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Centrality measures are the most commonly advocated social network analysis tools for identifying leaders of

covert organizations. While the literature has predominantly focused on studying the effectiveness of existing

centrality measures or developing new ones, we study the problem from the opposite perspective, by focusing

on how a group of leaders can avoid being identified by centrality measures as key members of a covert

network. More specifically, we analyze the problem of choosing a set of edges to be added to a network in

order to decrease the leaders’ ranking according to three fundamental centrality measures, namely degree,

closeness, and betweenness. We prove that this problem is NP-complete for each measure. Moreover, we

study how the leaders can construct a network from scratch, designed specifically to keep them hidden from

centrality measures. We identify a network structure that not only guarantees to hide the leaders to a certain

extent, but also allows them to spread their influence across the network.
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1 INTRODUCTION
Mapping terrorist networks is of vital importance to any counter-terrorism efforts. Not only does

this help to understand their operational structure and modus operandi, but it also plays a key role

in designing and implementing destabilization strategies [11, 24, 48]. One of the most common

strategies requires identifying key individuals who are suspected to play central roles in the

organization [22, 51]. This task can be completed using centrality measures—metrics developed in

graph theory to quantify the importance of nodes in networks [29, 43, 46]. Arguably, the three

fundamental such measures are: (i) degree centrality, which ranks each node based on the number

of neighbours it has; (ii) closeness centrality, which ranks each node based on its average distance to
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other nodes; and (iii) betweenness centrality, which ranks each node based on the relative number

of shortest paths that go through that node.

Unfortunately, understanding how criminals organize themselves in a network is challenging

at various levels [40, 55]; the data may be incomplete, the nature of the relationship between two

criminals may be unclear, and the network may evolve continuously. The literature on this research

problem generally agrees that criminals in general, and terrorists in particular, face a tradeoff

between secrecy and efficiency [49]. Overall, two approaches in this literature can be distinguished,

which we briefly discuss next.

In the first approach, researchers study known topologies of historical or contemporary criminal

networks, with the aim being to understand why particular structures have emerged [14, 16, 38].

Perhaps the most comprehensive study in this body of research is due to Kilberg [38], who analyzed

an extensive dataset of more than 240 terrorist networks, and provided a classification of those

networks based on their structure and functionality. Furthermore, using regression analysis, the

author tried to quantify the degree to which the structure of terrorist networks is influenced by

such variables as the GDP level of the target country, the political rights and civil liberties therein,

and the inclination to attack police and military targets in that country.

In this article we contribute to the second approach in the literature, which is more theoretical

in nature. In particular, the aim of this approach is to explain the structural properties of covert

networks by developing explicit models of the terrorists’ preferences as well as the different choices

they face [20, 34, 42]. With such analysis, certain network topologies typically emerge as the result

of modelling the terrorists as rational decision makers. A notable example of such a model is that

of Lindelauf et al. [42], who consider the tradeoff between the secrecy and operational efficiency

of a terrorist network and borrow concepts from both game theory and graph theory to identify

alternative topologies. The authors argue that it is inefficient if a message has to be passed several

times from one person to another, i.e., if the shortest path from the sender to the receiver is relatively

long. Based on this observation, the authors define efficiency as the (normalized) reciprocal of

the total distance of the graph, i.e., the sum of shortest distances between any two nodes in the

network. On the other hand, the authors consider the secrecy of a given node to be proportional to

the fraction of the network that remains unexposed when that node is detected. The secrecy of the

entire network is then the sum of the secrecy scores of all the nodes therein.

In this article, we also propose a theoretical model to study the secrecy-efficiency tradeoff in

covert networks. Our model differs from previous ones in several ways. Firstly, inspired by studies

of real-life covert networks [12, 44], we take a leader-centric approach, i.e., we focus on the role

played in terrorist networks by their leaders. In more detail, we investigate how the topology of

the network could be deliberately designed to keep the identity of the leader(s) hidden. Compared

to the literature on identifying leaders of terrorist networks, which typically assumes that such

leaders are oblivious to the techniques and methods used by law enforcement agencies, we assume

that this is not the case, i.e., the terrorist leaders in our model strategically shape their network
to shield themselves from being detected by centrality measures. In fact, recent media reports and

academic studies of criminal and terrorist organizations suggest that members of such organizations

are becoming increasingly tech-savvy [36, 50]. Hence, their obliviousness to the available social

network analysis techniques should not be taken for granted.

As already argued, secrecy is not the only objective that the leaders of a terrorist network

may have. Indeed, if they were concerned only with hiding themselves, they would simply cut

most (if not all) of their connections in the network. This, however, would clearly impair the

leaders’ efficiency. In our model, the efficiency of the leaders is defined as their influence over the
network. In other words, the leaders in our model face the tradeoff between hiding from centrality

measures, and influencing the network members. Note that a node’s influence over a network can
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be quantified according to various models, most notably the independent cascade model [27] and

the linear threshold model [37].

In the first part of the article, we focus on the computational aspects of modifying an existing

network in order to hide the leaders from centrality analysis. More specifically, we analyze the

hardness of identifying a set of edges to be added between the followers so that the ranking of the

leaders (based on one of the three main centrality measures) drops below a certain threshold. At

first glance, this problem may seem easy at least for degree centrality, which is mathematically

uninvolved. Indeed, it is straightforward to decrease the value of degree centrality; it simply involves

removing arbitrary edges of the leader [65]. Surprisingly, however, we find that our problem of

decreasing the ranking of a node according to degree centrality is much more challenging. More

precisely, Theorem 1 states that the aforementioned problem is NP-complete for degree centrality,

whereas Theorems 2 and 3 provide the same result, but for closeness and betweenness centrality,

respectively.

Given this hardness of modifying an existing network, we turn our attention to a different

question, which is how a terrorist network could be built from scratch so that the leaders are hidden
and, at the same time, have a reasonable influence over the network members. Here, the main goal is

to identify a network structure in which the leaders surround themselves with an “inner circle”

of trustees, called “captains”, whose role is to conceal the identity of the leaders and to pass on

their influence to the rest of the network. We identify one such network structure and prove

that every captain is guaranteed to be ranked higher than any of the leaders (according to the

three standard centrality measures). In fact, “inner circles” have been identified in various real-life

terrorist networks such as, e.g., Al-Quaeda [4] and IRA [56]. While we do not have access to data

that confirms that those real-life “inner circles” have a similar structure to the ones obtained in this

article, we hope that our results shed more light on why such circles may exist in covert networks.

A preliminary version of this work was published in the Proceedings of the 16
𝑡ℎ

Conference

on Autonomous Agents and Multi-Agent Systems (AAMAS 2017). The new results include: (i)

the NP-completeness proof of the problem of Hiding Leaders given the betweenness centrality

(Theorem 3, pages 11-13); (ii) the minimization version of the problem of Hiding Leaders, and the

proof that an optimal solution to this problem cannot be approximated better than logarithmically

given the closeness and betweenness centralities (Section 3.2, pages 14-16); (iii) we now show that

the network topology considered in this study can be embedded into a larger structure without

compromising the safety of the leaders (Section 4.2, pages 19-21); (iv) we now significantly extend

the numerical analysis of the interplay between the influence and centrality of the leaders in our

networks, including the analysis for additional centrality measures (Section 5.1, pages 22-22); and

(v) we conduct experiments investigating the attack tolerance of captain networks in comparison

to other types of network structures (Section 5.2, pages 23-26).

1.1 Related work
Our work is closely related to the literature about manipulating centrality measures in social

networks. The problem of strategically lowering centrality values in existing networks was shown

to be computationally intractable for most centrality measures, although some simple heuristics

proved to be surprisingly effective [65]. The setting in which the entity analyzing the networks

is aware of the hiding attempts of the network members was also considered [66]. Another work

presented a set of intuitive axioms that should characterize a centrality measure that is hard to

manipulate [68]. The hiding problem was also analyzed for non-standard network models, such as

multilayer networks [64], in which connections of different types may exist in the same structure.

Dey and Medya [17] analyzed the problem of hiding network leaders, proposed in the preliminary

version of this work, for the core centrality; they also presented a deeper theoretical analysis of the
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approximation version of the problem given the degree centrality. While all of the works mentioned

above focus on lowering the centrality of a given node in the hope of concealing it from an outside

observer, the problem of strategically increasing centrality has also been considered [13] with

centrality being treated as a proxy of popularity.

Evasion techniques similar to these considered in our work for centrality measures were proposed

for several other social network analysis tools [35], in many cases with the goal of privacy protection.

Closely cooperating groups of nodes might want to avoid identification by community detection

algorithms [65], especially since such algorithms have been used to infer private information

about social media users, including their sexual orientation [52]. Similarly, some people might

prefer to avoid publicly disclosing certain relationships and actively prevent their detection by link

prediction algorithms [67, 71, 73]. Other types of social network analysis tools for which hiding or

evasion techniques were developed include source detection algorithms [63] and node similarity

measures [18].

Finally, our work can be related to the field of adversarial machine learning [31, 41], particularly

to so-called “evasion attacks” that mislead the machine learning models by modifying their input

data. Applications of the evasion attacks range from causing autonomous vehicles to misclassify

road signs [23, 57], through creating email messages that can fool spam filters [7, 10], to concealing

malicious code within network packages [28]. A subarea of this literature focuses on adversarial

attacks on networks [58], where network modification are used to disrupt the results of machine

learning algorithm, such as algorithms for node classification [15, 62, 74] or node embedding [8, 72].

It is worth noting that the techniques used in this literature are based on exploiting flaws in

the machine learning algorithms, and thus cannot be directly applied to social network analysis

methods considered in this work.

2 PRELIMINARIES
In this section, we present basic notation and concepts that will be used throughout the article. For

the convenience of the reader, Table 1 provides a summary of the notation used in the article.

2.1 Basic Network Notation
Let us denote by 𝐺 = (𝑉 , 𝐸) ∈ G a network, where 𝑉 = {𝑣1, . . . , 𝑣𝑛} is the set of 𝑛 nodes and

𝐸 ⊆ 𝑉 ×𝑉 is the set of edges. We denote an edge between nodes 𝑣𝑖 and 𝑣 𝑗 by (𝑣𝑖 , 𝑣 𝑗 ). In this article

we consider undirected networks, meaning that 𝐸 is a set of unordered pairs, i.e., we do not discern

between edges (𝑣𝑖 , 𝑣 𝑗 ) and (𝑣 𝑗 , 𝑣𝑖 ). We also assume that networks do not contain self-loops, i.e.,

∀𝑣𝑖 ∈𝑉 (𝑣𝑖 , 𝑣𝑖 ) ∉ 𝐸.

A path in a network 𝐺 = (𝑉 , 𝐸) is an ordered sequence of distinct nodes, 𝑝 = ⟨𝑣𝑖1 , . . . , 𝑣𝑖𝑘 ⟩, in
which every two consecutive nodes are connected by an edge in 𝐸. We consider the length of a

path to be the number of edges in that path. The set of all shortest paths between a pair of nodes,

𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 will be denoted by Π𝐺 (𝑣𝑖 , 𝑣 𝑗 ). The distance between a pair of nodes 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 , i.e., the
length of a shortest path between them, is denoted by 𝑑𝐺 (𝑣𝑖 , 𝑣 𝑗 ). Furthermore, a network is said to

be connected if and only if there exists a path between every pair of nodes in that network.

We denote by 𝑁𝐺 (𝑣𝑖 ) the set of neighbors of 𝑣𝑖 in 𝐺 , i.e., 𝑁𝐺 (𝑣𝑖 ) = {𝑣 𝑗 ∈ 𝑉 : (𝑣 𝑗 , 𝑣𝑖 ) ∈ 𝐸}.
Finally, we denote by 𝑁𝐺 (𝑣𝑖 , 𝑣 𝑗 ) the set of common neighbors of nodes 𝑣𝑖 and 𝑣 𝑗 , i.e., 𝑁𝐺 (𝑣𝑖 , 𝑣 𝑗 ) =
𝑁𝐺 (𝑣𝑖 ) ∩ 𝑁𝐺 (𝑣 𝑗 ).

To make the notation more readable, we will often denote two arbitrary nodes by 𝑣 and𝑤 , instead

of 𝑣𝑖 and 𝑣 𝑗 . Moreover, we will often omit the network itself from the notation whenever it is clear

from the context, e.g., by writing 𝑑 (𝑣,𝑤) instead of 𝑑𝐺 (𝑣,𝑤). This applies not only to the notation

presented thus far but rather to all notation in this article.
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Table 1. Notation used in the article.

Notation Meaning

|𝑋 | The number of elements of set 𝑋

𝑉 = {𝑣1, . . . , 𝑣𝑛} The set of network’s nodes

𝐸 The set of network’s edges

Π𝐺 (𝑣𝑖 , 𝑣 𝑗 ) The set of shortest paths between 𝑣𝑖 and 𝑣 𝑗 in the network 𝐺

𝑑𝐺 (𝑣𝑖 , 𝑣 𝑗 ) The length of a shortest path between 𝑣𝑖 and 𝑣 𝑗 in the network 𝐺

𝑁𝐺 (𝑣𝑖 ) The set of neighbors of 𝑣𝑖 in the network 𝐺

𝑁𝐺 (𝑣𝑖 , 𝑣 𝑗 ) The set of common neighbors of 𝑣𝑖 and 𝑣 𝑗 in the network 𝐺

𝑐𝑑𝑔 (𝐺, 𝑣𝑖 ) The degree centrality of 𝑣𝑖 in the network 𝐺

𝑐𝑐𝑙 (𝐺, 𝑣𝑖 ) The closeness centrality of 𝑣𝑖 in the network 𝐺

𝑐𝑏𝑡 (𝐺, 𝑣𝑖 ) The betweenness centrality of 𝑣𝑖 in the network 𝐺

inf 𝐺 (𝑣𝑖 , 𝑣 𝑗 ) The influence of 𝑣𝑖 on 𝑣 𝑗 in the network 𝐺

inf 𝐺 (𝑣𝑖 ) The influence of 𝑣𝑖 over the entire network 𝐺

𝐿 The set of leaders of the network

𝐹 The set of followers in the network

𝑏 The maximum number of edges that can be added to the network

𝛿 The safety margin of the leaders

𝐴 The set of edges that can be added to the network

𝐴∗ The set of edges added to the network

𝐶 The set of captain in a captain network

2.2 Centrality Measures
The notion of centrality in human organizations was first introduced by Bavelas [5]. Intuitively,

a centrality measure is a function, 𝑐 : G ×𝑉 → R, that expresses the relative importance of any

given node in any given network. Arguably, the three best-known centrality measures are degree,
closeness and betweeness [26]. Due to their simple closed-form formulas, they are very amenable to

theoretical analysis and we focus our attention on them in Sections 3 and 4 of our work.

Degree centrality was introduced by Shaw [54]. It assumes that the importance of a node is

proportional to the number of its neighbors. Formally, the degree centrality of a node 𝑣𝑖 ∈ 𝑉 in a

network 𝐺 is defined as follows:

𝑐𝑑𝑔 (𝐺, 𝑣𝑖 ) =
|𝑁 (𝑣𝑖 ) |
𝑛 − 1 .

Closeness centrality, introduced by Beauchamp [6], quantifies the importance of a node in terms

of shortest distances from this node to all other nodes in the network. As such, the most important

node is the one with the shortest average path length to all other nodes. The normalized closeness

centrality of 𝑣𝑖 ∈ 𝑉 in a connected network 𝐺 can be expressed as:

𝑐𝑐𝑙 (𝐺, 𝑣𝑖 ) =
𝑛 − 1∑

𝑣𝑗 ∈𝑉 𝑑 (𝑣𝑖 , 𝑣 𝑗 )
.

Betweenness centrality was developed independently by Anthonisse [2] and Freeman [25]. This

measure quantifies the importance of a given node in the context of network flow. In more detail, if

we consider all the shortest paths in the network, then the importance of any given node increases

with the number of such paths that go through that node. The normalized betweenness centrality
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of a node 𝑣𝑖 ∈ 𝑉 in a connected network 𝐺 can be expressed as:

𝑐𝑏𝑡 (𝐺, 𝑣𝑖 ) =
2

(𝑛 − 1) (𝑛 − 2)
∑︁

𝑣𝑗 ,𝑣𝑘 ∈𝑉 \{𝑣𝑖 }

|{𝑝 ∈ Π(𝑣 𝑗 , 𝑣𝑘 ) : 𝑣𝑖 ∈ 𝑝}|
|Π(𝑣 𝑗 , 𝑣𝑘 ) |

.

The remaining centrality measures are defined more intricately, and as such are less amenable to

theoretical analysis. We consider them in Section 5 of our work.

Eigenvector centrality [9] quantifies the importance of a given node based on the importance of

its neighbors. Formally, it is defined for a node 𝑣𝑖 in a network 𝐺 as:

𝑐𝑒𝑔 (𝐺, 𝑣𝑖 ) = 𝜒∗𝑖

where 𝜒∗ is the eigenvector corresponding to the largest eigenvalue of the adjacency matrix of the

network.

Hyperlink-Induced Topic Search centrality (HITS) [39] quantifies the importance of a given node

based on interpreting the network structure as connections between web pages. Each node is then

assigned a score as a hub (a page that links to many pages) and as an authority (a page that many

pages link to). In our analysis we use the authority score of a node, i.e., the HITS centrality of a

node 𝑣𝑖 ∈ 𝑉 in a network 𝐺 can be expressed as:

𝑐ℎ𝑖 (𝐺, 𝑣𝑖 ) = 𝑥𝑖

where 𝑥𝑖 is computed using the normalized iterative algorithm from Kleinberg [39].

2.3 Models of Influence
The propagation of influence through the network is often described in terms of node activation.

When a certain node is sufficiently influenced by its neighbors, it becomes “active”, and starts

influencing any “inactive” neighbors, and so on. To initiate this propagation process, a set of nodes

(known as the seed set) must be activated right from the start. Assuming that time moves in discrete

rounds, we denote by 𝐼 (𝑡) ⊆ 𝑉 the set of nodes that are active at round 𝑡 , implying that 𝐼 (1) is the
seed set. The way influence propagates to inactive nodes depends on the influence model under

consideration. Arguably, the two main models of influence are:

• Independent Cascade [27]: In this model, every pair of nodes is assigned an activation proba-

bility, 𝑝 : 𝑉 ×𝑉 → [0, 1]. Then, in every round, 𝑡 > 1, every node 𝑣𝑖 ∈ 𝑉 that became active in

round 𝑡 − 1 activates every inactive neighbor, 𝑣 𝑗 ∈ 𝑁 (𝑣𝑖 ) \ 𝐼 (𝑡 − 1), with probability 𝑝 (𝑣𝑖 , 𝑣 𝑗 ).
The process ends when there are no newly activated nodes, i.e., when 𝐼 (𝑡) = 𝐼 (𝑡 − 1).
• Linear Threshold [37]: In this model, every node 𝑣𝑖 ∈ 𝑉 is assigned a threshold value, 𝑡𝑣𝑖 ,
which is sampled (according to some probability distribution) from the set {0, . . . , |𝑁 (𝑣𝑖 ) |}.
Then, in every round, 𝑡 > 1, every inactive node 𝑣𝑖 becomes active, i.e., becomes a member of

𝐼 (𝑡), if |𝐼 (𝑡 − 1) ∩ 𝑁 (𝑣𝑖 ) | ≥ 𝑡𝑣𝑖 . The process ends when there are no newly activated nodes,

i.e., when 𝐼 (𝑡) = 𝐼 (𝑡 − 1).
In either model, the influence of a node, 𝑣𝑖 , on another node, 𝑣 𝑗 , is denoted by inf 𝐺 (𝑣𝑖 , 𝑣 𝑗 )

and is defined as the probability that 𝑣 𝑗 gets activated given the seed set {𝑣𝑖 }. We assume that

inf 𝐺 (𝑣𝑖 , 𝑣𝑖 ) = 0 for all 𝑣𝑖 ∈ 𝑉 . The influence of 𝑣𝑖 over the entire network 𝐺 is then defined as:

inf 𝐺 (𝑣𝑖 ) =
∑

𝑣𝑗 ∈𝑉 inf 𝐺 (𝑣𝑖 , 𝑣 𝑗 ).
Finally, it has been proposed to approximate influence of nodes in the network using the Shapley

centrality [45, 59]. This game-theoretic centrality quantifies the importance of a given node based

on its Shapley value in a particular game defined over the network. The Shapley value [53] is a

uniquely fair assignment of payoff in a coalitional game, and, for player 𝑣𝑖 in a game with utility
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function 𝑢, it is defined as:

𝜓 (𝑣𝑖 , 𝑢) =
∑︁

𝐶⊆𝑉 \{𝑣𝑖 }

|𝐶 |!(𝑛 − |𝐶 | − 1)!
𝑛!

(𝑢 (𝐶 ∪ {𝑣𝑖 }) − 𝑢 (𝐶)) .

The Shapley centrality of a given node 𝑣𝑖 in a network 𝐺 is then defined as:

𝑐𝑠ℎ (𝐺, 𝑣𝑖 ) = 𝜓 (𝑣𝑖 , 𝑢∗),
where 𝑢∗ =

��𝐶 ∪⋃𝑣𝑖 ∈𝐶 𝑁 (𝑣𝑖 )
��
. In words, it is the Shapley value of node 𝑣𝑖 in the game in which

the value of a coalition equals the number of nodes in this coalition and all their neighbors. The

intuition behind using the Shapley centrality as a proxy for influence is that the Shapley value of

the above game represents an average number of new neighbors that node 𝑣𝑖 brings to a coalition.

If 𝑣𝑖 has a relatively high Shapley value, this means that 𝑣𝑖 is more likely to have some degree of

exclusivity in being connected to some nodes than many other nodes. Hence, it is 𝑣𝑖 that is more

likely to be the one that “activates” others.

3 PROBLEM STATEMENT & THEORETICAL ANALYSIS
In this section, we state the main theoretical problem of this work and prove its NP-completeness.

As mentioned earlier in the introduction, we assume that the terrorist network is composed of

two types of agents, namely the leaders and the followers. Furthermore, we assume that the leaders

are aware that law-enforcement agencies may use centrality analysis to identify them. Thus, the

leaders would like to strategically modify the existing network so that their centrality becomes

lower than a certain, predefined threshold 𝛿 ∈ N that we refer to as a safety margin. To achieve this
objective, no more than 𝑏 ∈ N modifications can be made to the network (𝑏 can be thought of as

a “budget” to spend). Since removing edges would mean that existing communication links are

severed, we assume that the network can be modified only by adding edges. Furthermore, since

adding an edge to any leader increases that leader’s degree centrality, we assume that edges can

only be added between followers. Formally, we define the problem of Hiding Leaders as follows:

Definition 1 (Hiding Leaders). This problem is defined by a tuple, (𝐺, 𝐿,𝑏, 𝑐, 𝛿), where 𝐺 =

(𝑉 , 𝐸) ∈ G is a network, 𝐿 ⊂ 𝑉 is a set of leaders to be hidden, 𝑏 ∈ N is a budget specifying the
maximum number of edges that can be added, 𝑐 : G ×𝑉 → R is a centrality measure, and 𝛿 ∈ N is a
chosen safety margin. Then, if we denote by 𝐹 = 𝑉 \ 𝐿 the set of “followers”, the goal is to identify
a set of edges to be added to the network, 𝐴∗ ⊆ 𝐹 × 𝐹 , such that |𝐴∗ | ≤ 𝑏 and the resulting network
𝐺 ′ = (𝑉 , 𝐸 ∪𝐴∗) contains at least 𝛿 followers that each have a centrality score higher than that of any
leader, i.e.:

∃𝐹 ′⊆𝐹 |𝐹 ′ | ≥ 𝛿 ∧ ∀𝑓 ∈𝐹 ′∀𝑙 ∈𝐿𝑐 (𝐺 ′, 𝑓 ) > 𝑐 (𝐺 ′, 𝑙).

In other words, the goal is to identify a set of connections between the followers, the addition of

which ensures that all leaders are safely hidden from the given centrality measure.

3.1 Computational Complexity Analysis
Intuitively, the above problem should be easy to solve for the degree centrality measure. Indeed,

adding an edge between any two (disconnected) followers increases their degree centrality with

respect to all the leaders. However, we prove below that the problem is in fact NP-complete for the

degree centrality measure.

Theorem 1. The problem of Hiding Leaders is NP-complete given the degree centrality.

Proof. The problem is trivially in NP since after the addition of a given 𝐴∗ it is possible to

compute the degree centrality for all nodes in polynomial time.
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Next, we prove that the problem is NP-hard. To this end, we propose a reduction from the

NP-complete problem of Finding k-clique. The decision version of this problem is defined by a

network, 𝐺 = (𝑉 , 𝐸), and a constant, 𝑘 ∈ N, where the goal is to determine whether there exist 𝑘

nodes in 𝐺 that form a clique.

Let us assume that 𝑘 ≥ 3 (if 𝑘 = 2 then the problem is trivial). Given an instance of the problem

of Finding k-clique, defined by some 𝑘 ≥ 3 and a network 𝐺 = (𝑉 , 𝐸), let us construct a network,
𝐻 = (𝑉 ′, 𝐸 ′), as follows:
• The set of nodes: For every node, 𝑣𝑖 ∈ 𝑉 , we create a single node, 𝑣𝑖 , as well as |𝑁𝐺 (𝑣𝑖 ) | other
nodes, denoted by 𝑋 = {𝑥𝑖,1, . . . , 𝑥𝑖, |𝑁𝐺 (𝑣𝑖 ) |}. Additionally, we create one node called 𝑦, as well as
𝑛 + 𝑘 − 1 other nodes, namely 𝐿′ = 𝑙1, . . . , 𝑙𝑛+𝑘−1;
• The set of edges:We create an edge between two nodes 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 if and only if this edge was

not present in 𝐺 , i.e., (𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝐸 ′ ⇐⇒ (𝑣𝑖 , 𝑣 𝑗 ) ∉ 𝐸. Additionally, for every 𝑣𝑖 we create an edge

(𝑣𝑖 , 𝑦) as well as an edge (𝑣𝑖 , 𝑥𝑖, 𝑗 ) for every 𝑥𝑖, 𝑗 . We also create an edge (𝑙𝑖 , 𝑙 𝑗 ) between every pair

of nodes 𝑙𝑖 , 𝑙 𝑗 ∈ 𝐿′, except for the edge (𝑙1, 𝑙2). Finally, we create two additional edges, (𝑙1, 𝑦) and
(𝑙2, 𝑦).
An example of such an 𝐻 network is illustrated in Figure 1. Now, consider the following instance

of the problem of hiding leaders, (𝐻, 𝐿, 𝑏, 𝑐, 𝛿), where:
• 𝐻 = (𝑉 ′, 𝐸 ′) is the network we just constructed;

• 𝐿 = 𝑉 ′ \𝑉 ;

• 𝑏 =
𝑘 (𝑘−1)

2
;

• 𝑐 is the degree centrality measure;

• 𝛿 = 𝑘 .

Next, we reduce the problem of Finding k-cliques in 𝐺 to the aforementioned instance of Hiding

Leaders in 𝐻 . To this end, from the definition of the problem of Hiding Leaders, we know that the

edges to be added to 𝐻 must be chosen from 𝐹 × 𝐹 . Since in our instance we have: 𝐹 = 𝑉 ′ \ 𝐿 =

𝑉 ′ \ (𝑉 ′ \𝑉 ) = 𝑉 , then the edges to be added to 𝐻 must be chosen from𝑉 ×𝑉 . However, since the

edges in (𝑉 ×𝑉 ) \ 𝐸 are already present in 𝐻 (see how 𝐻 is created), then the edges to be added to

𝐻 must be chosen from 𝐸. Out of those edges, we need to choose a subset, 𝐴∗ ⊆ 𝐸, as a solution to

the problem. In what follows, we will show that a solution to the above instance of the problem of

Hiding Leaders in 𝐻 corresponds to a solution to the problem of Finding k-clique in 𝐺 .
First, note that each of the 𝑘 nodes with the highest degree centrality in 𝐻 must be a member

of 𝐿′. This is because there are more than 𝑘 nodes in 𝐿′, each of which has a degree of 𝑛 + 𝑘 − 2,
while the degree of every node in 𝑉 ′ \ 𝐿′ is smaller than 𝑛 + 𝑘 − 2. Thus, in order for 𝐴∗ to be a

solution to the problem of hiding leaders, the addition of 𝐴∗ to 𝐻 must increase the degree of at

least 𝑘 nodes in 𝑉 such that each of them has a degree of at least 𝑛 + 𝑘 − 1 (note that the addition
of 𝐴∗ only increases the degrees of nodes in 𝑉 , as we already established that 𝐴∗ ⊆ 𝐸). Now since

in 𝐻 the degree of every node in 𝑉 equals 𝑛 (because of the way 𝐻 is created), then in order to

increase the degree of 𝑘 such nodes to 𝑛 +𝑘 − 1, each of them must be an end of at least 𝑘 − 1 edges
in 𝐴∗. But since the budget in our problem instance is

𝑘 (𝑘−1)
2

, then the only possible choice of 𝐴∗ is
the one that increases the degree of exactly 𝑘 nodes in 𝑉 by exactly 𝑘 − 1. If such a choice of 𝐴∗ is

available, then surely those 𝑘 nodes would form a clique in𝐺 , since all
𝑘 (𝑘−1)

2
edges in 𝐴∗ are taken

from 𝐺 . □

Having proven the NP-completeness of the problem given the degree centrality, we next prove

its NP-completeness given the closeness centrality.

Theorem 2. The problem of Hiding Leaders is NP-complete given the closeness centrality.
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Fig. 1. An illustration of the network used in the NP-
completeness proof of the problem of Hiding Leaders
given the degree centrality.
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′ 𝑢𝑢1,𝛾𝛾

′ ...

𝑆𝑆1 𝑆𝑆|𝑆𝑆|...
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′...

Fig. 2. An illustration of the network used in the NP-
completeness proof of the problem of Hiding Leaders
given the closeness and betweenness centrality.

Proof. The problem is trivially in NP since after the addition of a given 𝐴∗ it is possible to

compute the closeness centrality of all nodes in polynomial time.

Next, we prove that the problem is NP-hard. To this end, we propose a reduction from the

NP-complete 3-Set-Cover problem. The decision version of this problem is defined by a universe

𝑈 = {𝑢1, . . . , 𝑢 |𝑈 |} and a collection of sets 𝑆 = {𝑆1, . . . , 𝑆 |𝑆 |} such that ∀𝑖𝑆𝑖 ⊂ 𝑈 ∧ |𝑆𝑖 | = 3, where

the goal is to determine whether there exist 𝑏 elements of 𝑆 the union of which equals𝑈 .

Given an instance of the 3-Set-Cover problem, let us construct a network 𝐺 as follows:

• The set of nodes: For every 𝑆𝑖 ∈ 𝑆 , we create a single node denoted by 𝑆𝑖 . For every 𝑢𝑖 ∈ 𝑈 ,

we create 𝛾 nodes denoted by 𝑢 ′𝑖,1, . . . , 𝑢
′
𝑖,𝛾 , where 𝛾 = |𝑆 | + 1. We denote the set of all 𝑆𝑖

nodes by 𝑆 , and the set of all 𝑢 ′𝑖, 𝑗 nodes by 𝑈
′
. In addition, we create 𝛼 nodes denoted by

𝑋 = {𝑥1, . . . , 𝑥𝛼 }, where 𝛼 = 4|𝑆 | + 4, and create 𝛽 nodes denoted by 𝑌 = {𝑦1, . . . , 𝑦𝛽 }, where
𝛽 = 3|𝑆 | + 4. Lastly, we create two additional nodes, 𝑡 and 𝑧.

• The set of edges: First, we create the edge (𝑡, 𝑧). Then, for every node 𝑥𝑖 we create an edge

(𝑥𝑖 , 𝑡), for every node 𝑦𝑖 we create an edge (𝑦𝑖 , 𝑧), and for every node 𝑆𝑖 ∈ 𝑆 we create an

edge (𝑆𝑖 , 𝑧). Moreover, for every node 𝑢 ′
𝑗,𝑘

we create an edge (𝑆𝑖 , 𝑢 ′𝑗,𝑘 ) if and only if 𝑢 𝑗 ∈ 𝑆𝑖 .
We also create edges such that the nodes in 𝑋 form a clique, i.e., we create an edge (𝑥𝑖 , 𝑥 𝑗 )
for every 𝑥𝑖 , 𝑥 𝑗 ∈ 𝑋 . Likewise, we create edges such that the nodes in 𝑌 form a clique, i.e., we

create an edge (𝑦𝑖 , 𝑦 𝑗 ) for every 𝑦𝑖 , 𝑦 𝑗 ∈ 𝑌 . Finally, we create edges such that the nodes in 𝑆

form a clique, i.e., we create an edge (𝑆𝑖 , 𝑆 𝑗 ) for every 𝑆𝑖 , 𝑆 𝑗 ∈ 𝑆 .

An example of the resulting network, 𝐺 , is illustrated in Figure 2. Now, consider the following

instance of the problem of hiding leaders, (𝐺, 𝐿,𝑏, 𝑐, 𝛿), where:

• 𝐺 is the network we just constructed;

• 𝐿 = {𝑧} ∪ 𝑋 ∪ 𝑌 ∪𝑈 ′;
• 𝑏 is the parameter of the 3-Set-Cover problem (where the goal is to determine whether there

exist 𝑏 elements of 𝑆 the union of which equals𝑈 );

• 𝑐 is the closeness centrality measure;

• 𝛿 = 1.

From the definition of the problem of Hiding Leaders, we see that the only edges that can be added

to the graph are edges between 𝑡 and the members of 𝑆 , i.e.,𝐴∗ ⊆ 𝐴, where𝐴 = {(𝑡, 𝑆1), . . . , (𝑡, 𝑆𝑘 )}.
Notice that any such a choice of 𝐴∗ corresponds to selecting a subset of |𝐴∗ | elements of 𝑆 in the

3-Set-Cover problem. In what follows, we will show that a solution to the above instance of Hiding

Leaders corresponds to a solution to the 3-Set-Cover problem.
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Table 2. Distances between nodes in the graph constructed for the closeness centrality proof.

𝑣 𝑑 (𝑣, 𝑧) 𝑑 (𝑣, 𝑡) ∑
𝑥𝑖 ∈𝑋 𝑑 (𝑣, 𝑥𝑖 )

∑
𝑦𝑖 ∈𝑌 𝑑 (𝑣,𝑦𝑖 )

∑
𝑢′
𝑖,𝑗
∈𝑈 ′ 𝑑 (𝑣,𝑢 ′𝑖, 𝑗 )

∑
𝑆𝑖 ∈𝑆 𝑑 (𝑣, 𝑆𝑖 )

𝑧 0 1 2𝛼 𝛽 2|𝑈 |𝛾 |𝑆 |
𝑡 1 0 𝛼 2𝛽 (3|𝑈 | − |𝑈𝐴∗ |)𝛾 2|𝑆 | − |𝐴∗ |
𝑥𝑖 2 1 𝛼 − 1 3𝛽 (4|𝑈 | − |𝑈𝐴∗ |)𝛾 3|𝑆 | − |𝐴∗ |
𝑦𝑖 1 2 3𝛼 𝛽 − 1 3|𝑈 |𝛾 2|𝑆 |
𝑢𝑖 2 ≥ 2 ≥ 3𝛼 3𝛽 ≥ 2( |𝑈 |𝛾 − 1) ≥ |𝑆 |
𝑆𝑖 1 ≥ 1 ≥ 2𝛼 2𝛽 3𝛾 + 2( |𝑈 | − 3)𝛾 |𝑆 | − 1

First, we show that for every 𝑣 ∈ 𝑉 \ {𝑡, 𝑧} and every 𝐴∗ ⊆ 𝐴 we either have 𝑐 (𝐺 ′, 𝑣) < 𝑐 (𝐺 ′, 𝑡)
or 𝑐 (𝐺 ′, 𝑣) < 𝑐 (𝐺 ′, 𝑧), where𝐺 ′ = (𝑉 , 𝐸 ∪𝐴∗). To this end, we show that the following holds, where

𝐷 (𝐺 ′, 𝑣) = 𝑛−1
𝑐 (𝐺′,𝑣) =

∑
𝑤∈𝑉 \{𝑣 } 𝑑 (𝑣,𝑤): ∀𝑣∈𝑉 \{𝑡,𝑧 }∀𝐴∗⊆�̂�𝐷 (𝐺 ′, 𝑣) > 𝐷 (𝐺 ′, 𝑡) ∨ 𝐷 (𝐺 ′, 𝑣) > 𝐷 (𝐺 ′, 𝑧).

Let 𝑈𝐴∗ denote the elements of 𝑈 covered by sets from 𝑆 the representations of which are

connected with 𝑡 by edges from 𝐴∗, i.e., 𝑈𝐴∗ = {𝑢 𝑗 ∈ 𝑈 : ∃(𝑡,𝑆𝑖 ) ∈𝐴∗𝑢 𝑗 ∈ 𝑆𝑖 }. Table 2 presents the
distances between different nodes in 𝐺 ′. Based on the information from the table, we have the

following:

• 𝐷 (𝐺 ′, 𝑧) = 2𝛼 + 𝛽 + 2|𝑈 |𝛾 + |𝑆 | + 1;
• 𝐷 (𝐺 ′, 𝑡) = 𝛼 + 2𝛽 + (3|𝑈 | − |𝑈𝐴∗ |)𝛾 + 2|𝑆 | − |𝐴∗ | + 1;
• 𝐷 (𝐺 ′, 𝑥𝑖 ) = 𝛼 + 3𝛽 + (4|𝑈 | − |𝑈𝐴∗ |)𝛾 + 3|𝑆 | − |𝐴∗ | + 2 > 𝐷 (𝐺 ′, 𝑡);
• 𝐷 (𝐺 ′, 𝑦𝑖 ) = 3𝛼 + 𝛽 + 3|𝑈 |𝛾 + 2|𝑆 | + 2 > 𝐷 (𝐺 ′, 𝑧);
• 𝐷 (𝐺 ′, 𝑢𝑖 ) ≥ 3𝛼 + 3𝛽 + 2|𝑈 |𝛾 + |𝑆 | + 2 > 𝐷 (𝐺 ′, 𝑧);
• 𝐷 (𝐺 ′, 𝑆𝑖 ) ≥ 2𝛼 + 2𝛽 − 3𝛾 + 2|𝑈 |𝛾 + |𝑆 | + 1 > 𝐷 (𝐺 ′, 𝑧) because 𝛽 > 3𝛾 .

Therefore, either 𝑡 or 𝑧 has the highest closeness centrality. Since 𝑧 ∈ 𝐿, 𝑡 ∈ 𝐹 and the safety

margin 𝛿 = 1, then𝐴∗ ⊆ 𝐴 is a solution to the constructed instance of the Hiding Leaders problem if

and only if𝐷 (𝐺 ′, 𝑡) < 𝐷 (𝐺 ′, 𝑧). We have that:𝐷 (𝐺 ′, 𝑧)−𝐷 (𝐺 ′, 𝑡) = 𝛼−𝛽+ (|𝑈𝐴∗ | − |𝑈 |)𝛾 + |𝐴∗ | − |𝑆 |.
We will now prove that if there exists a solution 𝑆∗ to the given instance of the 3-Set Cover

problem, then there also exists a solution to the constructed instance of the Hiding Leaders problem.

To this end, let 𝐴∗ = {(𝑡, 𝑆𝑖 ) : 𝑆𝑖 ∈ 𝑆∗}. We will show that 𝐴∗ is a solution to the constructed

instance of the Hiding Leaders problem. Since 𝑆∗ is a solution to the given instance of the 3-Set

Cover problem, then 𝑈𝐴∗ = 𝑈 , as all elements of 𝑈 are covered by sets in 𝑆∗. Hence, given that

|𝐴∗ | ≥ 1, we have: 𝐷 (𝐺 ′, 𝑧) − 𝐷 (𝐺 ′, 𝑡) ≥ 𝛼 − 𝛽 + 1 − |𝑆 |. By substituting values of 𝛼 and 𝛽 we get:

𝐷 (𝐺 ′, 𝑧) −𝐷 (𝐺 ′, 𝑡) ≥ |𝑆 | +1− |𝑆 | > 0. Therefore, we have 𝐷 (𝐺 ′, 𝑡) < 𝐷 (𝐺 ′, 𝑧), which, as mentioned

above, is a sufficient condition for 𝐴∗ to be a solution to the constructed instance of the Hiding

Leaders problem.

Finally, we will prove that if there exists a solution to the constructed instance of the Hiding

Leaders problem, then there also exists a solution to the given instance of the 3-Set Cover problem.

We will prove this by contradiction. Assume that there exists no solution to the given instance of

the 3-Set Cover problem, but there exists a solution 𝐴∗ to the constructed instance of the Hiding

Leaders problem. We will show that 𝐴∗ cannot be a solution, hence the contradiction. First of all,
since there are no solutions to the 3-Set Cover problem instance, then some nodes remain uncovered

by the sets corresponding to the nodes that belong to 𝐴∗, hence |𝑈𝐴∗ | ≤ |𝑈 | − 1. Consequently,
given that |𝐴∗ | ≤ |𝑆 |, we have: 𝐷 (𝐺 ′, 𝑧) −𝐷 (𝐺 ′, 𝑡) ≤ 𝛼 − 𝛽 −𝛾 . By substituting values of 𝛼 , 𝛽 , and 𝛾
we get: 𝐷 (𝐺 ′, 𝑧) − 𝐷 (𝐺 ′, 𝑡) ≤ −1 < 0. Therefore, we have 𝐷 (𝐺 ′, 𝑡) > 𝐷 (𝐺 ′, 𝑧). However, we know
that 𝐷 (𝐺 ′, 𝑡) < 𝐷 (𝐺 ′, 𝑧) is a necessary condition for 𝐴∗ to be a solution to the constructed instance

of the problem of Hiding Leaders. Hence, 𝐴∗ cannot be such a solution.
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We have shown that a solution to the constructed instance of the Hiding Leaders problem exists

if and only if there also exists a solution to the given instance of the 3-Set Cover problem, which

concludes the proof. □

Finally, we prove the NP-completeness of the problem given the betweenness centrality.

Theorem 3. The problem of Hiding Leaders is NP-complete given the betweenness centrality
measure.

Proof. The problem is trivially in NP since after the addition of a given set of edges 𝐴∗, it is
possible to compute the betweenness centrality for all nodes in polynomial time.

Next, we prove that the problem is NP-hard. To this end, we propose a reduction from the

NP-complete 3-Set-Cover problem. The decision version of this problem is defined by a universe

𝑈 = {𝑢1, . . . , 𝑢 |𝑈 |} and a collection of sets 𝑆 = {𝑆1, . . . , 𝑆 |𝑆 |} such that ∀𝑖𝑆𝑖 ⊂ 𝑈 ∧ |𝑆𝑖 | = 3, where

the goal is to determine whether there exist 𝑏 elements of 𝑆 the union of which equals𝑈 .

First, given an instance of the 3-Set Cover problem, let us construct a network 𝐺 as follows

(notice that this is the same construction as in the proof of Theorem 2, but with different values of

𝛼 , 𝛽 and 𝛾 ):

• The set of nodes: For every 𝑆𝑖 ∈ 𝑆 , we create a single node denoted by 𝑆𝑖 . For every 𝑢𝑖 ∈ 𝑈 ,

we create 𝛾 nodes denoted by 𝑢 ′𝑖,1, . . . , 𝑢
′
𝑖,𝛾 , where 𝛾 = |𝑈 | ( |𝑆 | + 1)2. We denote the set of all

𝑆𝑖 nodes by 𝑆 , and the set of all 𝑢 ′𝑖, 𝑗 nodes by𝑈
′
. In addition, we create 𝛼 nodes denoted by

𝑋 = {𝑥1, . . . , 𝑥𝛼 }, where 𝛼 = |𝑈 |3 ( |𝑆 | + 1)2 and create 𝛽 nodes denoted by 𝑌 = {𝑦1, . . . , 𝑦𝛽 },
where 𝛽 = |𝑈 |3 ( |𝑆 | + 1)2 − |𝑈 | ( |𝑆 | + 1). Lastly, we create two additional nodes, denoted by 𝑡

and 𝑧.

• The set of edges: First, we create the edge (𝑡, 𝑧). Then, for every node 𝑥𝑖 we create an edge

(𝑥𝑖 , 𝑡), and for every node 𝑦𝑖 we create an edge (𝑦𝑖 , 𝑧). For every node 𝑆𝑖 ∈ 𝑆 we create an

edge (𝑆𝑖 , 𝑧). For every node 𝑢 ′
𝑗,𝑘

we create an edge (𝑆𝑖 , 𝑢 ′𝑗,𝑘 ) if and only if 𝑢 𝑗 ∈ 𝑆𝑖 . We also

create edges such that the nodes in 𝑋 form a clique, i.e., we create an edge (𝑥𝑖 , 𝑥 𝑗 ) for every
𝑥𝑖 , 𝑥 𝑗 ∈ 𝑋 . Likewise, we create edges such that the nodes in 𝑌 form a clique, i.e., we create

an edge (𝑦𝑖 , 𝑦 𝑗 ) for every 𝑦𝑖 , 𝑦 𝑗 ∈ 𝑌 . Finally, we create edges such that the nodes in 𝑆 form a

clique, i.e., we create an edge (𝑆𝑖 , 𝑆 𝑗 ) for every 𝑆𝑖 , 𝑆 𝑗 ∈ 𝑆 .
An example of the resulting network, 𝐺 , is illustrated in Figure 2. Now, consider instance

(𝐺, 𝐿,𝑏, 𝑐, 𝛿) of the problem of Hiding Leaders, where:

• 𝐺 is the network we just constructed;

• 𝐿 = {𝑧} ∪𝑈 ′ ∪ 𝑋 ∪ 𝑌 ;
• 𝑏 is the parameter of the 3-Set Cover problem (where the goal is to determine whether there

exist 𝑏 elements of 𝑆 the union of which equals𝑈 );

• 𝑐 is the betweenness centrality measure;

• 𝛿 = 1.

From the definition of the problem of Hiding Leaders, we see that the only edges that can

be added to the graph are the edges between 𝑡 and the members of 𝑆 , i.e., 𝐴∗ ⊆ 𝐴, where 𝐴 =

{(𝑡, 𝑆1), . . . , (𝑡, 𝑆𝑘 )}. Notice that any such choice of 𝐴∗ corresponds to selecting a subset of |𝐴∗ |
elements of 𝑆 in the 3-Set Cover problem. In what follows, we will show that a solution to the

above instance of Hiding Leaders corresponds to a solution to the 3-Set Cover problem.

First, we show that for every 𝑣 ∈ 𝑉 \ {𝑡, 𝑧} and every 𝐴∗ ⊆ 𝐴 we have 𝑐 (𝐺 ′, 𝑣) < 𝑐 (𝐺 ′, 𝑡), where
𝐺 ′ = (𝑉 , 𝐸 ∪ 𝐴∗). To this end, let 𝐵(𝐺 ′, 𝑣) denote the sum of percentages of all shortest paths

between all other pairs of nodes that are controlled by 𝑣 (following convention, a shortest path

is said to be “controlled” by a node if the path goes through that node). More formally, we have:
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𝐵(𝐺 ′, 𝑣) = ∑
𝑤,𝑤′∈𝑉 \{𝑣 }

| {𝑝∈Π (𝑤,𝑤′) :𝑣∈𝑝 } |
|Π (𝑤,𝑤′) | . Notice that 𝑐 (𝐺 ′, 𝑣) = 2

(𝑛−1) (𝑛−2) 𝐵(𝐺
′, 𝑣), hence for any

two nodes 𝑣,𝑤 ∈ 𝑉 we have that 𝐵(𝐺 ′, 𝑣) < 𝐵(𝐺 ′,𝑤) implies 𝑐 (𝐺 ′, 𝑣) < 𝑐 (𝐺 ′,𝑤). We show that

the following holds: ∀𝑣∈𝑉 \{𝑡,𝑧 }∀𝐴∗⊆�̂�𝐵(𝐺 ′, 𝑣) < 𝐵(𝐺 ′, 𝑡).
Notice that since 𝑡 controls all shortest paths between nodes in 𝑋 and nodes in {𝑧} ∪ 𝑌 ∪ 𝑆 ∪𝑈 ′

(and does not control any other shortest paths), we have that: 𝐵(𝐺 ′, 𝑡) = 𝛼 (𝛽 + |𝑈 |𝛾 + |𝑆 | + 1) >
|𝑈 |6 ( |𝑆 | + 1)4.
For nodes in 𝑋 ∪ 𝑌 ∪𝑈 ′ we have 𝐵(𝐺 ′, 𝑥𝑖 ) = 𝐵(𝐺 ′, 𝑦𝑖 ) = 𝐵(𝐺 ′, 𝑢 ′𝑖, 𝑗 ) = 0 < 𝐵(𝐺 ′, 𝑡), as they do

not control any shortest paths (because all their neighbors form a clique).

For any node 𝑆𝑖 ∈ 𝑆 we have:

𝐵(𝐺 ′, 𝑆𝑖 ) ≤ 3𝛾 (𝛼 + 𝛽 + (|𝑈 | − 3)𝛾 + |𝑆 |) + (𝛼 + 1) (( |𝑈 | − 3)𝛾 + |𝑆 | − 1)

because 𝑆𝑖 controls some shortest paths between each of the 3𝛾 nodes, 𝑢 ′
𝑗,𝑘
, that are connected to 𝑆𝑖

and the nodes in {𝑡, 𝑧} ∪ 𝑋 ∪ 𝑌 ∪ 𝑆 ∪𝑈 ′ \ {𝑆𝑖 , 𝑢 ′𝑗,𝑘 } (there are at most 3𝛾 (𝛼 + 𝛽 + (|𝑈 | − 3)𝛾 + |𝑆 |)
pairs of these nodes), and also because 𝑆𝑖 controls some of the shortest paths between nodes in

{𝑡} ∪𝑋 and nodes in 𝑆 ∪𝑈 ′ \ ({𝑆𝑖 } ∪ (𝑁 (𝑆𝑖 ) ∩𝑈 ′)) (there are at most (𝛼 + 1) (( |𝑈 | − 3)𝛾 + |𝑆 | − 1)
pairs of these nodes). By substituting values of 𝛼 , 𝛽 , and 𝛾 we get:

𝐵(𝐺 ′, 𝑆𝑖 ) ≤3|𝑈 | ( |𝑆 | + 1)2
(
2|𝑈 |3 ( |𝑆 | + 1)2 − |𝑈 | ( |𝑆 | + 1) + (|𝑈 | − 3) |𝑈 | ( |𝑆 | + 1)2 + |𝑆 |

)
+
(
|𝑈 |3 ( |𝑆 | + 1)2 + 1

) (
( |𝑈 | − 3) |𝑈 | ( |𝑆 | + 1)2 + |𝑆 | − 1

)
.

Using |𝑆 | − |𝑈 | ( |𝑆 | + 1) < 0, |𝑈 | − 3 < |𝑈 | and |𝑆 | − 1 − 3|𝑈 | ( |𝑆 | + 1)2 < 0 we get:

𝐵(𝐺 ′, 𝑆𝑖 ) <3|𝑈 | ( |𝑆 | + 1)2
(
2|𝑈 |3 ( |𝑆 | + 1)2 + |𝑈 |2 ( |𝑆 | + 1)2

)
+
(
|𝑈 |3 ( |𝑆 | + 1)2 + 1

)
|𝑈 |2 ( |𝑆 | + 1)2.

Using basic arithmetic operations, this can be simplified to:

𝐵(𝐺 ′, 𝑆𝑖 ) < 3|𝑈 |3 ( |𝑆 | + 1)4 (2|𝑈 | + 1) + |𝑈 |2 ( |𝑆 | + 1)2
(
|𝑈 |3 ( |𝑆 | + 1)2 + 1

)
.

Since 2|𝑈 | + 1 < 7

3
|𝑈 | and |𝑈 |3 ( |𝑆 | + 1)2 + 1 < 2|𝑈 |3 ( |𝑆 | + 1)2 we get for |𝑈 | ≥ 4:

𝐵(𝐺 ′, 𝑆𝑖 ) < 7|𝑈 |4 ( |𝑆 | + 1)4 + 2|𝑈 |5 ( |𝑆 | + 1)4 < |𝑈 |6 ( |𝑆 | + 1)4 < 𝐵(𝐺 ′, 𝑡).

Hence, 𝐵(𝐺 ′, 𝑆𝑖 ) < 𝐵(𝐺 ′, 𝑡).
Therefore, either 𝑡 or 𝑧 has the highest betweenness centrality. Since 𝑧 ∈ 𝐿, 𝑡 ∈ 𝐹 , and the

safety margin is 𝛿 = 1, then 𝐴∗ ⊆ 𝐴 is a solution to the problem of Hiding Leaders if and only if

𝐵(𝐺 ′, 𝑡) > 𝐵(𝐺 ′, 𝑧).
As stated above, we have that 𝐵(𝐺 ′, 𝑡) = 𝛼 (𝛽 + |𝑈 |𝛾 + |𝑆 | + 1) as 𝑡 controls all shortest paths

between nodes in 𝑋 and all other nodes (there are 𝛼 (𝛽 + |𝑈 |𝛾 + |𝑆 | + 1 such pairs of nodes) and

does not control any other shortest paths.

On the other hand, we have that:

𝐵(𝐺 ′, 𝑧) = 𝛽 (𝛼 + |𝑈 |𝛾 + |𝑆 | + 1) + (𝛼 + 1) ( |𝑆 | − |𝐴
∗ |)

|𝐴∗ | + 1 +
∑︁

𝑢′𝑖,𝑗 ∈𝑈 ′:
𝑁 (𝑡,𝑢′𝑖,𝑗 )=∅

(𝛼 + 1) |𝑁 (𝑧,𝑢 ′𝑖, 𝑗 ) |
|𝑁 (𝑧,𝑢 ′

𝑖, 𝑗
) | + |𝐴∗ | |𝑁 (𝑧,𝑢 ′

𝑖, 𝑗
) | .

as 𝑧 controls all shortest paths between nodes in 𝑌 and all other nodes (there are 𝛽 (𝛼 + |𝑈 |𝛾 + |𝑆 | +1)
such pairs of nodes), one of |𝐴∗ | + 1 shortest paths between each node in {𝑡} ∪ 𝑋 and each of

|𝑆 | − |𝐴∗ | nodes in 𝑆 \ {𝑆𝑖 : (𝑡, 𝑆𝑖 ) ∈ 𝐴∗}, and |𝑁 (𝑧,𝑢 ′𝑖, 𝑗 ) | of the shortest paths between {𝑡} ∪𝑋 and
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nodes {𝑢 ′𝑖, 𝑗 ∈ 𝑈 ′ : 𝑁 (𝑡,𝑢 ′𝑖, 𝑗 ) = ∅}. Therefore we have that:

𝐵(𝐺 ′, 𝑧) − 𝐵(𝐺 ′, 𝑡) = (𝛽 − 𝛼) ( |𝑈 |𝛾 + |𝑆 | + 1) + (𝛼 + 1)
©«
|𝑆 | − |𝐴∗ |
|𝐴∗ | + 1 +

∑︁
𝑢′𝑖,𝑗 ∈𝑈 ′:

𝑁 (𝑡,𝑢′𝑖,𝑗 )=∅

1

|𝐴∗ | + 1

ª®®®®¬
.

We will now prove that if there exists a solution 𝑆∗ to the given instance of the 3-Set Cover

problem, then there also exists a solution to the constructed instance of the Hiding Leaders problem.

To this end, let 𝐴∗ = {(𝑡, 𝑆𝑖 ) : 𝑆𝑖 ∈ 𝑆∗}. We will show that 𝐴∗ is a solution to the constructed

instance of the Hiding Leaders problem. Since 𝑆∗ is a solution to the given instance of the 3-Set

Cover problem, then in 𝐺 ′ = (𝑉 , 𝐸 ∪ 𝐴∗) we have that for every node 𝑢 ′
𝑗,𝑘

there exists a node 𝑆𝑖

such that 𝑆𝑖 ∈ 𝑁 (𝑡,𝑢 ′𝑗,𝑘 ) (it is a node 𝑆𝑖 ∈ 𝑆∗ such that 𝑢 𝑗 ∈ 𝑆𝑖 ). Hence, given that |𝐴∗ | > 0, we have:

𝐵(𝐺 ′, 𝑧) − 𝐵(𝐺 ′, 𝑡) < (𝛽 − 𝛼) ( |𝑈 |𝛾 + |𝑆 | + 1) + (𝛼 + 1) |𝑆 |.

By substituting values of 𝛼 , 𝛽 , and 𝛾 we get:

𝐵(𝐺 ′, 𝑧) − 𝐵(𝐺 ′, 𝑡) <
(
|𝑈 |3 ( |𝑆 | + 1)2 + 1

)
|𝑆 | − |𝑈 | ( |𝑆 | + 1)

(
|𝑈 |2 ( |𝑆 | + 1)2 + |𝑆 | + 1

)
.

Using basic arithmetic operations, we get:

𝐵(𝐺 ′, 𝑧) − 𝐵(𝐺 ′, 𝑡) <
(
|𝑈 |3 ( |𝑆 | + 1)2 + 1

)
|𝑆 | −

(
|𝑈 |3 ( |𝑆 | + 1) + |𝑈 |

)
( |𝑆 | + 1)2 < 0.

Therefore, we have 𝐵(𝐺 ′, 𝑡) > 𝐵(𝐺 ′, 𝑧), which, as mentioned above, is a sufficient condition for 𝐴∗

to be a solution to the constructed instance of the Hiding Leaders problem.

Finally, we will prove that if there exists a solution to the constructed instance of the Hiding

Leaders problem, then there also exists a solution to the given instance of the 3-Set Cover problem.

We will prove this by contradiction. Assume that there exists no solution to the given instance of

the 3-Set Cover problem, but there exists a solution 𝐴∗ to the constructed instance of the Hiding

Leaders problem. We will show that 𝐴∗ cannot be a solution, hence the contradiction.
Since there are no solutions to the 3-Set Cover problem instance, after adding 𝐴∗ to the network,

there must exist a node 𝑢 ′𝑖, 𝑗 such that 𝑁 (𝑡,𝑢 ′𝑖, 𝑗 ) = ∅, because otherwise the set {𝑆𝑖 ∈ 𝑆 : (𝑡, 𝑆𝑖 ) ∈ 𝐴∗}
would be such a solution. Since for a given 𝑖 all nodes 𝑢 ′𝑖,1, . . . , 𝑢

′
𝑖,𝛾 have the same set of neighbors,

there must exist at least 𝛾 nodes 𝑢 ′𝑖, 𝑗 such that 𝑁 (𝑡,𝑢 ′𝑖, 𝑗 ) = ∅. Hence, given that |𝐴∗ | ≤ |𝑆 |, we have:

𝐵(𝐺 ′, 𝑧) − 𝐵(𝐺 ′, 𝑡) ≥ (𝛽 − 𝛼) ( |𝑈 |𝛾 + |𝑆 | + 1) + (𝛼 + 1)𝛾 1

|𝑆 | + 1 .

By substituting values of 𝛼 , 𝛽 , and 𝛾 we get:

𝐵(𝐺 ′, 𝑧) − 𝐵(𝐺 ′, 𝑡) ≥ |𝑈 | ( |𝑆 | + 1) ( |𝑈 |3 ( |𝑆 | + 1)2 + 1) − |𝑈 | ( |𝑆 | + 1) ( |𝑈 |2 ( |𝑆 | + 1)2 + |𝑆 | + 1).

Using basic arithmetic operations, we get:

𝐵(𝐺 ′, 𝑧) − 𝐵(𝐺 ′, 𝑡) ≥ |𝑈 |4 ( |𝑆 | + 1)3 + 1 −
(
|𝑈 |3 ( |𝑆 | + 1)3 + |𝑈 | ( |𝑆 | + 1)2

)
> 0.

Therefore, we have 𝐵(𝐺 ′, 𝑡) < 𝐵(𝐺 ′, 𝑧). However, we know that 𝐵(𝐺 ′, 𝑡) > 𝐵(𝐺 ′, 𝑧) is a necessary
condition for 𝐴∗ to be a solution to the constructed instance of the Hiding Leaders problem. Hence,

𝐴∗ cannot be such a solution.

We have shown that a solution to the constructed instance of the Hiding Leaders problem exists

if and only if there also exists a solution to the given instance of the 3-Set Cover problem, which

concludes the proof. □
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3.2 Hardness of Approximation
Let us now consider a minimization version of the problem of Hiding Leaders.

Definition 2 (Minimum Hiding Leaders). This problem is defined by a tuple, (𝐺, 𝐿, 𝑐, 𝛿), where
𝐺 = (𝑉 , 𝐸) ∈ G is a network, 𝐿 ⊂ 𝑉 is a set of leaders to be hidden, 𝑐 : G ×𝑉 → R is a centrality
measure, and 𝛿 ∈ N is a chosen safety margin. Then, if we denote by 𝐹 = 𝑉 \ 𝐿 the set of “followers”,
the goal is to identify a set of edges to be added to the network, 𝐴∗ ⊆ 𝐹 × 𝐹 , such that the size of 𝐴∗ is
minimal and the resulting network 𝐺 ′ = (𝑉 , 𝐸 ∪ 𝐴∗) contains at least 𝑑 followers that each have a
centrality score higher than that of any leader, i.e.:

∃𝐹 ′⊆𝐹 |𝐹 ′ | ≥ 𝛿 ∧ ∀𝑓 ∈𝐹 ′∀𝑙 ∈𝐿𝑐 (𝐺 ′, 𝑓 ) > 𝑐 (𝐺 ′, 𝑙)

Intuitively, the goal is to identify the smallest possible set of connections between the followers,

the addition of which will keep the leaders safe from detection by the given centrality measure.

Regarding the approximation of the problem given the degree centrality, Dey and Medya [17]

presented a 2-approximation algorithm, and they showed that if there exists a (2−𝜖)-approximation

algorithm for 𝜖 > 0, then there also exists a
𝜖
2
-approximation algorithm for the Densest k-Subgraph

problem, which would be considered a substantial breakthrough.

We now give the hardness of approximation results for closeness and betweenness centrality.

Theorem 4. The Minimum Hiding Leaders problem given the closeness centrality cannot be ap-
proximated within a ratio of (1 − 𝜖) ln |𝐹 | for any 𝜖 > 0, unless 𝑃 = 𝑁𝑃 .

Proof. In order to prove the theorem, we will use the result by Dinur and Steurer [19] that the

Minimum 3-Set Cover problem cannot be approximated within (1 − 𝜖) ln |𝐹 | for any 𝜖 > 0, unless

𝑃 = 𝑁𝑃 . We will show that the existence of an efficient approximation algorithm for the Minimum

Hiding Leaders problem implies the existence of an approximation algorithm for the Minimum

3-Set Cover problem with the same approximation ratio.

Let 𝐼 = (𝑈 , 𝑆) be an instance of the Minimum Set Cover problem, where 𝑈 is the universe

{𝑢1, . . . , 𝑢 |𝑈 |}, while 𝑆 is a collection {𝑆1, . . . , 𝑆 |𝑆 |} of subsets of 𝑈 such that ∀𝑆𝑖 |𝑆𝑖 | = 3. The goal

here is to find a subset 𝑆∗ ⊆ 𝑆 such that the union of 𝑆∗ equals𝑈 and the size of 𝑆∗ is minimal.

First, we will show a function 𝑓 (𝐼 ) that, based on an instance of the problem of Minimum 3-Set

Cover, constructs an instance of the Minimum Leaders Problem. Let:

• 𝐺 be a network constructed as in the proof of Theorem 2,

• 𝐿 = {𝑧} ∪ 𝑋 ∪ 𝑌 ∪𝑈 ′ be the set of leaders;
• 𝑐 be the closeness centrality measure;

• 𝛿 = 1 be the safety margin.

The formula of the function 𝑓 is then 𝑓 (𝐼 ) = (𝐺, 𝐿, 𝑐, 𝛿). Now let𝐴∗ be the solution to the instance
𝑓 (𝐼 ) of the Minimum Hiding Leaders problem. The function 𝑔 that computes the corresponding

solution to the instance 𝐼 of theMinimum 3-Set Cover problem is then𝑔(𝐴∗) = {𝑆𝑖 ∈ 𝑆 : (𝑡, 𝑆𝑖 ) ∈ 𝐴∗},
i.e., the sets corresponding to the nodes that got connected with 𝑡 in the solution to 𝑓 (𝐼 ).
In the proof of Theorem 2 we showed that 𝐴∗ is a solution to the constructed instance of the

Hiding Leaders problem if and only if 𝑈𝐴∗ = 𝑈 , i.e., all elements of 𝑈 are covered by sets in

{𝑆𝑖 ∈ 𝑆 : (𝑡, 𝑆𝑖 ) ∈ 𝐴∗}. Since the Minimum Hiding Leaders problem has the same set of constraints

(other than |𝐴∗ | = 𝑏) as the Hiding Leaders problem, it is also the case that 𝐴∗ is a solution to the

constructed instance of the Minimum Hiding Leaders problem if and only if all elements of 𝑈 are

covered by sets in 𝑔(𝐴∗) = {𝑆𝑖 ∈ 𝑆 : (𝑡, 𝑆𝑖 ) ∈ 𝐴∗}. What is more, we have that |𝐴∗ | = |𝑔(𝐴∗) |.
Now, assume that there exists an approximation algorithm for the Minimum Hiding Leaders

problem with ratio (1 − 𝜖) ln |𝐹 | for some 𝜖 > 0. Let us use this algorithm to solve the constructed

instance 𝑓 (𝐼 ), acquiring solution 𝐴∗, and consider the solution 𝑔(𝐴∗) to the given instance of the
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Minimum 3-Set Cover problem. Since the size of the solution is the same for both instances and

|𝑆 | = |𝐹 |−1, we obtained an approximation algorithm that solves the Minimum 3-Set Cover problem

to within (1 − 𝜖) ln |𝑆 | for 𝜖 > 0. However, Dinur and Steurer [19] showed that the Minimum 3-Set

Cover problem cannot be approximated to within (1 − 𝜖) ln |𝑆 | for any 𝜖 > 0, unless 𝑃 = 𝑁𝑃 .

Therefore, such an approximation algorithm for the Minimum Hiding Leaders problem cannot

exist, unless 𝑃 = 𝑁𝑃 . This concludes the proof. □

Theorem 5. The Minimum Hiding Leaders problem given the betweenness centrality cannot be
approximated within a ratio of (1 − 𝜖) ln |𝐹 | for any 𝜖 > 0, unless 𝑃 = 𝑁𝑃 .

Proof. In order to prove the theorem, we will use the result by Dinur and Steurer [19] that the

Minimum 3-Set Cover problem cannot be approximated within (1 − 𝜖) ln |𝐹 | for any 𝜖 > 0, unless

𝑃 = 𝑁𝑃 . We will show that the existence of an efficient approximation algorithm for the Minimum

Hiding Leaders problem implies the existence of an approximation algorithm for the Minimum

3-Set Cover problem with the same approximation ratio.

Let 𝐼 = (𝑈 , 𝑆) be an instance of the Minimum Set Cover problem, where 𝑈 is the universe

{𝑢1, . . . , 𝑢 |𝑈 |}, while 𝑆 is a collection {𝑆1, . . . , 𝑆 |𝑆 |} of subsets of 𝑈 such that ∀𝑆𝑖 |𝑆𝑖 | = 3. The goal

here is to find a subset 𝑆∗ ⊆ 𝑆 such that the union of 𝑆∗ equals𝑈 and the size of 𝑆∗ is minimal.

First, we will show a function 𝑓 (𝐼 ) that, based on an instance of the problem of Minimum 3-Set

Cover, constructs an instance of the Minimum Leaders Problem. Let:

• 𝐺 be a network constructed as in the proof of Theorem 3,

• 𝐿 = {𝑧} ∪ 𝑋 ∪ 𝑌 ∪𝑈 ′ be the set of leaders;
• 𝑐 be the betweenness centrality measure;

• 𝛿 = 1 be the safety margin.

The formula of the function 𝑓 is then 𝑓 (𝐼 ) = (𝐺, 𝐿, 𝑐, 𝛿). Now let 𝐴∗ be a solution to the instance

𝑓 (𝐼 ) of the Minimum Hiding Leaders problem. The function 𝑔 that computes the corresponding

solution to the instance 𝐼 of theMinimum 3-Set Cover problem is then𝑔(𝐴∗) = {𝑆𝑖 ∈ 𝑆 : (𝑡, 𝑆𝑖 ) ∈ 𝐴∗},
i.e., the sets corresponding to the nodes that got connected with 𝑡 in the solution to 𝑓 (𝐼 ).
In the proof of Theorem 3 we showed that 𝐴∗ is a solution to the constructed instance of the

Hiding Leaders problem if and only if there does not exist a node 𝑢 ′𝑖, 𝑗 such that 𝑁 (𝑡,𝑢 ′𝑖, 𝑗 ) = ∅.
This is the case when all elements of 𝑈 are covered by sets in {𝑆𝑖 ∈ 𝑆 : (𝑡, 𝑆𝑖 ) ∈ 𝐴∗}. Since the
Minimum Hiding Leaders problem has the same set of constraints (other than |𝐴∗ | = 𝑏) as the

Hiding Leaders problem, it is also the case that 𝐴∗ is a solution to the constructed instance of

the Minimum Hiding Leaders problem if and only if all the elements of𝑈 are covered by sets in

𝑔(𝐴∗) = {𝑆𝑖 ∈ 𝑆 : (𝑡, 𝑆𝑖 ) ∈ 𝐴∗}. What is more, we have that |𝐴∗ | = |𝑔(𝐴∗) |.
Now, assume that there exists an approximation algorithm for the Minimum Hiding Leaders

problem with ratio (1 − 𝜖) ln |𝐹 | for some 𝜖 > 0. Let us use this algorithm to solve the constructed

instance 𝑓 (𝐼 ), acquiring solution 𝐴∗, and consider the solution 𝑔(𝐴∗) to the given instance of the

Minimum 3-Set Cover problem. Since the size of the solution is the same for both instances and

|𝑆 | = |𝐹 |−1, we obtained an approximation algorithm that solves the Minimum 3-Set Cover problem

to within (1 − 𝜖) ln |𝑆 | for 𝜖 > 0. However, Dinur and Steurer [19] showed that the Minimum 3-Set

Cover problem cannot be approximated to within (1 − 𝜖) ln |𝑆 | for any 𝜖 > 0, unless 𝑃 = 𝑁𝑃 .

Therefore, such an approximation algorithm for the Minimum Hiding Leaders problem cannot

exist, unless 𝑃 = 𝑁𝑃 . This concludes the proof. □

To summarize, in this section we have analyzed the problem of hiding leaders in a given network.

This problem involves determining an optimal set of edges to be added between the followers

in order to reduce the ranking of the leaders according to the three main centrality measures,

namely degree, closeness and betweenness. Our theoretical findings can be summarized as follows.
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In Theorems 1-3 we have shown that an optimal solution cannot be computed in polynomial

time given any of the centrality measures. In other words, if the followers wanted to create fake

connections between them in order to mislead the analysis and keep the identity of their leaders

hidden from centrality measures, then it is intractable to identify an optimal set of such connections.

Moreover, in Theorems 4 and 5 we have shown that the problem cannot even be approximated to a

sub-logarithmic ratio (with respect to the number of followers) given closeness and betweenness

centrality. In other words, if the followers wanted to create fake connections to shield their leaders

from closeness and betweenness centrality, then it is intractable to identify a set of fake connections

whose size is relatively close to optimal (as mentioned earlier, the hardness of approximation for

the degree centrality was shown by Dey and Medya [17]).

In the following section, we shift our attention to a setting where, instead of modifying an

existing network, the goal is to build a network structure from scratch, such that the leaders are

guaranteed to be hidden at least to a certain extent.

4 CAPTAIN NETWORK
In the previous section, we proved the NP-completeness of modifying an existing network in order

to hide its leaders. However, in certain cases, the leaders are to develop a new covert network

(e.g. a subnetwork in a foreign country) rather than to modify an existing one. In this section, we

show that it is possible to efficiently create a network from scratch, designed specifically to hide its

leaders without limiting their ability to influence the other nodes in the network.

4.1 Isolated Structure
We begin with a network analyzed in isolation, without being embedded in a larger structure. We

call this the “captain” network, and it is formed in the following manner. First, the leader nodes,

𝐿, form a clique, to provide the best possible communication among them. Each leader 𝑙𝑖 ∈ 𝐿 is

then assigned a group of 𝑘 “captains”, 𝐶𝑖 = {𝑐𝑖,1, . . . , 𝑐𝑖,𝑘 }, which are connected to that leader. All

captains are then connected into a complete |𝐿 |-partite graph based on the division into groups. We

will denote the set of all captains by 𝐶 , i.e., 𝐶 =
⋃
𝐶𝑖 . A captain, 𝑐𝑖, 𝑗 serves two purposes: the first

is to conceal the leaders in 𝐿, which is achieved by ensuring that 𝑐𝑖, 𝑗 is ranked higher than every

node in 𝐿 (according to the three standard centrality measures); the second purpose of 𝑐𝑖, 𝑗 is to

pass on the influence of 𝑙𝑖 to the rest of the network. The remaining𝑚 nodes, 𝑋 = {𝑥1, . . . , 𝑥𝑚}, are
each connected to one captain from each group. Note that the set of “followers” in this network is

𝐹 = 𝐶 ∪𝑋 . Algorithm 1 summarizes the steps that create such a captain network, whereas Figure 3

illustrates a sample network with |𝐿 | = 3.

Note that if the steps of Algorithm 1 are followed given just a single leader, the result would

be a tree structure. While a tree is a fairly common organizational structure, it may not provide

an adequate disguise of the leader, especially if the leader is identified as a root of the tree. With

this in mind, whenever there is a single leader, we create two groups of captains to avoid the tree

structure. The resulting structure is illustrated in Figure 4.

Figure 5 presents the time necessary to generate the structure of a captain network using

Algorithm 1. The computation was performed on a PC with Intel Core i7-4790 CPU and 24 GB

RAM, using an implementation in Java programming language, JDK version 13.0.2. As it can be

seen, the captain network structure can be generated efficiently even if it incorporates a million

nodes.

Next, we prove that every captain has a greater centrality value than any of the leaders.

Theorem 6. Given a captain network with 𝑘 captains in each group, let 𝑟 =

⌊
|𝑋 |
𝑘

⌋
denote the

minimal number of connections that a captain, 𝑐𝑖, 𝑗 , has with nodes from 𝑋 . Then, if either (|𝐿 | ≥ 2
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Algorithm 1 Constructing a captain network with multiple leaders

Input: The set of leaders 𝐿 = {𝑙1, . . . , 𝑙 |𝐿 |}, the set of followers 𝐹 = {𝑓1, . . . , 𝑓 |𝐹 |}, and the number of captains

in each group, i.e., 𝑘 (where 1 ≤ 𝑘 ≤ |𝐹 ||𝐿 | ).
Output: The captain network (𝐿 ∪ 𝐹, 𝐸)

for 𝑖 = 1, . . . ,max(2, |𝐿 |) do
for 𝑗 = 1, . . . , 𝑘 do

𝑐𝑖, 𝑗 ← 𝑓(𝑖−1)𝑘+𝑗
𝐶𝑖 ← 𝐶𝑖 ∪ {𝑐𝑖, 𝑗 }

𝑋 ← 𝐹 \⋃𝑖 𝐶𝑖
for 𝑙𝑖 , 𝑙 𝑗 ∈ 𝐿 do

𝐸 ← 𝐸 ∪ {(𝑙𝑖 , 𝑙 𝑗 )}
for 𝑙𝑖 ∈ 𝐿 do

for 𝑐𝑖, 𝑗 ∈ 𝐶𝑖 do
𝐸 ← 𝐸 ∪ {(𝑙𝑖 , 𝑐𝑖, 𝑗 )}

if |𝐿 | = 1 then
for 𝑐2, 𝑗 ∈ 𝐶2 do

𝐸 ← 𝐸 ∪ {(𝑙1, 𝑐2, 𝑗 )}
for 𝐶𝑖 ≠ 𝐶 𝑗 do

for 𝑐 ∈ 𝐶𝑖 do
for 𝑐 ′ ∈ 𝐶 𝑗 do

𝐸 ← 𝐸 ∪ {(𝑐, 𝑐 ′)}
𝑗 ← 0

for 𝑥 ∈ 𝑋 do
for 𝑖 = 1, . . . ,max(2, |𝐿 |) do

𝐸 ← 𝐸 ∪ {(𝑥, 𝑐𝑖, 𝑗 )}
𝑗 ← ( 𝑗 + 1) mod 𝑘

return (𝐿 ∪ 𝐹, 𝐸)

𝑙𝑙2

…

…
……

𝑙𝑙1 𝑙𝑙3

𝑥𝑥1 𝑥𝑥2 𝑥𝑥𝑚𝑚

𝑐𝑐1,1

𝑐𝑐1,𝑘𝑘

𝑐𝑐3,1

𝑐𝑐3,𝑘𝑘

𝑐𝑐2,1

𝑐𝑐2,𝑘𝑘

Fig. 3. A captain network with |𝐿 | = 3. Edges that
involve the leaders are depicted as solid black lines;
edges between captains are depicted as gray lines;
edges between captains and other nodes are depicted
as dotted lines.

…

……

𝑙𝑙

𝑥𝑥1 𝑥𝑥2 𝑥𝑥𝑚𝑚

𝑐𝑐1,2

𝑐𝑐1,𝑘𝑘

𝑐𝑐2,2

𝑐𝑐2,𝑘𝑘

𝑐𝑐1,1 𝑐𝑐2,1

Fig. 4. A captain network with a single leader. Edges
representing the leader’s links are depicted as solid
black lines; edges between captains are depicted as
gray lines; edges between captains and other nodes
are depicted as dotted lines.

and 𝑟 ≥ 1), or (|𝐿 | = 1 and 𝑘 <
√︁
|𝐹 | + 1 − 1), then every captain has a greater degree, closeness and

betweenness centrality than any of the leaders.

Proof. Starting with the case of degree centrality and multiple leaders, the degree of a leader

node, 𝑙 , is 𝑐𝑑𝑔 (𝐺, 𝑙) = |𝐿 |+𝑘−1
𝑛−1 , since it is only connected to other leaders and captains from its group.
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Fig. 5. Given the number of leaders, the number of captains, and the size of the captain network, the figure
depicts the time it takes to generate network structure. The results are reported on logarithmic scales, as an
average over 100 executions, with colored areas representing 95% confidence intervals.

On the other hand, the degree of a captain, 𝑐𝑖, 𝑗 , is 𝑐𝑑𝑔 (𝐺, 𝑐𝑖, 𝑗 ) ≥ 1+𝑘 ( |𝐿 |−1)+𝑟
𝑛−1 , since it is connected to

one of the leader nodes, to all captains from other groups, and to at least 𝑟 other nodes from 𝑋 . As

such, we have:

𝑐𝑑𝑔 (𝐺, 𝑐𝑖, 𝑗 ) − 𝑐𝑑𝑔 (𝐺, 𝑙) ≥
1 + 𝑘 ( |𝐿 | − 1) + 𝑟 − (|𝐿 | + 𝑘 − 1)

𝑛 − 1 =
( |𝐿 | − 2) (𝑘 − 1) + 𝑟

𝑛 − 1 .

Now since |𝐿 | ≥ 2, 𝑘 ≥ 1, and 𝑟 ≥ 1, then we have that 𝑐𝑑𝑔 (𝐺, 𝑐𝑖, 𝑗 ) > 𝑐𝑑𝑔 (𝐺, 𝑙) for any 𝑐𝑖, 𝑗 .
Next, we handle the case of degree centrality with a single leader. The degree of the leader node,

𝑙 , is 𝑐𝑑𝑔 (𝐺, 𝑙) = 2𝑘
𝑛−1 , since it is only connected to captains from both groups. On the other hand, the

degree of a captain 𝑐𝑖, 𝑗 , is 𝑐𝑑𝑔 (𝐺, 𝑐𝑖, 𝑗 ) ≥ 1+𝑘+𝑟
𝑛−1 , since it is connected to the leader node, to all captains

from other groups, and to at least 𝑟 members. Thus: 𝑐𝑑𝑔 (𝐺, 𝑐𝑖, 𝑗 ) − 𝑐𝑑𝑔 (𝐺, 𝑙) ≥ 1+𝑘+𝑟−2𝑘
𝑛−1 = 𝑟−𝑘+1

𝑛−1 .

Therefore, since 𝑟 =

⌊
|𝑋 |
𝑘

⌋
, |𝑋 | = |𝐹 | −2𝑘 , then we have 𝑐𝑑𝑔 (𝐺, 𝑐𝑖, 𝑗 ) > 𝑐𝑑𝑔 (𝐺, 𝑙) for:

⌊
|𝐹 |−2𝑘

𝑘

⌋
−𝑘+1 ≥

|𝐹 |−2𝑘
𝑘
− 𝑘 > 0, which is the case for 𝑘 <

√︁
|𝐹 | + 1 − 1.

Moving on to closeness centrality, for any given node, 𝑣 , this centrality depends inversely on the

sum of the lengths of the shortest paths from 𝑣 to every other node, i.e.,

∑
𝑤∈𝑉 𝑑 (𝑣,𝑤). For every

leader and every captain, the distance to every other node is either 1 or 2. More precisely, for every

𝑣 ∈ 𝐿∪𝐶 , we have:∑𝑤∈𝑉 𝑑 (𝑣,𝑤) = 1|𝑁 (𝑣) | +2(𝑛− |𝑁 (𝑣) |) = 2𝑛− |𝑁 (𝑣) |. Consequently, whenever
all captains have greater degree centrality than all leaders, they must also have greater closeness

centrality. Since we have already proven this fact for the degree centrality, then this implies that

𝑐𝑐𝑙 (𝐺, 𝑐𝑖, 𝑗 ) > 𝑐𝑐𝑙 (𝐺, 𝑙).
Finally, regarding betweenness centrality, let Z (𝑣) denote: ∑𝑢,𝑤∈𝑉 \{𝑣 }

| {𝑝∈Π (𝑢,𝑤) :𝑣∈𝑝 } |
|Π (𝑢,𝑤) | . Then the

betweenness centrality of a node 𝑣 ∈ 𝑉 can be written as: 𝑐𝑏𝑡 (𝐺, 𝑣) = 2

(𝑛−1) (𝑛−2) Z (𝑣).
For a network with multiple leaders, every leader node 𝑙 belongs to one of the ( |𝐿 | − 1)𝑘 + 1

shortest paths between pairs of captains from her group (alternative shortest paths run through

captains from other groups), as well as one of the 𝑘 + 1 shortest paths between each captain

from her group and all other leaders (alternative shortest paths run through captains from the

group of the chosen leader). Since the leader node 𝑙 belongs to no other shortest paths, we have:

Z (𝑙) = 𝑘 (𝑘−1)
2( ( |𝐿 |−1)𝑘+1) +

𝑘 ( |𝐿 |−1)
𝑘+1 . Having analyzed Z (𝑙), let us now analyze Z (𝑐𝑖, 𝑗 ) for a captain, 𝑐𝑖, 𝑗 . In

particular, since 𝑐𝑖, 𝑗 belongs to one of the ( |𝐿 | − 1)𝑘 + 1 shortest paths between pairs of captains

from all other groups, as well as one of the 𝑘 + 1 shortest paths between each captain from other
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groups and the leader of her group, we have:

Z (𝑐𝑖, 𝑗 ) >
( |𝐿 | − 1)𝑘 (𝑘 − 1)
2(( |𝐿 | − 1)𝑘 + 1) +

𝑘 ( |𝐿 | − 1)
𝑘 + 1 >

𝑘 (𝑘 − 1)
2(( |𝐿 | − 1)𝑘 + 1) +

𝑘 ( |𝐿 | − 1)
𝑘 + 1 = Z (𝑙).

Notice that there also exist other shortest paths controlled by a given captain 𝑐𝑖, 𝑗 (e.g., shortest

paths between any two nodes 𝑥𝑖′ and 𝑥 𝑗 ′ connected to 𝑐𝑖, 𝑗 ). However, they are not required to show

the inequality, hence we do not consider them. We have that Z (𝑐𝑖, 𝑗 ) > Z (𝑙), which implies that

𝑐𝑏𝑡 (𝐺, 𝑐𝑖, 𝑗 ) > 𝑐𝑏𝑡 (𝐺, 𝑙).
For a network with a single leader, the leader node 𝑙 belongs to one of the 𝑘 + 1 shortest paths

between pairs of captains from each group (alternative shortest paths run through captains from

other groups). Since the leader node 𝑙 belongs to no other shortest paths, we have: Z (𝑙) = 𝑘 (𝑘−1)
𝑘+1 .

Having analyzed Z (𝑙), let us now analyze Z (𝑐𝑖, 𝑗 ) for a captain, 𝑐𝑖, 𝑗 . In particular, since 𝑐𝑖, 𝑗 belongs

to one of the 𝑘 + 1 shortest paths between pairs of captains from the other group, and to the only

shortest path between member nodes connected to her and captains from the other group, we have:

Z (𝑐𝑖, 𝑗 ) ≥
𝑘 (𝑘 − 1)
2(𝑘 + 1) + 𝑟 (𝑘 − 1) =

𝑘 (𝑘 − 1) + 2𝑟 (𝑘 − 1) (𝑘 + 1)
2(𝑘 + 1) >

𝑘 (𝑘 − 1)
𝑘 + 1 = Z (𝑙).

Therefore, we have that Z (𝑐𝑖, 𝑗 ) > Z (𝑙), which implies that 𝑐𝑏𝑡 (𝐺, 𝑐𝑖, 𝑗 ) > 𝑐𝑏𝑡 (𝐺, 𝑙). □

As for the follower’s centrality values, they are sure to be lower than those of the captain.

Intuitively, the follower has fewer neighbors than the captain to which she is connected, and she

lies on none of the shortest paths in the network, as her neighbors form a clique.

4.2 Captain Network Embedded in a Larger Structure
Arguably, it might be too strict to have a network structure in which ordinary members of the

organization, i.e., the nodes in 𝑋 , cannot communicate directly with each other. Furthermore, the

captain network might not be analyzed in isolation, but rather as part of a larger social network in

which it is embedded. The following analysis takes these issues into consideration. Specifically, we

start by considering a situation in which the members of 𝑋 can have any structure of connections

between them, and they can even contact people from outside the organization. After that, we

consider a similar situation, but where the captain is also allowed to contact people from outside

the organization.

Theorem 7. Let 𝐺 be a captain network such that |𝐿 | ≥ 2 and
⌊
|𝑋 |
𝑘

⌋
≥ 1 and let 𝐺 ′ = (𝑉 ′, 𝐸 ′) be

another (potentially empty) network. After adding any set of edges 𝐴∗ ⊆ 𝑋 × (𝑋 ∪𝑉 ′), every captain
has greater degree, closeness and betweenness centrality than any of the leaders.

Proof. As for degree centrality, adding 𝐴∗ does not change the degree of any of the leaders nor

the captains in the network. Thus, the captains still have a higher degree than the leaders.

As for closeness centrality, notice that the distance between any leader and any node in 𝑋 is

always 2. Moreover, the distance between any captain and any node in 𝑋 is not greater than 2.

Hence, we have that the distance from any leader to a given node in 𝑋 is greater than or equal

to the distance from any captain to the same node in 𝑋 , i.e.: ∀𝑙 ∈𝐿∀𝑐𝑖,𝑗 ∈𝐶∀𝑥 ∈𝑋𝑑 (𝑙, 𝑥) ≥ 𝑑 (𝑐𝑖, 𝑗 , 𝑥).
Since all paths from the nodes in 𝐿 ∪𝐶 to the nodes in 𝑉 ′ run through the nodes in 𝑋 , then the

same holds for the nodes in 𝑉 ′, i.e.: ∀𝑙 ∈𝐿∀𝑐𝑖,𝑗 ∈𝐶∀𝑣∈𝑉 ′𝑑 (𝑙, 𝑣) ≥ 𝑑 (𝑐𝑖, 𝑗 , 𝑣). As for the shortest paths
between the nodes in 𝐿 ∪𝐶 , none of them run through the nodes in 𝑋 ∪𝑉 ′, neither before, nor
after the addition of 𝐴∗. Therefore, since for the network𝐺 we know that every captain has greater

closeness centrality than any leader, this would still hold after the addition of 𝐴∗.
Finally, regarding betweenness centrality, notice that when we compared the leaders to the

captains in a network with multiple leaders in the proof of Theorem 6, we only considered the paths
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between the nodes in 𝐿 ∪𝐶 . Since, before the addition of 𝐴∗, none of the shortest paths between
the nodes in 𝐿 ∪𝐶 go through the nodes in 𝑋 , and since the addition of 𝐴∗ does not create any
new shortest paths between the nodes in 𝐿 ∪𝐶 , then the argument made in the proof of Theorem 6

about 𝑐𝑏𝑡 (𝐺, 𝑐𝑖, 𝑗 ) > 𝑐𝑏𝑡 (𝐺, 𝑙) remains valid. Notice that this does not mean that the betweenness

centrality of captains does not change; it only means that their betweenness centrality remains

greater than that of the leaders. □

It is worth noticing that for a captain network with only one leader the result holds only for

degree and closeness centrality measures (given the assumptions of Theorem 6), i.e., adding new

connections can cause the leader to have higher betweenness centrality than the captains. For

example, connecting the members of𝑋 into a clique would create alternative shortest paths (running

through other nodes in 𝑋 ) between any node 𝑥𝑖 and the captains that 𝑥𝑖 is not directly connected

to, thus greatly reducing the betweenness centrality of the captains that 𝑥𝑖 is directly connected to

(and who previously controlled all shortest paths between 𝑥𝑖 and captains from the other group).

At the same time, the betweenness centrality of the sole leader remains unaffected by adding

connections between the members of 𝑋 . One possible solution in such a situation is to choose one

of the ordinary members as an ad hoc leader and build the structure for |𝐿 | = 2.

Theorem 8. Let 𝐺 = (𝑉 , 𝐸) be a captain network such that |𝐿 | ≥ 2 and
⌊
|𝑋 |
𝑘

⌋
≥ 1 and let

𝐻 = (𝑉 ′, 𝐸) be another (potentially empty) network. After adding any set of edges 𝐴∗ ⊆ (𝐶 ×𝑉 ′) ∪
(𝑋 × (𝑋 ∪𝑉 ′)):
(1) every captain has greater degree centrality than any of the leader nodes;
(2) for every leader, at least 𝑘 ( |𝐿 | − 1) captains have greater closeness centrality than the leader.

Proof. As for degree centrality, adding 𝐴∗ does not change the degree of the leaders, and it can

only increase the degree of the captains. Consequently, the captains still have a higher degree than

the leaders.

As for closeness centrality, we will show that for any given leader 𝑙𝑖 , every captain from a group

other than her own, i.e., any 𝑐 𝑗,𝑘 such that 𝑗 ≠ 𝑖 , has greater closeness centrality than 𝑙𝑖 . To this

end, we show that the following holds, where 𝐷 (𝐺∗, 𝑣) = 𝑛−1
𝑐𝑐𝑙 (𝐺∗,𝑣) =

∑
𝑤∈𝑉∪𝑉 ′ 𝑑𝐺∗ (𝑣,𝑤) and 𝐺∗ is

the union of𝐺 and𝐺 ′ after the addition of 𝐴∗: ∀𝑙𝑖 ∈𝐿∀𝑐 𝑗,𝑘 ∈𝐶 :𝑗≠𝑖𝐷 (𝐺∗, 𝑙𝑖 ) > 𝐷 (𝐺∗, 𝑐 𝑗,𝑘 ). We have that:

𝐷 (𝐺∗, 𝑙𝑖 ) = |𝐿 | − 1+𝑘 + 2( |𝐿 | − 1)𝑘 + 2|𝑋 | +
∑

𝑣∈𝑉 ′ 𝑑 (𝑙𝑖 , 𝑣 ′) as 𝑙𝑖 is at distance 1 from the other |𝐿 | − 1
leaders, as well as 𝑘 captains from her group, and at distance 2 from the other ( |𝐿 | − 1)𝑘 captains

and all |𝑋 | members of 𝑋 . We also have that:

𝐷 (𝐺∗, 𝑐 𝑗,𝑘 ) ≤ 1 + (|𝐿 | − 1)𝑘 + 2( |𝐿 | − 1) + 2(𝑘 − 1) + 𝑟 + 2( |𝑋 | − 𝑟 ) +
∑︁
𝑣∈𝑉 ′

𝑑 (𝑐 𝑗,𝑘 , 𝑣 ′)

as 𝑐 𝑗,𝑘 is at distance 1 from the leader of her group, all ( |𝐿 | − 1)𝑘 captains from other groups, as

well as at least 𝑟 nodes from 𝑋 , and she is at distance 2 from the other |𝐿 | − 1 leaders, 𝑘 − 1 captains
from her own group, and to the other |𝑋 | − 𝑟 members of 𝑋 . Hence, we have that:

𝐷 (𝐺∗, 𝑙𝑖 ) − 𝐷 (𝐺∗, 𝑐 𝑗,𝑘 ) ≥ (|𝐿 | − 2) (𝑘 − 1) + 𝑟 +
∑︁
𝑣∈𝑉 ′

(
𝑑 (𝑙𝑖 , 𝑣 ′) − 𝑑 (𝑐 𝑗,𝑘 , 𝑣 ′)

)
.

We have that |𝐿 | ≥ 2, 𝑘 ≥ 1, and 𝑟 > 0. We also have that for a given leader 𝑙𝑖 and for any node 𝑣 ′

any shortest path between them must run through a node from 𝐶 . If this node from 𝐶 belongs to

the group of 𝑙𝑖 (in which case 𝑙𝑖 can reach it in one step), it can also be reached by any 𝑐 𝑗,𝑘 such that

𝑗 ≠ 𝑖 in one step. If this node from 𝐶 belongs to another group of captains (in which case 𝑙𝑖 can

reach it in two steps), it can also be reached by any 𝑐 𝑗,𝑘 : 𝑗 ≠ 𝑖 in at most two steps. Therefore, we

have that 𝑑 (𝑙𝑖 , 𝑣 ′) ≥ 𝑑 (𝑐 𝑗,𝑘 , 𝑣 ′), which in turn implies that 𝐷 (𝐺∗, 𝑙𝑖 ) > 𝐷 (𝐺∗, 𝑐 𝑗,𝑘 ). This concludes
the proof. □
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Fig. 6. Given captain networks of 100 nodes and 1000 nodes, with varying numbers of captains per group (the
𝑥-axis) and varying numbers of leaders (the 𝑦-axis), the figure depicts the difference in terms of centrality
between a leader and a captain, as well as the influence of a leader as either the Shapley centrality value or
as an expected percentage of activated nodes, according to either the Independent Cascade or the Linear
Threshold model. The scale is fixed for each centrality to allow for comparisons.

Importantly, the result does not hold for betweenness centrality. It is relatively easy to create

a network where only one captain has greater betweenness centrality than a given leader. This

can be achieved by connecting one of the captains from the leader’s group to a single node from a

large enough network 𝐻 (without adding any other connections). This observation suggests that

whenever there is a risk of the network being analyzed using betweenness centrality, the contacts

of the captains with the outside world should be limited.

It is worth noting that the results presented in this section can be applied by leaders who do not

want to build an entirely new organization, but rather modify an already existing network. In that

case, instead of completely disassembling the current structure, the leaders could simply rewire

the connections of themselves, and a small group of nodes selected as captains, while keeping

all ties between the remaining members as they were. Such a process would still require some

compromises for the sake of leaders’ safety, e.g., they would no longer be able to communicate with

anyone besides other leaders and some of the captains, but from the perspective of an ordinary

member of the organization, such a transition could be virtually unnoticeable.
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5 SIMULATION RESULTS
We now present two studies utilizing simulations to analyze different aspects of captain networks.

In the first study, we investigate how modifying the parameters of the captain network affects the

centrality and influence of the leaders. In the second study, we compare the resilience of the captain

network to centrality-based attacks with different types of network structures.

5.1 Centrality and Influence of Leaders
As stated in Theorem 6, a captain network can indeed shield its leaders from centrality analysis

based on degree, closeness and betweenness centralities. On the other hand, as far as other centrality

measures and the influence of the leaders is concerned, we evaluate the network empirically. To

this end, given a captain network with 100 and 1000 nodes, we vary the parameters of the network,

namely: 𝑘 (the number of captains in each group) and |𝐿 | (the number of leaders). For every pair of

parameters, we measure the difference in terms of centrality between a leader and any given captain

(the greater the difference, the greater the leaders’ disguise), and we also measure the influence of a

leader to see how this influence is affected by changing the parameters of the constructed network.

When measuring the influence, we use either the Independent Cascade model with probability 0.15

on each edge, the Linear Threshold model with the threshold values sampled uniformly at random,

or the Shapley centrality which in the literature is often used as the measure of influence [45, 59].

Let us briefly comment on the use of Independent Cascade and Linear Threshold diffusion models

as proxies for the influence of the leaders. In many cases, it is enough for the network to remain

connected in order for the messages of the leader to reach all members (indeed, we also analyze

the resilience of the captain network to be disconnected in Section 5.2). Nevertheless, in the case

of covert networks, the communication channels may be monitored, interrupted, or distorted,

making nondeterministic communication a more realistic model [60]. What is more, an effective

communication structure can improve the cohesion of the organization, while limited access to

the ideas spread by the leadership can be detrimental to the morale of the ordinary members [30].

As a result, the communication efficiency and the ability to spread ideas throughout the network

are important aspects of the network structure, and diffusion models can be used to measure

these aspects [32, 33]. Finally, even though both models could be used as centrality measures to

evaluate the importance of a given node, they do not fit this role particularly well, as they have

very high computational costs compared to the centrality measures considered in this work. This is

particularly problematic in a situation where we need to compute the centrality score for every

single node of the network in order to obtain a ranking. By using them to model influence we avoid

this issue, as the influence needs to be computed only for the leaders of the network.

The results are depicted in Figure 6. The 𝑥-axis represents the number of captains in each group,

and the 𝑦-axis represents the number of leaders of the network. The greater the intensity of the

color, the greater the difference in terms of centrality between a leader and a captain (i.e., the safer

the leader), or the greater the influence of each leader.

Generally speaking, in networks with a small number of captains per group, the difference

between leaders and captains in terms of centrality is typically greater than the difference when

the number of captains per group is large. For networks with many captains, the difference in

betweenness centrality is greater when the network has few leaders, whereas the difference in

all other centrality measures is greater in the case of many leaders. As for the influence, Figure 6

shows that leaders can spread their messages most efficiently in a network with many captains and

many leaders according to the Independent Cascade model, while for the Linear Threshold model

and the Shapley centrality the best structure appears to be a network with many captains but only

a few leaders.
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Fig. 7. Given networks of 100 nodes and 1000 nodes, as well as real-life terrorist networks, the figure depicts
the proportion of nodes that have to be removed from the network until the first leader gets removed.
For random networks the results are reported as an average over 100 different networks, with error bars
representing 95% confidence intervals.

5.2 Attack Tolerance of Captain Networks
We now present an experiment designed to evaluate the attack tolerance [1] of captain networks

and to compare that to the attack tolerance of other network structures. To this end, we assume

that a given network𝐺 is attacked by a third party utilizing a given centrality measure 𝑐 . The attack

is carried out by iteratively removing a node with the highest value of centrality 𝑐 . We measure (i)

the number of nodes that have to be removed until a leader is removed from the network, and (ii)

the number of nodes that have to be removed in order for the network to become disconnected. If

multiple nodes have the same centrality value and one of them happens to be a leader, we assume

that it is the leader that will be removed. Otherwise, we break ties uniformly at random.

We compare the captain networks containing 5 leaders and 10 captains in each group with the

following random network generation models:

• Barabási-Albert networks [3], which are generated using the preferential attachment model;

• Erdős-Rényi networks [21] in which an edge is created between each pair of nodes with a

constant probability;

• Watts-Strogatz networks [69] meant to represent a small-world structure, characterized with

a short average distance between any pair of nodes;

• Cellular networks [61] designed to recreate the structure of real-life covert networks, that

often consist of several loosely connected, but very dense cells.
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Fig. 8. Same as Figure 7, but the plots depict the proportion of nodes that have to be removed from the
network until the network gets disconnected.

To keep different types of network structures comparable, we consider random networks with the

same average degree as the captain network. We set the rewiring probability in the Watts-Strogatz

model to
1

4
. The cellular network parameters are set according to Tsvetovat and Carley [61].

Additionally, we also consider a captain network where member nodes are connected into a

preferential attachment network with an average degree of 50, we denote these networks as

Captain+.
For the purpose of comparison, we also provide results of the same experiment for the following

real-life terrorist networks from the ARTIS database [70]:

• Al Qaeda worldwide operations attack series 1993-2003—271 nodes, 767 edges,

• Australian embassy bombing 2004, Indonesia—27 nodes, 112 edges,

• Bali bombings 2002, Indonesia—27 nodes, 158 edges,

• Bali bombings 2005, Indonesia—27 nodes, 102 edges,

• Christmas Eve bombings 2000, Indonesia—45 nodes, 234 edges,

• November 17 organization aggregate attack series, Greece—18 nodes, 46 edges,

• the Hamburg 9/11 cell 2001, Germany—32 nodes, 121 edges,

• Madrid train bombings 2004, Spain—54 nodes, 226 edges,

• Philippines ambassador residence bombing 2000, Jakarta—16 nodes, 69 edges,

• Southeast Asian aggregate attack series 2005, Indonesia—31 nodes, 38 edges.

As most of the real-life datasets are small, we assume that they have only one leader (unlike in

captain and randomly generated networks, where we assume the existence of five leaders).
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Fig. 9. Given the density of connections between the member nodes, the figure depicts the proportion of
nodes that have to be removed from the network until a given effect is achieved. The results are reported as
an average over 100 different networks, with colored areas representing 95% confidence intervals.

In a captain network, the leaders’ identities are determined by the algorithm of network con-

struction. For other types of networks, however, we need to decide which nodes will be considered

the leaders. To be able to compare the results for random networks with the results for captain

networks, we assume that the leaders initially occupy the same positions in centrality rankings.

Recall that in a captain network all the captains occupy the first 𝑘 |𝐿 | positions in the ranking,

followed by all the leaders. Based on this, for any given random network 𝐺 and centrality measure

𝑐 , we first rank all the nodes in 𝐺 according to 𝑐 , and then specify the leaders to be the nodes in

positions 𝑘 |𝐿 | + 1 to 𝑘 |𝐿 | + |𝐿 | in that ranking.

Figures 7 and 8 presents the results of our simulations. Each column corresponds to a scenario

in which the “attacker” utilizes a specific centrality measure, while each row presents results for

different network size. Each bar represents the average proportion of nodes that had to be removed

from the network in order to either remove a leader or disconnect the network.

Real-life terrorist networks exhibit relatively high levels of resilience, although the reason may

be their small size (notice how large random networks are significantly more fragile than their

smaller counterparts). As can be seen, the captain network is one of the most resilient out of all

considered networks of the same size in terms of protecting the leaders from being identified,

regardless of the centrality measure being used. However, it is actually the easiest network structure

to disconnect. This is because in a version of the captain network that contains no connections

between the member nodes removing just a few captains can completely separate multiple member

nodes from the network. Nevertheless, as we have shown in Section 4.2, it is possible to add any

number of connections between the member nodes without sacrificing the safety of the leaders.

Indeed, after adding a scale-free structure between member nodes of the captain network (bars

labeled in Figures 7 and 8 as Captain+) the networks becomes significantly more resilient to being

disconnected.

To study how the density of connections between the member nodes can affect the resilience of

the network structure, we perform a series of simulations where we randomly add edges between

the member nodes, while recording the number of nodes that have to be removed in order to hit

the leader or disconnect the network. The results of our simulations are presented in Figure 9.

ACM Trans. Intell. Syst. Technol., Vol. 37, No. 4, Article 111. Publication date: August 2021.



111:26 Marcin Waniek, Tomasz P. Michalak, Michael Wooldridge, and Talal Rahwan

As can be seen, adding connections between the member nodes can significantly increase the

resilience of the network both in terms of preventing the removal of leaders and in terms of

keeping the network connected. With more connections between them, member nodes are not

only harder to separate from the network, but also act as another buffer (in addition to the captain

nodes) that protects the leaders from getting targeted. Interestingly, as shown in Figure 9, the

greater density of the connections between the members does not always result in greater network

resilience, especially when betweenness centrality is being used by the attacker. In very dense

network structures, nodes typically have low betweenness centrality, e.g., all nodes in a clique have

a betweenness centrality of zero, since the shortest path between any two nodes consists of just a

single edge.

6 DISCUSSION & CONCLUDING REMARKS
The model studied in this article offers new insights into the secrecy-efficiency tradeoff faced by

covert organizations. The novelty of our approach comes from our definition of secrecy, which

assumes that the members of a terrorist network act strategically to evade detection by centrality

measures. Indeed, it is well established that centrality measures belong to the key social network

analysis tools that are used to analyze covert networks. Unfortunately, centrality measures—like

most other social network analysis tools—were designed to analyze social networks amongmembers

of the general public, rather than among adroit members of covert organizations who are well

aware of the possibility of attracting unwanted attention from the authorities. However, recent

findings—for, instance, with respect to ISIS—strongly suggest that such an assumption is too

far-fetched [36, 50].

Our work constitutes a step towards relaxing this assumption, and contributes to the literature on

the strategic analysis of social networks [47]. In particular, we showed that identifying an optimal

set of edges to add to the network in order to decrease the leaders’ ranking (according to degree,

closeness, and betweenness centrality) is NP-complete. While this is a “negative” result from the

computational point of view, it is in fact rather positive news for law-enforcement agencies.

The above hardness results are general in the sense that they were obtained without any consid-

erations of the “efficiency” part of the aforementioned secrecy-efficiency tradeoff. We introduced

such efficiency into the model by investigating how the leaders could construct a network from

scratch so that they are adequately hidden from the three fundamental centrality measures, and

adequately influential at the same time.

The network that we construct from scratch has a group of leaders forming a clique (which

ensures efficient communication among them) and has a well-defined core of “captains” who are

densely connected among themselves and who act as intermediaries between leaders and other

members of the organization. It is known that such “inner circles” exist in some real-life terrorist

networks such as, e.g., Al-Quaeda [4] and IRA [56].

Our model can be extended in various directions. First, we assume that the “evaders” (i.e., the
members of the covert organization) are strategic whereas the “seeker” (who is using centrality

measures to identify key terrorist) is not, i.e., he or she is unaware of any potential strategic efforts

by the evaders. It would be interesting to see new social network analysis tools, and centrality

measures in particular, that are immune (at least to some extent) against such evasion techniques.

Second, although our captain networks appear to be effective in terms of influence (i.e., they

are empirically shown to grant the leaders a reasonable level of influence), they do not provide

any worst-case guarantees on solution quality in this regard. This problem constitutes another

direction for future research.
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Finally, it would be interesting to investigate whether there exist special classes of networks for

which the problem of hiding leaders can easily be solved or whether it is possible to construct a

network that conceals certain edges [67].
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