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ABSTRACT

The bamboo trimming problem considers = bamboo with growth

rates ℎ1, ℎ2, . . . , ℎ= satisfying
∑

8 ℎ8 = 1. During a given unit of

time, each bamboo grows by ℎ8 , and then the bamboo-trimming

algorithm gets to trim one of the bamboo back down to height

zero. The goal is to minimize the height of the tallest bamboo, also

known as the backlog. The bamboo trimming problem is closely

related to many scheduling problems, and can be viewed as a vari-

ation of the widely-studied fixed-rate cup game, but with constant-

factor resource augmentation.

Past work has given sophisticated pinwheel algorithms that achieve

the optimal backlog of 2 in the bamboo trimming problem. It re-

mained an open question, however, whether there exists a sim-

ple algorithm with the same guarantee—recent work has devoted

considerable theoretical and experimental effort to answering this

question. Two algorithms, in particular, have appeared as natural

candidates: the Reduce-Max algorithm (which always cuts the

tallest bamboo) and theReduce-Fastest(G) algorithm (which cuts

the fastest-growing bamboo out of those that have at least some

height G). It is conjectured thatReduce-Max andReduce-Fastest(1)

both achieve backlog 2.

This paper improves the bounds for both Reduce-Fastest and

Reduce-Max. Among other results, we show that the exact opti-

mal backlog for Reduce-Fastest(G) is G + 1 for all G ≥ 2 (this

proves a conjecture of D’Emidio, Di Stefano, and Navarra in the

case of G = 2), and we show that Reduce-Fastest(1) does not

achieve backlog 2 (this disproves a conjecture of D’Emidio, Di Ste-

fano, and Navarra).

Finally, we show that there is a different algorithm, which we

call the Deadline-Driven Strategy, that is both very simple and

achieves the optimal backlog of 2. This resolves the question as to

whether there exists a simple worst-case optimal algorithm for the

bamboo trimming problem.

CCS CONCEPTS

• Theory of computation → Scheduling algorithms; Online

algorithms; Design and analysis of algorithms.
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1 INTRODUCTION

A classic scheduling problem is the so-called cup game, which

is a two-player game that takes place on = cups. In each step of

the game, the filler player distributes 1 unit of water among the

cups arbitrarily; the emptier player then selects a single cup and

removes up to 1 unit of water from that cup. The emptier’s goal is

to minimize the backlog of the system, which is defined to be the

amount of water in the fullest cup.

The cup game was first introduced in the late 1960s [28, 29],

and has been studied in many different forms [1, 5–7, 9, 13, 14,

18, 21, 23, 25–30]. The game has found extensive applications in

areas such as processor scheduling [1, 5–7, 9, 10, 14, 18, 21, 23–

30], network-switch buffer management [4, 17, 19, 32], quality of

service guarantees [1, 6, 26], and data-structure deamortization [2,

3, 8, 13, 14, 16, 20, 22, 31]. See [23] for a detailed discussion of the

related work.

Perhaps the most natural emptying algorithm is the Reduce-

Max algorithm,which always empties from the fullest cup.Reduce-

Max achieves an asymptotically optimal backlog of $ (log=) [1,

13]. In fact, in addition to being asymptotically optimal, Reduce-

Max is known to be exactly optimal—no other algorithm can do

better, even by an additive constant [1].

An important special case of the cup game is the setting where

the filler’s behavior is the same on every step, also known as the

fixed-rate cup game. Whereas the optimal backlog in the variable-

rate cup game is$ (log=), the optimal backlog in the fixed-rate cup

game is$ (1) [5–7, 18, 21, 25, 27–30]. Perhaps surprisingly, though,

the Reduce-Max algorithm is no longer optimal (or even asymp-

totically optimal!). In fact, the algorithm still allows for backlog

Ω(log=) in the fixed-rate setting [1].

Recent work has identified a potential path to redemption for

theReduce-Max algorithm, however. Bilò, Gualà, Leucci, Proietti,

and Scornavacca [11] showed that, if the emptier is given resource

augmentation over the filler, meaning that the emptier is permitted

to fully empty a cup on each step rather than removing just a sin-

gle unit of water, then the backlog achieved by the Reduce-Max

algorithm becomes $ (1). Note that, since the backlog is constant,

http://arxiv.org/abs/2201.07350v2
https://doi.org/10.1145/3490148.3538580
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the resource augmentation never results in the emptier removing

more than $ (1) units of water at a time.

Although there is a long history of studying resource-augmented

variants of the cup game [9, 13, 14, 26], it is only relatively recently

that researchers have begun to study the resource-augmented fixed-

rate version of the game [11, 15, 18]. These papers have dubbed the

problem as the Bamboo Garden Trimming Problem, based on

the following (rather creative) problem interpretation. A robotic

panda gardener is responsible for maintaining a bamboo garden.

The garden consists of = bamboo 11, . . . , 1= with corresponding

growth-rates ℎ1 ≥ . . . ≥ ℎ= satisfying
∑=
8=1 ℎ8 = 1. Each bamboo

18 starts at height 0 and grows at a steady rate of ℎ8 every time unit.

At the end of each time unit, the player chooses one of the bamboo

and chops this bamboo down to height 0. The goal, of course, is to

achieve the smallest possible backlog, which is the height of the

tallest bamboo.

It is known that no bamboo trimming algorithm can guarantee

a backlog less than 2, as it is possible to achieve backlog at least

2 − 2Y against any bamboo trimming algorithm with two bamboo

that have fill rates 1 − Y and Y [11]. Recent work has yielded com-

plex pinwheel algorithms [18] that achieve backlog 2, and are thus

optimal in terms of the worst-case backlog; there has also been ef-

fort to extend the guarantees of these algorithms to achieve strong

competitive ratios for cases where backlog less than 2 is possible

[12, 33].

1.1 The quest for a simple optimal
bamboo-trimming algorithm

The relative complicatedness of the known pinwheel algorithms

has sparked a great deal of interest in the question as to whether

there exists some simple algorithm that achieves the optimal back-

log of 2. It would be especially interesting if Reduce-Maxwere to

achieve backlog 2, since this would mean that the algorithm is op-

timal for both bamboo-trimming and the standard cup game. Cur-

rently, the best known bound for Reduce-Max is a backlog of 9

[11]. Experimental work [15] has found thatReduce-Max does, in

fact, seem to achieve a backlog of 2, however, leading the authors

to pose a backlog of 2 as a conjecture.

Another algorithm family that has been studied for its simplic-

ity is Reduce-Fastest(G). This algorithm trims down the fastest-

growing bamboo out of those that have height at least G at the

end of each time unit. Initial study proved that Reduce-Fastest(2)

achieves backlog at most 4 [18], and further work demonstrated

that Reduce-Fastest(G) achieves backlog at most

max

(

G +
G2

4(G − 1)
,
1

2
+ G +

G2

4(G − 1/2)

)

for all G > 1, which yields a bound of 19/6 at G = 2 [11] (and is

≥ 1.25G for all G > 1). Extensive computer experimentation [15]

suggests that this bound of 19/6 is still not optimal, and has led re-

searchers to conjecture thatReduce-Fastest(2) actually achieves a

backlog of 3. Based on the same experiments, the authors further

conjecture that Reduce-Fastest(1) achieves the optimal backlog

of 2 [15]. However, as of now, no theoretical bounds on the back-

log of Reduce-Fastest(1) are known.

1.2 Our Results

Our first result is an improved bound on the backlog of Reduce-

Max for bamboo trimming. We prove that Reduce-Max achieves

a backlog of 4, which narrows the gap between the upper and lower

bounds from 7 to 2. At a technical level, our bound relies on a

novel potential-function argument; we believe that this argument

may be of independent interest as a tool that could help in future

analyses of similar problems.

Our second set of results analyze Reduce-Fastest(G) for dif-

ferent values of G . We are able to prove that Reduce-Fastest(G)

achieves backlog G + 1 for all G ≥ 2, and we give a matching lower

bound showing that this analysis is tight. This is the first time that

a tight analysis has been achieved for Reduce-Fastest(G) for any

value of G . For G = 2, the result gives a backlog of 3, which re-

solves a conjecture of [15]. On the other hand, we disprove the

conjecture of [15] that Reduce-Fastest(1) achieves backlog 2. In-

stead, we show that Reduce-Fastest(1) allows for a backlog of

3 − n for any n > 0. More generally, we show that there is no G

for which Reduce-Fastest(G) achieves a backlog of 2.01, mean-

ing that Reduce-Fastest(G) is no longer a candidate in the quest

for a simple optimal algorithm.

Our final result is a simple algorithm,whichwe call theDeadline-

Driven Strategy, that does in fact achieve a backlog of 2. The al-

gorithm, which is based upon Liu and Layland’s algorithm from

the early 70s for a related scheduling problem [29], maintains the

simplicity associated with Reduce-Max and Reduce-Fastest(G),

while also matching the backlog bounds of the more complicated

pinwheel-based algorithms.

The Deadline-Driven Strategy selects the bamboo that will

soonest achieve height 2 of the bamboo that have height at least 1.

From a scheduling standpoint, we can consider the time at which

a bamboo achieves height 2 to be its deadline. From this perspec-

tive, theDeadline-Driven Strategy is simply chopping down the

bamboowith the closest deadline, while not considering very short

bamboo with height less than 1. The Deadline-Driven Strategy

shares an intriguing relationship with Reduce-Max and Reduce-

Fastest(G). The Reduce-Max strategy is concerned solely with

the height of a bamboo,whereas theReduce-Fastest(G) strategy is

concerned solely with the speed of a bamboo.Reduce-Max can be

thought of as cutting down the bamboo that is closest to achieving

height 2 in terms of height (possibly selecting that bamboo that has

furthest surpassed 2 if the conjecture that Reduce-Max achieves

backlog 2 is false), and Reduce-Fastest(G) cuts down the quick-

est bamboo that has surpassed some threshold G . The Deadline-

Driven Strategy strikes a balance between these two — instead of

cutting down the bamboo that is closest to 2 in terms of distance

or the bamboo with the maximum speed, it cuts down the bamboo

that is closest to 2 in terms of time. It’s interesting that of these

three simple bamboo trimming algorithms, one is concerned with

distance, one with speed, and the third with time.



Bamboo Trimming Revisited: Simple Algorithms Can Do Well Too SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

1.3 The Relationship to the Multi-Processor
Cup Game

We observe that many of our results in this paper extend to the

multi-processor fixed-rate cup flushing game, which is the analo-

gousmulti-processor version of the bamboogarden trimming prob-

lem.

In each step of the multi-processor cup game with ? processors,

the filler places ? units of water into the cups, with no more than

1 unit of water going to any cup. The emptier then removes water

from each of ? cups – the emptier corresponds to a ?-processor

machine. The multi-processor version of the bamboo garden trim-

ming problem is the multi-processor fixed-rate cup flushing game,

in which the player empties ? cups entirely instead of removing

only 1 unit of water from each of ? cups.

As noted by [9], solutions to the single-processor version of the

fixed-rate cup flushing game immediately yield solutions to the

multi-processor version, since a time step in the multi-processor

version can bemodelled as a chunk of? steps of the single-processor

game in which the fill rates are reduced by a factor of ? . Thus, an

upper bound of ~ on the backlog achieved by an algorithm in the

single-processor version of the bamboo trimming problem imme-

diately yields a corresponding algorithm that achieves backlog no

more than ~ + 1 in the ?-processor version of the bamboo trim-

ming problem. (A gap of 1 is lost since cups emptied in the first

step of a chunk of ? steps in the single-processor fixed-rate cup

flushing game will not be emptied until the end of the correspond-

ing time step in the corresponding multi-processor game, resulting

in a backlog as much as (? − 1)/? units of water higher).

Thus we are able to show that the analagous version of Reduce-

Max achieves backlog at most 5 in the multi-processor bamboo

trimming game, thatReduce-Fastest(G) achieves backlog at most

G+2 for allG ≥ 2, and that theDeadline-Driven Strategy achieves

backlog at most 3 for the multi-processor version of the bamboo

trimming problem.

2 REDUCE-MAX

In this section, we prove the following theorem.

Theorem 2.1. The Reduce-Max algorithm limits the backlog to

strictly less than 4.

Recall that we have = bamboo 11, . . . , 1= with corresponding

growth rates ℎ1 ≥ ℎ2 ≥ · · · ≥ ℎ= . We denote the height of 18 at

time C , after the C-th cut, by |18 |C . For 8 ∈ [=] and C ∈ N ∪ {0}, we

define the volume function

+ (8, C) =

8
∑

:=1

min(2, |1: |C )

to be the function measuring the height at time C of the bamboo

with growth rates at leastℎ8 , counting tall bamboo as having height

at most 2.

For 8 ∈ [=] and C ∈ N∪ {0}, we then define a potential function

Φ(8, C) =
∑

:∈[8 ]
2(:−1)<+ (8,C)

ℎ: ·min(2,+ (8, C) − 2(: − 1)),

which is aweighted sumofℎ1, . . . ℎ8 , where themultiplicativeweights

sum to + (8, C) and are each at most 2. The weights are distributed

to maximize the sum by putting as much weight as possible on the

earlier values of : . For example, if + (8, C) = 7.25, we would have

Φ(8, C) = 2ℎ1 + 2ℎ2 + 2ℎ3 + 1.25ℎ4 .

We prove the following lemma by examining the behavior of

our potential function Φ(8, C) over time.

Lemma 2.2. For all 8 ∈ [=] and C ∈ N ∪ {0},

|18 |C ≤ 4 − Φ(8, C) ≤ 4.

Proof. We proceed by induction on time C . For the base case

we consider C = 0, in which case

|18 |C = 0 ≤ 2 ≤ 4 − Φ(8, C)

for all 8 ∈ [=]. (Note that 0 ≤ Φ(8, C) ≤
∑=
:=1

2ℎ: ≤ 2 by the

definition of Φ.)

For the inductive step, we suppose that the theorem holds at C

for all 8 . We will then prove that the theorem also holds at time C +1

for all 8 .

Let 8 ∈ [=]. We know that

|1: |C ≤ 4 − Φ(:, C)

for all : ∈ [=] by the inductive hypothesis. Between time C and C +1

each 1: first grows by ℎ: , and then the tallest bamboo, some 1 9 , is

cut down. We refer to the time between the bamboo growing and

the tallest bamboo being cut down as the intermediate step. We

assume that 1 9 has height at least 2 during the intermediate step

between C and C + 1, as otherwise the lemma trivially holds for all

bamboo at time C + 1 (none of the bamboo will even have height 2

at time C + 1). We will complete the proof with 3 cases.

Case 1: j < i. In this case, a quicker-growing bamboo was cut

down in the stead of 18 .

We know that 18 has grown exactly ℎ8 units from time C to time

C + 1:

|18 |C+1 = |18 |C + ℎ8 . (1)

We also know that the volume function satisfies + (8, C + 1) ≤

+ (8, C) − 1 because the growth step adds at most 1 unit of volume,

and then a bamboo 1 9 with intermediate height at least 2 and with

9 < 8 is cut down, which removes 2 units of volume. That is, the

volume function with respect to 8 decreases by at least 1 unit from

time C to C + 1. Thus

Φ(8, C + 1) ≤ Φ(8, C) − ℎ8 . (2)

since this removed unit of volume would have been weighted by

some growth-rate at least ℎ8 in the weighted sum Φ(8, C + 1).

By the inductive hypothesis, we know that the lemma holds for

time C , so we have

|18 |C ≤ 4 − Φ(8, C).

Substituting with Equations (1) and (2) we have

|18 |C+1 − ℎ8 ≤ 4 − (Φ(8, C + 1) + ℎ8)

and thus

|18 |C+1 ≤ 4 − Φ(8, C + 1).
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Case 2: j = i. In this case, we know 18 was just chopped down,

so

|18 |C+1 = 0 < 2

≤ 4 − Φ(8, C + 1).

Here we use the fact that Φ never exceeds 2 as

Φ(8, C + 1) ≤
∑

:∈[= ]

2ℎ: ≤ 2.

Case 3: j > i. In this case, a slower-growing bamboo,1 9 , was cut

down in the stead of 18 . We know that 1 9 , with height |1 9 |C + ℎ 9 ,

is the tallest bamboo during the intermediate step between C and

C + 1. So

|18 |C+1 ≤ |1 9 |C + ℎ 9 . (3)

Howdoes+ change from+ ( 9, C) to+ (8, C+1)? During the growth

phase,
∑8
:=1

ℎ: ≤ 1−ℎ 9 units of volume are added to the bamboo

with indices 1, . . . , 8 . On the other hand, + ( 9, C) includes at least

2 −ℎ 9 units of volume from bamboo 1 9 , which+ (8, C + 1) does not

include. Thus we have

+ (8, C + 1) ≤ + ( 9, C) − 1. (4)

Each unit of volume is weighted by at least ℎ 9 in both Φ( 9, C) and

Φ(8, C + 1), so by Equation (4) we have

Φ(8, C + 1) ≤ Φ( 9, C) − ℎ 9 . (5)

We know by the inductive hypothesis that

|1 9 |C ≤ 4 − Φ( 9, C).

Substituting by Equations (3) and (5) we have

( |18 |C+1 − ℎ 9 ) ≤ 4 − (Φ(8, C + 1) + ℎ 9 )

and thus

|18 |C+1 ≤ 4 − Φ(8, C + 1).

�

We conclude the section by proving Theorem 2.1.

Proof of Theorem 2.1. It follows from Lemma 2.2 that no bam-

boo can achieve height 4 even during an intermediate step. Re-

call that bamboo 8 has height |18 |C + ℎ8 during the intermediate

step after time C . If |18 |C < 2, then it follows immediately that

|18 |C + ℎ8 < 3 < 4. Otherwise, we know + (8, C) ≥ 2, which im-

plies that Φ(8, C) ≥ 2ℎ1. Thus we can apply Lemma 2.2 to find the

bound

|18 |C + ℎ8 ≤ 4 − Φ(8, C) + ℎ8

≤ 4 − 2ℎ1 + ℎ8

≤ 4 − ℎ1 < 4.

Note that we have, in fact, proved a slightly stronger claim than

that of Theorem 2.1. Not only doesReduce-Max limit the backlog

to 4, it actually limits the backlog to 4−ℎ1, i.e., 4minus the largest

growth rate among the bamboo. �

3 REDUCE-FASTEST

Reduce-Fastest(G) is a bamboo trimming algorithm that cuts down

the fastest-growing bamboowith height at least G at each time step

(if no bamboo has height at least G , then no action is taken).

Reduce-Fastest(G)was first studied by Gąsieniec, Klasing, et al.

in the case of G = 2 in [18]. They proved that Reduce-Fastest(2)

achieves backlog 4. In [15], D’Emidio et al. performed an exten-

sive experimental evaluation of several bamboo garden trimming

algorithms including Reduce-Fastest(1) and Reduce-Fastest(2).

The authors conjectured thatReduce-Fastest(1) achieves backlog

2 and Reduce-Fastest(2) achieves backlog 3. We are able to dis-

prove the first conjecture, and prove a more general form of the

second conjecture: that Reduce-Fastest(G) limits the backlog to

G + 1 for all G ≥ 2, and that this bound is tight.

Theorem 3.1. For all G ≥ 2, Reduce-Fastest(G) prevents any

bamboo from achieving height G +1. (And thus the backlog is strictly

less than G + 1.)

Proof. Suppose for the sake of contradiction that we have =

bamboo11, . . . , 1= with corresponding fill-ratesℎ1, . . . , ℎ=, and that

some bamboo18 achieves height G+1 at time C3 after most-recently

achieving height G at time C1. We then consider the bamboo that

are cut at least once in [C1, C3), and denote the set of such bamboo

by ( . For all 1 9 ∈ ( , we denote by< 9 the number of times that 1 9
is cut in the interval [C1, C3).

The following claim shows that for all 1 9 ∈ ( , ℎ 9 ≥ < 9 ·ℎ8 . That

is, for a bamboo to be cut down< times in the interval [C1, C3), it

must have fill-rate at least< times that of 18 .

Claim 1. For all 1 9 ∈ ( , we have ℎ 9 ≥< 9 · ℎ8 .

Proof. We begin by considering the case of < 9 = 1. In this

case we have ℎ 9 ≥ ℎ8 , as ℎ 9 was cut down by Reduce-Fastest(G)

at a time when 18 had height at least G , so 1 9 must be at least as

fast-growing as 18 .

Next we consider the case of< 9 ≥ 2. In this case we know 1 9 is

cut down< 9 times in the interval [C1, C3), so it must grow at least

G (< 9 −1) in that interval as 1 9 has to regrow to a height of at least

G units between successive cuts. However, 18 fails to grow even 1

unit during the same interval [C1, C3), as it has height at least G at

time C1, and it has not yet achieved height G + 1 at time C3 − 1. In

other words, in the time that bamboo1 9 grows by at least G (< 9−1),

bamboo 18 grows by less than 1. Thus

ℎ 9 ≥ G (< 9 − 1)ℎ8

≥ 2(< 9 − 1)ℎ8

≥ < 9ℎ8 ,

where the final inequality uses< 9 ≥ 2. �

We now consider the length of the interval [C3, C1). We have by

Claim 1 that
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C3 − C1 =

∑

1 9 ∈(

< 9

≤
∑

1 9 ∈(

ℎ 9

ℎ8

≤
1

ℎ8

∑

1 9 ∈(

ℎ 9

≤
1

ℎ8
(1 − ℎ8)

= 1/ℎ8 − 1.

Moreover C3 − C1 is integer, so

C3 − C1 ≤ ⌊1/ℎ8 − 1⌋

≤ ⌊1/ℎ8⌋ − 1.

But thismeans that the interval is too short for18 to reach height

G+1. In particular,18 requires at least ⌊1/ℎ8 ⌋ time to achieve height

G + 1 after achieving height G . To be explicit, we have that at time

C1 bamboo 18 has height strictly less than G + ℎ8 , and thus that at

time C3 bamboo 18 has height strictly less than

G + ℎ8 + (C3 − C1)ℎ8 ≤ G + ℎ8 (1 + ⌊1/ℎ8 ⌋ − 1)

≤ G + 1.

Therefore 18 does not achieve height G + 1 at time C3, which is a

contradiction.

�

The bound of G + 1 for all G ≥ 2 on the backlog guaranteed by

Reduce-Fastest(G) is tight. We believe this is the first tight bound

on Reduce-Fastest(G) for any value of G .

Theorem 3.2. For any Y, G > 0, there exists some = ∈ N such that

Reduce-Fastest(G) allows for backlog at least G + 1 − Y .

Proof. Consider = bamboo with uniform fill rates ℎ8 = 1/= for

all 8 . No bamboo will be cut down until they all simultaneously

achieve height at least G . Then over the next = time steps, all of the

bamboo will be cut down, with the last bamboo reaching height at

least G + (= − 1)/=.

Setting = = ⌈1/Y⌉, we obtain a backlog at least

G + 1 − 1/= ≥ G + 1 − Y.

�

Weconclude this section by providing lower bounds on the back-

log achieved by Reduce-Fastest(G). In particular, we give a coun-

terexample to the conjecture thatReduce-Fastest(1) achieves back-

log 2. Interestingly, it remains an open problem as towhetherReduce-

Fastest(1) achieves any finite backlog.

Theorem 3.3. Reduce-Fastest(1) does not achieve any backlog

less than 3.

Proof. Suppose we have 5 fast bamboo with growth rates

1/( 5 +
√

5 )

and B =
√

5 + 1 fast bamboo with growth rates

1/( 5 + 2
√

5 + 2)

for some 5 ∈ N that is a perfect square.

We note that in this construction,
∑

8

ℎ8 = 5 ( 5 +
√

5 ) + (
√

5 + 1)/( 5 + 2
√

5 + 2)

<

√

5 (
√

5 + 1) + 1/(
√

5 + 1)

= 1.

Thus the sum of the fill rates is less than 1, and so this is a valid

construction of bamboo.

Now we examine the behavior these bamboo exhibit when the

cutting player utilizes theReduce-Fastest(1) strategy. Initially, all

bamboo have height less than 1, so the player does not cut any

bamboo down. At time 5 +
√

5 , the fast bamboo all simultaneously

achieve height 1. Thus at time steps

5 +
√

5 , . . . , 25 +
√

5 − 1,

the 5 fast bamboo are cut down. Then all of the fast bamboo have

height less than 1, and the slow bamboo have all achieved height

1. Thus Reduce-Fastest(1) will cut down the slow bamboo until

a fast bamboo again achieves height 1. Therefore during each of

the time steps

25 +
√

5 , . . . , 25 + 2
√

5 − 1

a slow bamboo will be cut down. During those time steps,
√

5 =

B − 1 slow bamboo are cut down, meaning exactly 1 slow bamboo

has not yet been cut by time 25 + 2
√

5 . The Reduce-Fastest(1)

algorithm does not have time to cut this last slow bamboo, as at

time 25 + 2
√

5 the first of the fast bamboos that was cut again

achieves height 1. Since Reduce-Fastest prioritizes fast bamboo,

it will then cut down each of the fast bamboo during time steps

25 + 2
√

5 , . . . , 35 + 2
√

5 − 1

as they successively achieve height 1. Thus the final remaining

uncut slow bamboo will not be cut for the first time until at least

time 35 + 2
√

5 , by which time it has achieved height

(35 + 2
√

5 )/( 5 + 2
√

5 + 2)

= 3 − (4
√

5 + 6)/( 5 + 2
√

5 + 2)

= 3 − > (1).

Thus this construction of bamboo achieves backlog arbitrarily

close to 3 as 5 → ∞. �

The following theorem, while rather simple, serves to show that

Reduce-Fastest(G) cannot achieve worst-case backlog arbitrarily

close to the optimal value of 2 for any value of G .

Theorem3.4. There is no value ofG for whichReduce-Fastest(G)

achieves backlog 2.01.

Proof. By theorem 3.2, we know that this holds for any value

of G > 1.01. Also note for 0 < G < 1, a simple construction with

one bamboo of growth rate G and another of growth 1−G achieves

infinite backlog, as the slower of the two bamboos is never cut

down. (And for G ≤ 0, any construction with multiple bamboo

with distinct growth rates achieves unbounded backlog).
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We now offer a simple, concrete construction that holds for any

value of 1 ≤ G ≤ 1.01. Suppose we have 900 bamboo with growth

rates 1/1000 and 140 bamboo with growth rates 1/1400. The sum

of the growth rates is
∑

8 ℎ8 = 1. This construction is very similar to

the construction of fast and slow bamboo offered in the preceding

theorem, but it is loose enough to continue to offer a bound on the

backlog of at least 2.01 for all G < 1.01.

The fast bamboo achieve height G somewhere between time

1000 and time 1010 depending on G . Then each of the 900 fast bam-

boo are cut down, and then some proper subset of the slow bamboo

are cut down until the first cut of the fast bamboo again achieves

height G at some time no later than 2020. Then the fast bamboo are

again all cut. By the time that all of the fast bamboo have been cut

exactly twice, at least 2900 time steps have elapsed, and some slow

bamboo remains uncut with height at least 2900/1400 > 2.01. �

Thus, we can eliminate Reduce-Fastest(G) from consideration

in the search for a simple, optimal bamboo-cutting algorithm.

4 DEADLINE-DRIVEN STRATEGY

We now present a very simple algorithm, the Deadline-Driven

Strategy, which achieves backlog 2. The algorithm, which is novel

in the context of bamboo trimming, was introduced by Liu and

Layland [29] in the context of a related scheduling problem in the

early 70’s.

We begin by translating the result of Liu and Layland [29] to be

in terms of the fixed-rate cup game, which we remind the reader

is defined as follows. There are = cups with fill rates ℎ1, . . . , ℎ=
satisfying

∑=
8=1 ℎ8 ≤ 1. At the beginning of each time step, each

cup 8 receives ℎ8 units of water. The player then selects a cup from

which to remove 1 unit of water — if the cup contains less than 1

unit of water, it is emptied. The backlog for the cup game is defined

as the height of the fullest cup.

The Deadline Driven Strategy examines all cups with height at

least 1, and removes water from the cup that will soonest reach

height 2 — it arbitrarily chooses from the cups with the closest

deadline of reaching height 2.

One interpretation of Theorem 7 from Liu and Layland’s paper

[29] is that the Deadline-Driven Strategy achieves backlog 2 for

the fixed-rate cup game (i.e., the non-flushing bamboo game) as

long as the fill-rates are inverse integers — each ℎ8 is equal to

1/:8 for some :8 ∈ N. Subsequent work [26] rediscovered the

Deadline-Driven Strategy for a related scheduling problem; one

consequence of their arguments is that, if backlog 2 is possible, then

the Deadline-Driven Strategy achieves it. Since [6] established

that backlog 2 is, in fact possible (using results from network flow

theory), it follows that one can remove the inverse-integer con-

straint on Liu and Layland’s result [29]. That is, the Deadline-

Driven Strategy achieves backlog 2 in the fixed-rate cup game

for any set of fill rates.

We now give an alternative analysis of the Deadline-Driven

Strategy that applies to both the fixed-rate cup game and the bam-

boo trimming problem—our analysis is significantly simpler than

those in past work.

Theorem 4.1. Suppose that we have = cups 11, . . . , 1= with cor-

responding fill-rates ℎ1, . . . , ℎ= satisfying
∑=
8=1 ℎ8 ≤ 1. Then the

Deadline-Driven Strategy for the cup game will limit the backlog

to strictly less than 2. Furthermore, the equivalent strategy will also

limit the backlog to strictly less than 2 if applied to = bamboo with

fill-rates ℎ1, . . . , ℎ= .

Proof. Following the terminology from Liu and Layland’s pa-

per, we say that cup 18 is requested at time C if it reaches height 1

at time C . At a time C0, we say that a cup 18 has a deadline at time

C if |18 |C0 ≥ 1 and |18 |C0 + (C −C0)ℎ8 ∈ [2, 2+ℎ8), that is, the cup has

height at least 1 and it will achieve height 2 at time C if no water is

removed during the interval [C0, C). We say that cup 18 overflows

at time C if it achieves height 2 at time C , i.e., the cup is not attended

to before its deadline. Whenever a cup with fill in the range [1, 2)

is emptied from, we say that the request (when the cup previously

reached height 1) is completed.

Suppose for the sake of contradiction that cup 8 overflows at

time C3 and that this is the first ever overflow. We then define C1 to

be the last time prior to C3 during which either the player is idle

(as all cups have height strictly less than 1) or the player chooses

a cup with deadline after C3.

We consider the time interval (C1, C3) = [C1 + 1, C3 − 1], during

which we know the player is busy removing water from cups with

deadlines at or before C3. Furthermore, at time C1, the player was

either idle or was busy removing water from a cup with deadline

after C3. Thus all cups with request time ≤ C1 and deadline ≤ C3
had already had their requests completed by time C1. Thus in the

interval (C1, C3), the player is continuously working on tasks with

request time after C1 and deadline at or before C3.

Nowwe count the number of requests that occur at or after C1+1

with deadline at or before C3. We call such requests and deadlines

critical.

Case 1: There are at least t3 − t1 critical deadlines. Let Y 9 = 1 −

|1 9 |C1 for each cup 9 . Since every request at or before C1 with a

deadline in (C1, C3] is completed by time C1 , we know that any cup

at time C1 that has fill 1 or larger must have a deadline after C3 and

must not contribute any critical requests/deadlines. Thus each cup

9 that has at least one critical deadline satisfies Y 9 > 0. It follows

that if a cup 9 has A > 0 critical deadlines, then the total amount of

water placed into cup 9 during times (C1, C3] is at least A + n 9 > A .

Since at least C3 − C1 total critical deadlines occur in the interval

(C1, C3], it follows that more than C3 − C1 water is placed into cups

during those C3 − C1 steps, a contradiction.

Case 2: There are at most t3 − t1 − 1 critical deadlines. Since

the player is non-idle during the interval (C1, C3), and since C3 is

the first step during which any cup overflows, the player com-

pletes C3 − C1 − 1 critical requests, one during each of the steps

C1 + 1, . . . , C3 − 1. Additionally, the final deadline for cup 8 (which

overflows at time C3) is not met and thus corresponds to a critical

request that is not completed. Hence there are at least C3 − C1 − 1

critical requests that get completed during the interval (C1, C3] and

at least 1 critical request that does not get completed. This con-

tradicts the assumption that there are C3 − C1 − 1 or fewer critical

requests/deadlines.
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Precisely the same analysis that we have used to prove the theo-

rem for the fixed-rate cup game also applies to the bamboo-garden

trimming problem. (Indeed, the bamboo-garden trimming problem

can be modelled as a version of the fixed-rate cup game in which

the player empties cups instead of only removing 1 unit of wa-

ter.) �

Thus, theDeadline-DrivenStrategy is a simple algorithmwhich

achieves the optimal worst-case backlog of 2.
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