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Abstract

Prophet inequalities are performance guarantees for online algorithms (a.k.a. stopping rules) solv-

ing the following “hiring problem”: a decision maker sequentially inspects candidates whose values are

independent random numbers and is asked to hire at most one candidate by selecting it before inspect-

ing the values of future candidates in the sequence. A classic result in optimal stopping theory asserts

that there exist stopping rules guaranteeing that the decision maker will hire a candidate whose ex-

pected value is at least half as good as the expected value of the candidate hired by a “prophet”, i.e. one

who has simultaneous access to the realizations of all candidates’ values.

Such stopping rules may indeed have provably good performance but might treat individual candi-

dates unfairly in a number of different ways. In this work we identify two types of individual fairness

that might be desirable in optimal stopping problems. We call them identity-independent fairness (IIF)

and time-independent fairness (TIF) and give precise definitions in the context of the hiring problem.

We give polynomial-time algorithms for finding the optimal IIF/TIF stopping rules for a given instance

with discrete support and wemanage to recover a prophet inequality with factor 1/2when the decision

maker’s stopping rule is required to satisfy both fairness properties while the prophet is unconstrained.

We also explore worst-case ratios between optimal selection rules in the presence vs. absence of in-

dividual fairness constraints, in both the online and offline settings. We prove an impossibility result

showing that there is no prophet inequality with a non-zero factor for either IIF or TIF stopping rules

when we further constrain the decision maker to make a hire with probability 1. We finally consider a

setting in which the decision maker doesn’t know the distributions of candidates’ values but has access

to a bounded number of independent samples from each distribution. We provide constant-competitive

algorithms that satisfy both TIF and IIF, using one sample from each distribution in the offline setting

and two samples from each distribution in the online setting.
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1 Introduction

Optimal stopping problems, which model the problem of deciding when to select an element of a random

sequence amid uncertainty about the future elements to be sampled, are ubiquitous in the search and

matching problems that underlie the design of dynamic markets. In optimal stopping, as in many other

decision problems, there is a tension between optimality — i.e., maximizing the expected value of the

chosen alternative — and fairness, i.e. ensuring equal opportunity for all alternatives. In contrast to prior

work that investigated optimal stopping in the context of group fairness constraints [CCDNF21], in this

work we initiate the study of how individual fairness constraints influence the performance of stopping

rules.

Our approach to this question is inspired by the literature on prophet inequalities, which seeks to under-

stand the performance of stopping rules by proving theorems that identify worst-case bounds on the ratio

between the expected performance of different types of selection rules — for example, comparing the op-

timal stopping rule with an offline selection rule that always selects the best alternative in hindsight. In

the same spirit, we seek worst-case multiplicative comparisons between optimal stopping rules (or offline

selection rules) with and without various fairness constraints.

In this paper we work with an abstract formulation of individual fairness in optimal stopping that is as

simple and free of application-specific details as possible. However, to motivate the fairness constraints

we will consider, it will be helpful to contemplate some motivating applications in which the potential for

stopping rules to yield unfair outcomes is evident.

Example 1.1. Consider a firm interviewing a sequence of candidates for a job opening. Assume that the

firm may hire at most one candidate, and that the decision whether or not to hire a candidate must be

made immediately after their interview, without waiting to judge the quality of candidates scheduled to be

interviewed later in the hiring season. If we assume that the firm wishes to maximize the expected qual-

ity of the candidate hired, and that the candidates’ qualities are independent and identically distributed1

random variables, then an optimal stopping rule would calculate a decreasing sequence of thresholds and

hire the first candidate whose quality exceeds the corresponding threshold. Thus, although the candidates

are a priori identical, the optimal stopping rule discriminates according to arrival time: a candidate of low

quality has no chance of being hired if they interview early (when the threshold will be above their quality

level) but stands a chance of being hired if they interview late. On the other hand, the opposite type of un-

fairness exists for candidates of high quality: they have a high probability of being hired if they interview

early, and a lower probability of being hired if they interview late because of the possibility that an earlier

candidate has already been hired. Replacing the optimal stopping rule with a threshold stopping rule —

i.e., one which uses a constant threshold over time and hires the first candidate whose quality exceeds this

threshold — eliminates the first type of unfairness but not the second.

In the preceding example, the selection rule treated individuals differently due to differences in their ar-

rival time. Another potential type of unfairness occurs when an individual’s probability of being selected

(conditional on their value) depends on the individual’s identity. This type of unfairness can arise even in

offline selection problems, where a decision maker is choosing one of n elements and observes the value

(or quality) of each element before making a choice.

1The i.i.d. assumption is for the sake of this example. In general we will be considering independent but non-identical distri-

butions in this work.
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Example 1.2. Consider a ride sharing platform in a city where demand exceeds supply: in each time in-

terval, the platform receives a set of requests andmust decide which ones will receive service. A seemingly

fair selection rule is to choose the request of maximum value, breaking ties at random. To illustrate the

potential for unfairness, suppose there is only one driver and two users, Odysseus and Penelope. Odysseus

is a frequent traveler who requests a ride every day, whereas Penelope mostly stays home and only needs a

ride once every m days for some m > 1. Let us model the value of selecting a user to be 1 if they requested a

ride and 0 otherwise. If the platform uses random tie-breaking then half of Penelope’s requests are denied

whereas the fraction of Odysseus’ requests that are denied is only 1
2m

. A fairer rule would select Penelope

with probability m
m+1

when she makes a request, and otherwise it would select Odysseus. Under this rule,

both users would find that 1
m+1

of their requests are denied and the rest are served.

The foregoing two examples motivate two different notions of individual fairness. We formalize these two

properties in Section 3 and label them as time-independent fairness (TIF) and identity-independent fairness

(IIF). Depending on the application, one may wish for selection rules to satisfy one of these properties, or

the other, or both. A few natural questions arise about such fairness-constrained selection rules.

1. Can one efficiently optimize over fairness-constrained stopping rules? Absent fairness con-

straints, one can generally compute optimal stopping rules using dynamic programming, but it ap-

pears difficult to incorporate fairness constraints into the dynamic programming formulation since

they impose dependencies among the decisions made at different times. We show in Section 4 that

optimal fairness-constrained stopping rules can be computed by solving a polynomial-sized linear

program.

2. How well can fairness-constrained selection rules approximate optimal selection rules, in

the worst case? There are many versions of this question, depending whether the fairness con-

straint is TIF or IIF (or both), and whether the fairness-constrained selection rule or the optimal

selection rule (or both) is allowed to make decisions offline (i.e., observe the full sequence of val-

ues before making its selection). In Section 5 we answer almost all versions of this question; our

results are summarized in Figure 1. In Section 6 we investigate how the answers to these questions

differ when one imposes an additional constraint that the decision maker must select one of the n

alternatives. In the traditional setting of prophet inequalities one can assume this property without

loss of generality: if no hire is made before the last interview, a firm loses nothing by hiring the

final candidate. In contrast, we show that requiring the firm to hire a candidate, while also imposing

either the TIF or IIF fairness constraint, can make an enormous qualitative difference: the expected

value of the candidate selected by the optimal TIF (or IIF) stopping rule may differ from the expected

value of the best candidate by an unbounded factor.

3. In cases when the precise input distribution is not known, can approximately optimal

fairness-constrained selection rules be learned from data? Since the fairness criteria in this

paper are distribution-dependent, one might anticipate that there is no way for a decision maker to

ensure that their selection rule is fair without knowing the input distribution. In Section 7 we show

that this intuition is false: if the decision maker has access to a single sample from each distribution,

that is enough to implement a constant-competitive offline selection rule that satisfies both TIF and

IIF. With access to two independent samples from each distribution, the decision maker can imple-

ment a constant-competitive online stopping rule that satisfies both TIF and IIF. The question of

whether fairness-constrained stopping rules can be constant-competitive with just one sample from

each distribution, rather than two, is an enticing open question that we leave for future work.
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1.1 Related Work

Our work fits the line of research on optimal stopping problems initiated by [KS77] and followed by

others including [SC84] and more recent works highlighting the connection of stopping problems with

Mechanism Design initiated by [HKS07]. Since then, research in the area flourished, and a number of

variants of optimal stopping problems have been studied such as ones that allow hiring multiple people

(e.g. [HKS07, KW12]), giving the interviewer the ability to choose the order of inspection (e.g. [Yan10])

or letting nature permute candidates uniformly at random before being interviewed, a setting known as a

prophet secretary problem ([EHLM17]). Another setting, closely related to the onewe consider in Section 7

is when the decision maker doesn’t have access to the proability distributions of the random variables but

instead on one (or a few) samples from each (e.g. [AKW14, RWW20]).

Among the prophet inequalities literature, fairness has been very recently considered in [CCDNF21] but

unlike our work which deals with individual fairness (from the perspective of each candidate), [CCDNF21]

deal exclusively with a form of group-fairness constraint for the secretary problem and prophet inequality

settings. In their prophet model, individuals are partitioned into disjoint groups, and fairness constraints

are expressed as lower bounds on the expected number of members selected from each group. They prove

a tight competitive ratio of 1/2 between a fair, online algorithm and a fair, offlline one, akin to some

of our results. Additionally they compare fair, online algorithms to fair, offline ones in some restricted

settings (e.g. group hiring priorities being proportional to group size, distributions being i.i.d. and more)

and provide tight competitive ratios there as well.

Somewhat closer to our setting, a similar notion to our TIF fairness has been studied in the context of

the secretary problem under the name of “Incentive Compatibility” in [BJS09]. This is the property of a

stopping rule for the secretary problem which requires the probability of selecting a candidate at the t-th

step to be equal for all t ∈ [n], hence the name incentive compatible since any candidate i has no incentive

to arrive at any different time. Interpreted within our framework, the incentive compatibility of [BJS09]

can be thought of as an ex-ante kind of time-independent fairness, whereas our TIF is an ex-interim kind

since our definition conditions on the sampled value of the i-th candidate when considering their hiring

probability.

In a broader sense, our work adds to a line of research exploring fairness in dynamic settings such as

dynamic resource allocation problems (e.g. [MNR21, LIS14, SJBY20]) or dynamic fair division (e.g. [Wal11,

KPS13]), settings in which agents arrive dynamically and some allocation needs to be computed that is

both maximizing some performance metric but also satisfying certain fairness criteria.

2 Preliminaries

A prophet inequality is a competitive ratio guarantee for the following online optimization problem which

we will refer to as the (online) hiring problem: a sequence of n candidates numbered 1 through n are being

interviewed in a pre-defined order dictated by a fixed permutation2 π ∈ S n (we use S n to denote the

symmetric group of order n containing all permutations on n elements). This means that on the t-th

iteration, candidate π(t) arrives to be interviewed. Each candidate i has an associated non-negative value

Xi which is a random variable distributed according to a distribution Fi. The tuple of all distributions

2Our description of the problem differs slightly from what is standard in the literature. Usually the candidates are numbered

according to their arrival order and there is no distinction between time-steps and the identities of the candidates.
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(Fi)
n
i=1

, the value of n and the permutation π are all revealed to the interviewer before any candidates

arrive. We will denote an instance like that as I = ((Fi)
n
i=1
, π).3 Upon arrival of candidate i = π(t) at time

step t, their value Xi is revealed to the interviewer who now has to make a decision on whether to hire

them or not. If they decide to hire candidate i, the process terminates, otherwise they have to reject them

irrevocably and proceed to interview the next candidate.

The interviewer is allowed to follow any algorithm (even randomized) which at each step t makes a de-

cision based on the knowledge revealed to them so far (i.e. the values Xπ(1), . . . , Xπ(t), the knowledge of

priors Fi, the value of n and the permutation π). We will use the terms online algorithm and stopping rule

interchangeably to refer to an algorithm like that. In all algorithms we consider in this paper, we assume

they are parameterized by (Fi)
n
i=1
, n and π (if present), meaning that those values are hard-coded in the

algorithm and the input of the algorithm consists of the values Xi revealed at each step. When an algorithm

is given a name (e.g. ALG)4 in this or other settings that follow, we assume its name also serves as a ran-

dom variable denoting the value of the candidate hired by this algorithm (and zero if no person was hired).

Under this convention, E[ALG] refers to the expected value of the person hired by ALGwhere expectation

is over the randomness of the distributions Fi as well as any randomness used by the algorithm.

The goal of the interviewer is to follow an algorithm for the given instance of the problem that maximizes

the expected value of the candidate hired. To evaluate the performance of an algorithm followed by the

interviewer we compare it to the expected performance of an offline analogue, an algorithm which has

simultaneous access to the realizations of all the values Xi before being asked to make a hiring decision.

This offline version of the hiring problem will be common in what follows and we refer to it as the offline

setting and refer to an algorithm followed by an offline interviewer simply as algorithm. An optimal offline

algorithm, colloquially called a prophet, is able to just pick one of the best candidates i∗ ∈ argmaxn
i=1

Xi

regardless of the arrival permutation π.

In this setting, a prophet inequality is a statement of the form “for all instances I = ((Fi)
n
i=1
, π) there exists

a stopping rule ALG for which E[ALG] ≥ c · E[Xi∗] where i∗ is the index chosen by the prophet”, proven

for some positive constant c < 1. The supremum over all constants c for which a prophet inequality can

be proven is called the competitive ratio of the hiring problem.

The classic result of [KS77] asserts a prophet inequality for c = 1/2. In other words, in any instance of the

hiring problem, and regardless of the arrival ordering, there is a stopping rule ALG which on expectation

performs at least half as good as the prophet:

E[ALG] ≥
1

2
· E[Xi∗]

Further, the constant of c = 1/2 is tight as the following example shows, which means that the competitive

ratio of the classic hiring problem is exactly 1/2:

Tightness of the prophet inequality Consider the following instance of two random variables pa-

rameterize by a small constant ε > 0 arriving according to the order they are numbered (π is the identity

permutation):

3Sometimes, we need to consider an instance without an attached arrival ordering in which case the permutation will simply

be omitted.
4Sometimes, a particular permutation π will be denoted as a superscript to indicate that this is an algorithm intended to run

on a particular arrival ordering.
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X1 = 1, X2 =






1
ε
, w.p. ε

0, w.p. 1 − ε

On expectation, the prophet receives a value of E[maxn
i=1

Xi] = 1/ε · ε + 1 · (1 − ε) = 2 − ε. On the other

hand, a (deterministic) interviewer who is presented with X1 first has no additional information to make a

decision so theymust either commit to hiring X1, or reject them and be presented with the riskier choice of

candidate 2, at which point they would have no choice but to hire. In either case, the interviewer is getting

either E[X1] = 1 or E[X2] = 1 for E[ALG] = 1. Letting ε→ 0 gives a multiplicative gap approaching 1/2

between the expected performance of an interviewer and that of a prophet.5

Part of the reason why prophet inequalities have become so important in Mechanism Design is due to

the fact that there actually exist very simple-to-describe threshold stopping rules that achieve the optimal

competitive ratio of 1/2. A threshold stopping rule is an online algorithm for the hiring problem which

pre-computes a threshold value T as a function of the distributions Fi, and then hires the first candidate i

whose value passes the threshold, i.e. Xi ≥ T . [SC84] was the first to describe such a stopping rule which

uses as a threshold the median of the distribution of maxn
i=1

Xi, in other words, they define TSC such that

Pr[maxn
i=1

Xi ≥ TSC] = 1/2, and [KW12] use TKW =
1
2
E[maxn

i=1
Xi]. Either threshold yields a stopping rule

satisfying a prophet inequality for the optimal constant c = 1/2.

The following notation is going to be useful in the sections to follow: for each candidate i, let supp(Fi) =

{x > 0 | Pr[Xi = x] , 0} denote the support of distributionFi and let S =
⋃n

i=1 supp(Fi). For the remainder

of the paper we assume, with possible exception some expository examples, that every supp(Fi) is a discreet

set.

3 Fairness

In the introduction we studied examples of different kinds of unfairness that manifest in the solutions of

optimal stopping problems and pinned down two particular kinds of fairness criteria that were violated

in each case. Here we give formal definitions for those fairness properties in the framework of the hiring

problem we defined in the previous section.

We begin by considering the situation in Example 1.2. The observation there was that conditional on

candidate i having value x, the probability of them getting hired should only depend on the value x and

not on the identity i of the particular candidate. This leads naturally to the following fairness definition

adapted to our framework.

Definition 3.1 (Identity-Independent Fairness (IIF)). A algorithmALG for a given instanceI = ((Fi)
n
i=1
, π)

supported on S is said to satisfy Identity-Independent Fairness if there exist a function p : S → [0, 1] such

that:

Pr[ALG hires i | Xi = x] = p(x), ∀i ∈ [n], x ∈ S

In other words, the probability of hiring candidate i conditional on their value being x is independent of

their identity i (but potentially dependent on their value x).

5We presented the gap in the case of an interviewer who follows a deterministic stopping rule but it’s not hard to verify that

the same instance gives a 1/2 gap even for a randomized interviewer.
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When an algorithm/stopping rule satisfies this property, we say it is “IIF with probability function p(x)”.

The above definition is given for an instance with a particular arrival ordering π but one can extend the

definition to say that a family of algorithms {ALGπ}π∈S n
is IIF if each algorithm in the family is IIF with

some probability function pπ(x) (potentially different for each permutation).

Notice that Definition 3.1 applies even to offline algorithms — ones that, just like the prophet, are not

constrained to make a decision before seeing the entirety of the input.

Similarly, we can formalize the fairness notion demonstrated in Example 1.1 as follows.

Definition 3.2 (Time-Independent Fairness (TIF)). A family of algorithms {ALGπ}π∈S n
, one for each arrival

ordering π, for an instance I = (Fi)
n
i=1

supported on S is said to satisfy Time-Independent Fairness if there

exists a function p : [n] × S → [0, 1] such that:

Pr[ALGπ hires i | Xi = x] = p(i, x), ∀i ∈ [n], x ∈ S, π ∈ S n

In other words, the probability of hiring candidate i conditional on their value being x is independent of

their arrival time across different arrival orderings (but is allowed to depend on their identity i and the

value x).

Unlike Definition 3.1, this definition of fairness is meaningful only in the online setting. When considering

the behavior of an offline algorithm with access to all r.v.s at once, the definition is trivially satisfied.

We claim that the two definitions capture different notions of fairness and indeed they are independent of

one another. The following examples demonstrate that fact by giving instances and families of stopping

rules which satisfy either Definition 3.1 or Definition 3.2 but not both.

• Consider an instance with two r.v.s X1, X2 of arbitrary but independent distributions. For arrival

permutation π1 = (1, 2), define ALGπ1 as the stopping rule which hires one of X1, X2 uniformly

at random. On the other hand, for π2 = (2, 1), define ALGπ2 as the stopping rule that terminates

without hiring.

Each algorithm in the family {ALGπi}2
i=1

satisfies the IIF definition with pπ1
(x) = 1/2, pπ2

(x) = 0

respectively but it does not satisfy the TIF definition because of the dependence on π.

• Consider again an instance X1, X2 of two independent and arbitrarily distributed r.v.s. For either

arrival permutation, define a stopping rule ALGπi which always hires candidate i = 1 regardless of

the realization of their value and regardless of their arrival time.

Then, the family {ALGπi}n
i=1

satisfies the TIF property with p(i, x) = p(i) = I[i = 1]. On the other

hand, none of the algorithms in the family satisfy the IIF property because of the dependence on i.

More importantly, the definitions are not mutually exclusive and there exist families of algorithms that

satisfy both. A trivial example is an algorithm that never hires anyone. This is obviously IIF with p(x) = 0

for all x as well as TIF with p(i, x) = 0 and indeed can be described as fair even if it performs poorly.

Another example is an algorithm which hires a candidate i uniformly at random among all the candidates

regardless of the permutation π and regardless of the realization of the value X j of any candidate j. This

algorithm is both IIF and TIF but again has poor performance tending to zero as n→ ∞.
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Before moving on, let’s also verify what was implied earlier in the introduction, that common stopping

rules for the hiring problem indeed fail to satisfy both of our fairness definitions. Consider a simple instance

with two 0-1 random variables distributed as follows:

X1 =






1, w.p. 1/2

0, w.p. 1/2
, X2 =






1, w.p. 2/3

0, w.p. 1/3

Let ALG→ be any single-threshold stopping rule which uses a threshold T ∈ (0, 1) (e.g. the [KW12] or

the [SC84] stopping rule) on the forward arrival ordering, i.e. π = (1, 2). In this instance, such a rule

would hire a candidate under consideration if and only if their value is equal to 1. Similarly, ALG← is the

same stopping rule but applied on the reverse arrival ordering, i.e. π = (2, 1). Consider now the hiring

probabilities of each r.v. and on each arrival ordering conditional on sampling the higher support point:

Pr[ALG→ hires 1 | X1 = 1] = 1, Pr[ALG→ hires 2 | X2 = 1] = Pr[X1 = 0] =
1

2

Pr[ALG← hires 1 | X1 = 1] = Pr[X2 = 0] =
1

3
, Pr[ALG← hires 2 | X2 = 1] = 1

Fixing an arrival ordering, we see that neither stopping rule is IIF because the conditional probabilities

depend on the identity i of the variable considered. Further, the family {ALG→,ALG←} fails to satisfy the

TIF property since there is a dependence on the arrival ordering.

As we observed earlier, the IIF property can be desirable even in an offline version of the hiring problem. It

is therefore possible to think of fairness as an extra dimension of complexity on top of the online dimension

of the problem. Each dimension (offline vs. online and unfair vs. fair) constrains the set of algorithms

that can be used in different ways and degrade performance as measured by the expected value of the

person hired. Akin to a prophet inequality, one can ask what is the best competitive ratio achievable when

comparing algorithms that have to satisfy different kinds of constraints. For example, how much more

powerful are offline IIF algorithms (IIF prophets) compared to IIF stopping rules? Or, how much more

powerful are general stopping rules without fairness considerations compared to IIF stopping rules? What

about compared to TIF stopping rules?

In the sections that follow, we address those questions for interesting combinations of settings in order

to understand the trade-offs in performance that arise when different kinds of constraints are imposed on

the decision maker.

4 A Characterization of Fair Stopping Rules

We now turn our attention to designing optimal, fair (IIF/TIF) stopping rules, which will eventually lead us

to a unified approach to designing algorithmswith good competitive ratios inmultiple settings. The reason

this is a good starting point is that, as we shall see shortly, the combined requirement for fairness along

with the online nature of the setting induces a good structure to the set of available algorithms allowing

us to compute the optimal by solving a simple polynomial-size Linear Program (LP).
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4.1 IIF Constraints

The following lemmas formalize the observation that the probability functions in the definition of the IIF

property characterize both the performance as well as the structure of the stopping rule satisfying that

property.

Lemma 4.1. Consider an instance I = ((Fi)
n
i=1
, π) with an attached arrival ordering. All stopping rules ALG

for this instance satisfying the IIF property with probability function p(x) have the same expected performance

which is given by the expression:

E[ALG] =

n∑

i=1

∑

x∈S

x · fi(x) · p(x) (1)

Proof.

E[ALG] = E





n∑

i=1

Xi · I[ALG hires i]





=

n∑

i=1

∑

x∈S

E[Xi · I[ALG hires i] | Xi = x] · Pr[Xi = x]

=

n∑

i=1

∑

x∈S

x · Pr[ALG hires i | Xi = x] · Pr[Xi = x]

=

n∑

i=1

∑

x∈S

x · p(x) · fi(x)

�

ALGORITHM 1: IIF Stopping Rule

Parameters: I = ((Fi)
n
i=1
, π), p(·)

for t = 1, . . . , n do
i← π(t).

Inspect Xi and let x← Xi.

Qt ← 1 −

t−1∑

k=1

∑

y∈S

fπ(k)(y) · p(y)

Flip a coin with Heads probability equal to qt(x) =
p(x)

Qt

.

if coin comes up Heads then
Hire i and halt.

else
Reject and proceed.

end

Lemma 4.2 (IIF Structural Lemma). A stopping rule ALG for an instance I = ((Fi)
n
i=1
, π) is IIF with proba-

bility function p(x) if and only if p satisfies:
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p(x) +

n−1∑

k=1

∑

y∈S

p(y) · fπ(k)(y) ≤ 1, ∀x ∈ S (2)

Moreover, if p is a function satisfying the above inequality, then Algorithm 1 (parameterized by p) satisfies

the IIF property with the same probability function p.

Proof. For the “only if” direction, the key observation is that for the probabilities p(x) to be valid, they

have to be such that the probability of hiring Xπ(t) conditional on sampling any value x ∈ S is bounded

above by the probability of reaching time step t, because you cannot hire someone with probability greater

than that of reaching them in the first place.

More formally, let Qt be the probability of reaching time step t computed as follows:

Qt = Pr[ALG rejects π(1), . . . , π(t − 1)] = 1 − Pr





t−1⋃

k=1

ALG accepts π(k)





= 1 −

t−1∑

k=1

∑

y∈S

Pr[ALG accepts π(k) | Xπ(k) = y] · Pr[Xπ(k) = y]

= 1 −

t−1∑

k=1

∑

y∈S

p(y) · fπ(k)(y)

where we used the fact that a stopping rule hires at most one candidate to assert that the events in the

union are disjoint.

We thus need to require Qt ≥ p(x) for all t ∈ [n], x ∈ S. Notice however that Qt is non-negative, decreasing

in t ∈ [n] and independent of x therefore it suffices to require the inequality for t = n, which gives the

required condition in the statement of the Lemma:

p(x) ≤ 1 −

n−1∑

k=1

∑

y∈S

p(y) · fπ(k)(y), ∀x ∈ S

For the “if” direction, it suffices to prove that Algorithm 1 satisfies the IIF property with probability func-

tion p(x) if we are given that p satisfies inequalities (2). We do this by induction on the time step t ∈ [n].

For the base case, Q1 is set to 1 in the algorithm, therefore q1(x) = p(x) and we’re done. For the inductive

step, consider any time step t > 1. The conditional probability of hiring candidate π(t) is as follows:

Pr[Algorithm 1 hires π(t) | Xπ(t) = x] = Pr[Algorithm 1 hires π(t) | Xπ(t) = x, have reached time step t]

· Pr[Algorithm 1 rejects π(1), . . . , π(t − 1)]

The first factor in the product is exactly the probability qt(x) of the coin used by Algorithm 1. Using the

inductive hypothesis, and a similar computation to the “only if” direction, we can express the probability

of Algorithm 1 rejecting the first t − 1 candidates in terms of the p.d.f.s of each Xi and the probabilities

p(x), getting Pr[Algorithm 1 rejects π(1), . . . , π(t − 1)] = Qt, where Qt is exactly the quantity computed in

the for-loop. Hence, Pr[Algorithm 1 hires Xπ(t) | Xπ(t) = x] = qt(x) · Qt =
p(x)

Qt
· Qt = p(x) �
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A consequence of the structural lemma is that it allows us to reduce the problem of designing a fair stopping

rule into a simple LP.

Indeed, for IIF stopping rules, Lemma 4.2 states that the set of all functions p(x) for which there exist an

IIF stopping rule with that probability function matches exactly the set of all functions p(x) that satisfy

inequalities (2). Further, Lemma 4.1 states that the optimal stopping rule would be the one maximizing a

linear function of the probabilities p(x). Therefore, the solution to the following Linear Program gives the

conditional hiring probabilities of the optimal, IIF stopping rule for a given instance I = ((Fi)
n
i=1
, π):






max

n∑

i=1

∑

x∈S

x · fi(x) · p(x)

s.t. p(x) +

n−1∑

k=1

∑

y∈S

fπ(k)(y) · p(y) ≤ 1, ∀x ∈ S .

p(x) ∈ [0, 1] ∀x ∈ S .

(OPT Online IIF)

After solving (OPT Online IIF), one only has to use the solution to parameterize Algorithm 1 which be-

comes an optimal, fair stopping rule. We have thus proved the following theorem.

Theorem 4.3. The optimal IIF stopping rule for a given instance I = ((Fi)
n
i=1
, π) can be computed in time

polynomial in n, |S| by solving the (OPT Online IIF).

4.2 TIF Constraints

Similarly to IIF fairness, we proceed to prove similar structural lemmas for TIF stopping rules.

Lemma 4.4. Consider an instance I = (Fi)
n
i=1

. Any stopping rule ALGπ for I satisfying the TIF property

with probability function p(i, x) has the expected performance given by the expression:

E[ALGπ] =

n∑

i=1

∑

x∈S

x · fi(x) · p(i, x)

which is independent of the specific permutation π and the specifics of the stopping rule.

The proof of the lemma is omitted as it uses the same probabilistic calculations as Lemma 4.1, the only

difference being that p(i, x) is now in place of p(x).

Lemma 4.5 (TIF Structural Lemma). A family of stopping rules {ALGπ}π∈S n
for an instance I = (Fi)

n
i=1

satisfies the TIF property with probability function p(i, x) if and only if p satisfies:

p(i, x) +
∑

k,i

∑

y∈S

p(k, y) · fk(y) ≤ 1, ∀i ∈ [n], x ∈ S (3)

Moreover, if p is a function satisfying the above inequality, then the family defined by Algorithm 2 for all

permutations π ∈ S n satisfies the TIF property with the same probability function p.

Proof. For the “only if” directionwe proceed as in the IIF case by first expressing the probability of rejecting

the first t − 1 candidates under some arrival ordering π.
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ALGORITHM 2: TIF Stopping Rule

Data: I = ((Fi)
n
i=1
, π), p(·, ·)

for t = 1, . . . , n do
i← π(t).

Inspect Xi and let x← Xi.

Qπ
t ← 1 −

t−1∑

k=1

∑

y∈S

fπ(k)(y) · p(π(k), y)

Flip a coin with Heads probability equal to qπt (x) =
p(i, x)

Qπ
t

.

if coin comes up Heads then
Hire i and halt.

else
Reject i and proceed.

end

Qπ
t = Pr[ALGπ rejects π(1), . . . , π(t − 1)] = 1 − Pr





t−1⋃

k=1

ALGπ accepts π(k)





= 1 −

t−1∑

k=1

∑

y∈S

Pr[ALGπ accepts π(k) | Xπ(k) = y] · Pr[Xπ(k) = y]

= 1 −

t−1∑

k=1

∑

y∈S

p(π(k), y) · fπ(k)(y)

where we used the fact that a stopping rule hires at most one candidate to assert that the events in the

union are disjoint.

We then require that the conditional hiring probability is bounded by the arrival probability at time step t:

p(π(t), x) ≤ Qπ
t , ∀t ∈ [n],∀x ∈ S and ∀π ∈ S n (4)

Unlike the IIF case which considered a single arrival permutation, the TIF property applies to the whole

family of stopping rules and the constraint we just described has to apply for every such permutation.

However, we can simplify it and prove that the set of inequalities in (3) is satisfied if and only if the set

of inequalities (4) is satisfied. The direction “(4) ⇒ (3)” follows easily by taking π to be any permutation

such that π(n) = i. For the other direction, assume inequalities (3) are all satisfied, let π ∈ S n be arbitrary

permutation, fix arbitrary t ∈ [n], x ∈ S and denote i = π(t). Define permutation π′ which is derived from

π by swapping the t-th and n-th elements. More precisely,

π′( j) =






π(n), j = t

i = π(t), j = n

π( j), o.w.

Inequality (3) for i, x states that: p(i, x) ≤ 1 −
∑

j,i

∑

y∈S p( j, y) · f j(y) or, equivalently expressed using

permutation π′, p(π′(n), x) ≤ 1 −
∑n−1

k=1

∑

y∈S p(π′(k), y) · fπ′(k)(y)
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The right hand side of the above inequality cannot decrease if we make the outer summation range from

1 to t − 1 instead so, p(π′(n), x) ≤ 1 −
∑t−1

k=1

∑

y∈S p(π′(k), y) · fπ′(k)(y)

Since π′ agrees with π for all j < t, the above is equivalent to: p(π(t), x) ≤ 1−
∑t−1

k=1

∑

y∈S p(π(k), y) · fπ(k)(y)

which is exactly inequality (4).

Now for the “if” direction of the lemma, we prove that the family defined by Algorithm 2 for all π ∈ S n

satisfies the TIF property with probability function p(i, x) again using induction on the time step t ∈ [n].

The base case is again trivial with Qπ
1
= 1 therefore qπ

1
(x) = p(i, x).

For the inductive step, consider time step t > 1. The conditional probability of ALGπ hiring candidate π(t)

is:

Pr[Algorithm 2 hires π(t) | Xπ(t) = x] = Pr[Algorithm 2 hires π(t) | Xπ(t) = x, have reached time step t]

· Pr[Algorithm 2 rejects π(1), . . . , π(t − 1)]

The first factor in the product is exactly the probability qπt (x) of the coin used by Algorithm 2. Using the in-

ductive hypothesis, we can express the probability of Algorithm 2 rejecting the first t−1 candidates in terms

of the p.d.f.s of each Xi and the probabilities p(i, x), getting Pr[Algorithm 2 rejects Xπ(1), . . . , Xπ(t−1)] = Qπ
t ,

where Qπ
t is exactly the quantity computed in the for-loop. Hence,

Pr[Algorithm 2 hires π(t) | Xπ(t) = x] = qπt (x) · Qπ
t =

p(i, x)

Qπ
t

· Qπ
t = p(i, x)

�

Similarly to the IIF case, we can express the probability function p(i, x) of the optimal family of TIF stopping

rules as the solution to the following LP:






max

n∑

i=1

∑

x∈S

x · p(i, x) · fi(x)

s.t. p(i, x) +
∑

k,i

∑

y∈S

fk(y) · p(k, y) ≤ 1, ∀i ∈ [n],∀x ∈ S.

p(i, x) ∈ [0, 1] ∀i ∈ [n],∀x ∈ S.

(OPT Online TIF)

Theorem 4.6. The optimal TIF family of stopping rules for a given instance I = (Fi)
n
i=1

can be computed in

time polynomial in n, |S| by solving (OPT Online TIF).

4.3 Offline Relaxation

The following LP relaxation of the offline problem (i.e. prophet) is going to be useful in later sections.

Lemma 4.7. Let I = (Fi)
n
i=1

be an instance of the hiring problem. Let OPTOff be the value of the candidate

hired by the optimal offline algorithm for instance I and let C∗ be the optimal solution to the following LP:
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max

n∑

i=1

∑

x∈S

x · pix · fi(x)

s.t.

n∑

i=1

∑

x∈S

pix · fi(x) ≤ 1

pix ∈ [0, 1] ∀i ∈ [n],∀x ∈ S .

(Offline Relaxation)

Then,

E[OPTOff] ≤ C∗

Proof. Let pix = Pr[OPTOff hires i | Xi = x]. Since any algorithm hires at most one candidate, it follows

that E[# of candidates hired by OPTOff] ≤ 1. The expectation can be expressed in terms of pix as follows:

E[# of candidates hired by OPTOff] = E





n∑

i=1

I[OPTOff hires i]





=

n∑

i=1

∑

x∈S

Pr[OPTOff hires i | Xi = x] · Pr[Xi = x]

=

n∑

i=1

∑

x∈S

pix · fi(x)

Therefore, the probabilities pix ofOPTOff constitute a feasible solution to the LP and further the objective

value C of the LP for pix is equal to the expected performance of OPTOff. Hence, the optimal solution p∗
ix

with objective value C∗ cannot be any worse: C∗ ≥ C = E[OPTOff]. �

The special form of this LP allows to prove that there are optimal solutions with special structure that will

allow us later to transform them into solutions to Online IIF/TIF LPs presented previously.

Lemma 4.8. Among the set of optimal solutions to (Offline Relaxation), there is one that satisfies pix = p jx

for all i, j ∈ [n] and all x ∈ S.

Proof. Let p = (pix) be any optimal solution to (Offline Relaxation). We will explain how to construct

another solution p′ = (p′
ix

) that obeys the LP constraints and has the same objective value. For any

x ∈ S , such that
∑n

i=1 pix fix = 0 we set p′
ix
= 0. For any x ∈ S such that

∑n
i=1 pix fi(x) = wx > 0, we let

zx =
∑n

i=1 fi(x) and set p′
ix
= wx/zx for all i.

Note that 0 ≤ p′
ix
≤ 1 because wx/zx is the weighted average of the numbers pix, weighted by fi(x)/zx, and

each pix belongs to [0, 1].

The one constraint of (Offline Relaxation) is satisfied by p′ because

n∑

i=1

p′ix fi(x) =
wx

zx

n∑

i=1

fi(x) =
wx

zx

· zx = wx =

n∑

i=1

pix fi(x) (5)

and summing the above equations over x, we get that the LHS of the LP constraint is the same for p′ as

for p.

Finally, to verify the equality of the objective function values, scale Equation (5) by x, then sum over all

x ∈ S . �
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Figure 1: Summary of different settings we consider. Labels on arcs represent competitive ratios: an arc

from setting A to setting B labeled “≥ r” (resp. “= r”) means a competitive ratio bound of the form: for

any instance (Fi)
n
i=1

, let OPTA,OPTB be the optimal algorithms on this instance for the respective settings,

then E
[

OPTB
]

/E
[

OPTA
]

≥ r (resp. the bound is tight). The settings are named in the form X[, Y], where

X ∈ {Off,On} denotes whether it is an offline or online setting and Y ∈ {IIF,TIF} (if present) represents the

kind of fairness property required (if any).

5 Competitive Fair Algorithms

In the previous sectionswe described how to reduce the problem of computing the optimal IIF/TIF stopping

rule for a given instance to solving an LP. Here, we use this reduction to show tight competitive ratios

between different settings (online vs. offline, unfair vs. fair etc.). In what follows, we present the results

separately for each kind of fairness. The results are summarized in Figure 1 as competitive ratios between

different settings depicted on top of arcs connecting those settings and our theorems indicate which arc

they correspond to.

5.1 Competitive IIF

For the IIF property, there are four settings of interest that correspond to all combinations of offline/online

and non-fair/fair settings according to the IIF property. We pictorially represent each of those settings as

vertices on a square in the left side of Figure 1. Edges on this diagram represent competitive ratios between

the corresponding settings (either already known or proven in this paper).

The top edge of the IIF diagram is the well-known prophet inequality we described in Section 2 which,

along with the tight example, gives a competitive ratio of 1/2 between the unconstrained (in terms of

fairness) offline setting and an unconstrained online setting.

Next, we focus of the diagonal edge comparing the offline non-fair setting (i.e. a prophet) with an online

and IIF setting for which we manage to recover a 1/2-competitive ratio that is tight. This means that

despite the fact that a decision maker in the Online IIF setting is more restrained as to what decisions they

can make in order to remain fair, they nevertheless can perform at least half as good as an omniscient

prophet who makes no effort in maintaining fairness!

Theorem 5.1 (IIF Diagonal Arc). Let I = ((Fi)
n
i=1
, π) be an instance of the hiring problem. Let OPTOff be

the optimal, offline algorithm on I (i.e. the prophet choosing i∗ ∈ argmaxiXi), and OPTOnIIF be the optimal

IIF stopping rule on the same instance. Then,
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E[OPTOnIIF] ≥
1

2
· E[OPTOff]

Moreover, the inequality is tight.

Proof. We start by considering an optimal solution p∗
ix

to (Offline Relaxation) presented in Section 4.3

which satisfies p∗
ix
= p∗

jx
for all i, j and x and denote that common value by p∗x. The existence of such

a solution is guaranteed by Lemma 4.8. Let C∗ be the objective value of that solution. Based on this, we

define p(x) = p∗x/2 for all x ∈ S.

We claim that p(x) is a feasible solution to (OPT Online IIF) with objective valueC∗/2. Once we prove this,

the theorem follows since C∗ is an upper bound to E[OPTOff].

Indeed, consider the left-hand-side (LHS) of a constraint of (OPT Online IIF) for some x ∈ S:

p(x) +

n−1∑

k=1

∑

y∈S

fπ(k)(y) · p(y) =
1

2
p∗x +

1

2

n−1∑

k=1

∑

y∈S

fπ(k)(y) · p∗y (6)

Recall that p∗x as a solution to (Offline Relaxation) it satisfies the feasibility constraint
∑n

i=1

∑

x∈S fi(x) · p∗x ≤

1. Also, p∗x ∈ [0, 1], therefore, we can bound the right-hand-side (RHS) of Equation (6) as follows:

1

2
p∗x +

1

2

n−1∑

k=1

∑

y∈S

fπ(k)(y) · p∗y ≤
1

2
+

1

2

n∑

k=1

∑

x∈S

fπ(k)(x) · p∗x

=

1

2
+

1

2

n∑

i=1

∑

x∈S

fi(x) · p∗x ≤
1

2
+

1

2
= 1

As for the objective value of (OPT Online IIF) for p(x):

n∑

i=1

∑

x∈S

x · fi(x) · p(x) =
1

2
·

n∑

i=1

∑

x∈S

x · fi(x) · p∗x =
C∗

2

The tightness of the bound follows from the tighness of the standard prophet inequality with the tight

instance we presented in Section 2. To be precise though, we need to adapt that example to our frame-

work which requires that all distributions share the same support. We therefore consider the following

δ-perturbation of the standard tight instance where we add probability mass δ < ε2 to the support points

missing on the distribution of each random variable:

X1 =






1/ε, w.p. δ

1, w.p. 1 − 2δ

0, w.p. δ

, X2 =






1/ε, w.p. ε

1, w.p. δ

0, w.p. 1 − δ − ε

(7)

In this instance, a prophet gets E[OPTOff] = 2 − O(ε). On the other hand, any stopping rule (IIF or not)

on this instance with arrival ordering π1 = (1, 2) gets no more than E[Onlineπ1] = 1 + O(ε). �
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Regarding the remaining arcs on the IIF side of Figure 1, notice that the ≥ 1/2 part of each bound is a

consequence of Theorem 5.1. This is because the optimal algorithm for any setting in {Off,IIF,On} performs

no better than the optimal algorithm in the Off setting (in expectation) and no worse than the optimal in

the On,IIF setting (in expectation). Having shown that Off and On,IIF have a gap of 1/2, it directly follows

that the competitive ratio between any two other setting is at least 1/2.

The formal results appear in the following theorems.

Theorem 5.2 (IIF Bottom Arc). Let I = ((Fi)
n
i=1
, π) be an instance of the hiring problem. Let OPTOffIIF

be the optimal, offline and IIF algorithm on I, and OPTOnIIF be the optimal, IIF stopping rule on the same

instance. Then,

E[OPTOnIIF] ≥
1

2
· E[OPTOffIIF]

Moreover, the inequality is tight.

Proof. We already argued how the inequality follows from Theorem 5.1. To show tightness, consider again

the instance in (7). We already argued that for π1 = (1, 2), no stopping rule can do better than 1 + O(ε),

therefore the same holds for the any Online, IIF stopping rule. We now prove that there is an Offline, IIF

rule with expected performance at least 2 − O(ε). To do this, it is easier to design an online, IIF stopping

rule for the reverse permutation π2 = (2, 1), which implies the existence of an Offline, IIF algorithm with

the same expected performance. Indeed let ALGπ2 work as follows: Inspect X2 and if X2 > 0, accept it

with probability 1 − ε (by tossing a biased coin). Never accept the zero value for X2. If X2 was not hired,

proceed to inspect X1. If X1 < 0 again do not hire. Otherwise, for any value X1 > 0, accept it with

probability r = 1−ε
1−q

where q = Pr[ALG hires X2 at time step t = 1] = (1 − ε) · (ε + δ). If δ is sufficiently

small, e.g. δ < ε2 then q ≤ ε and so r is a well-defined probability.

To verify the IIF property, consider the probability p(i, x) = Pr[ALGπ2 accepts Xi | Xi = x]. If x = 0 then

p(i, x) = 0 regardless of i. For x > 0, it is p(2, x) = 1 − ε by definition and p(1, x) = 1−ε
1−q
· (1 − q) = 1 − ε.

Therefore p(i, x) = p(x) confirming the definition of IIF.

Finally, the expected value of this IIF stopping rule applied on π2 can be computed as follows:

2∑

i=1

∑

x∈{0,1,1/ε}

x · p(x) · fi(x) = (1 − ε) · E[X1] + (1 − ε) · E[X2]

= (1 − ε)c · [1 + δ(1/ε − 2)] + (1 − ε) · [1 + δ]

> 2 − 2ε

�

Theorem 5.3 (IIF Right Arc). Let I = ((Fi)
n
i=1
, π) be an instance of the hiring problem. Let OPTOn be the

optimal stopping rule on I, and OPTOnIIF be the optimal, IIF stopping rule on same instance. Then,

E[OPTOnIIF] ≥
1

2
· E[OPTOn]

Moreover, the inequality is tight.
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Proof. Again, we focus only on the upper bound and provide a tight instance. Consider the following

instance6:

X1 = 1, X2 =






1, w.p. ε

0, w.p. 1 − ε

with arrival ordering π1 = (1, 2). Clearly, E[OPTOn] = 1 by always hiring the first candidate. To compute

the optimal, we solve (OPT Online IIF), which in this case reduces to

max p1 + ε · p1

s.t. p0 + p1 ≤ 1

p1 + p1 ≤ 1

p0, p1 ∈ [0, 1]

whose optimal solution as ε→ 0 approaches 1/2, meaning that E[OPTOffIIF]→ 1/2. �

Similarly, Theorem 5.1 implies a lower bound on the competitive ratio for the arc on the left, comparing

fairness exclusively on an offline setting. For this, we do not have a tight example and it is an interesting

open question whether this gap can be improved.

Theorem 5.4 (IIF Left Arc). Let I = ((Fi)
n
i=1
, π) be an instance of the hiring problem. Let OPTOff be the

optimal offline rule onI (i.e. a prophet), andOPTOffIIF be the optimal, IIF stopping rule on the same instance.

Then,

E[OPTOffIIF] ≥
1

2
· E[OPTOff]

5.2 Competitive TIF Algorithms

We now move our attention to competitive ratios between settings where the fairness criterion is the TIF

property. Here the picture is simpler since the TIF property only makes sense in the online setting. The

three interesting settings we will be working with in this section are shown on the right side of Figure 1.

The top arc again corresponds to the known, standard prophet inequality. Here we prove the bounds for

the other two arc using the tools we developed in the previous sections.

We begin with the diagonal arc where again we manage to prove a 1/2-competitive ratio. In fact, the

theorem that follows is stronger as it implies the existence of a family of algorithms that is at the same

time TIF and each of the algorithms individually is IIF achieving the desired ratio of 1/2.

Theorem 5.5 (TIF Diagonal Arc). Let I = (Fi)
n
i=1

be an instance of the hiring problem. Let OPTOff be the

optimal, offline algorithm (i.e. the prophet choosing i∗ ∈ argmaxiXi). There exists a family of TIF stopping

rules {OnTIFπ}π∈S n
for instance I such that,

E[OnTIFπ] ≥
1

2
· E[OPTOff], ∀π ∈ S n

6For the IIF property to be well-defined, technically we need a common support across r.v.s. This can be amended by consid-

ering a δ-perturbation of the example just like we did with previous tight examples.
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Moreover, each of OnTIFπ also satisfies the IIF property. Finally, the inequality is tight.

Proof. Consider again an optimal solution p∗
ix
to (Offline Relaxation) presented in Section 4.3 and denote

the optimal objective value byC∗. Define p(i, x) = p∗
ix
/2. Recall that p∗

ix
is such that

∑n
i=1

∑

x∈S p∗
ix
· fi(x) ≤ 1.

To show that p(i, x) as defined satisfies the constraints of (OPT Online TIF),

p(i, x) +
∑

k,i

∑

y∈S

fk(y) · p(k, y) =
1

2
p∗ix +

1

2

∑

k,i

∑

y∈S

fk(y) · p∗ky ≤
1

2
+

1

2

n∑

k=1

∑

y∈S

fk(y) · p∗ky ≤ 1

Now we compute the objective value of (OPT Online TIF),

n∑

i=1

∑

x∈S

x · fi(x) · p(i, x) =
1

2

n∑

i=1

∑

x∈S

x · fi(x) · p∗ix =
C∗

2

In fact, if we assume as before the special solution p∗
ix
= p∗x guaranteed by Lemma 4.8, we can further prove

that the constraints of (OPT Online IIF) are satisfied for any fixed arrival ordering π ∈ S n, meaning that

the algorithm we designed in this proof will also be an IIF stopping rule: p(x) +
∑n−1

k=1

∑

y∈S fπ(k)(y) · p(y) ≤
1
2

p∗x +
1
2

∑n
i=1

∑

y∈S fi(y) · p∗y ≤ 1.

As for tightness of the inequality, the same δ-perturbation of the standard prophet inequality instance

presented in Theorem 5.1 suffices since for permutation π1 = (1, 2), no algorithm (TIF or not) can do

better than 1 + O(ε) whereas a prophet gets at least 2 + O(ε). �

Theorem 5.6 (TIF Right Arc). Let I = (Fi)
n
i=1

be an instance of the hiring problem. Let {OPTOnπ}π∈S n
be

a family of the optimal stopping rules for I (each being optimal for the particular arrival ordering π). There

exists a family of TIF stopping rules {OnTIFπ}π∈S n
for the instance I such that,

E[OnTIFπ] ≥
1

2
· E[OPTOnπ], ∀π ∈ S n

Moreover, the inequality is tight.

Proof. Observe that the ≥ 1/2 part is a consequence of Theorem 5.5. This is because no online algo-

rithm can perform better that an offline one in expectation, therefore if an Online,TIF algorithm is 1/2-

competitive compared to an Offline, the bound carries over when comparing to Online algorithms which

perform at most as good.

For the tightness, we consider again instance (7). We claim that no TIF stopping rule can perform better

than 1−O(ε) and also there exists an online algorithm for the same instancewith arrival ordering π2 = (2, 1)

which achieves performance 2 + O(ε). The later claim is easy to see since without the δ-perturbation,

inspecting X2 first gives advantage to the stopping rule to and performs as well as an offline prophet. For

the former claim, one needs to solve the LP in (OPT Online TIF) for this specific instance to verify that the

optimal solution has objective value 1 − O(ε). We omit the computation here. �
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6 An impossibility result

We’ve seen how fairness (IIF, TIF or both) is achievable in the online setting while guaranteeing a per-

formance at least half that of a prophet. This means that requiring fairness does not hurt the expected

performance of an online decision maker (in the worst case over instances) more than the loss induced

purely by the online nature of the setting when compared to an offline one. However, fairness comes at a

cost which is not immediately visible when comparing expected performance.

Consider the online IIF 1/2-competitive algorithm derived in Theorem 5.1. By definition, p(x) = 1
2

p∗x so the

expected number of candidates hired by the algorithm is
∑n

i=1

∑

x∈S p(x) · fi(x) = 1
2

∑n
i=1

∑

s∈S p∗x · fi(x) ≤ 1
2

using the constraint of (Offline Relaxation). Since the stopping rules always hires at most one person, this

means the probability of hiring some candidate is at most 1/2. So there is at least 1/2 probability of not

hiring anyone!

Sometimes, not hiring anyone could be undesirable even when on average a stopping rule is performing

well. It is natural to ask, is there a fair (IIF/TIF) stopping rule with non-zero competitive ratio when

compared to a prophet which hires some candidatewith probability 1? A property like that, which requires

that a stopping rule always hires some candidate has also been studied in the context of secretary problem

by [BJS09] where it is called “must-hire” property.

In this section, we give a negative answer to this question for both IIF and TIF stopping rules. However,

our work leaves open the question of whether there are offline algorithms in the Offline, IIF or the Offline,

TIF setting which satisfy the must-hire constraint.

Theorem 6.1. For any ε > 0, there exists an instance Iε = ((Fi)
n
i=1
, π) of the hiring problem such that for

any IIF stopping rule ALG for Iε with Pr[ALG hires exactly one candidate] = 1, we have:

E[ALG] < ε · E[max
i

Xi]

Proof. The constraint that a stopping rule always hires can be expressed as a linear constraint in terms of

p(x) by letting

qi = Pr[ALG hires i] =
∑

x∈S

Pr[ALG hires i | Xi = x] · Pr[Xi = x] =
∑

x∈S

p(x) · fi(x)

Then we require that,

E[# of candidates hired] =

n∑

i=1

qi =

n∑

i=1

∑

x∈S

p(x) · fi(x) = 1

Append this constraint to (OPT Online IIF) to get an augmented LP. Any solution to this augmented LP can

be turned back into an stopping rule which hires at most one person as we argued in the previous sections

and the extra constraint ensures that the stopping rule derived hires exactly one person. Denoting by

OPTOnMhIIF the value picked by the optimal, must-hire, IIF stopping rule, we thus have that the optimal

objective value of the augmented LP is exactly E[OPTOnMhIIF].
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Re-write the first constraint by using the second constraint as follows:

∀x ∈ S : p(x) +

n−1∑

k=1

∑

y∈S

fπ(k)(y) · p(y) ≤ 1⇔ p(x) +

n∑

i=1

∑

y∈S

fi(y) · p(y)

︸                ︷︷                ︸

=1

−
∑

y∈S

fπ(n)(y) · p(y) ≤ 1

⇔ p(x) ≤
∑

y∈S

fπ(n)(y) · p(y)

The last inequality says that all values p(x) (which are real numbers in [0, 1]) should be bounded above by

a convex combinations of the set of all {p(x)}x∈S. The only way for this to happen is if p(x) = p(y) = p for

all x, y ∈ S.

Using now the extra constraint, we can compute p as follows:

n∑

i=1

∑

x∈S

p · fi(x) = 1⇒ p ·

n∑

i=1

1 = 1⇒ p = 1/n

Substituting back in the objective we get,

E[OPTOnMhIIF] =

n∑

i=1

∑

x∈S

x · fi(x) · p =
1

n

n∑

i=1

E[Xi]

Therefore, we can take any instance such that
∑n

i=1 E[Xi] is very close to E[maxn
i=1

Xi] and make n large

enough.

More precisely, given ε > 0 defineIε to contain n =

⌈

2 ln 2

ln
(

1
1−ε/2

)

⌉

i.i.d. random variables distributed as follows:

∀i ∈ [n] : Xi =






2/ε, w.p. ε/2

0, w.p. 1 − ε/2

Then E[OPTOnMhIIF] = 1 and it can be shown that E[maxi Xi] > 1/ε. �

Theorem 6.2. For any ε > 0, there exists an instance Iε = (Fi)
n
i=1

of the hiring problem such that for any

TIF family of stopping rules {ALGπ}π∈S n
with Pr[ALGπ hires exactly one candidate] = 1 for all π, we have:

E[ALGπ] ≤ ε · E[max
i

Xi],∀π ∈ S n

The proof uses similar tools as the proof of the previous theorem and is omitted.

7 Single-Sample and Double-Sample Fair Prophet Inequalities

Suppose our algorithm doesn’t know the distributions F1, . . . ,Fn but is given independent samples from

them. In this section we present a 1
2
-competitive offline selection rule that satisfies IIF, given one sample

from each distribution. Then we present a 1
9
-competitive family of stopping rules satisfying both IIF and

TIF, given two independent samples from each distribution.
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In the following algorithms, the elements to be selected are denoted X1, . . . , Xn; additional independent

samples from the same distributions are denoted as Y1, . . . , Yn and Z1, . . . , Zn. The algorithms that we

analyze are comparison-based, i.e. their decisions are based on comparing pairs of elements of the multiset

W = {X1, Y1, Z1, . . . , Xn, Yn, Zn}. It will be convenient to assume that all such comparisons are strict, i.e. that

no two elements of W are equal. To ensure strict comparisons, we assume that our algorithms sample a

uniformly random tie-breakingpriorityψ(w) in [0, 1], for eachw ∈ W . Thenwhen comparing two elements

w,w′ ∈ W, if w and w′ are of equal value, the outcome of the comparison is determined by comparing ψ(w)

with ψ(w′). (The probability of ψ(w) = ψ(w′) is zero because they are sampled from a distribution with no

point masses.)

ALGORITHM 3: Single-sample offline algorithm

Data: Xi, Yi ∼ Fi

Let i ∈ [n] be such that Xi = max{X1, . . . , Xn}.

if Xi > Yi then
Hire Xi.

else
Hire no candidate.

end

Lemma 7.1. Algorithm 3 is IIF and 1
2
-competitive.

Proof. For any x > 0 and i ∈ [n] ,

Pr[Hire i | Xi = x] = Pr[(∀ j , i : X j < x) ∧ (Yi < x)] =

n∏

j=1

F j(x).

The right side does not depend on i, as required by the definition of IIF.

Let M = max{X1, Y1, X2, Y2, . . . , Xn, Yn}. When M = Xi for some i, Algorithm 3 is guaranteed to hire Xi.

Therefore, if we define

ζ =






1, if M ∈ {X1, . . . , Xn}

0, if M ∈ {Y1, . . . , Yn}

we have ALG ≥ ζ · M. Observing that E[ζ | M] = 1
2
for all values of M, we find that

E[ALG] ≥ E[ζ · M] = E[E[ζ | M] · M] =
1

2
· E[M] ≥

1

2
· E[max{X1, . . . , Xn}].

�

Next we present and analyze a 1
9
-competitive stopping rule that satisfies TIF and IIF given two independent

samples Yi, Zi from each distribution. The stopping rule is defined in Algorithm 4 below.

First, observe that this is a well-defined stopping rule: given the samples Y1, . . . , Yn, Z1, . . . , Zn, the criterion

for hiring Xπ(t) depends only on the values of Xπ(1), . . . , Xπ(t). Furthermore Algorithm 4 never selects more

than one element: if it hires Xπ(t) then Xπ(t) > Y∗, which means that for all t′ > t the condition for hiring

Xπ(t′) will not be satisfied.

Lemma 7.2. Algorithm 4 satisfies TIF and IIF
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ALGORITHM 4: Double-sample online algorithm

Data: Yi, Zi ∼ Fi, π ∈ S n

Let Y∗ = max{Y1, . . . , Yn}.

for t = 1, 2, . . . , n do
Observe Xπ(t) ∼ Fπ(t).

if Xπ(t) > Y∗ and (Xπ(s) < Y∗ for all s < t) and (Zπ(s) < Y∗ for all s ≥ t) then
Hire Xπ(t).

end

end

Proof. For any x, y ∈ S, and any index i, let us calculate the conditional probability of hiring i given that

Xi = x and Y∗ = y. If x < y then this probability is zero. Otherwise, suppose i = π(t). We have

Pr[Hire i | Xi = x, Y∗ = y] = Pr[Xπ(s) < y for all s < t] · Pr[Zπ(s) < y for all s ≥ t]

=

n∏

s=1

Fπ(s)(y) =

n∏

j=1

F j(y).

Summing over the possible values of y,

Pr[Hire i | Xi = x] =
∑

y∈S

Pr[Y∗ = y] · Pr[Hire i | Xi = x, Y∗ = y] =
∑

y∈S

Pr[Y∗ = y]

n∏

j=1

F j(y).

The right side depends on neither π nor i, so the stopping rule is both TIF and IIF. �

Lemma 7.3. Algorithm 4 is 1
9
-competitive.

Proof. Recall the multiset W = {X1, Y1, Z1, . . . , Xn, Yn, Zn}, and recall that its elements are totally ordered

using random priorities to break ties between elements of W whose values are equal. Let W∗ > W∗∗ denote

the two largest values inW . Wewill useE to denote the event thatW∗ ∈ {X1, . . . , Xn} andW∗∗ ∈ {Y1, . . . , Yn}.

Conditional on E, Algorithm 4 is assured of hiring the largest element of W . Conditional on the contents

of the set W — but not the partition of its elements into X = {X1, . . . , Xn}, Y = {Y1, . . . , Yn}, Z = {Z1, . . . , Zn}

— the probability that W∗ ∈ X is 1
3
and the conditional probability that W∗∗ ∈ Y given W∗ ∈ X is at least 1

3
.

(It is 1
2
if W∗∗ and W∗ are samples from the same distribution, and 1

3
if they are from different distributions.)

Hence, Pr[E | W] ≥ 1
9
and

E[ALG] = E[E[ALG | W]] ≥ E[W∗ · Pr[Hire W∗|W]] ≥
1

9
· E[W∗] ≥

1

9
· E[max{X1, . . . , Xn}].

�
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