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Abstract
The famous k-Server Problem covers plenty of resource allocation scenarios, and several variations
have been studied extensively for decades. We present a model generalizing the k-Server Problem
by preferences of the requests, where the servers are not identical and requests can express which
specific servers should serve them. In our model, requests can either be answered by any server
(general requests) or by a specific one (specific requests). If only general requests appear, the instance
is one of the original k-Server Problem, and a lower bound for the competitive ratio of k applies. If
only specific requests appear, a solution with a competitive ratio of 1 becomes trivial. We show that
if both kinds of requests appear, the lower bound raises to 2k − 1.

We study deterministic online algorithms and present two algorithms for uniform metrics. The
first one has a competitive ratio dependent on the frequency of specific requests. It achieves a
worst-case competitive ratio of 3k− 2 while it is optimal when only general requests appear or when
specific requests dominate the input sequence. The second has a worst-case competitive ratio of
2k + 14. For the first algorithm, we show a lower bound of 3k − 2, while the second algorithm has a
lower bound of 2k − 1 when only general requests appear. The two algorithms differ in only one
behavioral rule that significantly influences the competitive ratio. We show that there is a trade-off
between performing well against instances of the k-Server Problem and mixed instances based on
the rule. Additionally, no deterministic online algorithm can be optimal for both kinds of instances
simultaneously.

Regarding non-uniform metrics, we present an adaption of the Double Coverage algorithm for 2
servers on the line achieving a competitive ratio of 6, and an adaption of the Work-Function-Algorithm
achieving a competitive ratio of 4k.
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2 The k-Server with Preferences Problem

1 Introduction

Consider the following situation in a distributed system: There are k virtual machines, each
stored in some node of the system. Each of them offers an instance of the same service. Over
time, requests for the service appear at the locations of the system. A request gets served by
migrating a virtual machine to the request’s location. The described scenario is an instance
of the famous k-Server Problem. The virtual machines are the servers, and an algorithm
aims to minimize the total movement (migration) cost for serving all requests. A metric
space abstracts the transmission cost in the distributed system and supplies the movement
cost.

However, the assumption that every virtual machine offers the same service seems quite
restrictive. It is reasonable to assume that each virtual machine belongs to some provider
offering only its services as a bundle. Presumably, there still exist elementary services that
each of the providers offers. Additionally, each provider offers unique services. Following this
line of thought, each request either only needs elementary services and does not care which
virtual machine is provided, or it needs unique services such that specified virtual machines
need to be moved. The new problem statement generalizes the forenamed k-Server Problem
by enabling the requests to express a preference on how to be served. Either a request can
be served by any server or by a specific one. Note, if a request needs multiple specific servers,
we can split it without consequences into several requests, one for each specific server.

In this paper, we present a new model – the k-Server with Preferences Problem – capturing
the above idea and generalizing the k-Server Problem. We study our problem in its online
version regarding deterministic algorithms mostly on uniform metrics (the paging problem).
We are interested in the competitive ratio, a standard analysis technique for the performance
of online algorithms. An algorithm has a competitive ratio of c if, for any input sequence, its
cost is at most c times the cost of an optimal offline solution on the same input sequence.

At first sight, one might think that it is sufficient to use the following approach: For
all requests that can be answered by any server, apply a standard k-Server algorithm.
For all requests that require a specific server, move the respective servers to them. For
example, consider a uniform metric space and the Least-Recently-Used (LRU) algorithm,
a deterministic marking algorithm achieving an optimal competitive ratio for the k-Server
Problem. If one applies the strategy from above, there are inputs for which already in a
metric space with only three locations and k = 3 servers the algorithm has an unbounded
competitive ratio (see Section 1.3).

Simple adaptations such as the one above fail because our model introduces substantial
novelties to the k-Server Problem. Due to the requests’ preferences, multiple servers possibly
must be at identical locations simultaneously. Furthermore, since the servers each have a
unique identity, it no longer suffices to cover the same set of positions as an optimal solution.

1.0.0.1 Applications for Uniform Metrics

While our extension of the k-Server Problem is motivated by general metrics, most of our
algorithmic results hold for uniform metrics. In addition to the encountered analytical depths,
this case is motivated by the following applications.

In some practical situations, the migration costs could be dominated by shutting down,
wrapping, setting up, and resuming a virtual machine. In comparison, the data transfer itself
is relatively cheap. Thus, the migration costs can be seen as equal at each location such that
the metric space is close to uniform.

For a more paging-related application, imagine a shared memory system where k caches
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are tied to a set of processors. For a fixed processor, the cost to read is the same for all
caches while the performance of more complex operations varies due to the caches being
wired differently to the processor. Then it can be required to store a page in a specific cache
performing best for the processor executing a complex task on it. Alternatively, security
concerns might require a page to be loaded to a specific cache in some computational context.
The k-Server with Preferences Problem on uniform metrics provides a first way to model
such systems.

1.1 Our Results
We present a generalization of the k-Server Problem where requests can (but need not)
specify if they want to be served by one specific server. We call this generalization the
k-Server with Preferences Problem and introduce it formally in Section 2. If there are only
requests that do not care which server answers them (general requests), the problem reduces
to the classical k-Server Problem. We call such input sequences pure general inputs. If there
are only requests that specify which server should serve them (specific requests), the problem
is trivial as it is clear which server has to move for each request. Such input sequences are
called pure specific inputs. Input sequences consisting of general and specific requests are
called mixed inputs.

We study the problem regarding deterministic algorithms in the online version. In that
version, requests arrive over time, and each must immediately and irrevocably get served. The
classical k-Server Problem (pure general inputs) has a lower bound of k on the competitive
ratio, and pure specific inputs pose a competitive ratio of 1. We show that mixed inputs
pose a higher lower bound of 2k − 1 (see Section 3). Additionally, regarding the share s of
specific requests on the total number of requests, we show a lower bound dependent on s
providing a detailed picture of the power of the adversary in our model.

The lower bound already holds in uniform metric spaces, and the design of algorithms
with a bounded competitive ratio in these spaces already becomes non-trivial. Hence, we
study online algorithms for the problem in uniform metric spaces. Our main results are two
online algorithms: Conf has a competitive ratio dependent on s as well (see Section 5).
It achieves an optimal competitive ratio on pure general (s = 0) inputs. For larger s, the
ratio increases and overshoots the lower bound up to a competitive ratio of 3k − 2 (s ≈ 1/3).
Thereafter, the competitive ratio decreases again with s until the optimal ratio for mixed
inputs is reached (s = 1/2). Thereafter, the ratio drops rapidly (and independently of k).
More specifically, the algorithm’s competitive ratio matches the lower bound for s > 1/2

until it reaches 1 for pure specific inputs (s = 1). The bound of Conf nicely shows how the
adversary is significantly stronger for s ≤ 1/2 and loses its power as soon as specific requests
dominate the input. Our second algorithm, Def, is designed to optimize the worst-case
competitive ratio. It achieves a competitive ratio of 2k+ 14 on all inputs, but its competitive
ratio for pure general inputs is inherently lower bounded by 2k − 1 (see Section 6). As a
side-note, Def can be straightforwardly improved such that, for s > 1/2 it also achieves an
optimal competitive ratio. Consider Figure 1 for an overview of the competitive ratios of
our algorithms dependent on s. Our results indicate a trade-off between performing well on
mixed inputs and performing well on pure general inputs. In fact, we show that no algorithm
can achieve an optimal competitive ratio for all input types (Theorem 5 in Section 4).

It turns out that there is one critical behavior an algorithm can implement for each server
that significantly influences the competitive ratio. We call this behavior acting defensively. If
an algorithm acts defensively for j, it keeps track of the last known optimal position p∗(j) of
j (given by the initial configuration or specific requests) and, if a general request appears on
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p∗(j), always moves j to the request. Simple adapted algorithms from the original k-Server
Problem (e.g., LRU, FIFO) usually do not always act defensively for all servers (as they move
them in an order independent of the last known optimal positions). If an algorithm acts not
always defensively for some server, we say, it acts confidently for that server. We present the
precise definition, more intuitions, and the precise influence of acting defensively/confidently
on the competitive ratio in Section 4.

As mentioned before, getting to the bound of k for pure general inputs yields a sub-optimal
worst-case bound for mixed inputs and vice versa. We study this trade-off by considering
defensive and confident algorithms. Our main findings here are the following: For an extreme
class of algorithms that always act confidently for ` servers (strictly-`-confident algorithms),
we show that there is an even higher worst-case lower bound of 2k + `− 2 on mixed inputs.
Our algorithm Conf (Section 5) does not fall into this class, as it may not always act
confidently for all servers (it is a k-confident algorithm). However, by a similar lower bound,
it suffers the same higher worst-case bound of 3k−2 (see Section 5.3). Therefore, we strongly
believe that a similar lower bound exists for all `-confident algorithms. The advantage of
confident algorithms is that they can achieve an optimal competitive ratio of k on pure
general inputs. To get closer to the worst-case lower bound of 2k − 1, we shift our focus to
algorithms that always act defensively for ` > 0 servers (`-defensive algorithms). We show
that any such algorithm also has a lower bound of k+ `− 1 on the competitive ratio for pure
general inputs. Our algorithm Def is a k-defensive algorithm (Section 6).

0 1/3 1/2 1
s

1

k

2k + 14

3k − 2

Comp. Ratio

(0, k)

(1/3, 3k − 2)

(1, 1)

(0, 2k − 1)
(1/2, 2k − 1)

Upper Bounds Conf

Upper Bounds Def

Lower Bounds Conf

Lower Bounds Def

Worst-Case Lower Bound

Adaptive Lower Bound

Figure 1 The competitive ratios of our al-
gorithms depend on s, the number of specific
requests divided by the total number of re-
quests (regarding only requests that require
a movement by the online algorithm). Conf
acts confidently on all servers, achieves an
optimal competitive ratio in instances of the
k-Server Problem (s = 0) and when specific re-
quests dominate the input sequence (s ≥ 1/2),
and a worst-case competitive ratio of 3k − 2
(s ≈ 1/3). Def acts defensively on all servers
and achieves a worst-case competitive ratio of
2k + 14. The price for this improvement is
that the competitive ratio for instances of the
k-Server Problem cannot be better than 2k−1
(s = 0).

Our algorithms can also be combined because they only differ in acting defensively or
confidently for each server. A combined algorithm that is `-confident and (k − `)-defensive
can be analyzed by applying the analysis of Conf for all servers that act confidently and
applying the analysis of Def for all servers that act defensively. The resulting algorithm
then achieves a competitive ratio of at most 2k − `+ 14 on pure general inputs and at most
2k + `+ 14 on mixed inputs. Intuitively, each server for which the algorithm acts defensively
increases the competitive ratio on pure general inputs and decreases it on mixed inputs.

In Section 7, we extend our results by considering non-uniform metrics. We present an
algorithm for 2 servers on the real line which is based on the Double Coverage algorithm. This
algorithm achieves a competitive ratio of 6. Designing algorithms for more than 2 servers is
surprisingly more difficult as the algorithm has to decide on how to cover k previously known
locations with k − 1 remaining servers when a server gets forced away from its location due
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to a specific request. Further, we present a simple adaption of the Work-Function-Algorithm
that achieves a competitive ratio of 4k. It remains open if and how one can achieve a
competitive ratio closer to the lower bound of 2k − 1 in non-uniform metrics.

1.2 Related Work
The k-Server Problem was introduced in 1988 [13] shortly after the introduction of the
competitive ratio (amortized efficiency in [14]), which evolved into a standard analysis
technique for online algorithms. The problem is a special case of Metrical Task Systems [3].
In [13], the authors showed a lower bound of k for deterministic algorithms and stated the
famous k-Server Conjecture, claiming that there is an algorithm with a competitive ratio of
k for every metric space. Various work tackled the conjecture, but until today it was only
proven for several restricted cases (restricted k) and simple metrics ([5, 6, 10]). Notably, the
Double Coverage algorithm [5] achieves an optimal competitive ratio of k on the real line.
The most general result as of today is the Work Function Algorithm presented in [11] that
achieves a competitive ratio of 2k − 1 on general metric spaces and an optimal competitive
ratio on several specific metrics. Besides the work toward the conjecture, several variations
of the original model were introduced. Among others, there is the generalized k-Server
Problem [12], where each server lies in its own metric space, a model where requests can get
served at later time steps for some penalty payment [1], and a model where requests can
be rejected [2]. With a focus on the analysis, recently, models with advice were considered,
where restricted knowledge on future requests is granted [4]. For a more detailed overview of
the history of the k-Server Problem, we refer to the excellent survey by Koutsoupias [9].

The k-Server Problem generalizes paging (caching), i.e., paging is the k-Server Problem
on a uniform metric. Later in this paper, we focus on algorithms for this special case
of the k-Server Problem. For paging, there is a class of optimal deterministic algorithms
called marking algorithms (see [8, pp. 752-758] for an explanation). The general idea of
marking algorithms is to operate in phases such that the optimal solution pays at least a
cost of 1 per phase, while the algorithm moves each server once per phase and remembers
already used servers by marking them. They include well-established algorithms such as the
Least-Recently-Used (LRU) and the First-In-First-Out (FIFO) policy. While our algorithms
for uniform metrics rely on the marking technique, we want to stress again (as mentioned in
the introduction) that simple adaptions of marking algorithms end up with an unbounded
competitive ratio.

1.3 A simple LRU adaption has an unbounded Competitive Ratio
In the following section, we show how a simple adaption of the Least-Recently-Used (LRU)
policy fails in our model on uniform metrics. More specifically, the presented algorithm yields
an unbounded competitive ratio already on a tiny and simple metric. Therefore, we require
more involved algorithms. In the following, we use the notation introduced in Section 2.

Example Algorithm. Use the least recently used server for a general request. For
a specific request, use the requested server. This server is then also counted as the most
recently used one.

For pure general inputs, i.e., instances of the k-Server Problem, the LRU approach is
optimal. Unfortunately, we can show the following for mixed inputs:
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I Theorem 1. The Example Algorithm has an unbounded competitive ratio even for k = 3
servers on a uniform metric with k locations.

Proof. Consider the locations v1, v2, v3, ALG’s servers a1, a2, a3 and OPT’s servers o1, o2, o3.
Let initially p(ai) = p(oi) = vi for all servers. We assume that the algorithm starts to
move its ai in the order of the indices. OPT moves each server once such that p(o1) = v2,
p(o2) = v3 and p(o3) = v1 for a cost of 3. Afterward, OPT never moves its servers.

Start the sequence by requesting server 1 specifically at v2. Now, the algorithm has its
servers a1, a2 at v2 and a3 at v3, while the order of movements for the servers is a2, a3, a1.
Next, we show how to construct a sequence of requests such that the algorithm has a cost
and ends up in the same situation again. First, apply a general request on v1 causing a2
to move there. Then, request server 3 specifically at v1, such that a3 moves. Do a general
request on v3 to move a1 there and afterward, a general request on v2 such that a2 moves
there. Specifically request server 1 on v2 to move a1. Finally, make a general request on v3
such that the algorithm moves a3 there. Repeating this sequence infinitely long yields the
theorem. J

Theorem 1 already shows us that there are multiple pitfalls in our extended model. It
seems disadvantageous to cover a position with two servers if not needed due to specific
requests. Also, the algorithm might make a mistake when moving a server if that server is
immediately specifically requested at its previous position. It seems to be a good idea to
keep servers at the position where they were lastly specifically requested. However, we have
to move a server away from this position eventually.

2 Model and Notation

We consider a generalization of the online k-Server Problem on a metric space M .

2.0.0.1 The k-Server Problem.

The k-Server Problem is defined as follows: There are k servers 1, . . . , k located at the points
of the metric space. Their initial position is predetermined. Denote by K the set of all
servers. An input sequence consists of a sequence of requests r1, . . . , rn arriving in time steps
1, . . . , n. Each request r appears at a location of M and must be answered by moving a
server onto r. The cost of an algorithm for this problem is the total distance moved by all
servers. An algorithm aims at minimizing the total cost. In the online version, the requests
are revealed one by one and must immediately be answered, i.e., request ri reveals after the
algorithm answered request ri−1.

2.0.0.2 The k-Server with Preferences Problem.

We generalize the k-Server Problem to the k-Server with Preferences Problem as follows:
Each request r is either general or specific. A general request is answered by moving any
server on r. A specific request asks for one server s ∈ K and is answered by moving s onto r.

Note that solutions to our problem also solve a more general problem where each request
r asks for a set of servers s(r) ⊆ K that all have to move onto it. For this, simply replace
any specific request r for s(r) by one specific request for each server j ∈ s(r) in the input
sequence. Any solution to the transformed input also is a solution for the more general
problem with the original input.
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To remove the dependency on the initial configuration in the competitive ratio, we assume
for all our algorithms that initially, every server j of the online algorithm is at the same
location as server j of the optimal solution. This assumption can be dropped while adding
only an additive term independent of the optimal solution in the competitive ratio.

2.0.0.3 Additional Notation.

When an input sequence contains only general requests, the k-Server with Preferences
Problem becomes equal to the original k-Server Problem. We call such input sequences
pure general inputs, input sequences containing both general and specific requests mixed
inputs, and input sequences solely consisting of specific requests pure specific inputs. For
any server j, we refer to its current position by p(j) and to the last position where it was
specifically requested by p∗(j). p∗(j) is initially set to j’s initial position. If we have a set
of servers U , we denote by p(U) the set of positions of servers of U . We denote by OPT
the optimal offline solution that knows all requests beforehand. In our analyses, we need a
precise understanding of time. For this, we define t to be the time-step at which the t-th
request appears. We denote by right before t, the point in time at the beginning of t before
the algorithm and the optimal solution have moved their servers and answered the request,
while the request is already revealed. We denote by right after t, the point in time at the
end of t after the algorithm and OPT moved their servers. Observe that considering time t,
right after t is before right before t+ 1.

3 The Lower Bound is 2k − 1

In the following section, we show that the lower bound for the k-Server with Preferences
Problem is significantly higher than the lower bound of k of the classical k-Server Problem.

I Theorem 1. Every deterministic online algorithm for the k-Server with Preferences
Problem has a competitive ratio of at least 2k − 1 even in a uniform metric space with k + 1
locations.

Proof. Consider the uniform metric with locations v1, . . . , vk+1. Let a1, . . . , ak be the servers
of an online algorithm and o1, . . . , ok be the servers of an optimal solution. Assume that
initially, p(ai) = p(oi) = vi for all 1 ≤ i ≤ k.

The request sequence starts with a general request on vk+1 and proceeds to pose general
requests at the currently unoccupied location. Since the online algorithm is deterministic,
there is a permutation π of 1, . . . , k such that the algorithm moves its servers for the first
time in the order given by π, i.e., the first time aπ(i)+1 moves, aπ(i) has already moved once.
Rename each i to π(i). Now, the algorithm moves its servers in the order given by 1, . . . , k,
i.e., the first time ai+1 moves, ai has already moved once. Now, we build the sequence as
described above, but we do not pose any request for vk. The online algorithm will move
ak the last, while the optimal solution will only move ok. Note how we can assume that
the algorithm moves each server eventually because else, ak is never moved. Then, the
competitive ratio is unbounded, because the algorithm never converges towards the optimal
locations without using ak. Separate the sequence into phases: We say phase i starts when
ai is moved for the first time. During each phase i only the servers a1, . . . , ai move and the
only locations that can become unoccupied are v1, . . . , vi and vk+1. The last phase ends
when the online algorithm occupies v1, . . . , vk−1 and vk+1, i.e., the same locations as the
optimal solution. Until then, by the definition of the phases, the online algorithm must have
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moved each server at least once. For any server ai, for i ≤ k− 1, at the end of the last phase
it holds that either ai was moved at least twice or ai is not located at vi.

Next, we issue a specific request for each of a1, . . . , ak−1 at their initial positions. With
the exception of ak, each server ai that is not at vi must be moved there. Hence, every server
except ak moved twice, and ak moved once yielding a total cost of 2k − 1. The optimal
solution answers the total sequence by moving ok to vk+1 for a cost of 1. Now, we are in the
same configuration as in the beginning by renaming the locations. J

For a depiction of the lower bound sequence of Theorem 1, consider Figure 2.
Time …

… … …

…

…

…

Figure 2 The lower bound sequence of The-
orem 1 is divided into two phases. In the first
one, always the currently unoccupied node
(except for vk) is requested. Eventually, the
online algorithm covers all nodes except vk.
Then the second phase forces every server ex-
cept for ak back to its initial position using
specific requests. The optimal solution solves
the entire sequence by moving ok to vk+1.

The bound demonstrates that an algorithm not only has to determine the optimal positions
of the servers but also the precise mapping of specific servers to positions. Therefore, the
lower bound for mixed inputs is by k − 1 higher than the one for pure general inputs.

We remark that a lower bound to our model was also presented in [7]. Our lower bound
is similar in spirit but different in structure. Its structure allows us to extend it for classes of
algorithms presented in Section 4.

Next, we show an adaptive lower bound that depends on the share s of relevant specific
requests to complement the bound above. For this, we need the lemma below.

I Lemma 1. Let x ∈ Q be a rational number greater than one that is not a natural number.
Then there are natural numbers a, b ∈ N with a, b > 0 such that x = a·bxc+b·dxe

a+b .

Proof. Since x is not natural but rational, it holds that dxe = bxc+ 1 and x = bxc+ ε for
ε ∈ Q and 0 < ε < 1. Set for any two numbers a, b:

bxc+ ε = x = a · bxc+ b · dxe
a+ b

= a · bxc+ b · (1 + bxc)
a+ b

.

Simplifying and solving for a yields a = b
( 1
ε − 1

)
. Since ε ∈ Q and ε < 1, 1

ε is rational
and greater than one such that

( 1
ε − 1

)
is rational and greater than zero. Thus, it can be

expressed as a fraction c
d of two natural numbers c and d greater than zero. Set b = d. Then

a = c and both a and b are natural numbers greater than zero which shows the lemma. J

I Theorem 2. Consider any deterministic online algorithm for the k-Server with Preferences
Problem. Let g, f be the number of general/specific requests that require the algorithm to move.
Let s = f/g+f be the share of specific requests on the total number of requests that require a
movement by the algorithm. Already in a uniform metric space with k + 1 locations it holds:
The algorithm has a competitive ratio of at least (1 + s

1−s ) k if s ≤ k−1
2k−1 , a competitive ratio

of at least 2k − 1 if k−1
2k−1 < s < k

2k−1 , and a competitive ratio of at least 1
2 s−1 if s ≥ k

2k−1 .

Proof. Consider the uniform metric with locations v1, . . . , vk+1. Let a1, . . . , ak be the servers
of an online algorithm and o1, . . . , ok be the servers of an optimal solution. Assume that
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initially, p(ai) = p(oi) = vi for all 1 ≤ i ≤ k. We further assume that the algorithm moves
lazy, i.e., it only moves a server if there is an unserved request at the destination. As it was
pointed out in [9], every algorithm can be turned lazy without disadvantage. This assumption
allows us to reasonably capture s since it depends on the requests requiring a movement of
the algorithm.

Assume s ≤ k−1
2k−1 < 1

2 . As in the proof Theorem 1, assume that the i’s are renamed
such that the algorithm starts to move its ai in the order of the indices during the phase
below. The sequence is a modification of the first phase of the proof of Theorem 1: First,
issue a general request on vk+1. For x < k steps do the following (x is determined later):
After the algorithm moved a server ai to vk+1, issue a specific request for ai at vi (which
is unoccupied). Issue another general request on vk+1 (which is unoccupied again). After
x many steps, always pose a general request on the currently unoccupied position until
the algorithm covers all locations except vk. It then holds that x many servers have been
moved twice (to vk+1 and back to their initial position) while the remaining k − x servers
have been moved at least once (similar to the proof of Theorem 1, else, the algorithm has
unbounded competitive ratio). Observe that all requests are to unoccupied locations such
that all of them require a movement while the number of specific requests is x while the total
number of requests is k + x. Overall, the cost of the algorithm is at least k + x. The optimal
solution solves the entire sequence by moving ok to vk+1 for a cost of 1 and the competitive
ratio is lower bounded by k + x. Observe that x must be a natural number. If s

1−s k is
a natural number, we can simply set x = s

1−s k such that x
k+x = s and the competitive

ratio is at least (1 + s
1−s ) k. Else, observe that the final configuration is equivalent to the

initial one in the input sequence above. Hence, the sequence can be repeated arbitrarily
often. By Lemma 1 we know that there are natural numbers a, b greater than zero such that
s

1−s k = ab s
1−s kc+bd s

1−s ke
a+b . For a phases, set x =

⌊
s

1−s k
⌋
and for b phases, use x =

⌈
s

1−s k
⌉
.

Then the ratio between the number of specific requests and the total number of requests is:

a
⌊

s
1−s k

⌋
+ b

⌈
s

1−s k
⌉

a
⌊

s
1−s k

⌋
+ b

⌈
s

1−s k
⌉

+ (a+ b) k
=

(a+ b) s
1−s k

(a+ b) s
1−s k + (a+ b) k = . . . = s.

The competitive ratio is at least:

a
(
k +

⌊
s

1−sk
⌋)

+ b
(
k +

⌈
s

1−sk
⌉)

a+ b
=
ak + bk + a

⌊
s

1−sk
⌋

+ b
⌈

s
1−sk

⌉
a+ b

=
(

1 + s

1− s

)
k.

Observe for any case that s ≤ k−1
2k−1 ensures that:

s

1− s k ≤
⌈

s

1− s k
⌉
≤

⌈
k−1

2k−1 · k
1− k−1

2k−1

⌉
≤ . . . ≤ dk − 1e ≤ k − 1.

Therefore, truly in each sequence x < k. Additionally, observe that for s = k−1
2k−1 the

competitive ratio is 2k − 1.
Next, consider s ≥ k

2k−1 >
1
2 . As in the proof Theorem 1, assume that the i’s are renamed

such that the algorithm starts to move its ai in the order of the indices during the sequence
below. Similar to before, the sequence is a modification of the first phase of the proof of
Theorem 1. However, in comparison to the case of s < 1

2 , there are insufficiently many
general requests to move every server. This is compensated by specific requests. In the first
phase, do for x < k steps the following (x is determined later): Issue a general request on
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vk+1. Assume the algorithm moves server ai. Issue a specific request for ai on vi. Since
the algorithm moves the servers in order and lazy, it incurs a cost of 2x for the first phase
and moves only servers ai with i ≤ x. In phase two, consider k − x − 1 servers with an
index between x and k (so, server k is not considered). Find a permutation π for the initial
locations of the above servers such that vi 6= π(vi) for all of them. Pose a specific request
for each of these servers i at π(vi). Finally, phase three is a single specific request for k
at vk+1. Observe that all requests require a movement by the algorithm and the number
of specific requests is k while the total number of requests is k + x. The total cost of the
algorithm is at least k + x. The optimal solution only moves the servers of phases two and
three and has a cost of at most k−x. Simplifying the ratio gives a lower bound of k+x

k−x on the
competitive ratio. Again, x must be a natural number. If 1−s

s k is a natural number, simply
set x = 1−s

s k such that k
k+x = s and the lower bound is 1

2 s−1 . Else, observe that the final
configuration is equivalent to the initial one in the input sequence above. Hence, the sequence
can be repeated arbitrarily often. By Lemma 1, we know that there are natural numbers a, b
greater than zero such that 1−s

s k = ab 1−s
s kc+bd 1−s

s ke
a+b . For a phases, set x =

⌊ 1−s
s k

⌋
and

for b phases, use x =
⌈ 1−s

s k
⌉
. Then the ratio between the number of specific requests and

the total number of requests is:

ak + bk

ak + bk + a
⌊ 1−s

s k
⌋

+ b
⌈ 1−s

s k
⌉ = (a+ b) k

(a+ b) k + (a+ b) 1−s
s k

= . . . = s.

The competitive ratio is at least:

ak + a
⌊ 1−s

s k
⌋

+ bk + b
⌈ 1−s

s k
⌉

ak − a
⌊ 1−s

s k
⌋

+ bk − b
⌈ 1−s

s k
⌉ =

(a+ b)k + (a+ b) 1−s
s k

(a+ b)k − (a+ b) 1−s
s k

= . . . = 1
2 s− 1 .

Observe that in any case s ≥ k
2k−1 ensures that:

1− s
s

k ≤
⌈

1− s
s

k

⌉
≤


⌈(

1− k
2k−1

)
k
⌉

k
2k−1

 ≤ . . . ≤ dk − 1e ≤ k − 1.

Therefore, truly in each sequence x < k. Additionally, observe that for s = k
2k−1 the

competitive ratio is 2k − 1.
Consider the case of k−1

2k−1 < s < k
2k−1 where s ≈ 1

2 . First observe that the above
bounds on s imply that (1) k − 1 < s(2k − 1) < k. As observed in the first part of the
proof, for s = k−1

2k−1 the first input sequence gives a competitive ratio of at least 2k − 1.
Also, for s = k

2k−1 , the second input sequence yields a competitive ratio of at least 2k − 1.
In both cases, the configuration after the sequence is the same as the initial one and we
can repeat each sequence arbitrarily often. By (1) s(2k − 1) is rational but not natural
and, therefore, by Lemma 1, there are natural numbers a, b greater than zero such that
s(2k − 1) = abs(2k−1)c+bds(2k−1)e

a+b . Observe that bs(2k − 1)c = k − 1 and ds(2k − 1)e = k.
Repeat a times the sequence for s = k−1

2k−1 and b times the sequence for s = k
2k−1 . Then, the

ratio between the number of specific requests and the total number of requests is

a k−1
2k−1 + b k

2k−1
a+ b

=
a bs(2k−1)c

2k−1 + b ds(2k−1)e
2k−1

a+ b
= a bs(2k − 1)c+ b ds(2k − 1)e

a+ b
· 1

2k − 1

= s(2k − 1)
2k − 1 = s.

Finally, the competitive ratio is 2k − 1. J
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4 Defensive and Confident Algorithms

Next, we identify a key behavior of an algorithm for our setting. For this, consider a single
server j of our algorithm. Initially, we know that j is at the same position as it is in the
optimal solution. Additionally, after every specific request r for j, we know that j has to be
located at r in any solution.

Consider now the following scenario: j is located at p∗(j) and moves due to some general
request to the location p. If now a general request on p∗(j) appears, the online algorithm
could have made a mistake by moving j from p∗(j). Maybe the optimal solution keeps j
on p∗(j) and moved some other server to p. If that is the case, the algorithm should move
j back to p∗(j) because else, it moves some other server s to p∗(j) which is definitively a
mistake because the optimal solution did not have to move s to p∗(j). On the other hand, if
the optimal solution did not keep j on p∗(j), moving j back to p∗(j) itself is a mistake and
the algorithm should place some other server on p∗(j). Whether moving j back to p∗(j) is a
good decision is only (if ever) revealed when the next specific request for j appears. Then
the algorithm can determine if j must have been moved by the optimal solution.

In other words, in such a situation, the algorithm has to decide the movement of j based
on a guess of what the optimal solution does. Either the algorithm assumes that j is kept
on p∗(j) in the optimal solution, or it does not. If the algorithm decides to move j back to
p∗(j), we say it acts defensively for j, because it assumes it made a mistake by moving j
away earlier. Else, it acts confidently because it assumes it did not make a mistake. We
will see that whether to act defensively is a critical decision that significantly influences the
competitive ratio an algorithm can achieve. Next, we categorize all online algorithms into
two classes based on whether they act defensively (Definition 2).

I Definition 2 (Defensive/Confident). An algorithm acts defensively for j, if, when a general
request appears on p∗(j) that requires a movement, it moves j to the request. A deterministic
algorithm is `-defensive, if for ` servers, it always acts defensively. An algorithm is `-confident,
if for ` servers, it does not always act defensively. An algorithm is strictly-`-confident, if for
` servers, it never acts defensively if it can be avoided.

In the case that multiple servers share the same p∗, we only require one of them to move
in case of a general request. Still, all act defensively, as only one must move.

Observe that strictly-`-confident algorithms are also `-confident. Most algorithms that
do not explicitly consider the case of acting defensively are `-confident, e.g., the example
algorithm in Section 1.3. By chance, they could act defensively for a server, but this is not
ensured, for example, simply because any general request is treated the same. We introduce
the notion of strictly-`-confident because it allows us to show a significant drawback when
not acting defensively at all for some servers:

I Theorem 3. No strictly-`-confident algorithm can achieve a competitive ratio better than
2k + `− 2.

Proof. Let ALG be the online algorithm. We consider a uniform metric with locations
v1, . . . , vk+1. Initially, the algorithm’s servers a1, . . . , ak as well as OPT’s servers o1, . . . , ok
share the same position p(ai) = p(oi) = vi, for all i ≤ k. As in the proof of Theorem 1, we
rename the i’s such that during the first phase (defined below), ALG moves its ai in order.

Next, we construct the adversarial sequence. First, issue a general request on vk+1.
Whenever a server ai is moved by the algorithm, issue a request on vi = p∗(ai) afterwards.
Either the algorithm acts defensively on ai and moves it back to vi, or it does not. Since ALG
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only sees general requests and is deterministic, by our renaming of the i’s above, it moves
its ai in order. The first phase ends, when ALG covers all the positions v1, . . . , vk−1, vk+1.
From now, we force the algorithm to cover these positions all the time by using sufficiently
many general requests on them. Let D be the set of servers for which ALG did not act
defensively and D be the other servers. Let L ⊆ D be the ` servers for which the algorithm
never acts defensively.

Observe that for the servers of D, ALG incurred a cost of 1 and for any of these servers
ai it holds p(ai) 6= p∗(ai) and p(aj) = p∗(ai) for some aj ∈ D. For all other servers, the
algorithm had a cost of at least 2.

Next, we show that it takes ALG additional cost to sort the servers of L back to their
initial position. All these servers are in D. While there is a server in ai ∈ D \ {ak} with
p(ai) 6= p∗(ai) do the following: First, specifically request ai at p∗(ai). Afterward, using
general requests, enforce that ALG covers v1, . . . , vk−1, vk+1. ALG has a cost of 1 for moving
ai. Additionally, it has a cost of 1 to move a server to ai’s previous position. Observe that
ai’s previous position p was either vk+1 or on an initial position of one server of D. Thus,
by moving a server to p, if the moved server is one of the servers for which the algorithm
always acts confidently, it cannot return to its initial position because only general requests
on p appear. After any iteration, all servers of L that were not yet specifically requested
are at a position different from their initial one. This holds because all those servers never
act defensively and, at their positions, only general requests appeared. Note that ak cannot
be forced back to its initial position. Thus, if (a) ak ∈ L, the process can be repeated `− 1
many times. Else, if (b) ak /∈ L, the process can be repeated ` many times. In total, there is
a cost of at least 2 (`− 1) in case (a), or 2` in case (b) for moving servers of L.

Next, force every other server except vk back to its initial position using specific requests.
This implies that every server except ak has at least a cost of two.

Summing up, in the case of (a), there are k− ` servers having a cost of 2 while the servers
of L imply a cost of ` + 2(` − 1). In the case of (b), there are k − ` − 1 servers (because
ak /∈ L) with a cost of 2 while the servers of L have a cost of `+ 2`. Thus, in any case, the
total cost is at least 2k + `− 2. OPT solves the entire sequence by moving ok to vk+1 at a
cost of 1. Note that we end up in a situation analogous to the initial one if we rename the
locations. J

For Theorem 3, the input sequence is as depicted in Figure 2. Additionally, the servers of
L have further costs. To see this, consider Figure 3 below.

Time …

Figure 3 Assume, a2 and ai are in L. Then
forcing a2 back to v2 with a specific request
incurs cost one and leaves vi empty. A general
request on vi incurs cost one, but since ai ∈ L,
the algorithm cannot move ai there. Therefore,
after both requests, a2 is the only server of
L that returned to its initial position. As a
consequence, each server of L (except for ak)
can be forced to its initial position with a cost
of at least 2.

On the other hand, an `-defensive algorithm immediately has a higher upper bound on
pure general inputs.

I Theorem 4. No `-defensive algorithm can achieve a competitive ratio better than k+ `− 1
on pure general inputs.
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Proof. Let ALG be the online algorithm. As in the proof of Theorem 3, consider a uniform
metric with positions v1, . . . , vk+1 such that initially, p(ai) = p(oi) = vi for all servers
a1, . . . , ak of the algorithm and o1, . . . , ok of OPT. As before, assume that the i’s are
renamed such that the algorithm starts to move its ai in the order of the indices during the
phase below. Let D be the set of servers on which ALG always acts defensively and D be
the other servers.

The sequence is the first phase of the proof of Theorem 3: First, issue a general request
on vk+1. Whenever a server ai is moved by the algorithm, issue a request on vi = p∗(ai)
afterwards. Either the algorithm acts defensively on ai and moves it back to vi, or it does not.
Since ALG only sees general requests, is deterministic, and we renamed the i’s, it moves its
ai in order. When ALG covers all locations of v1, . . . , vk−1, vk+1, the sequence stops. Each
server of D except for possibly ak was moved by ALG twice and each other server at least
once. Thus, ALG’s cost is at least 2 (|D| − 1) + |D|+ 1 ≥ k + `− 1. OPT solves the entire
sequence by moving ok to vk+1 at a cost of 1. Note that we end up in a situation analogous
to the initial one if we rename the locations allowing us to repeat the sequence as many
times as wished. J

The proof of Theorem 4 consists of the first phase of the sequence for Theorem 3. For the
proof, we use that even without specific requests, the online algorithm moves `− 1 servers
back to their initial position and thus twice. Theorem 3 and Theorem 4 imply the question:
"Can there be an online algorithm that is optimal on pure general inputs and mixed inputs?"
Unfortunately, there cannot be one:

I Theorem 5. No deterministic algorithm can achieve a competitive ratio of k on pure
general inputs and 2k − 1 on mixed inputs.

Proof. Assume we have such an algorithm. As in the proofs of Theorem 3 and Theorem 4,
consider a uniform metric with positions v1, . . . , vk+1 such that initially, p(ai) = p(oi) = vi
for all servers a1, . . . , ak of the algorithm and o1, . . . , ok of OPT. Also, as before, assume
that the i’s are renamed such that the algorithm moves its ai in order in the phase we define
below.

The sequence is as in the proof of Theorem 3: First, issue a general request on vk+1.
Whenever a server ai is moved by the algorithm, issue a request on vi = p∗(ai) afterwards.
OPT solves the entire sequence by moving ok to vk+1 at a cost of 1. Since the algorithm has
a competitive ratio of k on pure general inputs, it acted confidently for all servers. Else it
would have moved every server at least once and at least one server twice, which implies a
cost of at least k + 1. Since the algorithm moved each server in the first phase, it has cost k
for that phase. After the first phase, no server is on its initial position and some server aj
with j 6= k is on vk+1. Next, issue a specific request for every server on its position in the
optimal solution. Then, the algorithm has a cost of at least k to move every server to its
final position. The total cost, in this case, is 2k > 2k − 1, and we have a contradiction. J

The proof of Theorem 5 is based on the input sequences of Theorem 3 and Theorem 4. It
uses the fact that any algorithm with a competitive ratio of k on pure general inputs has to
be k-confident in the first phase. But then, ak is not on vk+1. Thus, even when the algorithm
reverts all changes in the second phase and moves ak, it has a cost higher than 2k − 1.

Theorem 5 still leaves space for algorithms that are close to optimal on all input types.
Due to Theorems 3 and 4, such algorithms must act confidently sometimes but not always
for a significant number of servers. Interestingly, most algorithms that treat every general
request the same fall into this category, as they might – by chance – act defensively. While
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our bounds do not yield increased lower bounds for algorithms of the above category, we
strongly believe that they suffer similar drawbacks dependent on the number of times they
act defensively/confidently. To see this, observe that the lower bounds are very similar: The
adversarial sequence of Theorem 3 is an extension of the one from Theorem 4. To build the
lower bound of Theorem 3 it even suffices if the given algorithm acts confidently for ` servers
not always but always in the sequence given by the lower bound. As an intuition, to perform
well on general inputs, the algorithm should act mostly confidently in the first phase of the
lower bound of Theorem 3. Then, in the second phase, the algorithm should avoid acting
confidently. Here, we can see that algorithms that treat every general request the same
probably perform as badly on mixed inputs as strictly-k-confident algorithms. This can also
be seen in Section 5.3, where we show that for our k-confident algorithm Conf, even though
it is not strictly-k-confident, a similar lower bound as Theorem 3 applies. To conclude, our
lower bounds indicate a trade-off between performing well on general/mixed inputs controlled
by whether or not and to which degree an online algorithm acts defensively/confidently.

Next, we present two algorithms that incorporate acting defensively/confidently and show
bounds on their competitive ratio. We start by a k-confident algorithm in Section 5 followed
by a k-defensive algorithm in Section 6.

5 A k-Confident Algorithm for Uniform Metrics

In this section, we present our k-confident algorithm (see Definition 2) for uniform metrics
called Conf. We analyze Conf parameterized in the share of specific requests on the total
number of requests. Note that we only consider requests that require a movement of the
algorithm. All other requests have no relevance to the competitive ratio. This way, our
results (captured in Theorem 6) not only show how the competitive ratio is bounded for our
general model but also for instances of the k-Server Problem. For a graphical representation
of the theorem, consider Figure 1.

I Theorem 6. Let g, f be the number of general/specific requests that require the algorithm
to move. Let s = f/g+f be the share of specific requests on the total number of requests
that require a movement by the algorithm. The competitive ratio of Conf is at most
min{k + 2s

1−2s k, 3k − 2, 1 + 2 1−s
s k} and at most 1

2 s−1 for s > 1/2.

Conf employs ideas of the marking approach [8, pp. 752-758] and operates in phases. A
phase tries to capture the longest sequence of requests for which the optimal solution does
not need to move. Right after a phase ends, the optimal solution must have a cost of at
least 1. If the cost of an algorithm in each phase is at most c, it has a competitive ratio of
c. The main difference in our approach, however, is that a server can get unmarked again
during a phase. Also, we do not only differentiate between marked and unmarked servers
but distinguish more carefully using set memberships as described below.

5.1 The Algorithm Conf
Next, we describe how Conf (split into Conf-Gen and Conf-Spec) works. During the
execution, Conf handles for each phase i different sets. We denote that a set belongs to i by
an exponent of i that is omitted when the phase is clear from the context.

At the beginning of any phase, every server is assigned to a candidate set C (Conf-Gen
Lines 5 – 6; Conf-Spec Lines 3 – 4). During the phase, Conf handles four sets C, G,
L, and F . We ensure that each server is in exactly one of C, G, or F . L stores locations.
More precisely, L stores the locations where only general requests appeared, and G stores
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the servers at such locations. F , on the other hand, contains all servers that are specifically
requested. Servers of F can be at the same location while the locations of L (and thus p(G))
are distinct and do not overlap with the locations of p(F ). This distinction is necessary to
get a parameterized bound on the competitive ratio in the case where many specific requests
appear. While by definition p(G) ⊆ L, locations in L can become unoccupied when a server
of G gets specifically requested.

Whenever a general request r appears, if its location is not in p(F ) ∪ L, Conf stores
it in L (Conf-Gen Line 9). When there is no server of G ∪ F on the requested location
already, select a server j ∈ C to be the answering server and assign j to G (Conf-Gen Line
3, Line 10). When a specific request r appears, we observe the following: The server that is
specifically requested must be at the location of r in the optimal solution. If we assume that
the optimal solution has no cost within the phase, any such server can no longer move after
it is specifically requested. Therefore, Conf declares server j as frozen and assigns it to F
(Conf-Spec Line 7). The phase ends when either (1) it can no longer be guaranteed that
|L|+ |F | ≤ k (Conf-Gen Line 4; Conf-Spec Line 2) or (2) a server j ∈ F is specifically
requested at a different location (Conf-Spec Line 2). In case (1), the optimal solution can
not cover all locations where requests appeared in the phase with servers, and thus a server
must have been moved. In case (2), the optimal solution must have moved j.

The very first phase is different from all others. Since we assume that the servers of
the online algorithm are at the same locations as the servers of the optimal solution, no
movements happen in the first phase. To reflect this, we set for the first phase C1, G1, L1 = ∅
and F 1 = K (the set of all servers).

Conf-Gen: General request r arrives in phase i

1: if r /∈ p(G ∪ F ) then
2: if r ∈ L then
3: Move some j ∈ C to r and assign it to G
4: else if |L|+ |F | = k then
5: Start the next phase i+ 1
6: Set Ci+1 ← K and Gi+1, Li+1, F i+1 ← ∅
7: Process r again for phase i+ 1
8: else if |L|+ |F | < k then
9: L← L ∪ {p(r)}
10: Move some j ∈ C to r and assign it to G

We remark that the statement to move any server of C to serve a general request is
ambiguous, and any order on the servers of C will do. For the sake of precision, assume that
the servers are selected using the FIFO (first-in-first-out) rule.

Due to specific requests, Conf incorporates behaviors that are fundamentally different
from the classical k-Server Problem: Observe that a specific request removes a location x ∈ L
when a server becomes frozen there. When this happens, a server j ∈ G can even be assigned
to C again (Conf-Spec Lines 8 – 10). From a perspective of a marking algorithm, this
means j becomes unmarked again. Intuitively, by the specific request, Conf detects that
j was the wrong server to answer the previous general request on x. Moreover, a specific
request for j can yield that j’s previous location of G becomes unoccupied. To still keep
track of it, Conf stores it in L. For such a location of L where no server of G is, it may be
necessary to move another server on it due to a later general request. One could ensure that
all locations of L are covered the entire time by servers in G, but there is no advantage in
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Conf-Spec: Specific request r for server j arrives in phase i

1: if r 6= p(j) then
2: if j ∈ F or |L|+ |F | = k then
3: Start the next phase i+ 1
4: Set Ci+1 ← K and Gi+1, Li+1, F i+1 ← ∅
5: Process r again for phase i+ 1
6: else if j /∈ F and |L|+ |F | < k then
7: Move j to r and assign it to F
8: if There is a s 6= j, s /∈ F on r then
9: Remove p(s) from L

10: Assign s to C
11: else
12: Assign j to F

that behavior.

5.2 The Analysis
For the analysis, we begin by formally showing that the cost of the optimal solution OPT is
bounded by the number of phases in Lemma 3. This is used in combination with a bound on
the cost of Conf in each phase (Observation 1) to show a worst-case bound (Lemma 4) and
an adaptive bound (Lemma 5) for the competitive ratio.

We denote by Û i the content of the set U i right after the end of phase i. For a phase,
let tstart be the time step of the first request and tend be the time step of the last request.
Lemma 2 is ensured by the algorithm.

I Lemma 2. At any point in time, L and p(F ) are disjoint.

Proof. Assume there is a location ` ∈ L where some server s ∈ F is. If s was first on `, no
server of C would be moved to ` and ` would not be in L, because s is able to answer general
requests. If ` became part of L first, s moved to ` due to some specific request. Then the
algorithm ensures that ` is no longer part of L. J

Now we can bound the cost of an optimal solution.

I Lemma 3. Consider any phase but the last and the first request r right after the phase
ends. OPT has a cost of at least 1 during the time right after tstart until right after tend + 1.

Proof. Consider any phase that ends. At the end of the phase it holds either that (i)
|L̂|+ |F̂ | = k or (ii) a server j ∈ F is specifically requested at a location different to p∗(j).
Assume OPT has had no movement. Then, during the time interval, OPT has its servers
at least at the locations L ∪ p(F̂ ) ∪ {r} since at each of these locations a request appeared
(right after tstart, OPT has a server on the point of the first request). Also, OPT must have
the servers of F at the identical locations as Conf.

In the case of (i), OPT covers due to Lemma 2 |L̂|+ 1 > k − |F̂ | distinct locations using
k − |F̂ | servers which cannot be. In case of (ii), j is specifically requested at two different
locations meaning that OPT must have placed j at two different locations. In any case, there
is a contradiction and, thus, OPT has cost at least 1. J

Next, we show how the cost of the algorithm for a phase is bounded. For technical reasons,
we restate the cost of the algorithm in a phase as follows.
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I Observation 1. Consider any phase i > 1. Let gi be the number of general requests during
the phase that require a movement of the algorithm. Let f i be the number of specific requests
during the phase that require a movement of the algorithm. The cost of Conf in the phase
is at most gi + f i.

In the following lemma, we show the worst-case upper bound for our algorithm.

I Lemma 4. The competitive ratio of Conf is at most 3k − 2.

Proof. Assume there are p phases. Due to Lemma 3, OPT’s cost is at least p− 1. Based
on Observation 1, we know that for any phase but the first, Conf’s cost is at most gi + f i.
Observe that it also holds (1) gi ≤ |Ĝ|+ |F̂ |+ f i, (2) f i ≤ |F̂ |, and (3) |Ĝ|+ |F̂ | ≤ k. (1)
holds because general requests requiring a movement can only have appeared at locations
covered by a server in the end and at unoccupied locations. The number of former locations
are upper bounded by |Ĝ| + |F̂ |. A location can only become unoccupied when a server
moves away from it and joins F , which implies that there are at most f i many. (2) holds by
definition, and (3) is ensured by the algorithm.

We consider two cases: (a) |F̂ | < k and (b) |F̂ | = k. Consider the case of (a). Then in the
phase, the cost of the algorithm is at most gi + f i ≤ |Ĝ|+ 3 |F̂ | ≤ k+ 2 (k− 1) (using (1), (2)
and the premise). Consider the case of (b). In this case, |Ĝ| = 0. Consider the last specific
request for server j. Either j is already at the requests’ position, or it was not used before,
i.e., j ∈ C. If j is already at the request’s position, f i < |F̂ | and thus, gi + f i ≤ 3 |F̂ | − 2.
Else, j was also in C when the penultimate specific request appeared, implying that due
to that request, no position of G became unoccupied. Therefore, gi ≤ 2|F̂ | − 2. In total,
the cost for the phase is thus in any case gi + f i ≤ 3 |F̂ | − 2 ≤ 3 k − 2 and the cost of the
algorithm over all phases is thus at most (p− 1)(3k − 2). Since OPT has a cost of at least
p− 1, the lemma follows. J

Next, we show three bounds that parameterize the competitive ratio of Conf in the
structure of the input sequence.

I Lemma 5. Let g, f be the number of general/specific requests that require the algorithm to
move. Let s = f/g+f be the share of specific requests on the total number of requests that
require a movement by the algorithm. The competitive ratio of Conf on uniform metrics is
at most min{k + 2s

1−2s k, 1 + 2 1−s
s k}. For s > 1

2 , the competitive ratio is at most 1
2 s−1 .

Proof. For the proof, for any phase, we consider two disjoint sets of servers composing F̂ .
Servers in F̂1 are those which were specifically requested at the exact location as they were
the last time before the phase, while servers in F̂2 were specifically requested at a location
different from the previous one.

Assume there are p phases. Denote the cost of the optimal offline solution by c(OPT).
First, due to Lemma 3, OPT’s cost is at least p − 1. Every time a server gets specifically
requested at a location different than the one where it was specifically requested the last
time, OPT has to move the server. Therefore, secondly, OPT has a cost of at least

∑
i |F̂ i2|.

Next, consider the cost of Conf denoted by c(Conf). We start with some basics. As
before in the proof of Lemma 4, for any phase but the first, Conf’s cost is at most gi + f i

and it holds (1) gi ≤ |Ĝ|+ |F̂ |+ f i, (2) f i ≤ |F̂ | and (3) |Ĝ|+ |F̂ | ≤ k.
Observe that the first phase costs the algorithm nothing, i.e., f1 = g1 = 0. We can

derive (4)
∑p
i=2 f

i ≤ s
1−2s

∑p
i=2 k as follows: s =

∑
i
fi
/
∑

i
(gi+fi) ⇔ s

∑
i(gi + f i) =

∑
i f

i

⇔ s
∑
i(k + 2 f i) ≥

∑
i f

i ⇔
∑p
i=2 f

i ≤ s
1−2s

∑p
i=2 k. Also, we can derive (5)

∑p
i=2 g

i ≤
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1−s
s

∑p
i=2 k by s =

∑
i
fi
/
∑

i
(gi+fi) ⇔ s

∑
i g
i = (1 − s)

∑
i f

i ⇔
∑p
i=2 g

i = 1−s
s

∑p
i=2 f

i

≤ 1−s
s

∑p
i=2 k.

We begin by using (1), (2), (3), and (4). Summed up over all phases, we end up at:

c(Conf) ≤
p∑
i=2

(gi + f i) ≤
p∑
i=2

(|Ĝi|+ |F̂ i|+ 2f i) ≤
p∑
i=2

(
k + 2 f i

)
≤ (p− 1)

(
k + 2s

1− 2s k
)
≤
(
k + 2s

1− 2s k
)
c(OPT).

Next, we turn to the second bound. Let f i1 be the number of movements due to servers in
F̂ i1 and f i2 be the number of movements due to servers in F̂ i2. Consider the servers of

⋃
i F̂

i
1.

For any such server j with respect to phase i, it holds: If our algorithm has a cost for j when
j joins F̂ i1, then j was moved by a general request since the time it was lastly specifically
requested. This implies that (6)

∑
i f

i
1 ≤

∑
i g
i. Using (1), (2), (3), (5), and (6) yields:

c(Conf) ≤
p∑
i=2

(gi + f i) ≤
p∑
i=2

(gi + f i1 + f i2) ≤
p∑
i=2

(2 gi + f i2)

≤
p∑
i=2

(
2 1− s

s
k + |F̂ i2|

)
≤ (p− 1) 2 1− s

s
k +

∑
i

|F̂ i2|

≤
(

1 + 2 1− s
s

k

)
c(OPT).

Consider now the third bound. By the derivation of (5) we know (7)
∑p
i=2 g

i ≤
1−s
s

∑p
i=2 f

i. Based on (6) and (7) and because
∑
i f

i
2 ≥ 0 and s > 1/2, we can derive

(8)
∑p
i=2 f

i
1 ≤ 1−s

2 s−1
∑p
i=2 f

i
2 by

∑p
i=2 f

i
1 ≤

∑p
i=2 g

i ≤ 1−s
s

∑p
i=2 f

i = 1−s
s

∑p
i=2(f i1 + f i2)⇔

( ss −
1−s
s )
∑p
i=2 f

i
1 ≤ 1−s

s

∑p
i=2 f

i
2 ⇔

∑p
i=2 f

i
1 ≤ 1−s

2 s−1
∑p
i=2 f

i
2. Using (7) and (8) then yields:

c(Conf) ≤
p∑
i=2

(gi + f i) ≤
(

1 + 1− s
s

) p∑
i=2

f i

=
(

1 + 1− s
s

) p∑
i=2

f i1 +
(

1 + 1− s
s

) p∑
i=2

f i2

≤
(

1 + 1− s
s

)
· 1− s

2 s− 1

p∑
i=2

f i2 +
(

1 + 1− s
s

) p∑
i=2

f i2

≤ 1
2 s− 1

p∑
i=2

f i2 ≤
1

2 s− 1

p∑
i=2
|F̂ i2| ≤

1
2 s− 1 c(OPT).

J

Theorem 6 now follows from Lemma 4 and Lemma 5.

5.3 Conf has a Worst-Case Competitive Ratio of at least 3k − 2
In this section, we show that there is a mixed input for Conf such that the algorithm’s
competitive ratio is at least 3k − 2. I.e., even though Conf is not strictly-k-confident but
only k-confident, the same lower bound as the one of Theorem 3 applies.

I Theorem 7. The worst-case competitive ratio of Conf is at least 3k − 2.
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Proof. We assume Conf selects servers of C by the FIFO rule. As a remark, the bound
below can be adapted for other orders for the selection.

Our lower bound is constructed as the lower bound of Theorem 3: We consider a uniform
metric with locations v1, . . . , vk+1. Initially, the algorithm’s servers a1, . . . , ak as well as
OPT’s servers o1, . . . , ok share the same position p(ai) = p(oi) = vi, for all i ≤ k. As in
the proof of Theorem 1, we rename the i’s such that during the first phase (defined below),
the algorithm moves its ai in order. First, issue a general request on vk+1. OPT solves the
entire sequence by moving ok to vk+1 at a cost of 1. Whenever a server ai is moved by the
algorithm, issue a request on vi = p∗(ai) afterwards, except for ak. After the first phase,
Conf covers the locations 1, . . . , k − 1 and k + 1 in the following way: a1 is on vk+1 and
each ai for i > 1 is on vi−1. Conf has moved every server once, i.e., all servers are in G.
Now, for each i < k, issue a specific request on vi for server i and afterwards, a general
request on ai’s previous position. For each such two requests, Conf moves server ai to vi,
the server ai+1 joins C and immediately joins G on vk+1. In total, we can do k − 1 such
pairs of requests until all servers except for ak are on their initial position and ak is on vk+1.
At this point, Conf’s configuration matches the optimal one. The cost of Conf is then
k + 2 (k − 1) = 3k − 2 while OPT has had a cost of 1. J

6 A 2k + 14 competitive Algorithm for Uniform Metrics

In the following, we present Def, a k-defensive algorithm (see Definition 2) achieving a
worst-case competitive ratio of 2k + 14 (Theorem 8) on uniform metrics. Def comes close to
the general lower bound of 2k − 1 (see Section 3). Similar to Conf, the algorithm is loosely
inspired by the marking approach. Def can be seen as an extended version of Conf, where
for each server, the algorithm acts defensively.

I Theorem 8. The competitive ratio of Def on uniform metrics is at most 2k + 14.

6.1 The Algorithm Def

As Conf (Section 5) does, Def works in phases and is split into Def-Gen and Def-Spec.
As before, Def manages several sets for each phase i. We denote this by an exponent of i
that is omitted if the phase is clear from the context.

At the beginning of a phase, all servers are in a candidate set C (Def-Gen, Def-Spec
Lines 3 – 4). Similar to Conf we have the sets G and F . As before, F is the set of servers
for which specific requests appeared so far during phase i (as a result, these servers become
frozen). G is defined as the set of servers at locations where only general requests appeared
of which no server acted defensively. In contrast to the definition for Conf, we do not allow
locations where only general requests appeared to become unoccupied. Thus, we do not
need L. This change does not influence the worst-case bound and improves the readability.
The worst-case bound is unaffected because, at every unoccupied location, a general request
increases only the cost of the online algorithm and hence, happens in the worst case. To
ensure that no unoccupied location appears, Def simulates a general request whenever a
server not in C moves away from a location (Def-Gen, Def-Spec Lines 13 – 14). In addition
to the above sets, we have a set D of servers that acted defensively during the current phase.
D and G are disjoint, and together, they contain all servers that are at locations where
only general requests appeared. Intuitively, Conf treats all servers moving due to general
requests the same, while Def acts defensively whenever possible.
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With the same reasoning as in the description of Conf, whenever a specific request for
server j appears, j is never moved for the rest of the phase and thus joins F (Def-Spec Line
7). When a general request r appears, Def first determines if there is a server j ∈ C ∪G
such that p∗(j) = r (Def-Gen Lines 10 – 12). Note how by definition, no server of D ∪ F
can act defensively for r on a location different from its current one. If so, the algorithm acts
defensively by moving j to r, and assigns j to D. As a tie break, when there are multiple
such servers, Def picks the one which was specifically requested the latest. If no such server
exists, Def moves a server of the candidate set C to r and assign it to G (Def-Gen Lines 7 –
9). The respective server is chosen by a scheme that prioritizes servers that did not yet move
in the current phase (Def-Select Lines 1 – 6) and those that would not act defensively if
there is already some other server that acts defensively for the same location (Def-Select
Lines 2 – 4). For details, see the algorithm Def-Select below. Note here, how C and G are
split into C1 and C2, and G1 and G2 to keep track of servers that acted defensively. C1 and
G1 contain servers that never joined D during the current phase, while C2 and G2 contain
those servers that were in D earlier. Note how Def-Select is ambiguous for the real choice
of a server of C1 or C2. As in Conf, any ordering on the servers will do, and we assume for
this paper that the FIFO rule is used.

A phase ends when either a server of F is specifically requested at a different location
(Def-Spec Line 2) or when |G|+ |D|+ |F | ≤ k would not hold anymore (Def-Gen, Def-
Spec Line 2). In the former case, the optimal solution needs to move the respective server
for a cost of at least 1. In the latter case, more than k − |F | locations would need to be
covered by k − |F | servers which implies that the optimal solution has cost at least 1.

As before in Conf, we assume that initially, the servers are at the exact locations as in
the optimal solution. Hence, C1, G1, D1 = ∅ and F 1 = K (the set of all servers).

Def-Select: Server for request r

1: if C1 is not empty then
2: if There is j ∈ C1 such that j would not be selected
3: to act defensively for p∗(j) then
4: Return j

5: else
6: Return Any server of C1

7: else if C1 is empty then
8: Return Any server of C2
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Def-Gen: General request r arrives in a phase i

1: if r /∈ p(G ∪D ∪ F ) then
2: if |G|+ |D|+ |F | = k then
3: Start the next phase i+ 1
4: Set Ci+1 ← K and Gi+1, Di+1, F i+1 ← ∅
5: Process r again for phase i+ 1
6: else if |G|+ |D|+ |F | < k then
7: if r /∈ p∗(C) ∪ p∗(G) then
8: Pick server j ∈ C given by Select
9: Move j to r and assign it to G

(G1 if it was in C1, G2 else)
10: else if r ∈ p∗(C) ∪ p∗(G) then
11: Let j /∈ F be the server with p∗(j) = r

If there are multiple, select the one that
was specifically requested the latest.

12: Move j to r (p∗(j)) and assign it to D
13: if j was in G then
14: Simulate a general request on j’s

previous position

Def-Spec: Specific request r for server j arrives in phase i

1: if r 6= p(j) then
2: if j ∈ F or |G|+ |D|+ |F | = k then
3: Start the next phase i+ 1
4: Set Ci+1 ← K and Gi+1, Di+1, F i+1 ← ∅
5: Process r again for phase i+ 1
6: else if j /∈ F and |G|+ |D|+ |F | < k then
7: Move j to r and assign it to F
8: if There is a s 6= j, s /∈ F on r then
9: if s was in C1 ∪G1 then
10: Assign s to C1
11: else
12: Assign s to C2

13: if j was in G ∪D then
14: Simulate a general request on j’s

previous position
15: else
16: Assign j to F

6.2 The Analysis
Next, we show that Def has a competitive ratio of 2k + 14. The starting approach is the
same as in the analysis of Conf, i.e., we bound the cost of Def in each phase and use that
OPT has cost 1 in each phase. However, the cost of Def might be higher than 2k + 14 in
each phase. To reason about these higher costs, we first analyze in detail which costs Def
produces. Afterward, we simplify the bound step-by-step using insights into the behavior
of Def. Then, we show how to charge the simplified cost of Def in a phase to movements
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of OPT. For this step, we identify further movements of OPT that must happen to answer
specific requests.

Before we start, observe that Def is k-defensive with respect to Definition 2. This
is ensured by Lines 10-14 for serving a general request. If there is a server that can act
defensively for r, then r ∈ p∗(C) ∪ p∗(G) holds. In the respective lines, Def selects a server
that acts defensively for r, and we assign it to D.

6.2.0.1 On the Cost of OPT in a Phase.

As before we denote by Û i the content of the set U i right after the end of phase i. For a
phase, let tstart be the time step of the first request and tend be the time step of the last
request. Lemma 6 is an adaption of Lemma 2.

I Lemma 6. At any point in time p(G), p(D), and p(F ) are disjoint.

Proof. Assume there is one location ` with a j ∈ G and some s ∈ D. Both servers joined
their sets due to a general request on `. No matter which server joined its set first, the later
one would not join its set on ` because there was already a server on that location.

Assume there is a location ` with some server j ∈ G ∪D and some server s ∈ F . If s was
first on `, j would not have joined its set there, because s is able to answer general requests.
If j was first on `, s moved to ` due to some specific request. Then the algorithm ensures
that j leaves G ∪D and joins C. J

Lemma 7 is an adaption of Lemma 3 taking D into account.

I Lemma 7. Consider any phase but the last and the first request r right after the phase
ends. OPT has a cost of at least 1 during the time interval right after tstart until right after
tend + 1.

Proof. Consider any phase that ends. At the end of the phase it holds either that (i)
|Ĝ|+ |D̂|+ |F̂ | = k or (ii) a server j ∈ F is specifically requested at a location different to
p∗(j). Assume OPT has had no movement. Then, during the time interval, OPT has its
servers at least at the locations p(Ĝ ∪ D̂ ∪ F̂ ) ∪ {r} since at each of these locations a request
appeared (at tstart + 1, OPT has a server on the point of the first request). Also, OPT must
have each server of F at the identical location as Def.

In the case of (i), OPT covers due to Lemma 6 |Ĝ|+ |D̂|+ 1 > k − |F̂ | distinct locations
using k − |F̂ | servers which cannot be. In case of (ii), j is specifically requested at two
different locations meaning that OPT must have placed j at two different locations. In any
case, there is a contradiction and, thus, OPT has cost at least 1. J

Next, we show that depending on the configuration of OPT after a phase, the optimal
cost can even be higher during the phase.

I Lemma 8. For a phase, let p1 be the number of locations of p(Ĝ ∪ D̂) where no server
of OPT is located and let p2 be the number of servers in F̂ that OPT has not located where
they were specifically requested. Let p := p1 + p2, then OPT has cost at least p during the
time interval right after tstart until right after tend.

Proof. Right after tend, it holds that there are p1 locations where requests appeared during
the phase and where OPT has no server. Consider any such location. Since a request
appeared there, OPT must have had a server on it during the phase. Since there is no server
on it after the phase, OPT moved its server for a cost of 1. Consider any server contributing



Castenow et al. 23

to p2. During the phase, OPT must have had the respective server on the position where it
is specifically requested. Since this is no longer the case after the phase, OPT moved it for a
cost of 1. J

Intuitively, OPT must have a server at all locations that appear during the phase, and
hence, not covering all implies an equal movement cost. Observe that for any phase but the
last the cost is max{1, p} while in the last phase, the cost is p, as it ends by definition at
tend.

6.2.0.2 On the Cost of Def in a Phase.

Next, we analyze the cost of Def for any but the first phase. In the first phase, all servers
are frozen; therefore, Def has cost zero. Before we start, we state Lemma 9. It holds because
our algorithm acts defensively for all servers.

I Lemma 9. If at any time on a location `, a server j joins G, there is no server s with
p∗(s) = ` until the next time a server is specifically requested on `.

Proof. Consider such a location and assume, there is a s with p∗(s) = `. Then, since s was
not specifically requested on ` since j joined G on `, p∗(s) = ` at the time when j joined G
on `. Also, s was not in F . Then, it contradicts our algorithm that j joined G on `, as s
would act defensively and join D on `. J

Next, we show by Lemma 10 how the cost of Def in any but the first phase is bounded
by the sizes of the sets G, D and F . As we will see, we need to distinguish the servers more
carefully than with the sets C, G, D, and F . During a phase, servers that already are in G
or D can transition back to C when some other server gets frozen at their current location.
For servers of D, this can happen only once. To reflect this, we split C into C1 and C2,
and we split G into G1 and G2. The sets C2 and G2 contain servers that were previously
in D. When a server transitions back to C, the transition itself increases the cost of the
respective server to reach its final set by 1 or 2. To capture this, we define esx to be the event
that server s transitions back to C and incurs an additional cost of x in the current phase.
Ex is the respective set of events of the current phase. Also, among others, we introduce
the following sets: F1 is the set of frozen servers that are frozen at the same location as
they were specifically requested before. F1a ⊆ F1 is the subset of these servers for which it
holds that for each j ∈ F1a there was a server s ∈ D at the location at which j gets frozen.
F1b = F1 \ F1a is the respective remaining set of servers of F1. F2 = F \ F1 is the set of
servers that get frozen on a location different from their last specific location.

I Lemma 10. In any phase i > 1, the cost of Def is

ci ≤ |Ĝ|+ 2
(
|D̂|+ |F̂1|+ |F̂2|

)
+ |F̂2|+ |E1|+ 2 |E2|.

Proof of Lemma 10. To prove this, we consider each time step in a phase of the algorithm.
First, consider any time step in which either a general request on a position that is covered
by Def by G∪D∪F happens, or a specific request for a frozen server at its position appears.
We exclude all such time steps from the phase in the following because the algorithm takes
no action in them.
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6.2.0.3 An Overview on all Actions.

From now on, for any time step, we analyze the cost and how servers move between G, D,
F1, and F2. We denote by an arrow that a server leaves a set and joins another set as here:
j : G→ D (j leaves G and joins D). We call such a movement of one server between sets a
transition. Note that C is always given as all servers that are not in G ∪D ∪ F .

Observe that in the case that a request requires no movement of a server j ∈ C, there is
no cost. Thus, there are transitions j : C → G, j : C → D, j : C → F1 and j : C → F2 of
cost zero. Next, we consider only the remaining cases.

There are two kinds of time steps depending on the current request. Case (1) are time
steps with a specific request, and case (2) are time steps without one.

Consider case (1). There are two kinds of such a time step. Either (1.a), a server ends
up in F1 after the time step or (1.b) it ends up in F2. When a general request is simulated,
during the cases of (1), there can be additional transitions and cost exactly as in time steps
of kind (2) below.

In the case of type (1.a), server j is specifically requested at p∗(j). If (1.a.1) j ∈ D, this
incurs no cost and j : D → F1. If (1.a.2) j ∈ G, we have a cost of 1 for j : G→ F1. In case
(1.a.2.a), there is no server of D on r, else (1.a.2.b) there is s : D → C for a cost of zero.

In the case of type (1.b), server j is specifically requested at some location r 6= p∗(j). If
(1.b.1) r = p(j), we have cost 0 and j : G → F2. Else, (1.b.2) r 6= p(j). If (1.b.2.a) j ∈ C,
either (1.b.2.a.1) there is no server s ∈ G∪D on r, (1.b.2.a.2) there is a server s ∈ G at r, or
(1.b.2.a.3) there is a server s ∈ D on r. In any case, we have cost 1 for j : C → F2. Also, in
the case of (1.b.2.a.2) s : G→ C, or in the case of (1.b.2.a.3) s : D → C. The missing cases
are (1.b.2.b) j ∈ G and (1.b.2.c) j ∈ D combined with (1.b.2.b.1 and 1.b.2.c.1) there is no
server s ∈ G∪C on r, (1.b.2.b.2 and 1.b.2.c.2) there is s ∈ G on r, or (1.b.2.b.3 and 1.b.2.c.3)
there is s ∈ D on r. In any case of (1.b.2.b), we have a cost of 1 for j : G→ F2. In any case
of (1.b.2.c), we have a cost of 1 for j : D → F2. In the cases (1.b.2.b.2) and (1.b.2.c.2), we
have s : G→ C, and in the cases (1.b.2.b.3) and (1.b.2.c.3), we have s : D → C.

Consider a time step of kind (2). Here, there are two types of requests that can occur:
Either (2.a) a general request on some new location appears and we have cost of 1 with
j : C → G for some j, or (2.b) a general request on a position of p∗(j) for some j ∈ G ∪ C
appears. In the case of (2.b), we have a cost of 1 for j : G→ D and an additional cost of 1
for the server s : C → G taking j’s place. Note that the server s cannot join D, as else, j
would not have been in G at the same location.

For better readability, consider the table below listing all cases with their respective
transitions and costs.
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Case Transition / Cost
1.a.1 j : D → F1 / 0
1.a.2.a j : G→ F1 / 1,
1.a.2.b j : G→ F1 / 1, s : D → C / 0
1.b.1 j : G→ F2 / 0
1.b.2.a.1 j : C → F2 / 1
1.b.2.a.2 j : C → F2 / 1, s : G→ C / 0
1.b.2.a.3 j : C → F2 / 1, s : D → C / 0
1.b.2.b.1 j : G→ F2 / 1,
1.b.2.b.2 j : G→ F2 / 1, s : G→ C / 0
1.b.2.b.3 j : G→ F2 / 1, s : D → C / 0
1.b.2.c.1 j : D → F2 / 1,
1.b.2.c.2 j : D → F2 / 1, s : G→ C / 0
1.b.2.c.3 j : D → F2 / 1, s : D → C / 0
2.a j : C → G / 1
2.b j : G→ D / 1, s : C → G / 1

6.2.0.4 Restrictions to the Actions.

When looking at the cases above, we notice that any server j has only limited possibilities to
be moved between the sets C, G, D, F1, and F2. The most obvious limitation is that no
server can ever leave F1 or F2. Any server in one of these sets can not incur further costs
within the phase.

Now, observe that there are only seven cases in which a server s in G or D can end up
in C again; cases (1.a.2.b), (1.b.2.a.2), (1.b.2.a.3), (1.b.2.b.2), (1.b.2.b.3), (1.b.2.c.2) and
(1.b.2.c.3). In any case, the transition of s does not incur a cost. In all these cases, s was at
a position at which some other server j was specifically requested. Note, if s ∈ D, then after
this time step, the position p∗(s) will always be covered by j for the current phase. That
means while s joins C again, it can no longer join D. To reflect this, split C and G into two
sets: C = C1 ∪C2 and G = G1 ∪G2. At the beginning of the phase, all servers are in C1. In
the example above, we say s joins the separate set C2 from which it can transition to G2,
but any server in C2 ∪ G2 cannot transition to D any more. Also, in all four cases, some
server j must join F1a ∪ F2. Thus, the total number of times a server can transition to C2
is bounded by the total number of servers in F1a ∪ F2 at the end of the phase. Besides this,
note that any transition of a server between two sets has a cost at most 1.

Next, we consider the following graph in Figure 4 that depicts all possible transitions
between the sets with an over-approximation of the cost of a transition as the weight of the
respective edge.

Note that the cost for a sequence of transitions of a server from set U to set V can be
upper bounded by finding the longest path from U to V in the graph G of Figure 4. Thus,
to bound Def’s cost, we can consider G without all zero cost forward edges. Additionally, it
suffices to consider the transitive reduction of G (ignoring dashed edges). This simplification
of G is G′ depicted on the right of Figure 4.

6.2.0.5 On the Cost of a Phase.

Next, we bound the total cost of a phase. We argue based on G′. First, consider all servers
that end up in their final set without traversing a dashed edge (no event of E1 or E2 happens
for them). For any such server j, we have the following cost: If j ∈ Ĝ1, the cost is 1. If
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Figure 4 Left: All possible transitions of a server within a phase. At the beginning of each phase
all servers are in C1. Every node reflects one of the sets. An edge (U, V ) means that a server in set
U can transition to set V with a cost of at most the weight of the edge. Every dashed or dotted
edge weighs 0, and every other edge 1. A dashed edge can only be traversed if another server joins
F1a ∪ F2 in the same time step. If server s traverses (D, C2) and ends up in Ĉ2 ∪ Ĝ2 ∪ F̂1, event
es

2 happens. Else, the crossing of a dashed edge implies that es
1 happens. Right: The transitive

reduction of the graph (ignoring dashed edges) after removing the zero cost forward edges (dotted).

j ∈ D̂, or j ∈ F̂1, the cost is 2, and if j ∈ F̂2, the cost is 3. Second, consider the servers that
end up in their final set traversing a dashed edge. For any such server j, the cost increases
by 2 only once if j ∈ Ĉ2 ∪ Ĝ2 ∪ F̂1 due to the crossing of the edge (D,C2), i.e., an event ei2
happens. Every other increase in the cost due to a dashed edge is at most 1 when an event
in E1 happens. Then, the total cost of the phase i can be bounded by:

ci ≤ |Ĝ|+ 2 |D̂|+ 2 |F̂1|+ 3 |F̂2|+ |E1|+ 2 |E2|

J

Next, we get rid of the set of events in the bound. Intuitively, simplifying the bound
can be achieved by a very fine-grained analysis of how events happen. We try to bound the
number of events in |F̂2| as far as possible, because for each server of F̂2 the optimal solution
must have a movement since it was lastly specifically requested. Costs bounded by |F̂2| can
later be charged to these movements.

I Lemma 11. In any phase i > 1, the cost of Def is

ci ≤ 2 (|Ĉ2|+ |Ĝ|+ |D̂|+ |F̂ |) + 5 |F̂2|+ 3 |Ĝ2|.

Proof of Lemma 11. For the analysis of the events, we need some more notation. Let
E2(F̂2) ⊆ E2 be the set of events of E2 that are triggered by a server in F̂2. Similarly,
let E2(F̂1a) ⊆ E2 be the set of events of E2 triggered by a server in F̂1a. Then, E2 =
E2(F̂2) ∪ E2(F̂1a). Now, we split up E2(F̂1a) further: Consider a set S ∈ {Ĉ2, Ĝ2, F̂1b}.
We denote by E2(F̂1a, S) the set of events of E2 triggered by a server in F̂1a such that the
respective server for which the event happens ends up in S. Then, E2(F̂1a) = E2(F̂1a, Ĉ2) ∪
E2(F̂1a, Ĝ2) ∪ E2(F̂1a, F̂1b).

For each server for which an event in E2(F̂1a, F̂1b) happens, we can find a matching server
in Ĝ2 ∪ F̂2 as follows: If a server j ∈ F̂1b incurs cost of two (and an event in E2(F̂1a, F̂1b)
happens), it is in G2 at some location ` just before it joins F1b. Thereafter, because ` 6= p∗(s)
for all s (Lemma 9), only a server of Ĝ1, Ĝ2, or F̂2 can be on ` at the end. If there is a server
s ∈ Ĝ1 on `, s was already in G1 when j joined G2, because servers of C1 are preferred over
servers of C2. Thus, the only way that s moves on ` can be that it was moved back to C1
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before due to a server of F2 (due to Lemma 9 the server cannot be in F1). In total, for server
j, there is a unique server s ∈ Ĝ2 ∪ F̂2. Therefore, |Ĝ2|+ |F̂2| ≥ |E2(F̂1a, F̂1b)|.

Additionally, we have the following: For any server s the event es2 can happen at most
once, thus for S ∈ {Ĉ2, Ĝ2, F̂1b} it holds E2(F̂1a, S) ≤ |S|. Additionally, each server of F̂2
triggers at most one event, and thus |E1|+ |E2(F̂2)| ≤ |F̂2|. Using both inequalities and the
bound on |E2(F̂1a, F̂1b)|, we reframe the bound of Lemma 10:

ci ≤ |Ĝ|+ 2 |D̂|+ 2 |F̂1|+ 3 |F̂2|+ |E1|+ 2 |E2|

≤ |Ĝ|+ 2 (|D̂|+ |F̂ |) + |F̂2|+ |E1|+ 2 (|E2(F̂2)|+ |E2(F̂1a)|)

≤ |Ĝ|+ 2 (|D̂|+ |F̂ |) + 3 |F̂2|+ 2 |E2(F̂1a, Ĉ2)|

+ 2 |E2(F̂1a, Ĝ2)|+ 2 |E2(F̂1a, F̂1b)|

≤ |Ĝ|+ 2 (|Ĉ2|+ |D̂|+ |F̂ |) + 3 |F̂2|+ 2 |E2(F̂1a, Ĝ2)|

+ 2 |Ĝ2|+ 2 |F̂2|

≤ 2 (|Ĉ2|+ |Ĝ|+ |D̂|+ |F̂ |) + 5 |F̂2|+ 3 |Ĝ2|.

J

6.2.0.6 On the Charging-Scheme.

Next, we charge the cost of Def of a phase to movement costs of OPT. From now on, we
denote by the exponent i the respective object of the i-th phase. First, let us split the cost
of Def of the i-th phase into the following:

ci1 = 2 (|Ĉi2|+ |Ĝi|+ |D̂i|+ |F̂ i1|+ |F̂ i2|) ci2 = 5 |F̂ i2|

ci3 = 3 |Ĝ2|

By Lemma 7, we know that OPT has at least one movement oi for each phase i except
the last one. We charge ci1 to oi for any phase but the last. We charge clast

1 of the last phase
to a movement contributing to o1, because Def has cost zero during phase 0.

Next, for any server j with respect to the current phase, let ti1 be the last time step before
phase i in which j was specifically requested and let p(j, ti1) be the location at which it was
requested back then. Regarding any server j ∈ F̂ i2, we know that j’s location at the end of
the current phase is different from p(j, ti1) and thus, OPT must have moved j. We charge
ci2 = 5 |F̂ i2| by charging a cost of 5 to OPT’s last movement of j for each j ∈ F̂ i2.

The charging of ci3 is a bit more complicated. First, we charge additional costs to the
movements of servers in F̂ i2 by matching |F̂ i2| servers of Ĝi2 to the respective movement
of OPT. For the remaining |Ĝi2| − |F̂ i2| servers, we show Lemma 12. Intuitively, for the
remaining servers, we observe that our algorithm needed to move them (as they are not
in C2, and the servers of C1 were already used). As a consequence, OPT also needs some
movement as it needs to serve the same requests. Using the servers of F̂2 and Lemma 12,
for each server of Gi2, there is exactly one movement of OPT of a server s since s was lastly
specifically requested before the phase until the end of the current phase. We charge the
cost of 3 to that movement, and none of these movements receives more than one charge of
the current phase. However, if a server ends up multiple times in Ĉ2 ∪ Ĝ2 without being
specifically requested in between, the respective movement of OPT could potentially receive
multiple charges. We show that in between any two times in which a server ends up in
Ĉ2 ∪ Ĝ2, either the server is specifically requested, or the server triggering the event is in F̂2
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(see Lemma 13). In the former case, we charge the cost of 3 as explained above. In the latter
case, we charge the respective cost of 3 due to the later event for server s to j.

I Lemma 12. Assume 0 ≤ x < |Ĝ2| − |F̂2| servers of Ĉ2 ∪ Ĝ2 were moved by OPT since
they were lastly specifically requested until the end of a phase. Then, OPT has |Ĝ2| − |F̂2| −x
movements during the phase.

Proof. If x servers of Ĉ2 ∪ Ĝ2 were moved by OPT, we know that |Ĉ2|+ |Ĝ2| − x servers of
Ĉ2 ∪ Ĝ2 are the entire phase on the location at which they were lastly specifically requested.
For all these servers, another server was specifically requested at their location. By the
algorithm, we know that there are |Ĝ|+ |D̂| locations where only general requests appeared
during the phase. Assume that at the end of the phase, OPT has p1 ≥ 0 many servers of F̂
not at the location at which they were specifically requested. Then the optimal solution can
cover at the end |Ĉ|+ |Ĝ|+ |D̂| − |Ĉ2| − |Ĝ2|+ x+ p1 locations of Ĝ ∪ D̂. Therefore, the
number of locations of Ĝ ∪ D̂ that are not covered by OPT is |Ĝ2| − |Ĉ1| − x− p1.

Next, we show that |Ĉ1| ≤ |F̂2|. Observe that at the point in time where the first server
j joins G2, C1 = ∅. Else, j would not have moved because it is in C2 and servers of C1
are always preferred over servers of C2. Thus, any server j ∈ Ĉ1 must have been in G1 at
location ` before. Such a server can only join C1 again if another server s joins F2 on ` (due
to Lemma 9, the other server cannot join F1). Therefore, |Ĉ1| ≤ |F̂2|. Using this in the
above yields that there are at least |Ĝ2| − |F̂2| − x − p1 locations of Ĝ ∪ D̂ which are not
covered at the end of the phase.

Then, Lemma 8 tells us that OPT had |Ĝ2| − |F̂2| − x− p1 + p1 movements during the
phase and the lemma holds. J

For Lemma 13, consider Figure 5 for an intuitive depiction.

Time Figure 5 A depiction of the statement of
Lemma 13. Time goes from the top to the
bottom. If the server s is in Ĉh

2 ∪ Ĝh
2 and

Ĉh+x
2 ∪ Ĝh+x

2 , then either (1) in a phase h <

i < h+x, s ∈ F̂ i, or (2) the server j triggering
the event es

2 in h is in a phase h < i ≤ h + x in
F̂ i

2 . Intuitively, this must be because s must
have been in Dh+x. This implies that s was the
server which was lastly specifically requested
on p∗(s), but after h, j was lastly specifically
requested on p∗(s).

I Lemma 13. Consider a server s ∈ Ĉh2 ∪ Ĝh2 with s ∈ Ĉh+x
2 ∪ Ĝh+x

2 for minimal x > 0.
Either there is a phase h < i < h+x such that s ∈ F̂ i, or there there is a phase h < i ≤ h+x

such that j ∈ F̂ i2 for the server j that triggered the event es2 in phase h.

Proof. It holds that p∗(j) = p∗(s) at the end of phase h and j was lastly specifically requested
after s. Since s ∈ Ĉh+x

2 ∪ Ĝh+x
2 , s must have been in D in phase h + x. For this, s must

be the last server for p∗(s) (with respect to phase h+ x) that was specifically requested. If
s ∈ F̂ i for h < i < h + x the lemma holds. Else, p∗(s) is the same for h and h + x and j
must have changed its p∗(j) in between. This implies j ∈ F̂ i for h < i ≤ h+ x. J
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As briefly sketched above, we can now show that the maximum charges to a movement
of OPT are limited. Consider Figure 6 for a depiction.

Time Charges

Figure 6 A depiction of the situation ana-
lyzed in the proof of Lemma 14. Time goes
from the top to the bottom. A bar represents
a point in time for which the adjacent state-
ment holds. For details, consider the proof of
Lemma 14.

I Lemma 14. Any movement of OPT gets charged at most 2 (|Ĉ|+ |Ĝ|+ |D̂|+ |F̂ |) + 14
for some phase.

Proof of Lemma 14. Consider a movement of OPT for server j in phase h. Let i > h be
the next phase in which j is specifically requested.

Due to ch1 , the movement gets charged at most 2 (|Ĉh|+ |Ĝh|+ |D̂h|+ |F̂h|). If j ∈ F̂h2
and the movement happens before j is specifically requested, it receives a charge of at most
5 due to ch2 . Else, it receives charges of at most 5 due to ci2, if j is in F̂ i2. From one server
of Ĉh2 ∪ Ĝh2 (it could also be j itself), the movement can get an additional charge of 3 (see
Lemma 12). If j ends up in Ĉx2 ∪ Ĝx2 for an h ≤ x < i, there could be an additional charge.
The latter charge can only be applied once because by Lemma 13 any second time j is in
Ĉ2 ∪ Ĝ2, the respective phase must be after phase i. However, if j triggers an event es2 for
some server s by joining F y1a (in phase y ≥ i), and if s is in Ĉy2 ∪ Ĝ

y
2 , the movement receives

an additional charge of 3 due to cy3. After that, j was specifically requested in y and any
more charges to j affect a later movement of j by OPT. J

6.2.0.7 On the Competitive Ratio.

Finally, we use that our algorithm ensures that each server is in precisely one of the sets C,
G, D, or F at any point in time, i.e., |C|+ |G|+ |D|+ |F | ≤ k always holds.

Proof of Theorem 8. Due to Lemma 14, the algorithms cost can be charged to OPT’s cost
such that each movement of OPT receives a maximum charge of 2 (|Ĉ|+|Ĝ|+|D̂|+|F̂ |)+14 ≤
2k + 14. J

7 Algorithms for Non-uniform Metrics

In the following section, we present two minor results on non-uniform metrics. First, we
present an algorithm for 2 servers in Section 7.1. Second, we introduce an algorithm achieving
a competitive ratio of 4k on general metrics in Section 7.2. Both algorithms work by treating
each request as a general request and afterward correcting themselves if the request was
specific. While this approach did not work on uniform metrics, it gives rough upper bounds
on non-uniform ones.
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7.1 The Real Line
The following approach is based on the Double Coverage algorithm as presented originally
for the k-server problem in [5].

The Algorithm. Every request will first be treated as in the classical k-server problem
with the DC algorithm. If a request is a specific request for server j and server i was moved
on the request, move i halfway towards j and then j on r.

I Theorem 3. The algorithm above achieves a competitive ratio of 6 for k = 2 servers on
the real line.

Proof. Let s1 and s2 be the two servers of the online algorithm and let o1 and o2 be the
servers of the optimal solution. The potential for k = 2 servers in the analysis of the Double
Coverage algorithm [5] is given by

φ = d(s1, s2) + 2 (d(s1, o1) + d(s2, o2)).

The potential consists of the distance of the algorithm’s servers to each other and the
distance of the algorithm’s servers to the optimal servers. Note, that in the original analysis,
the server types do not matter and the servers are always numbered in increasing order of
the line metric. Therefore, the second summand of φ is better interpreted as the weight of
a minimal matching Match between the servers of the online algorithm and the optimal
servers and thus,

φ = d(s1, s2) + 2 ·Match.

One can see here that the original potential does not depend on the servers’ types simply
because it does not need to. We extend the potential by relating the servers of the online
algorithm with their counterpart of the optimal solution again. Then, we end up with the
following extension and generalization of φ:

ψ = α · d(s1, s2) + β ·Match + γ · (d(s1, o1) + d(s2, o2))

In the following, we determine the values for α, β, and γ by going through all possible
cases.

First, consider the DC moves. Assume the algorithm moves s1 outwards by 1. Of course,
the algorithm could move a server farther but we can argue on the value normalized to 1,
because only the relations between α, β, and γ in the potential matters. In this case, the
term d(s1, s2) increases by 1, the matching decreases by 1, and the term d(s1, o1) may also
increase up to 1. Hence, ∆ψ ≤ α− β + γ. The cost of the algorithm (1) is canceled if

1 + ∆ψ ≤ 0⇐ 1 + α− β + γ ≤ 0⇔ α− β + γ ≤ −1. (1)

Now consider the case where both servers move inwards, both by distance 1. The matching
Match remains neutral as at least one optimal server lies between the algorithm’s servers.
With the same argument, at least one of the terms d(s1, o1) and d(s2, o2) decreases by 1
as well, making the change with regard to their sum at most 0. Meanwhile, the distance
d(s1, s2) decreases by 2, giving ∆ψ ≤ −2α. The cost of the algorithm (2) is again canceled if

2 + ∆ψ ≤ 0⇐ 2− 2α ≤ 0⇔ −α ≤ −1. (2)
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Finally, we have to consider the swap move which is performed if the wrong server is on
the request after the Double Coverage move. Consider the following setup: The server s1 is
at the location of the request, but server s2 is needed. The server o2 of the optimal solution
is on the request.

Now, s2 moves distance 2 onto the request while s1 moves distance 1 in the opposite
direction in which s2 moves. We can map the locations onto a number line as follows: The
request is at 0 and s2 is at 2. During the move, s2 moves towards 0 and s1 towards 1. Going
at equal speed, both servers arrive at 1 at the same time, where s1 stops and s2 continues to
go to 0.

In any case, we can see that d(s1, s2) decreases by 1. The rest of the potential change
now depends on the location of o1. First case: o1 is on or to the right of location 1. This
means s1 moves towards o1 the entire time. Since s2 moves onto the location of o2, we get
a total decrease of 3 in the term d(s1, o1) + d(s2, o2). The change in Match can be best
observed from the perspective of o1: First, a server moves away from it by at most 2. Then
a server moves towards it by distance 1. There is no difference in the potential involving o2
as there is a server at its location at the beginning and the end. Therefore Match increases
by at most 1. In total, ∆ψ ≤ −α+ β − 3γ. The cost of the algorithm (3) is canceled by the
potential if

3 + ∆ψ ≤ 0⇐ 3− α+ β − 3γ ≤ 0⇔ −α+ β − 3γ ≤ −3. (3)

Second case: o1 is to the left of 1. Now d(s1, o1) increases by up to 1 while d(s2, o2) again
decreases by 2. The change in the matching is as follows: If o1 is to the left of 0, then s1
increases the distance towards both servers by 1 while s2 decreases it by 2, making an overall
decrease by 1. If o1 is between 0 and 1, observer that when the servers s1 and s2 meet at
1, they switch the partners in Match. Hence, s2 moves towards its matching partner the
entire time. Overall we have ∆ψ ≤ −α− β − γ and the cost of the algorithm (3) is canceled
by the potential if

3 + ∆ψ ≤ 0⇐ 3− α− β − γ ≤ 0⇔ −α− β − γ ≤ −3. (4)

Whenever OPT moves its servers, the potential increases by at most (β + γ) times the
moved distance, because the first term is independent of OPT. Choosing α = 1, β = 4 and
γ = 2 ensures that Equations (1)–(4) hold while (β + γ) is minimized. Since the increase in
the potential is upper bounded by (β + γ) = 6, the competitive ratio is at most 6. J

7.2 General Metrics
The following algorithm is based on the Work Function Algorithm [11].

The algorithm. Upon the arrival of a request, treat it as a general request and execute
a step of the Work Function algorithm [11]. If the request is specific to a server, move that
server to the request afterward.

I Theorem 4. The above algorithm achieves a competitive ratio of at most 4 k on general
metrics.

Proof. Let ALG be the algorithm above. Using the analysis in [11], we get as in the proof
of Theorem 4.3 of [11] that C(OPT) + C(ALG)WFA regarding only the Work Function
movements is bounded by the potential difference in each step and sums up to at most
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∑
∆φ ≤ 2k · C(OPT) in total (plus a constant dependent on the initial configuration that

we ignore in the following). Let φ be the potential from that analysis. Now we introduce
an additional potential ψ =

∑k
i=1 d(si, oi) that reflects the sum over the distances between

equivalent servers si of ALG and oi of OPT. Note, how ψ is at least zero at any time.
Let P be the cost to move a server of the algorithm towards a request if it is specifically

for that server. ψ decreases by P since the server must be at the location of the request
in ALG and OPT. Therefore, ∆ψSpec cancels the cost C(ALG)WFA of ALG during such
a move. During the regular Work Function move, ψ increases by at most ∆ψWFA ≤
C(OPT) + C(ALG)WFA with regard to that move by definition. Therefore, the total cost of
ALG is at most

C(ALG) ≤ C(ALG) +
∑

∆ψ ≤ C(ALG)WFA +
∑

∆ψWFA

≤ C(ALG)WFA + C(OPT) + C(ALG)WFA = 2C(ALG)WFA + C(OPT)

≤ 2
∑

∆φ ≤ 4 k · C(OPT).

J

8 Closing Remarks

In this paper, we introduced the k-Server with Preferences Problem, a generalization of
the k-Server Problem, that poses new difficulties already on uniform metrics. While the
competitive ratio is, by definition, a worst-case ratio, our results show a parameterization
that connects the different input types of our generalization in all its forms (classical k-Server
inputs vs. mixed inputs vs. trivial inputs).

It would greatly complement our work to have a solution for the offline problem. Already
determining the complexity of solving the problem offline seems to be challenging.

We assumed that the initial configuration of the online algorithm was identical to the
optimal one. This assumption can be dropped without problems, increasing the competitive
ratio of our algorithms by an additive term independent of the optimal solution. All of the
lower bounds end up in a configuration equivalent to the initial one. Hence, their sequence
can repeat arbitrarily often, such that the same bounds hold in the limit.

An important question for future work is if and how our results extend to other metric
spaces. Presumably, for the case of general metric spaces, the severity of a mismatch of
the servers after the optimal positions are covered is increased. We analyzed how the
competitive ratio increases if an algorithm neglects to keep its servers close to their last
known configuration (revealed and rendered significant by specific requests). On a uniform
metric, the influence is significant, even though each server is at most a distance 1 from
its position in the optimal solution. From a technical perspective, the case of a general
metric probably needs a creative way for an algorithm to measure its deviation from the
last (partially known) configuration of the optimum. As we have seen, an adaption for the
Work-Function-Algorithm that treats every request as a general one and, afterward, corrects
itself if the request was specific, yields a competitive ratio of O(k). However, based on our
observations for uniform metrics, we believe that more involved techniques are required to
come close to the lower bound. Probably there is a similar trade-off between instances of the
k-Server Problem and instances including specific requests.

Regarding the model, there are various possible extensions due to the heterogeneity. For
example, one could think that requests bring forth a set of servers of which not all but a
subset is needed. This makes the problem even more difficult for an online algorithm. It is
also interesting to see if further trade-offs influencing the competitive ratio can be determined.
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