones on well-studied sample datasets.
Here, they analyzed projections with different DR settings on the
UCI Wine dataset, which contains physicochemical information
and quality ratings for around 4,900 wines [9]. U1 chose to com-
pare four projections of this dataset by manipulating 2 variables:
projection technique (standard versus a custom implementation of
UMAP) and num_neighbors parameter (15 and 50).

Using the Star Trail visualization to get an overview of changes
between two projections of the custom UMAP implementation
(shown in Fig. 4a), U1 quickly observed that a large cluster of wines
moved from one side of the plot to the other; they described this as
an effect of UMAP’s random initialization that they would like to
overcome in their improved technique. They then used the manual
animation slider to slowly interpolate back and forth between the
two frames, and observed that the higher num_neighbors param-
eter had resulted in a more compact, but less distinctly-clustered
projection. To support this hypothesis, U1 performed a lasso selec-
tion and Isolated to a group of points while in the comparison view,
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causing the Star Trails to change to highlight changes relevant to
that selection. Using the updated Star Trails and animation, they
were able to watch the group move from being well-separated to
integrated with the central mass of points.

Because the Wine dataset was mostly projected as one large
mass of points with few well-separated clusters, U1 wanted to
use the Suggested Selections feature to find differences within the
central cluster. By scanning the Color Stripes in each suggestion,
they identified a selection that differed considerably between the
two num_neighbors values. Looking at the sidebar, they perused
the Common Changes for the selected group of points and noted
that the most commonly added points were high-quality wines.
Finally, they manually animated between the two frames while
Aligned and Isolated to the selection. This revealed that the group
of points was actually two clusters that were positioned next to
each other when num_neighbors = 15, but moved away from each
other and acquired new neighbors when num_neighbors = 50.
This unexpected finding, which required looking at both Common
Changes and geometric differences, highlighted tradeoffs between
the two parameter choices that were not immediately visible be-
fore. After performing this analysis as well as a similar analysis
on an unlabeled dataset of tweets, U1 reflected that comparing
multiple projections was a much better initial step for exploring a
new dataset: “Especially [when] I don’t have labels, I don’t have a
starting point in which way I can prepare my data set.... Using dif-
ferent embeddings... really helps you to get an overview according
to various configurations of your data.”

5.2 U2: Projection errors in medical image
embeddings

U2 is working on building machine learning models to distinguish
breast cancer lesions from normal tissue in mammograms. At the
time of the study, they were interested in analyzing the embed-
ding space their model had learned in order to identify subtypes
among the patches labeled as lesions. Therefore, they prepared a
dataset consisting of 1,500 mammogram patches, each represented
by a 2048-dimensional embedding vector. They then used UMAP
to project the embeddings into 2D five times with random initial-
izations; this would allow them to account for the effects of DR
variation while exploring the embedding space.

U2’s first step was to take an overview of the space by hovering
over points to show their associated images, enabling them to
characterize which regions corresponded to lesions and normal
tissues. Then, using the Star Trails in the comparison view for two
of the five DR variants, their attention was quickly drawn to a very
long trail between the two main clusters, corresponding to a point
labeled as a lesion that was projected with the normal patches in all
but one frame. By looking at the points closest to the outlying point
in each variant frame, they concluded that the point was likely a
mislabeled normal patch that was in fact correctly embedded by
the model. Using any one of the projections in isolation, this error
case would likely have been missed.

U2 identified clusters of interest by selecting parts of the projec-
tion using the lasso-select tool, since they had recently performed
a k-means clustering of the embedding space and found several
contiguous regions that appeared to be meaningful. In one case,

they selected a group of points that assumed two different geome-
tries across the five frames: three frames were colored blue-green
in the Color Stripes visualization, and the other two colored orange
(shown in Fig. 4b). U2 then opened the comparison view between
one of the blue frames and one of the orange frames, and ani-
mated between the two to examine how their vicinities changed.
By visually inspecting the points that the cluster moved towards,
they hypothesized that the orange variants were less accurately
isolating the selected neighborhood (although they noted that a
medical expert would be needed to confirm which variants were
more accurate).

Looking at the variations between DR projections helped U2
gauge the reliability of projections, as well as the possibility of
labeling errors: “If some points move a lot, I would want to check
them out, see if there’s a problemwith my data.” Conversely, U2 was
also excited that Emblaze allowed them to identify groups of points
that were consistently projected across different variants, indicating
that those relationships were likely stable in the high-dimensional
space. For example, they found a Suggested Selection whose patches
all depicted marginal areas of the breast, and for which the Color
Stripes were all gray (minimal variation between frames). Despite
the fact that these points were not all mutual nearest neighbors in
the projection, the constancy in their arrangement across multiple
initializations provided a strong signal that the model considered
them similar. Supporting Design Goal 3, U2 expressed that this as-
sessment of consistency was “definitely, definitely helpful, because
there’s no way for me to tell” which parts of a projection are reliable
otherwise.

5.3 U3: Model comparison for knowledge
graph representation learning

U3 is a natural language processing expert working on building em-
bedding representations of knowledge graphs (networks in which
nodes represent entities and edges encode facts relating those enti-
ties). Starting from a pre-trained BERT model that simply encoded
the text of each node, they had developed two versions that were
fine-tuned to the facts in the knowledge graph (supervised), as
well as a version that transformed the embedding space using a
normalizing flow. They were aware that both models performed
better than the base BERT model on a downstream task, but they
lacked specific examples of how the embedding space structure had
changed to yield the improved metrics. Therefore, they loaded a
dataset of 5,000 sampled entities from a common-sense knowledge
graph, embedded according to the four models. (Since the time of
the session, Emblaze has been optimized to visualize many more
points, mitigating the need for downsampling.) The four models
were jointly projected into 2D using AlignedUMAP, which com-
putes a UMAP with an additional loss term penalizing deviations
between frames.

Initially, U3 focused on the comparison between the base and the
two supervised models. They first selected a fairly well-separated
cluster in the base model which consisted of color words. Then,
opening the comparison view to look at the cluster’s Common
Changes between the default and supervised spaces, they found that
the default model was including several phrases that matched the
words in the cluster but not their semantic roles (e.g. “blue umbrella,”
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Figure 4: Screenshots of Emblaze showing (a) the UCI Wine dataset as explored by U1, and (b) a selection of mammogram
patches investigated by U2.

Figure 5: Suggested Selections for a region of U3’s entity embedding model (a), and an examination of a point that joins one
of the recommended clusters while animating between the default and supervised spaces (b).

“yellow ribbon”). Similarly, U3 lasso-selected andAligned to a cluster
of phrases in the base model that contained the word “friend,” then
animated to the supervised model to see those points migrate apart
from each other in the space. These examples confirmed U3’s prior
hypothesis that the base BERT model was overly reliant on lexical
similarity compared to the fine-tuned version.

U3 was eager to use the Suggested Selections feature to find clus-
ters of interest, in particular because the dataset had no labels that
could serve as a color encoding for the scatter plot. For example, one
suggestion they loaded was a set of 17 points comprising musical
instruments (shown in Fig. 5a). In the comparison view between

the base and supervised representations, they noticed that the Star
Trail visualization was highlighting a few points moving into the
cluster. They froze the transition between the two frames and nav-
igated to the origin of each trail, revealing that the cluster was
being augmented by less common instruments such as “bagpipe”
and “piccolo” (Fig. 5b). They then selected these points individually
to scan their neighbor differences views, and concluded that “in
the default space, it’s just kind of garbage. But for the new space,
it’s a bunch of instruments. So that’s actually very straightforward.”
Towards Design Goal 4, U3 voiced the importance of verifying these
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facts in the knowledge graph and did so directly in the notebook
by extracting and looking up the selected point IDs.

Comparing the base model against the normalizing flow repre-
sentation posed a more challenging task, because they expected
the flow model to redistribute the space in a “very noisy, not inter-
pretable” way. First, they animated between the two frames several
times, noting that many of the clusters in the base model were
less obvious in the flow variant. To make sure that these patterns
were not just due to the projection, they browsed the Suggested
Selections to find a cluster of interpretable points and eventually
arrived at a cluster of concepts related to outer space. As above,
they browsed the neighbor differences and Common Changes views
to find that other space-related terms were commonly being re-
moved in the flow model, while the neighbors most commonly
added in the flow model were less sensible. Contemplating the
differences between the supervised and flow models with respect
to the base, U3 noted that “the benefits [of flow] are not coming
from improved alignment [of clusters], it’s actually coming from
the structure of the space... whereas [the supervised models] do
seem to be helping for different reasons.” The finding that these
two variants both improved quantitative performance but in very
different ways prompted U3 to think about newmodel architectures
that could leverage the complementarity between the two methods.

5.4 Overall user perspectives
All three users thought the tool would be helpful in their work as
(1) an interactive interface for DR projections, (2) a way to sanity-
check their observations, and (3) a source of concrete examples
to complement quantitative model performance metrics. Echoing
the deep skepticism of DR expressed in the formative interviews,
U3 noted that “there are some inherent caveats with some of the
reduction techniques,” but that Emblaze, “if anything, highlights
and brings more attention to those” through the high-dimensional
neighbor comparison views. In support of Design Goal 2, all three
users agreed that the Suggested Selections feature was very useful
- particularly when there were no supervised labels to visually
separate clusters. Overall, participants found that Emblaze made
possible exploratory analyses they had never been able to do: “I
think there is a lot of functionality that I would never interface
with if the tool didn’t exist” (U3).

Participants also provided useful feedback on the novel visual
augmentations used in Emblaze. All three users were initially con-
fused by the Color Stripe visualization, although they agreed that
getting a sense of variation across all frames was important: “Yeah,
we definitely need that information, it’s very helpful. I wish it was
more straightforward” (U2). Participants also wanted the Star Trail
visualization to communicate more information about points’ re-
lationships to a cluster, such as by highlighting trails differently
depending on whether they were entering or leaving a neighbor-
hood (U1). Finally, participants thought notebook integration was
very helpful for studying models without leaving their work envi-
ronment, and suggested that the tool could integrate directly with
models to dynamically compute and visualize embeddings for new
groups of instances.

6 DISCUSSION
By building upon designs from prior work aswell as experts’ current
approaches to analysis and comparison, Emblaze enables a series of
comparative workflows on embedding spaces that would have been
highly challenging with existing tools. Our think-aloud sessions
with ML experts suggest that the tool makes substantial progress
towards the four goals described in Sec. 3.4, while revealing new
possible directions for improvement:

Goal 1. Facilitate greatermodel understanding by simplifying
the process of comparing across multiple embedding
spaces. Both users who were working with learned repre-
sentations (U2 and U3) gained new insights into the structure
of their embedding spaces, using the Star Trail visualization,
neighbor differences, and Common Changes views.

Goal 2. Support exploration of large datasets by guiding the
user to points and clusters that change meaningfully
between embedding spaces. All three users made exten-
sive use of the Suggested Selections feature, particularly
when clusters were not well separated by the projection, and
found that it worked very well for their datasets. Participants
had difficulty reading the Color Stripes visualization at first,
a challenge that could be mitigated by simplifying the color
encoding and giving it a dedicated space in the UI. However,
they all agreed that Emblaze’s ability to guide them to inter-
esting and meaningful regions was a powerful addition to
their workflow.

Goal 3. Support exploration of high-dimensional neighborhoods
so users can avoid being misled by distortions due to
DR projections. Users agreed that animating between dif-
ferent DR projections and looking at the neighbor lists was
a useful way to disambiguate between artifacts of the pro-
jection and true high-dimensional neighborhoods. It may
be possible to assist the user’s interpretation of these fea-
tures to make them even more accessible to non-experts.
For example, the interface could prompt the user to check
the accuracy of a cluster when it is more disparate in the
high-dimensional space than it appears in the projection.

Goal 4. Support integration into custom embedding analysis
workflows. Participants strongly favored Emblaze’s note-
book implementation over a standalone application, primar-
ily because of ease of installation and compatibility with data
that participants had previously stored. They also suggested
new visualization possibilities if Emblaze were even more
tightly integrated with ML frameworks in the future.

The case studies presented here cannot be interpreted as a com-
prehensive evaluation of Emblaze’s features, particularly since our
users had not used similar tools before and had no baseline for
comparison. Rather, our observations point to novel workflows
that model builders can utilize through Emblaze and that can be
built upon in future work. Echoing the needs expressed by our
interview participants, many of these workflows led to a greater
understanding of the notions of similarity that embedding spaces
were capturing. For instance, U3’s use of Suggested Selections en-
abled them to quickly find several clusters that diverged from one
model to another in similar ways. By identifying common patterns

430



IUI ’22, March 22-25, 2022, Helsinki, Finland Venkatesh Sivaraman, Yiwei Wu, and Adam Perer

of change across these clusters, they were able to construct a narra-
tive for how the architecture choices underlying each model had
resulted in the differences they observed. This process was made
much more efficient by U3’s back-and-forth interaction between
the visualization and code, not only to corroborate findings for
large groups of points, but also to quickly load up multiple subsets
of the data for a more robust analysis.

Emblaze also afforded our expert users new workflows that
helped them reason about the reliability of their embedding space
analyses, and what conclusions they could sensibly draw from them.
For example, even though U2 was only examining one model space,
they were more confident in identifying reliable clusters because
they could assess their consistency across DR projections. Compar-
ison also allowed users to easily assess the quality of embedding
neighborhoods, which would ordinarily require an intuition built
up over many past experiences analyzing embedding spaces. After
finding a cluster with substantial variation between two models, for
instance, U3 could easily conclude that the cluster was poorly em-
bedded in one model because its neighbors made little sense relative
to the more reasonable neighbors in the other model. With enough
experience, it would likely be possible to draw similar conclusions
based on a single embedding space; Emblaze has the potential to
help users build these intuitions more quickly.

Some features that would be important for particular use cases
were omitted from this first version of Emblaze for simplicity. Most
notably, a few interview participants described wanting to know
what feature axes drive the separation of a cluster, e.g. which genes
are highly expressed in a particular cluster of cells from a computa-
tional biology experiment. Although Emblaze’s support for text and
image data types covers many typical ML representations, incorpo-
rating visualizations to help users interpret points and clusters in
tabular data (such as those proposed in prior embedding analysis
tools [41]) could expand the tool’s applicability even further. In
addition, Emblaze has only one scatter plot view that animates
between projections, a promising alternative to prior work that
juxtaposes multiple projections next to each other [1, 4, 10]. In the
future, though, the two approaches could be combined by allowing
users to toggle between a single animated scatter plot for large-
scale browsing and side-by-side visualizations to compare smaller
subsets of the data.

7 CONCLUSION
In this work, we have synthesized experts’ viewpoints across dif-
ferent domains to construct a tool that enables visualization and
exploration across several embedding spaces–previously an ex-
tremely difficult task. Our limited evaluation suggests that the
system considerably lowers the barrier to embedding analysis and
comparison. However, further engagement with model builders
as well as non-expert users (such as ML students) is needed to
determine how visualization tools can support these tasks even
more effectively. Given the increasing societal impact of ML models
trained on vast unlabeled datasets, qualitative comparison may help
track our progress towards more valid, unbiased, and ethical repre-
sentations. By making Emblaze open source and publicly available,
we hope to spark experimentation and discussion in the ML and

visualization communities on how embedding space comparison
can help produce more accurate and responsible models.
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