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We study hidden-action principal-agent problems in which a principal commits to an outcome-dependent payment
scheme (called contract) so as to incentivize the agent to take a costly, unobservable action leading to favorable out-
comes. In particular, we focus on Bayesian settings where the agent has private information. This is collectively
encoded by the agent’s type, which is unknown to the principal, but randomly drawn according to a finitely-supported,
commonly-known probability distribution. In our model, the agent’s type determines both the probability distribution
over outcomes and the cost associated with each agent’s action. In Bayesian principal-agent problems, the principal
may be better off by committing to a menu of contracts specifying a contract for each agent’s type, rather than commit-
ting to a single contract. This induces a two-stage process that resembles interactions studied in classical mechanism
design: after the principal has committed to a menu, the agent first reports a type to the principal, and, then, the latter
puts in place the contract in the menu that corresponds to the reported type. Thus, the principal’s computational prob-
lem boils down to designing a menu of contracts that incentivizes the agent to report their true type and maximizes
expected utility.

Previous works showed that, in Bayesian principal-agent problems, computing an optimal menu of contracts or an
optimal (single) contract is APX-hard, which is in sharp contrast from what happens in non-Bayesian settings, where
an optimal contract can be computed efficiently. Crucially, previous works focus on menus of deterministic contracts.
Surprisingly, in this paper we show that, if one instead considers menus of randomized contracts defined as probability
distributions over payment vectors, then an “almost-optimal” menu can be computed in polynomial time. Indeed,
the problem of computing a principal-optimal menu of randomized contracts may not admit a maximum, but only
a supremum. Nevertheless, we show how to design a polynomial-time algorithm that guarantees the principal with
an expected utility arbitrarily close to the supremum. Besides this main result, we also close several gaps in the
computational complexity analysis of the problem of computing menus of deterministic contracts. In particular, we
prove that the problem cannot be approximated up to within any multiplicative factor and it does not admit an additive
FPTAS unless P = NP, even in basic instances with a constant number of actions and only four outcomes. This
considerably extends previously-known negative results. Then, we show that our hardness result is tight, by providing
an additive PTAS that works in instances with a constant number of outcomes. We complete our analysis by showing
that an optimal menu of deterministic contracts can be computed in polynomial time when either there are only two
outcomes or there is a constant number of types.

1 Introduction

Principal-agent problems have recently received a growing attention from the economics and computation community.
These problems model the interaction between a principal and an agent, where the latter chooses an action determining
some externalities on the former. In this work, we focus on hidden-action problems—also known as models with
moral hazard—in which the principal cannot observe the action adopted by the agent, but only an outcome that is

∗In the previous version of the paper Castiglioni et al. (2022b), we incorrectly claim that the problem of finding an optimal menu
of randomized contracts admits a maximum and that an optimal menu can be computed in polynomial time. In this version, we
show that the problem does not admit a maximum but only a supremum, and we provide a polynomial-time algorithm that provides
a solution whose value is arbitrarily close to that provided by the supremum.

http://arxiv.org/abs/2202.10966v2


ARXIV PREPRINT - AUGUST 18, 2022

stochastically determined as an effect of such an action. The agent incurs in a cost for performing the action, while
the principal perceives a reward associated with the realized outcome. Thus, the goal of the principal is to incentivize
the agent to take an action resulting in favorable outcomes. This is accomplished by the principal by committing to
a contract, which is an outcome-dependent payment scheme defining a payment from the principal to the agent for
every possible outcome.

A classical example of principal-agent problem is that of a salesperson (agent) working for a company (principal).
The former has to decide on the level of effort (action) to put in selling some products on behalf of the company. The
latter can observe the total number of products sold by the salesperson (outcome), but it has no information about the
actual level of effort undertaken by the salesperson. This naturally fits hidden-action models. Moreover, the company
usually incentivizes an high level of effort by paying the salesperson on the basis of the number of products that have
been actually sold, as it is the case in the classical definition of contract. Besides this simple example, nowadays
principal-agent problems are ubiquitous in digital economies, as they find application in several real-world scenarios,
such as, e.g., crowdsourcing platforms (Ho et al., 2016), blockchain-based smart contracts (Cong and He, 2019), and
healthcare (Bastani et al., 2016).

Most of the computational works on principal-agent problems have focused on the basic setting in which the prin-
cipal knows everything about the agent, i.e., they know both the probability distribution over outcomes and the cost
associated with each agent’s action. Very recently, three concurrent works (Guruganesh et al., 2021; Castiglioni et al.,
2021; Alon et al., 2021a) started the study of much more realistic Bayesian principal-agent problems—also known as
models with adversarial selection—in which the agent has some private information that is unknown to the principal.
As it is common in Bayesian models, these works assume that the agent’s private information is collectively encoded
by an unknown agent’s type, and that the latter is drawn from a probability distribution over a set of possible types,
which is known to the principal. For instance, in the company-salesperson example described above, the salesperson
may have some private features (such as, e.g., experience gained with past works and/or advanced training courses)
that determine how effectively the undertaken level of effort converts into sales.

The addition of private information in principal-agent problems establishes an intimate connection with mechanism de-
sign. While the latter has received a lot of attention on its own by computational economics—thanks to its widespread
application in auction settings—, only the very recent works by Guruganesh et al. (2021) and Alon et al. (2021a) ad-
dressed the computational aspects of problems at the interface of the two fields. Indeed, in Bayesian principal-agent
problems, it may be the case that the principal is better off committing to a menu of contracts specifying a contract for
every possible agent’s type, rather than committing to a single contract. This induces a two-stage process that resem-
bles interactions usually studied in mechanism design. In particular, as a first stage after the principal’s commitment,
the agent reports a type to the principal, possibly different from their true type. Then, the interaction goes on as in
a non-Bayesian principal-agent problem, with the principal selecting the contract in the menu that corresponds to the
reported type. The principal’s goal is to commit to menus of contracts that incentivize the agent to report their true
type, choosing an expected-utility-maximizing menu among them. Notice that proposing menus of contracts is natural
in many practical applications. For instance, in the company-salesperson example, one may imagine the company
proposing a portfolio of different payment regimes to the agent, with the latter selecting the preferred one based on
their private information. Intuitively, this could considerably boost revenues of the company with respect to proposing
a single contract.

1.1 Original Contributions

In this paper, we investigate the computational complexity of finding an optimal menu of contracts for the principal,
i.e., one maximizing the principal’s expected utility among those that incentivize the agent to truthfully report their
type. In particular, we study general Bayesian settings where the agent’s private information determines both the
probability distributions and the costs of actions.

In Bayesian principal-agent settings, designing an optimal (single) contract is largely computationally intractable,
with the exception of some specific cases (Guruganesh et al., 2021; Castiglioni et al., 2021). Guruganesh et al. (2021)
unsuccessfully tried to circumvent this issue with menus of contracts, showing that the problem of computing an
optimal menu is APX-hard even in instances with a constant number of actions. These results are in sharp contrast
with what happens in non-Bayesian settings, where an optimal contract can be designed efficiently (Dütting et al.,
2019). Crucially, the work by Guruganesh et al. (2021) focuses on menus of deterministic contracts, in which no
randomization is involved. The main result of our work is that, if one considers menus of randomized contracts, then
an “almost-optimal” one can indeed be computed in polynomial time in arbitrary Bayesian principal-agent problem
instances. Indeed, the problem of computing a principal-optimal menu of randomized contracts may not admit a
maximum, but only a supremum. Nevertheless, we show how to design a polynomial-time algorithm that guarantees
the principal with an expected utility arbitrarily close to the supremum. This is surprising, since randomized contracts
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generalize classical, deterministic ones by specifying probability distributions over payment vectors, so that, after the
type-reporting stage, the distribution corresponding to the reported agent’s type is employed by the principal to draw
a contract that is communicated to the agent.

After introducing all the preliminary definitions that we need in Section 2, we start, in Section 3, by providing a
strong negative result for the problem of computing an optimal menu of deterministic contracts. This considerably
generalizes the negative result by Guruganesh et al. (2021), as we prove that the problem cannot be approximated up
to within any constant multiplicative factor and it does not admit an additive FPTAS unless P = NP, even in instances
with a constant number of actions and only four outcomes. We prove our result by resorting to a non-trivial and non-
standard reduction from a suitably-defined promise problem related to finding maximal independent sets in undirected
graphs with bounded degree. Let us remark that our negative result is surprising, since an optimal (single) contract can
be computed in polynomial time in Bayesian settings with a constant number of outcomes (Guruganesh et al., 2021;
Castiglioni et al., 2021).

In Section 4, we close the gaps in the computational analysis of menus of deterministic contracts by showing that
our hardness results are indeed tight. In particular, we provide an additive PTAS for the problem of computing an
optimal menu in instances with a constant number of outcomes. Our approximation scheme works by finding an
approximately-incentive-compatible menu of deterministic contracts (i.e., one that does not perfectly incentivize the
agent to report their true type, according to a suitable definition of approximation introduced for our purposes), which
can be shown to provide a good additive approximation of the optimal principal’s expected utility. We prove that such
an approximate menu of deterministic contracts can be found in polynomial time by restricting the attention to menus
that only employ a “small” number of different contracts. Finally, starting from the approximate menu, we show how
to recover in polynomial time a menu of deterministic contracts that correctly incentivizes the agent to report their true
type, only incurring in a small additional loss in terms of principal’s expected utility.

Next, in Section 5, we provide two additional positive results that complete our computational analysis. In particular,
we show that the problem of finding an optimal menu of deterministic contracts can be solved in polynomial time
when either there are only two outcomes or there is a constant number of agent’s types (and outcomes and actions can
be an arbitrary number).

Finally, we conclude with Section 6, which provides our main result on menus of randomized contracts. As a first
step, we show that the problem of computing a principal-optimal menu of randomized contracts may not admit a
maximum, but only a supremum. Then, we show how to design in polynomial time a menu of randomized contracts
with principal’s expected utility greater than or equal to the value of the supremum minus ǫ, for any given ǫ < 0. To
do so, we first show that, for every ǫ > 0, there always exists a menu of randomized contracts that achieves principal’s
expected utility at most ǫ less than the supremum by using “small” payment values, which can be bounded above by
1/ǫ and a suitably-defined exponential function of the instance size. This is crucial to show that, in order to find the
desired menu, we can restrict the attention to randomized contracts placing positive probability on a specific finite
set of deterministic contracts, whose size is exponential in the instance size. Given such a set, we can formulate the
problem as a linear program with exponentially-many variables and polynomially-many constraints, whose dual can
be solved in polynomial time by means of the ellipsoid algorithm provided that a suitable separation oracle can be
implemented in polynomial time. Such an oracle can be formulated as an optimization problem over the finite set of
deterministic contracts defined above, which we show that can be solved in time polynomial in the instance size and
in log(1/ǫ), proving our main result and concluding the paper.

All the proofs omitted from the main body of paper are in the Appendix.

1.2 Related Works

Hidden-action principal-agent problems have received considerable attention in the economic litera-
ture, as part of a broader subject called contract theory (Shavell, 1979; Grossman and Hart, 1983;
Rogerson, 1985; Holmstrom and Milgrom, 1991) (see the books by Mas-Colell et al. (1995), Bolton et al.
(2005), and Laffont and Martimort (2009) for a detailed treatment of the subject).

Interest on the computational aspects of contract theory have emerged only recently. In the following, we survey the
major computational works on hidden-action principal-agent problems.

Works on non-Bayesian Settings. Most of the computational works on principal-agent problems focus on non-
Bayesian settings in which the principal knows everything about the agent. Since in a classical non-Bayesian setting
the principal’s computational problem can be solved straightforwardly in polynomial time by means of linear pro-
gramming, all the works on the topic introduced more complicated models. Babaioff et al. (2006) study a model
with multiple agents (see also its extended version (Babaioff et al., 2012) and its follow-ups (Babaioff et al., 2009,
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2010)), focusing on how complex combinations of agents’ actions influence the resulting outcome in presence of inter-
agent externalities. Dütting et al. (2020) and Duetting et al. (2021) study other non-Bayesian principal-agent models,
whose underlying structure is combinatorial. In particular, the former study the case in which the outcome space is
defined implicitly through a suitably-defined succinct representation, while the latter address settings in which the
agent can select a subset of actions (rather than a single one) out of a set of available actions. Other works worth
citing are (Babaioff and Winter, 2014), which studies contract complexity in terms of the number of different pay-
ments specified by contracts, and (Ho et al., 2016), which proposes an online learning model and solves it by means
of multi-armed bandit techniques. Another important line of work is that initiated by Dütting et al. (2019) and aimed
at using the computational lens for the efficiency analysis (in terms of principal’s expected utility) of linear contracts
with respect to general ones, where the former are simple, pure-commission contracts that pay the agent a given frac-
tion of the principal’s reward associated with the obtained outcome. In particular, Dütting et al. (2019) show that, in
non-Bayesian principal-agent settings, linear contracts perform well under reasonable assumptions.

Works on Bayesian Settings. There are three works that are arguably the most related to ours,
namely (Guruganesh et al., 2021; Alon et al., 2021a; Castiglioni et al., 2021). These works concurrently intro-
duced similar Bayesian principal-agent models, in order to study their computational properties. In particu-
lar, Guruganesh et al. (2021) focus on a model in which the unknown agent’s type determines the probability distribu-
tions associated to agent’s actions. They analyze linear contracts by extending the work of Dütting et al. (2019) from
non-Bayesian to Bayesian settings, showing how their efficiency is affected by problem parameters. Guruganesh et al.
(2021) also investigate the computational complexity of computing an optimal (single) contract and an optimal menu
of (deterministic) contracts, showing that both problems are APX-hard even in instances with a constant number
of actions. Castiglioni et al. (2021) take a more computational-oriented approach than that of (Guruganesh et al.,
2021), by analyzing the efficiency of linear contracts in Bayesian settings with respect to the much more reason-
able benchmark defined as the best among tractable contracts, i.e., those computable in polynomial time. Further-
more, Guruganesh et al. (2021) only compare contracts in multiplicative terms, while Castiglioni et al. (2021) investi-
gate bi-approximation (i.e., both multiplicative and additive) guarantees. Finally, Alon et al. (2021a) study a specific
Bayesian principal-agent setting in which the agent’s type is single-dimensional. In particular, they show that, in their
setting, an optimal menu of (deterministic) contracts can be computed in polynomial time when the number of actions
is constant. Moreover, in a following preprint (Alon et al., 2021b), the same authors introduce menus of randomized
contracts in their setting, showing an example in which randomization makes the principal better off by increasing
their expected utility with respect to menus of deterministic contracts.

2 Preliminaries

In this section, we introduce all the elements needed in the rest of the paper. Section 2.1 formally describes standard
Bayesian principal-agent problems, wile Section 2.2 introduces our setting in which the principal proposes to the agent
a menu of randomized contracts to choose from.

2.1 The Bayesian Principal-Agent Problem

An instance of the Bayesian principal-agent problem is defined by a tuple (Θ, A,Ω), where: Θ is a finite set of ℓ := |Θ|
agent’s types; A is a finite set of n := |A| agents’ actions; and Ω is a finite set of m := |Ω| possible outcomes.2 The
agent’s type is drawn according to a fixed probability distribution known to the principal. We let µ ∈ ∆Θ be such
a distribution, with µθ denoting the probability of type θ ∈ Θ being selected.3 For every type θ ∈ Θ, we denote
by Fθ,a ∈ ∆Ω the probability distribution over outcomes Ω when an agent of type θ selects action a ∈ A, while

cθ,a ∈ [0, 1] is the agent’s cost for that action.4 For the ease of notation, we let Fθ,a,ω be the probability that Fθ,a

assigns to outcome ω ∈ Ω, so that
∑

ω∈Ω Fθ,a,ω = 1. Each outcome ω ∈ Ω has a reward rω ∈ [0, 1] for the principal.
As a result, when an agent of type θ ∈ Θ selects an action a ∈ A, then the principal achieves an expected reward of∑

ω∈Ω Fθ,a,ω rω.

In the standard model, the principal commits to a contract maximizing their expected utility. A contract specifies
payments from the principal to the agent, which are contingent on the actual outcome achieved with the agent’s action.
We formally define a contract by a vector p ∈ R

m
+ , whose components pω represent payments associated to outcomes

2For the ease of presentation, we assume that all the agent’s types share the same action set. All the results in this paper can be
easily extended to the case in which each agent’s type θ ∈ Θ has their own action set Aθ .

3Given a finite set X , we denote with ∆X the set of all the probability distributions defined over X .
4In the rest of this work, we assume that rewards and costs are in [0, 1]. All the results in this paper can be easily generalized to

the case of an arbitrary range of positive numbers, by applying a suitable normalization.
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ω ∈ Ω. The assumption that payments are non-negative (i.e., they can only be from the principal to the agent, and
not the other way around) is known as limited liability and it is common in contract theory (Carroll, 2015). When an
agent of type θ ∈ Θ selects an action a ∈ A, then the expected payment to the agent is

∑
ω∈Ω Fθ,a,ω pω, while their

utility is
∑

ω∈Ω Fθ,a,ω pω − cθ,a. On the other hand, the principal’s expected utility in that case is
∑

ω∈Ω Fθ,a,ω rω −∑
ω∈Ω Fθ,a,ω pω.

Given a contract p ∈ R
m
+ , an agent of type θ ∈ Θ plays a best response, which is an action that is:

1. incentive compatible (IC), i.e., it maximizes their expected utility over actions in A; and

2. individually rational (IR), i.e., it has non-negative expected utility (if there is no IR action, then the agent
abstains from playing so as to preserve the status quo).

In the rest of this work, we make the following w.l.o.g. common assumption guaranteeing that IR is always en-
forced (Dütting et al., 2019). This allows us to focus on IC only. Intuitively, the following assumption ensures that
each agent’s type has always an action providing them with a non-negative utility, thus ensuring IR of any IC action.

Assumption 1. There exists an action a ∈ A such that cθ,a = 0 for all θ ∈ Θ.

Formally, we denote by Bθ
p := argmaxa∈A

{∑
ω∈Ω Fθ,a,ωpω − cθ,a

}
the set of best responses of an agent of type

θ ∈ Θ under a contract p ∈ R
m
+ , i.e., given Assumption 1, the set of all the actions that are IC for an agent of type θ

under contract p. As it is common in the literature (see, e.g., (Dütting et al., 2019)), we assume that the agent breaks
ties in favor of the principal, selecting a best response that maximizes the principal’s expected utility. In the following,
we let bθ : Rm

+ → A be a function returning the best responses played by an agent of type θ ∈ Θ, where, for any

contract p ∈ R
m
+ , we define bθ(p) ∈ argmaxa∈Bθ

p

{∑
ω∈Ω Fθ,a,ωrω −∑ω∈Ω Fθ,a,ω pω

}
.

2.2 Menus of Randomized Contracts

We study Bayesian principal-agent problems in which there is an additional type-reporting stage in which the principal
proposes to the agent a menu of randomized contracts to choose from.

A randomized contract is a probability distribution γ over Rm
+ , i.e., over the set of vectors p ∈ R

m
+ representing all

the possible contracts. We use p ∼ γ to denote that the (random) contract p is distributed according to γ, and write
Ep∼γ [·] to indicate the expectation taken with respect to the randomness of p. We denote by supp(γ) the support of γ.
When γ has a finite support, i.e., |supp(γ)| < ∞, we let γp be the probability that γ assigns to contract p ∈ R

m
+ .

A menu of randomized contracts is defined by a tuple Γ =
(
γθ
)
θ∈Θ

specifying a probability distribution γθ over Rm
+

for each agent’s type θ ∈ Θ.

The interaction between the principal and an agent of type θ ∈ Θ goes as follows:

(i) the principal publicly commits to a menu Γ =
(
γθ
)
θ∈Θ

of randomized contracts;

(ii) the agent reports a type θ̂ ∈ Θ to the principal, possibly different from the true type θ;

(iii) the principal draws a contract p ∼ γ θ̂ and communicates it to the agent;

(iv) the agent plays the best-response action bθ(p).

The goal of the principal is to commit to a utility-maximizing menu of randomized contracts, selecting among those
that are dominant-strategy incentive compatible (DSIC).5 Formally, a menu Γ =

(
γθ
)
θ∈Θ

of randomized contracts is

DSIC if the following holds:

Ep∼γθ

[
∑

ω∈Ω

Fθ,bθ(p),ω pω − cθ,bθ(p)

]
≥ Ep∼γθ̂

[
∑

ω∈Ω

Fθ,bθ(p),ω pω − cθ,bθ(p)

]

∀θ̂ 6= θ ∈ Θ. (1)

Intuitively, the conditions above guarantee that the expected utility of an agent of type θ ∈ Θ under the randomized

contract γθ is greater than or equal to that obtained under γ θ̂, for any θ̂ 6= θ ∈ Θ. This ensures that the agent is always

5Notice that, by a revelation-principle-style argument (see the book by Shoham and Leyton-Brown (2008) for some examples
of these kind of arguments), focusing on DSIC menus of contracts is w.l.o.g. when looking for a principal-optimal menu.
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better off reporting their true type to the principal. Then, the principal’s goal is to find a menu Γ =
(
γθ
)
θ∈Θ

that is

optimal for the following problem:

max
Γ=(γθ)θ∈Θ

∑

θ∈Θ

µθ Ep∼γθ

[
∑

ω∈Ω

Fθ,bθ(p),ω rω −
∑

ω∈Ω

Fθ,bθ(p),ω pω

]
s.t. (2)

Equation (1),

whose objective is the principal’s expected utility for a DSIC menu of randomized contracts.

We also consider the case, already investigated by Guruganesh et al. (2021), in which the menu of contracts is made by
non-randomized contracts. Formally, we denote a menu of deterministic contracts by a tuple P =

(
pθ
)
θ∈Θ

, containing

a contract pθ ∈ R
m
+ for each agent’s type θ ∈ Θ. In this case, the principal does not draw a contract in step (iii) of the

interaction, but they simply adopt contract pθ̂ , where θ̂ ∈ Θ is the type reported by the agent. Thus, all the definitions
above can be specialized to the case of menus of deterministic contracts by dropping expectations.

3 A Striking Negative Result for Menus of Deterministic Contracts

We begin by providing a negative result for the principal’s computational problem of finding an optimal menu of
deterministic contracts. In particular, we prove that it is NP-hard to provide any constant multiplicative approxima-
tion to the optimal principal’s expected utility, even if both the number of outcomes and that of agent’s actions are
constants. This is in contrast to what happens with the problem of finding an optimal (single) contract in Bayesian
instances, which can be solved in polynomial time when the number of outcomes is constant (Guruganesh et al., 2021;
Castiglioni et al., 2021). Moreover, our reduction also shows that the problem does not admit an additive FPTAS, un-
less P = NP. Let us remark that our reduction considerably strengthens an already-known hardness result for menus
of deterministic contracts, which is that by Guruganesh et al. (2021), who show that the problem is APX-hard even
with a constant number of actions. Indeed, our result shows that the problem is not in APX, and that this holds even
when both the number of outcomes and that of actions are constants.

Our reduction is from the following promise problem, which is related to the INDEPENDENT-SET problem on
undirected graphs with bounded-degree nodes.

Definition 1 (GAP-BOUNDED-ISα,k). For every α ∈ [0, 1] and k ∈ N+, we define GAP-BOUNDED-ISα,k as the
following promise problem:

• Input: An undirected graphG = (V,E) in which each vertex has degree at most k and a constant η ∈
[
1
k , 1
]

such that either one of the following is true:6

– there exists an independent set (i.e., a subset of vertices such that there is no edge connecting two of
them) of size at least η|V |;

– all the independent sets have size at most αη|V |.
• Output: Determine which of the above two cases hold.

Notice that, for every constant α > 0, there exists a constant k = k(α) depending on α such that
GAP-BOUNDED-ISα,k is NP-hard (Alon et al., 1995; Trevisan, 2001). This observation is exploited in order to
prove the following theorem:

Theorem 1. In Bayesian principal-agent problems, the following two results hold even when there are only four
outcomes and a constant number of actions.

• For every constant α > 0, it is NP-hard to approximate the principal’s expected utility in an optimal DSIC
menu of deterministic contracts up to within an α multiplicative factor.

• There is no additive FPTAS for the problem of finding an DSIC optimal menu of deterministic contracts,
unless P = NP.

Proof. We reduce from GAP-BOUNDED-ISα,k. In the rest of the proof, given an undirected graph G = (V,E), for
the ease of presentation we label vertices with natural numbers, so that we can write V = {1, . . . , s}, where s := |V |.
Given an instance of GAP-BOUNDED-ISα,k, letting l :=

⌈
k
α

⌉
and ρ := s−3, we build an instance of Bayesian

principal-agent problem such that:

6For η < 1

k
, the problem can be trivially solved since a maximal independent set has size at least 1

k
.
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• Completeness: If there is an independent set of G with size at least ηs, than there is a DSIC menu of deter-
ministic contracts with principal’s expected utility at least 1

2ηρl2
−l.

• Soundness: If all the independent sets of G have size at most αηs, then the principal’s expected utility in any
DSIC menu of deterministic contracts is at most 4αηρl2−l

Since, for any α > 0, there exists k = k(α) such that GAP-BOUNDED-ISα,k is NP-hard, the two points above
immediately provide our hardness result for multiplicative approximations. Moreover, by noticing that the difference
between principal’s expected utilities in the completeness and the soundness cases depends polynomially on the in-
stance size, we also have that there is no additive FPTAS for the problem of finding an optimal menu of deterministic
contracts, unless P = NP.

Construction. There are four outcomes, namely Ω = {ω1, ω2, ω3, ω4}, with rω3 = 1 and all the other rewards equal
to zero. There is an agent’s type θv ∈ Θ for each vertex v ∈ V of G, so that ℓ = s. All types are equally probable,
and, thus, µθv = 1

s for every θv ∈ Θ. Each agent’s type θv ∈ Θ has an action av ∈ Aθv , and an additional action

aui ∈ Aθv for every vertex u ∈ V adjacent to v, i.e., (v, u) ∈ E, and index i ∈ [l − 3], where [x] := {1, . . . , x}.7 For
every θv ∈ Θ, we let

• Fθv ,av,ω1 = 1
4 cos

(
π v

2s

)
,

• Fθv ,av,ω2 = 1
4 sin

(
π v

2s

)
,

• Fθv ,av,ω3 = 1
4 , and

• Fθv ,av,ω4 = 1− Fθv,av ,ω1 − Fθv ,av,ω2 − Fθv,av ,ω3 .

Moreover, for every pair of adjacent vertices v ∈ V, u ∈ V such that (v, u) ∈ E and index i ∈ [l− 3], an agent of type
θv has the following probabilities associated to action aui:

• Fθv ,aui,ω1 = cos
(
π u

2s

)
2−i−2,

• Fθv ,aui,ω2 = sin
(
π u

2s

)
2−i−2,

• Fθv ,aui,ω3 = 2−i−2, and

• Fθv ,aui,ω4 = 1− Fθv ,aui,ω1 − Fθv,aui,ω2 − Fθv ,aui,ω3 .

Finally, each agent’s type θv ∈ Θ has an additional action ā ∈ Aθv such that Fθv,ā,ω4 = 1 and Fθv,ā,ω = 0 for all

ω 6= ω4 ∈ Ω. Notice that |Aθv | = O(k2/α) for every θv ∈ Θ. In order to conclude the construction, we need to define

action costs. In particular, for every agent’s type θv ∈ Θ, we set cθv,av
= 1

4 −ρl2−l and cθv,aui
= 2−i−2−ρ(l− i)2−l

for every vertex u ∈ V such that (v, u) ∈ E and index i ∈ [l − 3]. Furthermore, the cost of action ā is cθv ,ā = 0 for
every agent’s type θv ∈ Θ.

Let us remark that we use the sin and cos trigonometric functions in order to easily represent the vectors Fθv ,a in the
ω1–ω2 Cartesian coordinate system (see Figure 1). One of the main properties of our construction is that, for a type θv ,
no vector representing an action av or aui is dominated by a convex combination of vectors representing actions with
the same costs. This is necessary, since an action represented by a dominated vector is never preferred over another
action represented by an un-dominated vector, with their costs being the same. Notice that we use the functions sin
and cos for the ease of exposition. It is easy to change our instances so that our results continue to hold even if we
replace such functions with sufficiently good approximations.8

7For the ease of presentation, in the instances that we define in the reduction proving Theorem 1 each agent’s type θ ∈ Θ has a
different set of actions Aθ. It is easy to modify such instances by adding dummy actions so as to recover “equivalent” instances in
which each type has the same set of actions available.

8Indeed, it is sufficient to use approximations that can be represented in memory with a number of bits that is polynomial in the
instance size, and, thus, that can be computed in polynomial time.
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Fθv ,a,ω1

Fθv ,a,ω2

av

au1 1

au2 1

au1 2

au2 2

au1 3

au2 3

1
4

Fθv,a,ω1

Fθv,a,ω2

av

au2 1

pθv

π
|v

−
u
2
|

1
4

||Fθv ,a|| cos (π|v − u2|)

Figure 1: Left: Graphical representation of the probability vectors Fθv ,a used in the proof of Theorem 1 in the ω1–ω2 Cartesian
coordinate system. In particular, node v ∈ V has 2 adjacent nodes u1, u2 ∈ V , and l = 6. Right: Expected payments of contract
pθv for a vertex v ∈ V ∗ in the completeness part of the proof of Theorem 1. The dashed red line represents the direction of the
vector encoding pθv . The expected payments of actions av and au2 1 are given by the projections of their probability vectors on

pθv , times ||pθv ||.

Completeness. Suppose that there exists an independent set V ∗ ⊆ V of G with size at least ηs. From that, we build
a DSIC menu of deterministic contracts P =

(
pθv
)
θv∈Θ

with principal’s expected utility at least 1
2ηρl2

−l. For every

agent’s type θv ∈ Θ such that v ∈ V ∗, we define the contract pθv ∈ R
m
+ so that pθvω1

= cos
(
π v

2s

) (
1− ρl2−l+1

)
,

pθvω2
= sin

(
π v

2s

) (
1− ρl2−l+1

)
, and pθvω3

= pθvω4
= 0. Moreover, for every agent’s type θv ∈ Θ such that v /∈ V ∗, we

define pθv = pθu for some u ∈ V ∗ such that

θu ∈ argmax
θu∈Θ:u∈V ∗

{
max
a∈Aθv

∑

ω∈Ω

Fθv,a,ω pθuω − cθv,a

}
,

where the term inside the argmax operator is the expected utility that a utility-maximizing action provides to an agent
of type θv under a contract pθu already defined above, since u ∈ V ∗. Intuitively, contract pθv represents a vector on the
ω1–ω2 plane. An action aui has a large expected payment if the angle between vector pθv and the projection of vector
Fθv ,aui

on the ω1–ω2 plane is small. In particular, the expected payment is ||pθv ||2||(Fθv ,aui,ω1 , Fθv ,aui,ω2)||2 cos(β),
where β is the angle between the two vectors.

Next, we show that the menu of contracts defined above is DSIC. First, we prove that an agent of type θv ∈ Θ with

v ∈ V ∗ gets an expected utility of ρ l
22

−l under contract pθv , since the best response of the agent under contract pθv is

av, namely av = bθv
(
pθv
)
. Indeed, the agent’s expected utility by selecting action av under contract pθv is

1

4
cos2

(
π
v

2s

)(
1− ρl2−l+1

)
+

1

4
sin2
(
π
v

2s

)(
1− ρl2−l+1

)
−
(
1

4
− ρl2−l

)
= ρ

l

2
2−l,

where we used cos2 x + sin2 x = 1. All the other actions aui, for any vertex u ∈ V such that (v, u) ∈ E and index
i ∈ [l − 3], provide the agent with an expected utility of

cos
(
π
u

2s

)
2−i−2 cos

(
π
v

2s

) (
1− ρl2−l+1

)

+ sin
(
π
u

2s

)
2−i−2 sin

(
π
v

2s

) (
1− ρl2−l+1

)
−
(
2−i−2 − ρ(l − i)2−l

)

= cos

(
π
|v − u|
2s

)
2−i−2

(
1− ρl2−l+1

)
−
(
2−i−2 − ρ(l − i)2−l

)

≤
(
1− 1

π

(
π
|v − u|
2s

)2
)
(
1− ρl2−l+1

)
2−i−2 −

(
2−i−2 − ρ(l − i)2−l

)

≤
(
1−

( |v − u|
2s

)2
)
(
1− ρl2−l+1

)
2−i−2 −

(
2−i−2 − ρ(l − i)2−l

)

8
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≤ 2−i−2 − ρl2−i−l−1 − 1

4s2
2−i−2 +

1

4s2
ρl2−i−l−1 −

(
2−i−2 − ρ(l − i)2−l

)

= −ρl2−i−l−1 − 1

4s2
2−i−2 +

1

4s2
ρl2−i−l−1 + ρ(l − i)2−l

= 2−l

(
−ρl2−i−1 − 1

4s2
2l−i−2 +

1

4s2
ρl2−i−1 + ρ(l − i)

)
,

where in the first equality we used sinx sin y + cosx cos y = cos |x − y|, in the first inequality the fact that cosx ≤
1 − x2

π for x ∈
[
0, π2

]
, and in the third inequality |v − u| ≥ 1. For s large enough, it holds that 1

4s2 2
l−i−2 ≥

1
4s2 ρl2

−i−1 + ρ(l − i) (recall that ρ = s−3 and l is a constant depending only on k and α), and, thus, the agent’s

expected utility by playing any action aui is smaller than or equal to zero, proving that av = bθv
(
pθv
)
.

In order to prove that the menu is DSIC, it remains to show that each agent’s type θv ∈ Θ is not better off by reporting
a type different from their true type. Let us consider any contract pθu with θu ∈ Θ such that u ∈ V ∗ (for contracts pθu

with θu ∈ Θ such that u /∈ V ∗ the reasoning is analogous given how they are defined). Since V ∗ is an independent set
of G, an agent of type θv ∈ Θ has no action aui available, while, by selecting any action au′i corresponding to a node
u′ 6= u ∈ V and an index i ∈ [l − 3], under contract pθu their expected utility is

cos

(
π
u′

2s

)
2−i−2 cos

(
π
u

2s

) (
1− ρl2−l+1

)

+ sin

(
π
u′

2s

)
2−i−2 sin

(
π
u

2s

) (
1− ρl2−l+1

)
−
(
2−i−2 − ρ(l − i)2−l

)
,

which is less than or equal to zero by arguments similar to those employed above. Finally, by playing action av under
contract pθu , the expected utility of an agent of type θv is

1

4
cos
(
π
v

2s

)
cos
(
π
u

2s

) (
1− ρl2−l+1

)

+
1

4
sin
(
π
v

2s

)
sin
(
π
u

2s

) (
1− ρl2−l+1

)
−
(
1

4
− ρl2−l

)

=
1

4
cos

(
π
|v − u|
2s

)(
1− ρl2−l+1

)
−
(
1

4
− ρl2−l

)

≤ 1

4

(
1− 1

π

(
π
|v − u|
2s

)2
)
(
1− ρl2−l+1

)
−
(
1

4
− ρl2−l

)

≤ 2−l

(
− l

2
ρ− 1

16s2
2l +

1

8s2
ρl + ρl

)
,

which, as it is easy to check, is smaller than or equal to zero for s large enough (recall that ρ = s−3 and l is a constant
depending only on k and α).

Now, we show that the principal’s expected utility provided by the menu of deterministic contracts defined above is
as desired. We do that by first proving that the contribution to the principal’s expected utility due to each agent’s type
θv ∈ Θ such that v ∈ V ∗ is equal to 1

2ρl2
−l. Since each agent reports their true type θv and plays action av, the

principal’s expected utility is

Fθv,av ,ω3rω3 − Fθv ,av,ω1 p
θv
ω1

− Fθv,av,ω2 p
θv
ω2

=
1

4
− 1

4
cos2

(
π
v

2s

) (
1− ρl2−l+1

)
− 1

4
sin2

(
π
v

2s

) (
1− ρl2−l+1

)

=
1

4
− 1

4

(
1− ρl2−l+1

)
=

1

4
ρl2−l+1 =

1

2
ρl2−l.

Moreover, we show that the principal’s expected utility resulting from each agent’s type θv ∈ Θ such that v /∈ V ∗ is
at least zero. For each such a type θv , let u ∈ V ∗ be a vertex such that pθv = pθu . We need to consider four different
cases. First, suppose that bθv

(
pθv
)
= av. Then, the principal’s expected utility is equal to

1

4
− 1

4
cos
(
π
v

2s

)
cos
(
π
u

2s

) (
1− ρl2−l+1

)

− 1

4
sin
(
π
v

2s

)
sin
(
π
u

2s

) (
1− ρl2−l+1

)
≥ 1

4
− 1

4

(
1− ρl2−l+1

)
≥ 0,

9
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where in the inequality we use sinx sin y + cosx cos y ≤ 1.

Second, assume that bθv
(
pθv
)
= aui for some index i ∈ [l − 3]. Then, the principal’s utility is

2i−2 − cos2
(
π
u

2s

)
2−i−2

(
1− ρl2−l+1

)
− sin2

(
π
u

2s

)
2−i−2

(
1− ρl2−l+1

)

≥ 2i−2 − cos2
(
π
u

2s

)
2−i−2 − sin2

(
π
u

2s

)
2−i−2 = 0.

Third, suppose that bθv
(
pθv
)
= au′i for some vertex u′ 6= u ∈ V and index i ∈ [l − 3], then the principal’s expected

utility is

2i−2 − cos
(
π
u

2s

)
2−i−2 cos

(
π
u′

2s

)(
1− ρl2−l+1

)

− sin
(
π
u

2s

)
2−i−2 sin

(
π
u′

2s

)(
1− ρl2−l+1

)

≥ 2i−2 − cos
(
π
u

2s

)
2−i−2 cos

(
π
u′

2s

)

− sin
(
π
u

2s

)
2−i−2 sin

(
π
u′

2s

)

≥ 0.

Finally, whenever bθv
(
pθv
)
= ā, expected rewards and payments are zero. Hence, we can conclude that the principal’s

expected utility when the agent’s type is θv ∈ Θ with v /∈ V ∗ is at least zero. Thus, the overall principal’s expected
utility is at least

∑

θv∈Θ:v∈V ∗

µθv

(
∑

ω∈Ω

Fθv,bθv (pθv ),ω rω −
∑

ω∈Ω

Fθv,bθv (pθv ),ω pθvω

)
≥ 1

2
ηρl2−l.

Soundness. We prove that, if all the independent sets of G have size at most αηs, then the principal’s expected utility
is at most 4αηlρ2−l in any DSIC menu of deterministic contracts P =

(
pθ
)
θ∈Θ

. First, we show that, when the agent

plays an action aui, then the principal’s expected utility is at most 3ρ2−l. If an agent of type θv ∈ Θ is incentivized
to play an action aui ∈ Aθv with i = l − 3 by contract pθv , i.e., it holds bθv

(
pθv
)
= aui, then it is easy to see that

the principal’s expected utility is at most Fθv,aui,ω3rω3 − cθv,aui
= 3ρ2−l. Moreover, suppose that the agent plays an

action aui with i ∈ [l − 4]. Since such an action is incentivized by contract pθv over action au i+1, it is easy to check
that by IC conditions it must be the case that

pθvω1
sin
(
π
u

2s

)
2−i−2 + pθvω2

cos
(
π
u

2s

)
2−i−2 −

(
2−i−2 − ρ(l − i)2−l

)

≥ pθvω1
sin
(
π
u

2s

)
2−i−3 + pθvω2

cos
(
π
u

2s

)
2−i−3 −

(
2−i−3 − ρ(l − i− 1)2−l

)
,

which implies that
(
pθvω1

sin
(
π
u

2s

)
+ pθvω2

cos
(
π
u

2s

)) (
2−i−2 − 2−i−3

)

≥
(
2−i−2 − ρ(l − i)2−l

)
−
(
2−i−3 − ρ(l − i− 1)2−l

)
.

Hence,

pθvω1
sin
(
π
u

2s

)
+ pθvω2

cos
(
π
u

2s

)
≥
(
2−i−3 − ρ2−l

)
2i+3,

and the agent’s expected payment is at least

pθvω1
sin
(
π
u

2s

)
2−i−2 + pθvω2

cos
(
π
u

2s

)
2−i−2 ≥ 2−i−2

(
2−i−3 − ρ2−l

)
2i+3

≥ 2−i−2 − ρ2−l+1.

This implies that the principal’s expected utility is at most

Fθv ,aui,ω3rω3 − Fθv ,aui,ω3 p
θv
ω1

− Fθv,aui,ω3 p
θv
ω2

≤ 2−i−2 −
(
2−i−2 − ρ2−l+1

)

≤ ρ2−l+1

≤ 3ρ2−l.
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Next, we prove that, given two agent’s types θv ∈ Θ and θu ∈ Θ such that (v, u) ∈ E, then the principal’s expected

utility due to an agent of type θv or θu is at most 3ρ2−l. As we have shown, when an agent of type θv plays an action
different from av, the principal’s expected utility is at most 3ρ2−l. Hence, the principal’s expected utility is strictly
greater than 3ρ2−l for both the agent’s types θv ∈ Θ and θu ∈ Θ only if they play av and au, respectively. However,
in the following we show that if (v, u) ∈ E and the two agent’s type play the actions av and au, then the principal’s

expected utility is at most 3ρ2−l for at least one of the two types. Suppose that pθv incentivizes action av and that pθu

incentivizes action au, namely bθv
(
pθv
)
= av and bθu

(
pθu
)
= au. Then, since an agent of type θv prefers action av

over action aui with i = 1, by IC we have

pθvω1

1

4
sin
(
π
v

2s

)
+ pθvω2

1

4
cos
(
π
v

2s

)
−
(
1

4
− ρl2−l

)

≥ pθuω1

1

8
sin
(
π
u

2s

)
+ pθuω2

1

8
cos
(
π
u

2s

)
−
(
1

8
− ρ(l − 1)2−l

)
.

Similarly, since an agent of type θu prefers action au over action avi with i = 1, we have

1

4
pθuω1

sin
(
π
u

2s

)
+ pθuω2

1

4
cos
(
π
u

2s

)
−
(
1

4
− ρl2−l

)

≥ pθvω1

1

8
sin
(
π
v

2s

)
+ pθvω2

1

8
cos
(
π
v

2s

)
−
(
1

8
− ρ(l − 1)2−l

)
.

Now, assume that

pθvω1
sin
(
π
v

2s

)
+ pθvω2

cos
(
π
v

2s

)
≥ pθuω1

sin
(
π
u

2s

)
+ pθuω2

cos
(
π
u

2s

)
.

The other case is analogous. Then, by taking the difference between the two inequalities above, we get

pθuω1

1

8
sin
(
π
u

2s

)
+ pθuω2

1

8
cos
(
π
u

2s

)
≥
(
1

4
− ρl2−l

)
−
(
1

8
− ρ(l − 1)2−l

)

=
1

8
− ρ2−l.

Then, the expected payment for an agent of type θu is

pθuω1

1

4
sin
(
π
u

2s

)
+ pθuω2

1

4
cos
(
π
u

2s

)
≥ 1

4
− ρ2−l+1,

and the principal’s expected utility due to agent’s type θu is at most ρ2−l+1.

As a last step, notice that, for every possible agent’s type θv and menu of deterministic contracts P =
(
pθ
)
θ∈Θ

, the

principal’s expected utility is at most ρl2−l. In particular, we have shown that, by incentivizing an action different
from av, the principal obtains at most 3ρ2−l expected utility. Moreover, by incentivizing action av, the principal gets
at most Fθv ,av,ω3rω3 − cθv,av

= ρl2−l.

To conclude the proof, for every possible menu of deterministic contracts P =
(
pθ
)
θ∈Θ

, the set of agent’s types

θv ∈ Θ that result in a principal’s expected utility strictly greater than 3ρ2−l defines an independent set V ∗ ⊆ V of
G. Moreover, for all the agent’s types, the principal’s expected utility is at most ρl2−l. Hence, the overall principal’s
expected utility is:

∑

θv∈Θ

µθv

(
∑

ω∈Ω

Fθ,bθv (pθv ),ω rω −
∑

ω∈Ω

Fθ,bθv (pθv ),ω pθvω

)

≤ 1

s




∑

θv∈Θ:v∈V ∗

ρl2−l +
∑

θv∈Θ:v/∈V ∗

3ρ2−l




≤ αηρl2−l + 3ρ2−l

≤ 4αηρl2−l,

where the last inequality follows from αηl ≥ α 1
k

k
α = 1 (recall that η ≥ 1

k ).

11



ARXIV PREPRINT - AUGUST 18, 2022

4 Menus of Deterministic Contracts: An Additive PTAS with a Constant Number of

Outcomes

In the previous section, we showed that, even in Bayesian principal-agent instances with a constant number of out-
comes (and actions), the problem of computing a utility-maximizing DSIC menu of randomized contracts does not
admit any multiplicative approximation that can be computed in polynomial time. In this section, we study the domain
of additive approximations, where we provide a PTAS for the problem that works in settings with a constant number
of outcomes. This result is tight, since by Theorem 1 the problem does not admit an additive FPTAS unless P = NP.

In order to define our PTAS, we first need to introduce some auxiliary results. In the following, we will rely on
an abstract definition of approximately-incentive-compatible menu of deterministic contracts, which combines two
levels of approximation, one related to the IC conditions on agent’s actions, and the other to the DSIC constraints that
the menu should satisfy. In particular, approximate menus do not only specify a contract for each agent’s type, but
also a tuple of action recommendations, one for each type, so that the action recommended to each agent’s type is
approximately IC under the contract corresponding to that type. Formally:

Definition 2 (ǫ-Approximate Menu of Deterministic Contracts). Given any Bayesian principal-agent instance
(Θ, A,Ω) and ǫ > 0, an ǫ-approximate menu of deterministic contracts is a tuple

(
pθ, aθ

)
θ∈Θ

of contract-action

pairs, with pθ ∈ R
m
+ and aθ ∈ A for all θ ∈ Θ, such that:

∑

ω∈Ω

Fθ,aθ,ω pθω − cθ,aθ ≥
∑

ω∈Ω

Fθ,bθ(pθ̂),ω pθ̂ω − cθ,bθ(pθ̂) − ǫ ∀θ, θ̂ ∈ Θ. (3)

Intuitively, an ǫ-approximate menu of deterministic contracts defined by
(
pθ, aθ

)
θ∈Θ

satisfies the following two con-

ditions: each action aθ is ǫ-approximately IC for an agent of type θ ∈ Θ under contract pθ (see the case θ = θ̂ in
Equation (3)), and, additionally, the menu is ǫ-approximately DSIC assuming type θ plays aθ when reporting their

true type (see cases θ 6= θ̂ in Equation (3)). In the following, when we refer to the principal’s expected utility in
an ǫ-approximate menu of deterministic contracts

(
pθ, aθ

)
θ∈Θ

, we mean the expected utility that the principal gets if

each agent’s type θ ∈ Θ truthfully reports their type and plays aθ under contract pθ. Formally, the principal’s expected
utility in

(
pθ, aθ

)
θ∈Θ

can be written as follows:

∑

θ∈Θ

µθ

(
∑

ω∈Ω

Fθ,aθ,ω pθω − cθ,aθ

)
.

Now, we show that, starting from an ǫ-approximate menu of deterministic contracts with principal’s expected utility
equal to APX , we can recover in polynomial time a (non-approximate) DSIC menu of deterministic contracts pro-
viding the principal with an expected utility at least of APX − 2

√
ǫ. This allows us to focus on the computation of

ǫ-approximate menu of deterministic contracts. Formally, we prove the following lemma.

Lemma 1. Given a Bayesian principal-agent instance (Θ, A,Ω) and ǫ > 0, let
(
pθ, aθ

)
θ∈Θ

be an ǫ-approximate menu

of deterministic contracts with principal’s expected utility APX . Then, there exists a DSIC menu of deterministic
contracts P =

(
p̄θ
)
θ∈Θ

in which the principal’s expected utility is at least APX − 2
√
ǫ. Moreover, such a menu can

be computed in polynomial time.

Next, we show that, in an optimal menu of deterministic contracts, large expected payments are only assigned to agent’s
types occurring with small probability, as it will be useful in Lemma 3. Given a constant L ≥ 1 and a menu of deter-
ministic contracts P =

(
pθ
)
θ∈Θ

, we let Θ(L, P ) ⊆ Θ be the set of agent’s types such that
∑

ω∈Ω Fθ,bθ(pθ),ω pθω ≥ L.

Formally, we prove the following:

Lemma 2. Given a Bayesian principal-agent instance (Θ, A,Ω), let P =
(
pθ
)
θ∈Θ

be an optimal menu of determin-

istic contracts. Then, for every constant L > 1, it holds
∑

θ∈Θ(L,P ) µθ ≤ 1
L .

The next step is to show that there exists a menu of deterministic contracts that employs a small set of different con-
tracts, while providing almost optimal principal’s expected utility. This allows us to represent a menu of deterministic
contracts in a more succinct way. In particular, a menu that uses k ∈ N+ different contracts can be represented by a

matrix T ∈ T := R
k×m
+ and a function fT : Θ → {1, . . . , k}. The matrix T ∈ T defines the k different contracts

used by the menu on its rows, with Ti ∈ R
m
+ (i.e., the i-th row of T ) denoting the vector encoding the i-th contract

and Ti,ω (i.e., the element indexed by i, ω) specifying the payment that the i-th contract associates to outcome ω ∈ Ω.

12
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Additionally, the function fT : Θ → {1, . . . , k} assigns contracts to agent’s types, with fT (θ) ∈ {1, . . . , k} defining
the index of the contract proposed by menu T ∈ T when the agent reports type θ ∈ Θ to the principal.

As a preliminary step, we prove the following crucial lemma.

Lemma 3. Given a Bayesian principal-agent instance (Θ, A,Ω) and a constant δ > 0, there exists a DSIC menu

of deterministic contracts P =
(
pθ
)
θ∈Θ

that employs at most O
((

m
δ3 log

m
δ

)m)
different contracts and provides the

principal with an expected utility at least of OPT − δ, where OPT is the principal’s expected utility in an optimal
DSIC menu of deterministic contracts.

The following theorem provides our PTAS. By Lemma 3, in order to find an optimal DSIC menu of deterministic

contracts, we can optimize over the set of menus of contracts represented by the matrices in T = R
k×m
+ , for a values

of k that only depends on the desired constant approximation δ > 0 and m. As a first step, we show that T can be
partitioned into polyhedra such that the principal’s expected utility is linear in each of them, and, thus, an optimal
solution is on a vertex of one of these polyhedra. Moreover, each polyhedron is defined by a subset of a common set
of linear inequalities. Since the dimension of the space T is km and, thus, it is constant, each vertex is defined by
the intersection of km linearly independent hyperplanes. Finally, all the possible subsets of km inequalities can be
enumerated in polynomial time since k and m are constants.

Theorem 2. There exists an additive PTAS for the problem of computing an optimal DSIC menu of deterministic
contracts in Bayesian principal-agent instances with a constant number of outcomes.

Notice that our result cannot be extended to settings with an arbitrary number of outcomes. Indeed, Guruganesh et al.
(2021) show that, in Bayesian principal-agent instances with an arbitrary number of outcomes, there exists an ǫ > 0
such that it is NP-hard to approximate the principal’s expected utility in an optimal menu of deterministic contracts up
to within an ǫ additive factor, unless P = NP.

5 Menus of Deterministic Contracts: Two Easy Cases

In this section, we analyze two cases in which an optimal menu of deterministic contracts can be computed in polyno-
mial time. In particular, Section 5.1 studies instances with two outcomes, complementing the hardness result for the
setting with four outcomes, while Section 5.2 addresses the case with a constant number of types.

5.1 Case with Two Outcomes

Previously, we provide a PTAS for the problem of designing an optimal DSIC menu of deterministic contracts in
Bayesian principal-agent instances with a constant number of outcomes. With four or more outcomes, this result is
tight by Theorem 1. In this section, we show that, with only two outcomes the problem can be solved in polyno-
mial time. We leave as an open problem the analysis of the case with three outcomes. Our result generalizes that
of Guruganesh et al. (2021). In particular, they prove a result that is analogous to ours, but for the simpler case in
which the action costs are the same for all the agent’s types.

Our main result shows that, using menus of deterministic contracts does not increase the principal’s expected utility
with respect to using a single contract.

Lemma 4. In Bayesian principal-agent instances (Θ, A,Ω) with |Ω| = 2, there exists a contract having the same
principal’s expected utility as an optimal DSIC menu of deterministic contracts.

By the previous lemma, in order to compute an optimal DSIC menu of deterministic contracts, it is sufficient to
compute an optimal single contract. As shown by Castiglioni et al. (2021) and Guruganesh et al. (2021), an optimal
single contract can be computed in polynomial time when the number of outcomes is constant. Hence, we obtain the
following:

Theorem 3. In Bayesian principal-agent instances (Θ, A,Ω) with |Ω| = 2, there exists a polynomial-time algorithm
that computes an optimal DSIC menu of deterministic contracts.

5.2 Case with a Constant Number of Types

As shown in Theorem 1, when there is an arbitrary number of agent’s types, the principal’s problem cannot be approx-
imated efficiently, even with a constant number of outcomes and actions. We complement this result by showing that,
when the number of types is constant, the problem can be solved in polynomial time. Formally:

Theorem 4. In Bayesian principal-agent instances with a constant number of agent’s types, there exists a polynomial-
time algorithm that computes an optimal DSIC menu of deterministic contracts.

13
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6 How to Find an “Almost-optimal” Menu of Randomized Contracts Efficiently

In this section, we show that adding randomization enables the polynomial-time computation of a DSIC menu of
contracts providing the principal with an expected utility arbitrarily close to the best possible one.

As we show later in this section, the impossibility of designing an optimal menu of randomized contracts does not stem
from computational challenges associated with the problem, but it is rather due to the fact that an optimal menu of
randomized contracts may not exist. Indeed, in general the problem of finding a DSIC menu of randomized contracts
maximizing the principal’s expected utility only admits a supremum, and it may not admit a maximum. The supremum
of the problem of finding a principal-utility-maximizing DSIC menus of randomized contracts can be computed by
solving the following problem:

sup
Γ={γθ}θ∈Θ

∑

θ∈Θ

µθEp∼γθ

[
∑

ω∈Ω

Fθ,bθ(p),ωrω −
∑

ω∈Ω

Fθ,bθ(p),ωpω

]
s.t. (4a)

Ep∼γθ

[
∑

ω∈Ω

Fθ,bθ(p),ωpω − cθ,bθ(p)

]
≥ Ep∼γθ̂

[
∑

ω∈Ω

Fθ,bθ(p),ωpω − cθ,bθ(p)

]

∀θ 6= θ̂ ∈ Θ. (4b)

As a first step, we show that the supremum defined in Problem 4 always assumes a finite value (i.e., it is never +∞).
In the following, for ease of notation, we denote by SUP the value of Problem 4. Then, we can formally prove:

Proposition 1. Problem 4 has always value SUP ∈ [0, 1].

Proof. It is sufficient to observe that the maximum principal’s expected utility in a menu is 1, since the rewards are in
[0, 1] and the payments can only provide a negative utility contribution to the principal. Let p∗ ∈ R

m
+ be a contract

such that p∗ω = 0 for every ω ∈ Ω. Then, it is easy to check that SUP ≥ 0, since the menu of randomized contracts that

set γθ
p∗ = 1 for every θ ∈ θ provides the principal with an expected utility of at least 0. This proves the statement.

Next, we show that Problem 4 may not admit a maximum, i.e., there is no contract for which the (finite) value of the
supremum is attained.

Before proving such a result, we introduce some additional notation. In particular, we let Pθ,a :=
{
p ∈ R

m
+ | a ∈ Bθ

p

}

be the set of contracts such that action a ∈ A is IC for an agent of type θ ∈ Θ. Furthermore, we let P̂θ,a :={
p ∈ R

m
+ | bθ(p) = a

}
be the set of contracts in which an agent of type θ plays action a. Notice that the sets Pθ,a are

closed polyhedra (as they can be defined by a system of linear inequalities), while sets P̂θ,a are nor open nor closed
polyhedra (as they can be defined by a system of linear inequalities, some of which are strict due to the tie-breaking
rule).

We also need to prove a preliminary result (Lemma 5), which intuitively states that one can restrict the attention to
randomized contracts placing positive probability on a finite number of contracts. In particular, we prove that, for each
type θ ∈ Θ, it is sufficient that the support of γθ contains at most one contract for each agent’s action a ∈ A, with the
latter being the action played by an agent of type θ in such a contract. Formally:

Lemma 5. Given any DSIC menu of randomized contract Γ = {γθ}θ∈Θ, there always exists a DSIC menu of random-

ized contracts Γ̄ = {γ̄θ}θ∈Θ that provides the principal with at least the same expected utility as Γ = {γθ}θ∈Θ and

such that, for every θ ∈ Θ, it holds

∣∣∣supp(γθ) ∩ P̂θ,a
∣∣∣ ≤ 1 for all a ∈ A.

Equipped with the result in Lemma 5, we can now show that Problem 4 does not admit a maximum in general.
Formally:

Theorem 5. There exist Bayesian principal-agent problem instances for which Problem 4 does not admit a maximum.

Proof. Let us consider an instance defined as follows. There are three possible agent’s types, namely Θ = {θ1, θ2,
θ3}, with µθ1 = µθ2 = µθ3 = 1

3 . The agent has three actions available, namely A = {a1, a2, a3}, while the set of
possible outcomes is Ω = {ω1, ω2, ω3, ω4}. Type θ1 is such that Fθ1,a1,ω1 = 1, cθ1,a1 = 0, Fθ1,a2,ω3 = 1, cθ1,a2 = 0,
Fθ1,a3,ω3 = 1, and cθ1,a3 = 0. Type θ2 is such that Fθ2,a1,ω1 = 1, cθ2,a1 = 0, Fθ2,a2,ω2 = 1, cθ2,a2 = 0, Fθ2,a3,ω4 = 1,

and cθ2,a3 = 0. Type θ3 is such that Fθ3,a1,ω2 = 1, cθ3,a1 = 1
4 , Fθ3,a2,ω3 = 1, cθ3,a2 = 0, Fθ3,a3,ω3 = 1, and

cθ3,a3 = 0. Finally, the principal’s rewards are rω1 = 1, rω2 = 3
4 , and rω3 = rω4 = 0.
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As a first step, we show that, for every ǫ > 0, there exists a DSIC menu of randomized contracts with principal’s
expected utility at least 3

4 − ǫ. Let p1 ∈ R
m
+ be a contract such that p1ω = 0 for all ω ∈ Ω, p2 ∈ R

m
+ be such that

p2ω4
= 1

12ǫ and p2ω = 0 for all ω 6= ω4, and p3 ∈ R
m
+ be such that p3ω2

= 1
4 and p3ω = 0 for all ω 6= ω2. Let us consider

the menu Γ = {γθ}θ∈Θ defined so that γθ1
p1 = 1, γθ2

p2 = 3ǫ, γθ2
p1

= 1− 3ǫ, and γθ3
p3

= 1. It Is easy to check that such a

menu is DSIC. Moreover, the principal’s expected utility is at least of

1

3

[
γθ1
p1 + γθ2

p1 −
1

12ǫ
γθ2
p2 +

(
3

4
− 1

4

)
γθ3
p3

]
=

1

3

[
1 + 1− 3ǫ− 1

4
+

3

4
− 1

4

]

=
3

4
− ǫ.

Hence, SUP is at least 3
4 for the considered instance.

We conclude the proof by showing that any DSIC menu Γ̄ = {γ̄θ}θ∈Θ results in a principal’s expected utility that

is strictly smaller than 3
4 . By contradiction, we assume that there exists a DSIC menu Γ̄ = {γ̄θ}θ∈Θ of randomized

contracts that provides the principal with expected utility greater than or equal to 3
4 .

First, by Lemma 5, we can focus on menus Γ̄ = {γ̄θ}θ∈Θ such that for every θ ∈ Θ, it holds

∣∣∣supp(γ̄θ) ∩ P̂θ,a
∣∣∣ ≤ 1

for all a ∈ A. If

∣∣∣supp(γ̄θ3) ∩ P̂θ3,a1

∣∣∣ = 1, let p4 ∈ R
m
+ be the only contract in P̂θ3,a1 such that γ̄θ3

p4 > 0. Notice that

p4ω2
≥ 1

4 by definition of P̂θ3,a1 . Instead, if

∣∣∣supp(γ̄θ3) ∩ P̂θ3,a1

∣∣∣ = 0, let p4 ∈ R
m
+ be such that p4ω = 0 for all ω ∈ Ω.

By the DSIC conditions for type θ2, we have that type θ2 gets an expected payment at least of 1
4 γ̄

θ3
p4 . Moreover, if∣∣∣supp(γ̄θ2) ∩ P̂θ2,a1

∣∣∣ = 1, let p5 ∈ R
m
+ be the only contract in P̂θ2,a1 such that γ̄θ2

p5 > 0. Otherwise, let p5 ∈ R
m
+ bu

such that p5ω = 0 for all ω ∈ Ω. Finally, If

∣∣∣supp(γ̄θ2) ∩ P̂θ2,a2

∣∣∣ = 1, let p6 ∈ R
m
+ be the only contract in P̂θ2,a2 such

that γ̄θ2
p6 > 0; otherwise, let p6 ∈ R

m
+ be such that p6ω = 0 for every ω ∈ Ω.

Now, suppose that action a1 is incentivized for type θ2 with probability strictly smaller than 1, i.e., γ̄θ2
p5 < 1. Then, the

overall principal’s expected utility is at most

1

3

[
1 + γ̄θ2

p5 +
3

4
γ̄θ2
p6 −

1

4
γ̄θ3
p4 +

(
3

4
− 1

4

)
γ̄θ3
p4

]
=

1

3

[
1 + γ̄θ2

p5 +
3

4
γ̄θ2
p6 +

1

4
γ̄θ3
p4

]

<
1

3

9

4
=

3

4
,

which contradicts our initial assumption on Γ̄ = {γ̄θ}θ∈Θ.

As a result, it must hold γ̄θ2
p5 = 1, and, by the DSIC conditions for type θ2, it must be the case that p5ω1

≥ 1
4 γ̄

θ3
p4 . Then,

by the DSIC conditions for type θ1:

Ep∼γ̄θ1

[
∑

ω∈Ω

Fθ,bθ1 (p),ωpω

]
≥ γ̄θ2

p5p
5
ω1

≥ 1

4
γ̄θ3
p4 .

Thus, the overall principal’s expected utility must be at most

1

3
[1− 1

4
γ̄θ3
p4 + 1− γ̄θ3

p4

1

4
+ γ̄θ3

p4 (
3

4
− 1

4
) =

1

3
[1 + 1] =

2

3
,

which contradicts our initial assumption on Γ̄, concluding the proof.

In the remaining part of this section, we show how to design an “ almost-optimal” DSIC menu of randomized contracts,
which is one providing principal’ expected utility arbitrary close to SUP. First, we show that bounded payments are
sufficient to provide an almost-optimal solution. Formally:

Lemma 6. For every ǫ > 0, there always exists a DSIC menu of randomized contracts Γ = {γθ}θ∈Θ with principal’s

expected utility at least SUP − ǫ such that, for every θ ∈ Θ, it holds (i)

∣∣∣supp(γθ) ∩ P̂θ,a
∣∣∣ ≤ 1 for all a ∈ A, and (ii)

pω ≤ C(I, ǫ) for all p ∈ supp(γθ) and ω ∈ Ω, where C(I, ǫ) ∈ O(1ǫ · 2poly(I)) and I denotes the size of the problem
instance.
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Given a Bayesian principal-agent problem instance (Θ, A,Ω) and an ǫ > 0, we let C(I, ǫ) be defined as in Lemma 6.
Moreover, let Pǫ := [0, C(I, ǫ)]m. For every a = (aθ)θ∈Θ ∈×θ∈Θ

A, where a is a tuple specifying an action aθ

for each agent’s type θ ∈ Θ, we let Pa,ǫ := Pǫ ∩
(⋂

θ∈ΘPθ,aθ

)
and, additionally, P̂a,ǫ := Pǫ ∩

(⋂
θ∈Θ P̂θ,aθ

)
.

We also define the set of all the vertexes of the closed polyhedra Pa,ǫ as P∗,ǫ :=
⋃

a∈×θ∈Θ A V (Pa,ǫ), where V (·)
denotes the set of vertexes of the polyhedron given as input. Then, we can prove the following last lemma, which
shows that for every ǫ > 0, in order to obtain a DSIC menu of randomized contracts with principal’s expected utility
at least SUP − ǫ, it is sufficient to restrict the attention to randomized contracts placing positive probability only on
contracts in the (finite) set P∗,ǫ.

Lemma 7. For every ǫ > 0, there always exists a DSIC menu of randomized contracts supported on P∗,ǫ with
principal’s expected utility at least SUP − ǫ.

Lemma 7 allows us to formulate the following LP which, given an ǫ > 0, has an optimal solution of value at least
SUP − ǫ.

max
Γ={γθ}θ∈Θ

∑

θ∈Θ

µθ

∑

p∈P∗,ǫ

γθ
p

[
∑

ω∈Ω

Fθ,bθ(p),ωrω −
∑

ω∈Ω

Fθ,bθ(p),ωpω

]
s.t. (5a)

∑

p∈P∗,ǫ

γθ
p

[
∑

ω∈Ω

Fθ,bθ(p),ωpω − cθ,bθ(p)

]
≥

∑

p∈P∗,ǫ

γ θ̂
p

[
∑

ω∈Ω

Fθ,bθ(p),ωpω − cθ,bθ(p)

]

∀θ 6= θ̂ ∈ Θ (5b)
∑

p∈P∗,ǫ

γθ
p = 1 ∀θ ∈ Θ. (5c)

Notice that LP 5 has an exponential number of variables, since the probability distributions γθ are defined over con-
tracts in P∗,ǫ, and these may be exponentially many in the size of the problem instance.

Nevertheless, the LP has polynomially many constraints, and, thus, as we show next, we can solve it in polynomial time
by applying the ellipsoid algorithm to its dual program, which features polynomially-many variables and exponentially-
many constraints.9

The dual of LP 5 reads as follows:

min
y≤0,t

∑

θ∈Θ

tθ s.t. (6a)

∑

θ̂∈Θ:θ̂ 6=θ

yθ,θ̂

(
∑

ω∈Ω

Fθ,bθ(p),ωpω − cθ,bθ(p)

)

−
∑

θ̂∈Θ:θ̂ 6=θ

yθ,θ̂

(
∑

ω∈Ω

Fθ̂,bθ̂(p),ωpω − cθ̂,bθ̂(p)

)
+ tθ ≥

µθ

(
∑

ω∈Ω

Fθ,bθ(p),ωrω −
∑

ω∈Ω

Fθ,bθ(p),ωpω

)
∀θ ∈ Θ, ∀p ∈ P∗,ǫ, (6b)

where y ∈ R
ℓ(ℓ−1) is a vector of dual variables whose components yθ,θ̂ for θ, θ̂ ∈ Θ : θ 6= θ̂ are the dual variables

corresponding to Constraints (5b), while t ∈ R
ℓ is another vector of dual variables whose components tθ for θ ∈ Θ

are the dual variables of Constraints (5c).

9An LP analogous to LP 5 also arises when dealing with Bayesian persuasion problems in which the receiver can be of multiple
types (see (Castiglioni et al., 2022a)). However, in that case, the counterparts of the terms γθ

p and pω (namely, for a receiver’s type

k, the probability γk
ξ of a given posterior ξ and the probability ξθ that the posterior assigns to a given state of nature θ) always

appear in a product γθ
p pω , which can be replaced by a suitably-defined new variable (subject to some consistency constraints).

This property of the Bayesian persuasion setting allows to formulate the problem as an LP with polynomially-many variables and
constraints. However, in our principal-agent setting, the variables γθ

p also appear without being multiplied by pω, which prevents
us from applying the same trick. As a result, in our setting, we had to resort to the ellipsoid algorithm.
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The dual LP 6 has polynomially-many variables and exponentially-many constraints, and it can be optimally solved
in polynomial time by means of the ellipsoid algorithm provided that a suitable polynomial-time separation oracle is
available. In particular, given a pair (y, t) assigning values to the variables of the dual LP, the separation oracle that
we provide outputs a pair θ ∈ Θ, p ∈ P∗,ǫ such that the corresponding inequality in Constraints (6b) is violated for
(y, t), if any; otherwise, the oracle concludes that (y, t) is feasible for the dual LP. Formally, the separation oracle that
we provide solves (in polynomial time) the following optimization problem for each θ ∈ Θ:

max
p∈P∗,ǫ

{
µθ

(
∑

ω∈Ω

Fθ,bθ(p),ωrω −
∑

ω∈Ω

Fθ,bθ(p),ωpω

)
(7)

−
∑

θ̂∈Θ:θ̂ 6=θ

yθ,θ̂

(
∑

ω∈Ω

Fθ,bθ(p),ωpω − cθ,bθ(p)

)

+
∑

θ̂∈Θ:θ̂ 6=θ

yθ,θ̂

(
∑

ω∈Ω

Fθ̂,bθ̂(p),ωpω − cθ̂,bθ̂(p)

)}
.

Indeed, if the the value of the maximization above is greater than tθ for some θ ∈ Θ, then the separation oracle
outputs the pair (θ, p) with p ∈ P∗,ǫ being a contract for which the maximization is attained, since the constraint
corresponding to θ and p is violated. Instead, if tθ is less than or equal to the value of the maximization above for
every θ ∈ Θ, then the oracle concludes that (y, t) is feasible since no constraint is violated.

The following lemma shows that Problem 7 above can indeed be solved in polynomial time. Notice that ǫ appears
only in the coefficients of Problem 5. Indeed, such coefficients are at most C(I, ǫ). Hence, our algorithm runs in time
polynomial in the number of bits needed to represent the coefficients, and, thus, polynomial in log(1/ǫ). Formally, we
can state the following:

Lemma 8. For every ǫ > 0, there exists a separation oracle for LP 6, that runs in time poly(I, log(1/ǫ)), where I is
the size of the problem instance.

Proof. Given a pair (y, t) ∈ R
ℓ(ℓ−1) × R

ℓ assigning values to the variables of LP 6, the separation oracle solves
Problem 7 for every θ ∈ Θ. Then, if there exists an agent’s type θ ∈ Θ such that tθ is less than the value of an optimal
solution p ∈ P∗,ǫ to Problem 7 for type θ, the oracle outputs the pair (θ, p), which corresponds to a violated inequality
in Constraints (6b). Instead, if tθ is greater than or equal to the value of an optimal solution to Problem 7 for every
θ ∈ Θ, the oracle concludes that (y, t) is feasible, since all the inequalities in Constraints (6b) are satisfied.

Next, we show that, for every θ ∈ Θ, Problem 7 can be solved in polynomial time. In order to do that, we split the

set P∗,ǫ into the subsets P̂θ,a ∩ P∗,ǫ, defined for every agents’ action a ∈ A. Notice that, by the definitions of P̂θ,a

and P∗,ǫ, each p ∈ P∗,ǫ belongs to exactly one subset P̂θ,a ∩ P∗,ǫ. Thus, solving Problem 7 reduces to solving the
following problem:

max
a∈A

max
p∈P̂θ,a∩P∗,ǫ

{
µθ

(
∑

ω∈Ω

Fθ,a,ωrω −
∑

ω∈Ω

Fθ,a,ωpω

)
(8)

−
∑

θ̂∈Θ:θ̂ 6=θ

yθ,θ̂

(
∑

ω∈Ω

Fθ,a,ωpω − cθ,a

)

+
∑

θ̂∈Θ:θ̂ 6=θ

yθ,θ̂

(
∑

ω∈Ω

Fθ̂,bθ̂(p),ω pω − cθ̂,bθ̂(p)

)}
,

where we used the fact that bθ(p) = a for p ∈ P̂θ,a.
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As a first step, we prove that Problem 8 is equivalent to the following one:

max
a∈A

max
p∈Pθ,a∩P∗,ǫ

{
µθ

(
∑

ω∈Ω

Fθ,a,ωrω −
∑

ω∈Ω

Fθ,a,ωpω

)
(9)

−
∑

θ̂∈Θ:θ̂ 6=θ

yθ,θ̂

(
∑

ω∈Ω

Fθ,a,ωpω − cθ,a

)

+
∑

θ̂∈Θ:θ̂ 6=θ

yθ,θ̂

(
∑

ω∈Ω

Fθ̂,bθ̂(p),ω pω − cθ̂,bθ̂(p)

)}
,

where we replace P̂θ,a with Pθ,a in the inner maximization. Indeed, by adding contracts p ∈
(
Pθ,a \ P̂θ,a

)
∩P∗,ǫ to

the domain of the inner maximizations for every a ∈ A does not change the optimal value of the overall maximization

problem. In order to see this, notice that, for every p ∈
(
Pθ,a \ P̂θ,a

)
∩ P∗,ǫ, by definition of best response it

holds
∑

ω∈Ω Fθ,bθ(p),ωpω − cθ,bθ(p) =
∑

ω∈Ω Fθ,a,ωpω − cθ,a and
∑

ω∈Ω Fθ,bθ(p),ωrω − ∑
ω∈Ω Fθ,bθ(p),ωpω ≥

∑
ω∈Ω Fθ,a,ωrω −∑ω∈Ω Fθ,a,ωpω (tie-breaking rule). Thus, any pair (a, p) with p ∈

(
Pθ,a \ P̂θ,a

)
∩ P∗,ǫ would

result in an objective value smaller than that of the pair (bθ(p), p). Recalling that p ∈ P̂θ,bθ(p) by definition, we can
conclude that Problem 8 and Problem 9 are indeed equivalent.

We are left to prove that Problem 9 can be solved in polynomial time. First, notice that solving Problem 9 is equivalent
to solving the following problem for every a ∈ A:

max
p∈Pθ,a∩P∗,ǫ

{
µθ

(
∑

ω∈Ω

Fθ,a,ωrω −
∑

ω∈Ω

Fθ,a,ωpω

)
(10)

−
∑

θ̂∈Θ:θ̂ 6=θ

yθ,θ̂

(
∑

ω∈Ω

Fθ,a,ωpω − cθ,a

)

+
∑

θ̂∈Θ:θ̂ 6=θ

yθ,θ̂

(
∑

ω∈Ω

Fθ̂,bθ̂(p),ωpω − cθ̂,bθ̂(p)

)}
.

The first and second terms in the maximization above are linear in the payments pω for ω ∈ Ω. Moreover, it holds:

∑

θ̂∈Θ:θ̂ 6=θ

yθ,θ̂

(
∑

ω∈Ω

Fθ̂,bθ̂(p),ωpω − cθ̂,bθ̂(p)

)

=
∑

θ̂∈Θ:θ̂ 6=θ

yθ,θ̂ max
a′∈A

{
∑

ω∈Ω

Fθ̂,a′,ωpω − cθ̂,a′

}
,

and the latter is a concave function of the payments pω since all the yθ,θ̂ are negative and the max is convex. These

observations allow us to solve Problem 9 in polynomial time by first solving the following LP relaxation obtained by
weakening the requirement p ∈ Pθ,a ∩ P∗,ǫ as p ∈ Pθ,a ∩ Pǫ:

max
p∈Pǫ

µθ

(
∑

ω∈Ω

Fθ,a,ωrω −
∑

ω∈Ω

Fθ,a,ωpω

)
(11a)

−
∑

θ̂∈Θ:θ̂ 6=θ

yθ,θ̂

(
∑

ω∈Ω

Fθ,a,ωpω − cθ,a

)
+

∑

θ̂∈Θ:θ̂ 6=θ

yθ,θ̂zθ̂ s.t.

zθ̂ ≥
∑

ω∈Ω

Fθ̂,a′,ωpω − cθ̂,a′ ∀θ̂ ∈ Θ : θ̂ 6= θ, ∀a′ ∈ A (11b)

∑

ω∈Ω

Fθ,a,ωpω − cθ,a ≥
∑

ω∈Ω

Fθ,a′,ωpω − cθ,a′ ∀a′ ∈ A, (11c)
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where Constraints (11b) ensure that zθ̂ = maxa′∈A

{∑
ω∈Ω Fθ̂,a′,ωpω − cθ̂,a′

}
for every θ̂ ∈ Θ : θ̂ 6= θ (since in

Objective (11a) all the coefficients of the variables zθ̂ are negative), while Constraints (11c) are equivalent to p ∈ Pθ,a.

Given an optimal solution to LP 11, it is possible to recover in polynomial time a contract p ∈ Pθ,a ∩ P∗,ǫ that is an

optimal solution to Problem 10. Given a contract p∗ ∈ Pθ,a ∩ Pǫ that is an optimal solution to LP 11, let a∗ = (ap
∗

θ̂
),

where ap
∗

θ = a and ap
∗

θ̂
= bθ̂(p∗) for each θ̂ ∈ Θ : θ̂ 6= θ. Then, since ap

∗

θ = a, and for each contract p̂ ∈ Pa
∗,ǫ

and each θ̂ ∈ Θ : θ̂ 6= θ, bθ̂(p∗) ∈ Bθ̂
p̂, the following LP is equivalent to LP 11 restricted to the feasibility set

Pa
∗,ǫ ⊆ Pθ,a ∩ Pǫ. Hence, the contract p∗ defined above is also an optimal solution to the following LP:

max
p∈Pǫ

µθ

(
∑

ω∈Ω

Fθ,a,ωrω −
∑

ω∈Ω

Fθ,a,ωpω

)
(12a)

−
∑

θ̂∈Θ:θ̂ 6=θ

yθ,θ̂

(
∑

ω∈Ω

Fθ,a,ωpω − cθ,a

)

+
∑

θ̂∈Θ:θ̂ 6=θ

yθ,θ̂

(
∑

ω∈Ω

Fθ̂,bθ̂(p∗),ωpω − cθ̂,bθ̂(p∗)

)
s.t. (12b)

∑

ω∈Ω

F
θ̂,ap∗

θ̂
,ω
pω − c

θ̂,ap∗

θ̂

≥
∑

ω∈Ω

Fθ̂,a′,ω pω − cθ̂,a′ ∀θ̂ ∈ Θ, ∀a′ ∈ A. (12c)

Thus, there always exists an optimal solution to LP 12 that is a vertex of its feasibility polytope Pa
∗,ǫ, i.e., a contract

in V (Pa
∗,ǫ) ⊆ Pθ,a ∩ P∗,ǫ, and such optimal solution can be found in polynomial time (Ye, 1990).

By the previous lemma, it immediately follows the main result of the paper.

Theorem 6. In Bayesian principal-agent problems, there exists an algorithm that, given any ǫ > 0, runs in time
poly(I, log(1/ǫ)) and computes a DSIC menu of randomized contracts providing the principal with an expected utility
at least of SUP − ǫ, where I is the size of the problem instance.
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A Proofs Omitted From Section 4

Lemma 1. Given a Bayesian principal-agent instance (Θ, A,Ω) and ǫ > 0, let
(
pθ, aθ

)
θ∈Θ

be an ǫ-approximate menu

of deterministic contracts with principal’s expected utility APX . Then, there exists a DSIC menu of deterministic
contracts P =

(
p̄θ
)
θ∈Θ

in which the principal’s expected utility is at least APX − 2
√
ǫ. Moreover, such a menu can

be computed in polynomial time.

Proof. Given
(
pθ, aθ

)
θ∈Θ

as in Definition 2, we let P̂ =
(
p̂θ
)
θ∈Θ

be an auxiliary menu of deterministic contracts such

that p̂θω = (1−√
ǫ) pθω +

√
ǫrω for every θ ∈ Θ and ω ∈ Ω. Then, we define the menu of contracts P =

(
p̄θ
)
θ∈Θ

as follows. For every agent’s type θ ∈ Θ, we let p̄θ = p̂θ
′

for some θ′ ∈ argmaxθ′∈Θ Uθ
(
p̂θ

′

)
, where, for the ease

of presentation, we define Uθ
(
p̂θ

′

)
:= maxa∈A

{∑
ω∈Ω Fθ,a,ω p̂θ

′

ω − cθ,a

}
as type θ’s utility in any IC action under

p̂θ
′

.

Notice that P =
(
p̄θ
)
θ∈Θ

is DSIC by definition. Next, we show that, for each agent’s type θ ∈ Θ, the principal’s

expected utility contribution due to that type under contract p̄θ decreases by a at most 2
√
ǫ compared with that obtained

when the agent plays aθ under pθ , proving the lemma.

For every agent’s type θ ∈ Θ, let θ′ ∈ Θ be the agent’s type such that p̄θ = p̂θ
′

. Notice that it may be the case that
θ = θ′ and/or bθ

(
p̄θ
)
= aθ . First, we prove the following:

∑

ω∈Ω

Fθ,bθ(p̄θ),ω

(
(1−√

ǫ) pθ
′

ω +
√
ǫrω

)
− cθ,bθ(p̄θ) =

∑

ω∈Ω

Fθ,bθ(p̄θ),ω p̄θ − cθ,bθ(p̄θ)

≥
∑

ω∈Ω

Fθ,aθ,ωp̂
θ − cθ,aθ

=
∑

ω∈Ω

Fθ,aθ,ω

(
(1 −√

ǫ) pθ +
√
ǫrω
)
− cθ,aθ ,

where the inequality follows from the fact that playing action bθ
(
p̄θ
)

under contract p̄θ is preferred by the agent over

playing action aθ under contract p̂θ, by definition of contract p̄θ. Moreover, by definition of the ǫ-approximate menu
of deterministic contracts

(
pθ, aθ

)
θ∈Θ

, it holds

∑

ω∈Ω

Fθ,aθ,ω pθ − cθ,aθ ≥
∑

ω∈Ω

Fθ,bθ(pθ′ ),ω pθ
′ − cθ,bθ(pθ′ ) − ǫ ≥

∑

ω∈Ω

Fθ,bθ(p̄θ),ω pθ
′ − cθ,bθ(p̄θ) − ǫ.

By summing the two relations obtained above, we get

∑

ω∈Ω

Fθ,bθ(p̄θ),ω

(
−√

ǫ pθ
′

ω +
√
ǫrω

)
≥
∑

ω∈Ω

Fθ,aθ,ω

(
−√

ǫ pθω +
√
ǫrω
)
− ǫ,

which implies that ∑

ω∈Ω

Fθ,bθ(p̄θ)

(
rω − pθ

′

ω

)
≥
∑

ω∈Ω

Fθ,aθ,ω

(
rω − pθω

)
−√

ǫ.

Then, the principal’s expected utility when the agent is of type is θ ∈ Θ is equal to

∑

ω∈Ω

Fθ,bθ(p̄θ),ω

(
rω − p̄θω

)
=
∑

ω∈Ω

Fθ,bθ(p̄θ),ω

(
rω − (1−√

ǫ) pθ
′ −√

ǫrω

)

=
(
1−√

ǫ
)∑

ω∈Ω

Fθ,bθ(p̄θ),ω

(
rω − pθ

′
)

≥
(
1−√

ǫ
)
(
∑

ω∈Ω

Fθ,aθ,ω

(
rω − pθω

)
−√

ǫ

)

≥
∑

ω∈Ω

Fθ,aθ,ω

(
rω − pθω

)
− 2

√
ǫ.

This concludes the proof.
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Lemma 2. Given a Bayesian principal-agent instance (Θ, A,Ω), let P =
(
pθ
)
θ∈Θ

be an optimal menu of determin-

istic contracts. Then, for every constant L > 1, it holds
∑

θ∈Θ(L,P ) µθ ≤ 1
L .

Proof. By contradiction, we show that, if
∑

θ∈Θ(L,P ) µθ > 1
L , then the menu P =

(
pθ
)
θ∈Θ

provides a negative

expected utility to the principal. In particular, if
∑

θ∈Θ(L,P ) µθ > 1
L , then the expected payment due to agent’s types

in Θ(L, P ) is greater than 1, while the expected reward to the principal is at most 1. Hence, since a menu of all-zero
contract vectors provides the principal with an expected utility at least of zero, the menu P cannot be optimal, reaching
a contradiction.

Lemma 3. Given a Bayesian principal-agent instance (Θ, A,Ω) and a constant δ > 0, there exists a DSIC menu

of deterministic contracts P =
(
pθ
)
θ∈Θ

that employs at most O
((

m
δ3 log

m
δ

)m)
different contracts and provides the

principal with an expected utility at least of OPT − δ, where OPT is the principal’s expected utility in an optimal
DSIC menu of deterministic contracts.

Proof. The proof is organized in two steps. As a first step, we show that, from an optimal menu of deterministic

contracts P =
(
pθ
)
θ∈Θ

, we can build a δ2

16–approximate menu of deterministic contracts
(
p̄θ, āθ

)
θ∈Θ

that provides

the principal with an expected utility of OPT − δ
2 and such that it adopts a limited number of different payment values.

In particular, all payment values p̄θω, for every agent’s type θ ∈ Θ and outcome ω ∈ Ω, belong to a small, finite set.
This implies that also the set of possible different contracts is small. Then, as a second step, we employ Lemma 1 to
build a DSIC menu of deterministic contracts as in the statement of the lemma, starting from

(
p̄θ, āθ

)
θ∈Θ

, and only

incurring in a small loss in the principal’s expected utility.

Let M(ω) := maxθ∈Θ pθω for every ω ∈ Ω, and let I :=
{
0, 1, . . . ,

⌈
log η

log(1−η)

⌉}
with η := δ3

64m . We split Θ into two

sets. Letting L := 4
δ , the first set is Θ1 := Θ(L, P ), while the second one is Θ2 := Θ \ Θ1, which includes all the

agent’s types that are not in Θ1. Moreover, we let Θ̂ ⊆ Θ be the subset of agent’s types θ ∈ Θ such that there exists

an action aθ ∈ A and an outcome ωθ ∈ Ω that simultaneously satisfy pθωθ < ηM(ωθ) and Fθ,aθ,ωθ pθωθ ≥ δ2

8m .

First, we prove that Θ̂ ⊆ Θ1. For every θ ∈ Θ̂, we have Fθ,aθ,ωθ ≥ 1
pθ

ωθ

δ2

8m > δ2

8m
1

ηM(ω) = 8
δM(ω) . Then, by IC

conditions and the definition of M(ωθ), it holds
∑

ω∈Ω

Fθ,bθ(pθ),ω pθω − cθ,bθ(pθ) ≥ Fθ,aθ,ωθM(ωθ)− cθ,aθ ,

which implies that ∑

ω∈Ω

Fθ,bθ(pθ),ω pθω ≥ Fθ,aθ,ωθM(ωθ)− 1 ≥ 8

δ
− 1 ≥ 4

δ
.

Next, we build a δ2

16–approximate menu of deterministic contracts
(
p̄θ, āθ

)
θ∈Θ

, as follows. For each agent’s type θ ∈
Θ2 and outcome ω ∈ Ω, we set p̄θω = 0 if pθω < (1− η)⌈

log η

log(1−η) ⌉M(ω) ≤ ηM(ω), while we set p̄θω = (1− η)i
∗

M(ω)

otherwise, where i∗ is the smallest integer such that (1 − η)i
∗

M(ω) ≤ pθω. Notice that i∗ is at most
⌈

log η
log(1−η)

⌉
, and,

thus, i∗ ∈ I . Intuitively, contracts p̄θ are defined by lowering the payments of the corresponding contracts pθ to the
nearest value (1 − η)i with i ∈ I , so that, in the second case above, it holds that p̄θω ≥ (1 − η)pθω. Moreover, we set

āθ = bθ
(
pθ
)

for all θ ∈ Θ2. Finally, for each agent’s type θ ∈ Θ1, we set p̄θ = p̄g(θ) and āθ = bθ
(
p̄θ
)
, where, for

the ease of notation, we let g(θ) ∈ argmaxθ̂∈Θ2

{∑
ω∈Ω Fθ,bθ(p̄θ̂),ω p̄θ̂ω − cθ,bθ(p̄θ̂)

}
.

First, we show that the menu
(
p̄θ, āθ

)
θ∈Θ

is δ2

16–approximate. This holds by construction for all the agent’s types in

Θ1. For any type θ ∈ Θ2, as a first step, we prove that

Fθ,āθ,ω p̄θω ≥ Fθ,āθ,ω pθω − δ2

16m
∀ω ∈ Ω. (13)

We consider two cases. If Fθ,āθ,ω pθω < δ2

16m , then Fθ,āθ,ω pθω − δ2

16m < 0, and, thus, the inequality above holds since

Fθ,āθ,ω p̄θω ≥ 0. Otherwise, since θ /∈ Θ̂ ⊆ Θ1, it holds pθω ≥ ηM(ω) and

Fθ,āθ,ω p̄θω ≥ Fθ,āθ,ω(1− η) pθω ≥ Fθ,āθ,ω pθω − ηFθ,āθ,ω pθω ≥ Fθ,āθ,ω pθω − η
4

δ
= Fθ,āθ,ω pθω − δ2

16m
,
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where the last inequality follows from Fθ,āθ,ω pθω ≤ ∑
ω Fθ,āθ,ω pθω ≤ 4

δ since θ /∈ Θ1. Then, we prove that(
p̄θ, āθ

)
θ∈Θ

satisfies Equation (3) for every agent’s type θ ∈ Θ2. Notice that, since for each contract p̄θ with θ ∈ Θ1

there exists a contract p̄g(θ) with g(θ) ∈ Θ2 such that p̄θ = p̄g(θ), the condition in Equation (3) must be checked only

for types θ̂ ∈ Θ. In particular, for every pair of agent’s types θ, θ̂ ∈ Θ2, the following holds:

∑

ω∈Ω

Fθ,āθ,ω p̄θω − cθ,āθ ≥
∑

ω∈Ω

(
Fθ,āθ,ω pθω − δ2

16m

)
− cθ,āθ

=
∑

ω∈Ω

Fθ,bθ(pθ),ω pθω − cθ,bθ(pθ) −
δ2

16

≥
∑

ω∈Ω

Fθ,bθ(pθ̂),ωp
θ̂
ω − cθ,bθ(pθ̂) −

δ2

16

≥
∑

ω∈Ω

Fθ,bθ(p̄θ̂),ωp
θ̂
ω − cθ,bθ(p̄θ̂) −

δ2

16

≥
∑

ω∈Ω

Fθ,bθ(p̄θ̂),ω p̄θ̂ω − cθ,bθ(p̄θ̂) −
δ2

16
,

where the first inequality follows from Equation (13), the second one holds by the DSIC property of P =
(
pθ
)
θ∈Θ

,

the third one from the definition of best response, while the last inequality follows from the fact that p̄θ
′

ω ≤ pθ
′

ω for
every θ ∈ Θ2 and ω ∈ Ω.

Now, we prove that the principal’s expected utility in the δ2

16–approximate menu of deterministic contracts
(
p̄θ, āθ

)
θ∈Θ

is at least OPT − δ
2 . For every agent’s type θ ∈ Θ1, we have that

∑

ω∈Ω

Fθ,āθ,ω p̄θω − cθ,āθ =
∑

ω∈Ω

Fθ,bθ(p̄g(θ)),ω p̄g(θ)ω − cθ,bθ(p̄g(θ))

≤
∑

ω∈Ω

Fθ,bθ(p̄g(θ)),ω pg(θ)ω − cθ,bθ(p̄g(θ))

≤
∑

ω∈Ω

Fθ,bθ(pθ),ω pθω − cθ,bθ(pθ),

where the first inequality follows from the fact that p̄θω ≤ pθω for every θ ∈ Θ2 and ω ∈ Ω, while the second one from

the IC e DSIC properties of P =
(
pθ
)
θ∈Θ

. Thus, we can conclude that
∑

θ∈Θ Fθ,āθ,ω p̄θω ≤∑θ∈Θ Fθ,bθ(pθ),ω pθω +1.

Moreover, the principal’s expected reward of contract pθ is
∑

θ∈Θ Fθ,bθ(pθ),ωrω ≤ 1. Thus, the revenue that the

principal extracts from an agent of type θ ∈ Θ1 decreases by at most 2, since, by changing the contract from pθ to
p̄θ, the reward decreases by at most 1 and the payment increases by at most 1. On the other hand, for every agent’s
type θ ∈ Θ2, the principal’s expected utility does not decrease, since the agent plays the same action and the payments

decrease. Hence, the principal’s expected utility decreases by at most 2
∑

θ∈Θ1
µθ ≤ 2 δ

4 = δ
2 , where the inequality

follows from Lemma 2.

Finally, by Lemma 1, starting from the δ2

16 -approximate menu of deterministic contracts
(
p̄θ, āθ

)
θ∈Θ

, we can build a

DSCI menu of deterministic contracts P̂ =
(
p̂θ
)
θ∈Θ

providing the principal with a utility at least of APX− 2
√

δ2

16 =

APX − δ
2 , where APX is the expected utility of

(
p̄θ, āθ

)
θ∈Θ

. Hence, the principal’s expected utility is at least

APX − δ
2 = OPT − δ. Moreover, we also have that p̂θω ∈

{
(1− η)iM(ω)

(
1− δ

4

)
+ δ

4rω
}
i∈I

∪
{

δ
4rω
}

for every

θ ∈ Θ and ω ∈ Ω. This holds since the menu of contracts built in Lemma 1 uses contracts defined as (1−√
ǫ)p̄θ+

√
ǫr

for θ ∈ Θ. Thus, there are at most

|I + 1|m =

(
log δ3

64m

log
(
1− δ3

64m

) + 3

)m

≤
(
64m

δ3
log

64m

δ3

)m

= O
((m

δ3
log

m

δ

)m)

different contracts, where in the first inequality we use − log(1 − x) ≥ x for x ≤ 1.

Theorem 2. There exists an additive PTAS for the problem of computing an optimal DSIC menu of deterministic
contracts in Bayesian principal-agent instances with a constant number of outcomes.
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Proof. Let δ > 0 be a desired additive approximation factor for the PTAS. By Lemma 3, in order to find an
approximate DSIC menu of deterministic contracts, it is sufficient to optimize over all the menus using at most
k = k(δ,m) different contracts. Recall that a menu that uses at most k different contracts can be represented by

a matrix T ∈ T = R
k×m
+ and a function f : Θ → {1, . . . , k}.

The PTAS works by organizing the space of possible matrices representing menus of deterministic contracts, namely

R
k×m
+ , into polyhedra, depending on which function f can be paired with the matrix to define a DSIC menu. In

particular, given a function f : Θ → {1, . . . , k}, we define Qf ⊆ R
k×m
+ as the polyhedra defined by the following set

of linear inequalities enforcing DSIC:

∑

ω∈Ω

Fθ,bθ(Tf(θ)),ω Tf(θ),ω − cθ,bθ(Tf(θ)) ≥
∑

ω∈Ω

Fθ,a,ω Ti,ω − cθ,a ∀θ ∈ Θ, ∀a ∈ A, ∀i ∈ {1, . . . , k}.

Once function f is fixed, i.e., we restrict the attention to menus of deterministic contracts in Qf , an optimal menu can
be obtained as optimal solution to the following LP:

max
T∈Rk×m

∑

θ∈Θ

µθ

∑

ω∈Ω

Fθ,bθ(Tf(θ)),ω

(
rω − Tf(θ),ω

)
s.t. (14a)

∑

ω∈Ω

Fθ,bθ(Tf(θ)) Tf(θ),ω − cθ,bθ(Tf(θ)) ≥
∑

ω∈Ω

Fθ,a,ω Ti,ω − cθ,a

∀θ ∈ Θ, ∀a ∈ A, ∀i ∈ {1, . . . , k} (14b)

Ti,ω ≥ 0 ∀i ∈ {1, . . . , k}, ∀ω ∈ Ω. (14c)

Since the objective of the LP is a linear function with non-positive coefficients and the feasible region is R
k×m
+ , an

optimal solution to the LP is one of the vertexes of the polyhedron defined by Constraints (14b) and (14c). In order to
conclude the proof, notice that, for every possible function f , the feasible region of the LP is defined by a subset of the
same set of ℓnk2 + km possible constraints. In particular, for every θ ∈ Θ, a ∈ A, and i ∈ {1, . . . , k}, there exists k
possible Constraints (14b) depending on the value of f(θ), while Constraints (14b) does not depend on the function f .
Moreover, since each vertex is at the intersection of km linearly independent hyperplanes representing the inequalities

and there are at most ℓnk2 + km different hyperplanes, there are at most
(
ℓnk2+km

km

)
possible vertexes. Finally, the

vertexes can be enumerated in polynomial time.

B Proofs Omitted From Section 5

Lemma 4. In Bayesian principal-agent instances (Θ, A,Ω) with |Ω| = 2, there exists a contract having the same
principal’s expected utility as an optimal DSIC menu of deterministic contracts.

Proof. Let Ω = {ω0, ω1} be the set made by the two outcomes. Moreover, w.l.o.g., let ω0 be the outcome with smaller

reward, i.e., rω0 ≤ rω1 . We show that, given a menu of deterministic contracts P =
(
pθ
)
θ∈Θ

, we can build a contract

p̂ ∈ R
m
+ providing the principal with at least the same principal’s expected utility. Let θ̂ ∈ argmaxθ∈Θ pθω1

. Then,

we define the contract p̂ such that p̂ω1 = min
{
pθ̂ω1

, rω1 − rω0

}
and p̂ω0 = 0. We show that, by replacing the menu

P =
(
pθ
)
θ∈Θ

with the contract p̂, for each agent’s type θ ∈ Θ, the principal’s expected utility does not decrease.

Take any type θ ∈ Θ. As a preliminarily step, notice that

Fθ,bθ(pθ),ω1
p̂ω1 ≤ Fθ,bθ(pθ),ω1

pθ̂ω1
+
(
1− Fθ,bθ(pθ),ω1

)
pθ̂ω0

≤ Fθ,bθ(pθ),ω1
pθω1

+
(
1− Fθ,bθ(pθ),ω1

)
pθω0

, (15)

where the first inequality follows from the definition of p̂ and the second one from DSIC. Then, we consider two cases.
First, suppose that bθ (p̂) = bθ

(
pθ
)
. Then, the expected payment under the contract p for an agent of type θ is

Fθ,bθ(p̂),ω1
p̂ω1 ≤ Fθ,bθ(pθ),ω1

pθω1
+
(
1− Fθ,bθ(pθ),ω1

)
pθω0

where the inequality comes from Equation (15) and bθ (p̂) = bθ
(
pθ
)
. Hence, the payment decreases while the revenue

does not, implying that the principal’s expected utility does not decrease.
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Second, suppose that bθ (p̂) 6= bθ
(
pθ
)
. By IC conditions, we have

Fθ,bθ(p̂),ω1
p̂ω1 − cθ,bθ(p̂) ≥ Fθ,bθ(pθ),ω1

p̂ω1 − cθ,bθ(pθ),

and

Fθ,bθ(p̂),ω1
pθω1

+
(
1− Fθ,bθ(p̂),ω1

)
pθω0

− cθ,bθ(p̂) ≤ Fθ,bθ(pθ),ω1
pθω1

+
(
1− Fθ,bθ(pθ),ω1

)
pθω0

− cθ,bθ(pθ).

By summing the two inequalities, we get

Fθ,bθ(p̂),ω1

(
p̂ω1 − pθω1

+ pθω0

)
≥ Fθ,bθ(pθ),ω1

(
p̂ω1 − pθω1

+ pθω0

)
. (16)

We consider two cases. If pθω1
≤ rω1−rω0 , then p̂ω1 ≥ pθω1

, which implies Fθ,bθ(p̂),ω1
≥ Fθ,bθ(pθ),ω1

by Equation (16).

Then, the principal’s expected utility when the agent plays action bθ (p̂) is

Fθ,bθ(p̂),ω1
(rω1 − p̂ω1) +

(
1− Fθ,bθ(p̂),ω1

)
rω0 ≥ Fθ,bθ(pθ),ω1

(rω1 − p̂ω1) +
(
1− Fθ,bθ(pθ),ω1

)
rω0

≥ Fθ,bθ(pθ),ω1

(
rω1 − pθω1

)
+
(
1− Fθ,bθ(pθ),ω1

) (
rω0 − pθω0

)
,

where the first inequality comes from rω1 − p̂ω1 ≥ rω0 (by construction) and Fθ,bθ(p̂),ω1
≥ Fθ,bθ(pθ),ω1

, while the
second one comes from Equation (15). Hence, the principal’s utility does not decrease.

If pθω1
≥ rω1 − rω0 , then the expected reward is

Fθ,bθ(p̂),ω1
(rω1 − p̂ω1) + Fθ,bθ(p̂),ω0

rω0 ≥ Fθ,bθ(p̂),ω1
rω0 + Fθ,bθ(p̂),ω0

rω0

= rω0 ≥ Fθ,bθ(pθ),ω1
(rω1 − pθω1

) + Fθ,bθ(pθ),ω0
(rω0 − pθω0

)

where the first inquality holds since p̂ω1 ≤ rω1 −rω0 by construction and the last inequality holds since both rω0 −pθω0

and rω1 − pθω1
are smaller than rω0 . Thus, the principal’s utility does not decrease. This concludes the proof.

Theorem 4. In Bayesian principal-agent instances with a constant number of agent’s types, there exists a polynomial-
time algorithm that computes an optimal DSIC menu of deterministic contracts.

Proof. Consider an optimal menu of contracts (pθ)θ∈Θ. This optimal menu of contracts induces an action aθ = bθ(pθ)
for each possible receiver’s type θ ∈ Θ. Once the action profile (aθ)θ∈Θ is determined, the optimal menu of contracts
can be found solving the following LP of polynomial size.

min
p∈R

ℓ×m
+

∑

θ

µθ

∑

ω∈Ω

pωFθ,aθ,ω (18a)

s.t.
∑

ω∈Ω

pθωFθ,aθ,ω − cθ,aθ ≥
∑

ω∈Ω

pθ
′

ω Fθ,a,ω − cθ,a ∀θ, θ′ ∈ Θ, a ∈ A (18b)

(18c)

We can enumerate over all the actions’ profiles and, for each action profile, find an optimal menu of contract that
incentivize this action profile. Since the are O(nℓ) action profile, the algorithm works in polynomial time if the
number of types is fixed.

C Proofs Omitted From Section 6

Lemma 5. Given any DSIC menu of randomized contract Γ = {γθ}θ∈Θ, there always exists a DSIC menu of random-

ized contracts Γ̄ = {γ̄θ}θ∈Θ that provides the principal with at least the same expected utility as Γ = {γθ}θ∈Θ and

such that, for every θ ∈ Θ, it holds

∣∣∣supp(γθ) ∩ P̂θ,a
∣∣∣ ≤ 1 for all a ∈ A.

Proof. Let Γ = {γθ}θ∈Θ be a DSIC menu of randomized contracts, i.e., a feasible solution to Problem 4. We show

that it is always possible to build a new DSIC menu of randomized contracts Γ̃ = {γ̃θ}θ∈Θ that is still feasible to

Problem 4, provides at least the same expected utility, and satisfies

∣∣∣supp(γ̃θ) ∩ P̂θ,a
∣∣∣ ≤ 1 for all θ ∈ Θ and a ∈ A. In

particular, we let each probability distribution γ̃θ be such that the support supp(γ̃θ) contains all and only the contracts

defined by pθ,a := Ep∼γθ

[
p | p ∈ P̂θ,a

]
for all the actions a ∈ A such that supp(γθ) ∩ P̂θ,a 6= ∅. Moreover, we
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define γ̃θ
pθ,a := Prp∼γθ

{
p ∈ P̂θ,a

}
for these contracts. Clearly, the menu of randomized contracts Γ̃ = {γ̃θ}θ∈Θ

satisfies the required conditions on the supports.

It remains to show that Γ̃ = {γ̃θ}θ∈Θ defines a solution to Problem 4. First, we prove that the principal’s expected

utility (the objective of Problem 4) does not decrease with respect to that of the menu Γ = {γθ}θ∈Θ. Formally:

∑

θ∈Θ

µθEp∼γθ

[
∑

ω∈Ω

Fθ,bθ(p),ωrω −
∑

ω∈Ω

Fθ,bθ(p),ωpω

]

=
∑

θ∈Θ

µθ

∑

a∈A

Pr
p∼γθ

{
p ∈ P̂θ,a

}
Ep∼γθ

[
∑

ω∈Ω

Fθ,bθ(p),ωrω −
∑

ω∈Ω

Fθ,bθ(p),ωpω | p ∈ P̂θ,a

]
(19a)

=
∑

θ∈Θ

µθ

∑

a∈A

Pr
p∼γθ

{
p ∈ P̂θ,a

}(∑

ω∈Ω

Fθ,a,ωrω −
∑

ω∈Ω

Fθ,a,ωEp∼γθ

[
pω | p ∈ P̂θ,a

])
(19b)

=
∑

θ∈Θ

µθ

∑

p∈supp(γ̃θ)

γ̃θ
p

(
∑

ω∈Ω

Fθ,bθ(p),ωrω −
∑

ω∈Ω

Fθ,bθ(p),ωpω

)
(19c)

=
∑

θ∈Θ

µθEp∼γ̃θ

[
∑

ω∈Ω

Fθ,bθ(p),ωrω −
∑

ω∈Ω

Fθ,bθ(p),ωpω

]
, (19d)

where Equation (19a) holds since the sets P̂θ,a define a partition of Rm
+ , Equation (19b) holds since for contracts

p ∈ P̂θ,a it is the case that bθ(p) = a, while Equation (19c) holds by definition of Γ̃ = {γ̃θ}θ∈Θ.

Finally, we need to prove that Γ̃ = {γ̃θ}θ∈Θ satisfies Constraints (4b) of Problem 4. Formally, we have that for every

θ 6= θ̂ ∈ Θ it holds:

Ep∼γ̃θ

[
∑

ω∈Ω

Fθ,bθ(p),ωpω− cθ,bθ(p)
]
=

∑

p∈supp(γ̃θ)

γ̃θ
p

(
∑

ω∈Ω

Fθ,bθ(p),ωpω − cθ,bθ(p)

)
(20a)

=
∑

a∈A

Pr
p∼γθ

{
p ∈ P̂θ,a

}(∑

ω∈Ω

Fθ,a,ωEp∼γθ

[
pω | p ∈ P̂θ,a

]
− cθ,a

)
(20b)

=
∑

a∈A

Pr
p∼γθ

{
p ∈ P̂θ,a

}
Ep∼γθ

[
∑

ω∈Ω

Fθ,bθ(p),ωpω − cθ,bθ(p) | p ∈ P̂θ,a

]
(20c)

= Ep∼γθ

[
∑

ω∈Ω

Fθ,bθ(p),ωpω − cθ,bθ(p)

]
(20d)

≥ Ep∼γθ̂

[
∑

ω∈Ω

Fθ,bθ(p),ωpω − cθ,bθ(p)

]
(20e)

= Ep∼γθ̂

[
max
a∈A

{
∑

ω∈Ω

Fθ,a,ωpω − cθ,a

}]
(20f)

=
∑

a′∈A

Pr
p∼γθ̂

{
p ∈ P̂ θ̂,a′

}
Ep∼γθ̂

[
max
a∈A

{
∑

ω∈Ω

Fθ,a,ωpω − cθ,a

}
| p ∈ P̂ θ̂,a′

]
(20g)

≥
∑

a′∈A

Pr
p∼γθ̂

{
p ∈ P̂ θ̂,a′

}
max
a∈A

Ep∼γθ̂

[
∑

ω∈Ω

Fθ,a,ωpω − cθ,a | p ∈ P̂ θ̂,a′

]
(20h)

=
∑

a′∈A

Pr
p∼γθ̂

{
p ∈ P̂ θ̂,a′

}
max
a∈A

{
∑

ω∈Ω

Fθ,a,ωEp∼γθ̂

[
pω | p ∈ P̂ θ̂,a′

]
− cθ,a

}
(20i)

=
∑

p∈supp(γ̃θ̂)

γ̃ θ̂
p max

a∈A

{
∑

ω∈Ω

Fθ,a,ωpω − cθ,a

}
(20j)
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=
∑

p∈supp(γ̃θ̂)

γ̃ θ̂
p

(
∑

ω∈Ω

Fθ,bθ(p),ωpω − cθ,bθ(p)

)
(20k)

= Ep∼γ̃θ̂

[
∑

ω∈Ω

Fθ,bθ(p),ωpω − cθ,bθ(p)

]
, (20l)

where Equation (20b) holds by definition of Γ̃ = {γ̃θ}θ∈Θ, Equation (20c) holds by the fact that bθ(p) = a for

contracts p ∈ P̂θ,a, Equation (20d) holds since the sets P̂θ,a define a partition of Rm
+ , Equation (20e) holds by the

fact that Γ = {γθ}θ∈Θ satisfies Constraints (4b) in Problem 4, Equation (20f) holds since action aθ(p) is IC given

contract p, Equation (20g) holds since sets P̂θ̂,a define a partition of Rm
+ , Equation (20h) holds by Jensen’s inequality

and the fact that max is convex, Equation (20i) holds since Fθ,a,ω and cθ,a do not depend on p, Equation (20j) holds

by definition of Γ̃ = {γ̃θ}θ∈Θ, while Equation (20k) holds by definition of bθ(p). This concludes the proof.

Lemma 6. For every ǫ > 0, there always exists a DSIC menu of randomized contracts Γ = {γθ}θ∈Θ with principal’s

expected utility at least SUP − ǫ such that, for every θ ∈ Θ, it holds (i)

∣∣∣supp(γθ) ∩ P̂θ,a
∣∣∣ ≤ 1 for all a ∈ A, and (ii)

pω ≤ C(I, ǫ) for all p ∈ supp(γθ) and ω ∈ Ω, where C(I, ǫ) ∈ O(1ǫ · 2poly(I)) and I denotes the size of the problem
instance.

Proof. We show that for each ǫ > 0, there exists a menu Γ = {γθ}θ∈Θ such that the required condition are satisfied.

By the definition of supremum for each η > 0, there exists a menu Γ̄ = {γ̄θ}θ∈Θ that provides expected principal

utility at least 1 − η. Then, exploiting Lemma 5, we can derive a menu Γ̃ = {γ̃θ}θ∈Θ with at least the same utility

and such that for every θ ∈ Θ, it holds

∣∣∣supp(γ̃θ) ∩ P̂θ,a
∣∣∣ ≤ 1 for all a ∈ A. Let P̃θ := supp(γ̃θ) for each θ ∈ Θ.

Moreover, for each θ and a such that supp(γ̃θ) ∩ P̂θ,a 6= ∅, let p̃θ,a = supp(γ̃θ) ∩ P̂θ,a 6= ∅. Notice that, for each θ,

γ̃θ is supported on {p̃θ,a}a∈A:supp(γ̃θ)∩P̂θ,a 6=∅.

Let F := minθ∈Θ,a∈A,ω∈Ω:Fθ,a,ω>0 Fθ,a,ω be the minimum value of the probabilities Fθ,a,ω. 10 Moreover, let Y =

minθ∈Θ µθ . 11 Notice that F ≥ 2−poly(I) and Y ≥ 2−poly(I), where I is the instance size. Then, we show that for each

θ ∈ Θ, p ∈ P̃θ, and ω ∈ Ω, it holds γ̃θ
ppω ≤ 4/FY . By contradiction, assume that there exists θ̃ ∈ Θ, p̃ ∈ P̃θ, and

ω̃ ∈ Ω such that γ̃ θ̃
p̃ p̃ω̃ > 4

FY . Then, by the definition of F , there exists an agent’s type θ′ and an action a′, such that

Fθ′,a′,ω̃ ≥ F . The agent of type θ′ reporting type θ̃ to the principal would incur an expected payment

∑

p∈P̃ θ̃

γ̃ θ̃
p

[
∑

ω∈Ω

Fθ′,bθ′ (p),ωpω

]
≥
∑

p∈P̃ θ̃

γ̃ θ̃
p

[
∑

ω∈Ω

Fθ′,a′,ωpω − cθ′,a′

]
+
∑

p∈P̃ θ̃

γ̃ θ̃
pcθ′,bθ′ (p)

≥
∑

p∈P̃ θ̃

γ̃ θ̃
p

∑

ω∈Ω

Fθ′,a′,ωpω − 1

≥ γ̃ θ̃
p̃Fθ′,a′,ω̃p̃ω̃ − 1

≥ γ̃ θ̃
p̃ p̃ω̃F − 1 >

4

FY
· F − 1 ≥ 3/Y.

Thus, by the DSIC Constraints of type θ′, it must be the case that the expected payment to agent’s type θ′, i.e.,∑
p∈P̃θ′ γ̃θ′

p

[∑
ω∈Ω Fθ′,bθ′ (p),ωpω

]
, under menu Γ̃ = {γ̃θ}θ∈Θ is at least 3/Y − 1 ≥ 2/Y , otherwise the constraints

would be violated (recall that costs are in the range [0, 1]). Hence, the expected payment of the principal (over the
agent’s types) is at least

∑

θ∈Θ

µθ

∑

p∈P̃θ

γ̃θ
p

∑

ω∈Ω

Fθ,bθ(p),ωpω ≥ µθ′

∑

p∈P̃θ′

γ̃θ′

p

[
∑

ω∈Ω

Fθ′,bθ′ (p),ωpω

]
≥ 2.

10We assume that each outcome ω ∈ Ω occurs with positive probability at least for a type θ ∈ Θ and an action a ∈ A. If it is not
the case, we can safely remove outcome ω since it never occurs.

11We assume that for each type θ ∈ Θ it holds µθ > 0. Otherwise, we can safely remove the type θ since it never occurs.
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As a result, since the principal’s expected reward is at most 1, the principal’s expected utility must be less than −1,

contradicting that the expected utility of the principal with menu Γ̃ = {γ̃θ}θ∈Θ is at least SUP − η ≥ −η > −1 for
η < 1.

Let Z the set of couples (θ, a) ∈ Θ × A such that there exists a p ∈ P̂θ,a with γ̃θ
p > 0. Notice that |Z| ≤ nℓ. Then,

for each couple (θ, a) ∈ Z there exists a payment pθ,a in P̂θ,a such that pθ,a ≤ D, where D = 2poly(I). This holds

since P̂θ,a is non-empty by the definition of Z , while p ≤ D since P̂θ,a is defined by linear inequalities such that
the number of variables, the number of constraints, and the size of the binary representation of the coefficients can be
bounded by a polynomial function of the instance size I (Bertsimas and Tsitsiklis, 1997).

Now we show how to build a menu Γ = {γθ}θ∈Θ with utility at least SUP − ǫ such that conditions i) and ii) hold for

each θ. Consider the DSIC menu of contracts Γ̂ = {γ̂θ}θ∈Θ such that for each θ′ ∈ Θ it holds γ̂θ′

pθ,a = 1/|Z| for each

(θ, a) ∈ Z . Then, consider the menu Γ̊ = {̊γθ}θ∈Θ such that for each p ∈ R
m
+ it holds γ̊p = γ̃p(1−q)+γ̂pq, where q >

0 will be defined in the following. By the linearity of the DSIC Constraints Γ̊ is a DSIC menu of randomized contracts
with principal’s utility at least (1− q)(SUP − η)− q

∑
θ∈Θ µθEp∼γ̂θ

[∑
ω∈Ω Fθ,bθ(p),ωrω −∑ω∈Ω Fθ,bθ(p),ωpω

]
≥

SUP−η−q−qη−qD, where the inequalities follows fromEp∼γ̂θ

[∑
ω∈Ω Fθ,bθ(p),ωrω −∑ω∈Ω Fθ,bθ(p),ωpω

]
≥ −D

since distributions γ̂θ are supported on contracts with payments at most D. Hence, setting η = q = ǫ
4D , we have that

Γ̊ = {̊γθ}θ∈Θ provides principal’s utility at least SUP − ǫ.

We conclude the proof exploiting an argument equivalent to the one in Lemma 5 to build a menu Γ = {γθ}θ∈Θ

that satisfies the required conditions. As shown in the proof of Lemma 5, given the menu Γ̊, it is possible to build
a menu of randomized contracts Γ with at least the same principal’s utility such that for every θ ∈ Θ, it holds∣∣∣supp(γθ) ∩ P̂θ,a

∣∣∣ ≤ 1 for all a ∈ A. We need to prove that also (ii) holds. For each θ ∈ Θ and a ∈ A such that

supp(̊γθ) ∩ P̂θ,a 6= ∅, let p̄θ,a := Ep∼γ̊θ

[
p | p ∈ P̂θ,a

]
. By the definition of Γ in Lemma 5 for each θ ∈ Θ it holds

supp(γθ) = {p̄θ,a}a∈A:supp(̊γθ)∩P̂θ,a 6=∅
. To conclude the proof, it is sufficient to see that for each θ ∈ Θ and a ∈ A

such that supp(̊γθ) ∩ P̂θ,a 6= ∅, it holds (θ, a) ∈ Z . Hence γ̂θ
p̄θ,a = 1

|Z| and γ̊θ
p̄θ,a ≥ q

|Z| . For each θ and a, let Zθ,a

be the set of couples (θ′, a′) ∈ Z such that pθ
′,a′ ∈ Pθ,a. Notice that (θ, a) ∈ Zθ,a. Thus, for each θ ∈ Θ and a ∈ A

such that supp(̊γθ) ∩ P̂θ,a 6= ∅ and ω ∈ Ω, it holds

p̄θ,aω = Ep∼γ̊θ

[
p | p ∈ P̂θ,a

]
=

(1 − q)γ̃θ
p̃θ,a p̃

θ,a +
∑

(θ′,a′)∈Zθ,a
q

|Z|p
θ′,a′

ω

(1− q)γ̃θ
p̃θ,a +

∑
(θ′,a′)∈Zθ,a

q
|Z|

≤
4

FY + qD
q
|Z|

≤ 4nℓD

ǫ

(
4

FY
+D

)
∈ O(

D2nℓ

FY ǫ
),

where we assume p̃θ,a that is an arbitrary contract in P̂θ,a when supp(γ̃θ) ∩ P̂θ,a = ∅ and p̃θ,a is not been defined

previously. Hence, for each θ ∈ Θ, p ∈ supp(γθ) and ω ∈ Ω, it holds pω = O(1ǫ · 2poly(I)).

Lemma 7. For every ǫ > 0, there always exists a DSIC menu of randomized contracts supported on P∗,ǫ with
principal’s expected utility at least SUP − ǫ.

Proof. By Lemma 6, there exists a menu of randomized contractsΓ = {γθ}θ∈Θ with principal’s utility at least SUP−ǫ

such that, for every θ ∈ Θ, it holds

∣∣∣supp(γθ) ∩ P̂θ,a
∣∣∣ ≤ 1 for all a ∈ A and supp(γθ) ⊆ Pǫ. We show that it is

possible to build another optimal menu of randomized contracts Γ̃ = {γ̃θ}θ∈Θ such that supp(γ̃θ) ⊆ P∗,ǫ for every
θ ∈ Θ.

In order to define Γ̃ = {γ̃θ}θ∈Θ, for every θ ∈ Θ and contract p ∈ supp(γθ), let ap := (apθ′)θ′∈Θ, where apθ′ := bθ
′

(p).

Then, given a θ ∈ Θ and a p ∈ supp(γθ), since p ∈ P̂a
p,ǫ, P̂a

p,ǫ ⊆ Pa
p,ǫ, and Pa

p,ǫ is a closed polytope,

we can apply Carathéodory’s theorem to conclude that there exists a probability distribution γθ,p ∈ ∆P∗,ǫ that is

supported on the vertexes of the polytope Pa
p,ǫ, i.e., it holds supp(γθ,p) ⊆ V (Pa

p,ǫ), and such that Ep′∼γθ,p [p′] =∑
p′∈supp(γθ,p) γ

θ,p
p′ p′ = p. Then, for every θ ∈ Θ, we define the distribution γ̃θ ∈ ∆P∗,ǫ so that, for every p ∈ P∗,ǫ,
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it holds:

γ̃θ
p :=

∑

p′∈supp(γθ)

γθ
p′ γθ,p′

p .

It remains to show that Γ̃ = {γθ}θ∈Θ is indeed a menu of randomized contracts with principal’s utility at least SUP−ǫ.
First, it is immediate to see that the γ̃θ are valid probability distributions over P∗,ǫ. Formally, for each θ ∈ Θ:

∑

p∈P∗,ǫ

γ̃θ
p =

∑

p∈P∗,ǫ

∑

p′∈supp(γθ)

γθ
p′ γθ,p′

p =
∑

p′∈supp(γθ)

γθ
p′

∑

p∈P∗,ǫ

γθ,p′

p

=
∑

p′∈supp(γθ)

γθ
p′ = 1.

Next, we prove that Γ̃ = {γθ}θ∈Θ satisfies Constraints (4b) in Problem 4. First, notice that, for every θ ∈ Θ, θ̂ ∈ Θ,

and p ∈ supp(γθ), it holds:

∑

p′∈supp(γθ,p)

γθ,p
p′

(
∑

ω∈Ω

Fθ̂,bθ̂(p′),ω p′ω − cθ̂,bθ̂(p′)

)
(21a)

=
∑

p′∈supp(γθ,p)

γθ,p
p′

(
∑

ω∈Ω

Fθ̂,ap

θ̂
,ω p′ω − cθ̂,ap

θ̂

)
(21b)

=
∑

ω∈Ω

Fθ̂,ap

θ̂
,ω

∑

p′∈supp(γθ,p)

γθ,p
p′ p′ω − cθ̂,ap

θ̂

(21c)

=
∑

ω∈Ω

Fθ̂,ap

θ̂
,ω pω − cθ̂,ap

θ̂

, (21d)

where Equation (21b) holds since ap
θ̂
∈ Bθ̂

p′ for contracts p′ ∈ supp(γθ,p) ⊆ V (Pa
p

) and Equation (21d) holds by

definition of γθ,p. Moreover, for every θ ∈ Θ and θ̂ ∈ Θ, it is the case that:

∑

p∈P∗,ǫ

γ̃ θ̂
p

(
∑

ω∈Ω

Fθ,bθ(p),ωpω− cθ,bθ(p)
)

(22a)

=
∑

p∈P∗,ǫ

∑

p′∈supp(γθ̂)

γ θ̂
p′ γ θ̂,p′

p

(
∑

ω∈Ω

Fθ,bθ(p),ωpω − cθ,bθ(p)

)
(22b)

=
∑

p′∈supp(γθ̂)

γ θ̂
p′

∑

p∈P∗,ǫ

γ θ̂,p′

p

(
∑

ω∈Ω

Fθ,bθ(p),ωpω − cθ,bθ(p)

)
(22c)

=
∑

p′∈supp(γθ̂)

γ θ̂
p′

∑

p∈supp(γθ̂,p′)

γ θ̂,p′

p

(
∑

ω∈Ω

Fθ,bθ(p),ωpω − cθ,bθ(p)

)
(22d)

=
∑

p′∈supp(γθ̂)

γ θ̂
p′

(
∑

ω∈Ω

F
θ,ap′

θ
,ω
p′ω − c

θ,ap′

θ

)
(22e)

=
∑

p∈supp(γθ̂)

γ θ̂
p

(
∑

ω∈Ω

Fθ,bθ(p),ω pω − cθ,bθ(p)

)
(22f)

= Ep∼γθ̂

[
∑

ω∈Ω

Fθ,bθ(p),ω pω − cθ,bθ(p)

]
, (22g)

where Equation (22b) holds by definition of γ̃ θ̂, Equation (22d) holds since supp(γ θ̂,p′

) ⊆ V (Pa
p′

) ⊆ P∗,ǫ, Equa-

tion (22e) holds by Equation (21), while Equation (22f) holds since apθ = bθ(p). Thus, we can conclude that for every
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θ ∈ Θ and θ̂ ∈ Θ : θ̂ 6= θ, it holds:

∑

p∈P∗,ǫ

γ̃θ
p

(
∑

ω∈Ω

Fθ,bθ(p),ωpω − cθ,bθ(p)

)
= Ep∼γθ

[
∑

ω∈Ω

Fθ,bθ(p),ω pω − cθ,bθ(p)

]

≥ Ep∼γθ̂

[
∑

ω∈Ω

Fθ,bθ(p),ω pω − cθ,bθ(p)

]

=
∑

p∈P∗,ǫ

γ̃ θ̂

(
∑

ω∈Ω

Fθ,bθ(p),ωpω − cθ,bθ(p)

)
,

where the equalities comes from Equation (22) and the inequality from DSIC of Γ. Finally, we need to show that the
principal’s expected utility does not decrease. Formally, we have:

∑

θ∈Θ

µθ

∑

p∈P∗,ǫ

γ̃θ
p

(
∑

ω∈Ω

Fθ,bθ(p),ωrω −
∑

ω∈Ω

Fθ,bθ(p),ωpω

)

=
∑

θ∈Θ

µθ

∑

p∈P∗,ǫ

∑

p′∈supp(γθ)

γθ
p′ γθ,p′

p

(
∑

ω∈Ω

Fθ,bθ(p),ωrω −
∑

ω∈Ω

Fθ,bθ(p),ωpω

)
(23a)

=
∑

θ∈Θ

µθ

∑

p′∈supp(γθ)

γθ
p′

∑

p∈supp(γθ,p′)

γθ,p′

p

(
∑

ω∈Ω

Fθ,bθ(p),ωrω −
∑

ω∈Ω

Fθ,bθ(p),ωpω

)
(23b)

≥
∑

θ∈Θ

µθ

∑

p′∈supp(γθ)

γθ
p′

∑

p∈supp(γθ,p′)

γθ,p′

p

(
∑

ω∈Ω

F
θ,ap′

θ
,ω
rω −

∑

ω∈Ω

F
θ,ap′

θ
,ω
pω

)
(23c)

=
∑

θ∈Θ

µθ

∑

p′∈supp(γθ)

γθ
p′



∑

ω∈Ω

F
θ,ap′

θ
,ω
rω −

∑

ω∈Ω

F
θ,ap′

θ
,ω

∑

p∈supp(γθ,p′ )

γθ,p′

p pω


 (23d)

=
∑

θ∈Θ

µθ

∑

p′∈supp(γθ)

γθ
p′

(
∑

ω∈Ω

F
θ,ap′

θ
,ω
rω −

∑

ω∈Ω

F
θ,ap′

θ
,ω
p′ω

)
(23e)

=
∑

θ∈Θ

µθ

∑

p∈supp(γθ)

γθ
p

(
∑

ω∈Ω

Fθ,bθ(p),ωrω −
∑

ω∈Ω

Fθ,bθ(p),ω pω

)
(23f)

=
∑

θ∈Θ

µθEp∼γθ

[
∑

ω∈Ω

Fθ,bθ(p),ωrω −
∑

ω∈Ω

Fθ,bθ(p),ωpω

]
, (23g)

where Equation (23a) holds by definition of γ̃θ, Equation (23b) holds by re-arranging the summations and by

supp(γθ,p′

) ⊆ V (Pa
p′

) ⊆ P∗,ǫ, Equation (23c) holds since ap
′

θ ∈ Bθ
p for each p ∈ supp(γθ,p′

) and bθ(p) breaks

ties in favor of the principal, Equation (23e) holds by definition of γθ,p′

, while Equation (23f) holds since apθ := bθ(p).
This concludes the proof.
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