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We study the classic online bipartite matching problem with a twist: offline vertices, called resources, are
reusable. In particular, when a resource is matched to an online vertex it is unavailable for a deterministic
time duration d after which it becomes available again for a re-match. Thus, a resource can be matched to
many different online vertices over a period of time.

While recent work on the problem have resolved the asymptotic case where we have large starting inventory
(i.e., many copies) of every resource, we consider the (more general) case of unit inventory and give the
first algorithms that are provably better than the näıve greedy approach which has a competitive ratio of
(exactly) 0.5.

Our first algorithm, which achieves a competitive ratio of 0.589, generalizes the classic RANKING algo-
rithm for online bipartite matching of non-reusable resources (Karp et al. 1990), by reranking resources
independently over time. While reranking resources frequently has the same worst case performance as
greedy, we show that reranking intermittently on a periodic schedule succeeds in addressing reusability of
resources and performs significantly better than greedy in the worst case. Our second algorithm, which
achieves a competitive ratio of 0.505, is a primal-dual randomized algorithm that works by suggesting up
to two resources as candidate matches for every online vertex, and then breaking the tie to make the final
matching selection in a randomized correlated fashion over time. As a key component of our algorithm, we
suitably adapt and extend the powerful technique of online correlated selection (Fahrbach et al. 2020) to
reusable resources, in order to induce negative correlation in our tie breaking step and to beat the competitive
ratio of 0.5. Both of our results also extend to the case where offline vertices have weights.

Key words : Online bipartite matching, reusable resources, primal-dual analysis, online correlated selection,
competitive ratio.

1. Introduction A central task of a two-sided online marketplaces is to match demand to
supply. In several applications, the supply is available at the beginning of the decision making hori-
zon — or equivalently, it is “offline”— while the demand arrives sequentially — or equivalently, it
is “online”. The flagship example for this scenario is in sponsored search, where a market algorithm
(for example Google Adwords) decides how to match the arriving search queries to advertisers
who are willing to show their ads for that particular arriving query. As an important feature of
this example, the advertisers’ budgets are considered as non-reusable resources: once a query is
matched to an advertiser, the consumed budget of that advertiser is gone; in other words, it cannot
be reused in the remaining of the decision-making horizon.

In contrast to the above applications, there are prevalent two-sided online marketplaces where the
planner aims to match the arriving demand to rental resources. Rental resources are reusable, simply
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because a given unit of such a resource may be re-allocated several times. Examples are virtual
machines in cloud computing platforms such as AWS, listings in vacation rental or hospitality
service online marketplaces such as Airbnb, and local professional services in online labor platforms
such as Thumbtack. Reusable resources are also common in more traditional application domains.
One example is in a city hospital where scarce medical resources need to be allocated for a variety
of patient treatments over time; most of these resources are released to be used again after a patient
leaves. This service operation was particularly important in early days of the COVID-19 pandemic,
when hospitals had to carefully manage the allocation of their beds, ventilators, and ICU units to
treat a rising influx of COVID patients.

A common modeling theme in all of the above rental applications is that the planner’s algo-
rithm sequentially matches arriving requests to available compatible resources, where a resource
is considered available only if it is not under rental at the time of the request. The main focus of
this paper is to design and analyze such algorithms with the goal of matching as many demand
requests as possible. The online bipartite matching (OBM) problem, originated from the seminal
work of Karp, Vazirani and Vazirani (1990), is a prominent model to capture a special case where
the offline resources can be only used once. Motivated by the rental applications, we revisit this
classic problem by considering a variation where offline vertices are reusable, that is, once an offline
vertex is used in the matching, it will be released to be reused after a certain duration of time.
We refer to this problem as the online bipartite matching with reusable resources (OBMRR). This
basic model was first introduced in Gong et al. (2021) – together with its generalization to online
assortment planning of reusable supply. Later it was studied more extensively in Feng et al. (2019,
2021a) under deterministic rental durations and in Goyal et al. (2020, 2021) under stochastic i.i.d.
rental durations — but only in the regime where resources have large capacities (or equivalently
fractional allocations are allowed). In OBMRR, we study the integral allocation problem where
there is exactly one unit of each offline reusable resource available for allocation.

Problem Formulation Formally, an instance of the OBMRR problem consists of a bipartite
graph G = (V,U ;E), where V is the offline side, U is the online side, and E is the set of edges.
V represents the set of reusable resources and U represents the set of arriving (demand) requests.
Also, an edge (i, j) ∈ E indicates that resource i can be assigned to request j (also referred to
as the arrival j). Vertices in U arrive online over discrete time j = 1,2, . . . , |U | in an (oblivious)
adversarially chosen order, and reveal their incident edges to vertices in V upon arrival. Once
offline vertex i is matched to an arriving online vertex j, it remains unavailable for the next d− 1
periods and will be available for re-allocation upon arrival of online vertex j+ d, where d∈N is a
known parameter referred to as the rental or usage duration in the paper.

We consider online algorithms that irrevocably match the arriving online vertex at each time
to one of the available offline neighbours (or refuse to match that online vertex). The goal is to
maximize the total number of matched online vertices at the end, which we also refer to as the
size of the final matching.1 As is common in the literature on online algorithms, we compare our
algorithm to the optimal offline algorithm that has the complete knowledge of G. We say that an
algorithm is Γ-competitive for Γ∈ [0,1] if for every instance of the problem the expected size of the
matching returned by the algorithm is at least Γ times the size of the matching produced by the
optimal offline solution. We refer to Γ as the competitive ratio. Important to recall, what makes
our problem substantially different from the setting in Karp et al. (1990) is that each resource i
is available at time j if and only if it had not been matched at some time j′ ∈ [j− d+ 1, j− 1]. In
fact, OBM is a special case of OBMRR when d= |U |.

1 Note that while each online vertex is only matched at most once, each offline vertex can be used multiple times due
to reusability of resources.
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As mentioned earlier, in this paper we are interested in integral online matching algorithms under
reusable resources. In contrast to fractional online algorithms that can divide the arriving online
vertex and allocate it fractionally to offline vertices, we force the online algorithm – which can be
randomized – to match the arriving online vertex in full to an offline vertex (or leave it unmatched).
We do not assume offline vertices have large budgets; instead, we let every offline vertex to have a
unit budget (inventory capacity) as in the classic OBM problem. This is without loss of generality;
an instance where resources have non-unit budgets can be transformed into an instance of the
unit budget setting (see Proposition 1 in Gong et al. (2021)). From a practical standpoint, the
unit budget setting captures scenarios where the reusable resources have small initial inventories
such as in the AirBnB or Thumbtack applications mentioned earlier. This is in contrast to prior
work (Feng et al. 2019, 2021a, Goyal et al. 2020, 2021) which either consider fractional allocations
or the equivalent formulation that asks for integral allocations but with large budgets.

Finally, we highlight that we show our results for the (more general) vertex-weighted setting.
In this setting, each offline vertex i is also associated with a non-negative vertex weight ri and
an algorithm for this problem obtains a reward of ri each time the offline node i gets matched.
The goal of both the online algorithm and the optimum offline solution is to maximize the total
accumulated weight from matching online nodes. The special case of this model when d = |U |
is the non-reusable vertex-weighted online bipartite matching problem introduced and studied in
Aggarwal et al. (2011).

Main Contributions Any greedy algorithm always matches as many as half of the online
vertices matched by the optimum offline solution in the unweighted setting.2 Similarly, the naive
greedy algorithm that matches the arriving online vertex to the available offline vertex with maxi-
mum weight obtains half of the total weight of the optimum offline solution in the vertex-weighted
setting. No deterministic integral algorithm can beat this 0.5 competitive ratio, which is even true
in the special case of unweighted non-reusable resources. In this special case, the elegant RANK-
ING algorithm in Karp et al. (1990) uses a randomized (negatively) correlated tie breaking rule
for greedy matching through one uniform random permutation over offline vertices; the resulting
structured correlation improves the competitive ratio from 0.5 to the optimal (1− 1/e)≈ 0.63. For
the vertex-weighted setting with non-reusable resources, Aggarwal et al. (2011) extend RANKING
by proposing the Perturbed Greedy (PG) algorithm and obtain the optimal (1− 1/e) competitive
ratio. At the same time, Feng et al. (2019, 2021a), Goyal et al. (2020, 2021) consider the fractional
OBMRR problem (with vertex weights) and show adaptations of the classic BALANCE algorithm
— introduced first in Kalyanasundaram and Pruhs (2000) for the non-reusable online bipartite
b-matching and later generalized to the Adwords problem in Mehta et al. (2007) — obtain the
optimal (1− 1/e) competitive ratio.3 This progress leaves the open question of finding the best
competitive ratio achievable by an integral online algorithm in the OBMRR problem. In fact, no
algorithm with guarantee better than 0.5 was known prior to our work. In this paper, we take a
first step towards answering this open question by studying the following fundamental question.

Does there exist an integral (randomized) online algorithm that can beat the naive greedy
algorithm in our problem? In other words, can we obtain a constant competitive ratio Γ strictly
larger than 0.5 for the (vertex-weighted) online bipartite matching with reusable resources?

2 This folklore result is true for exactly the same reason as a maximal matching in a graph having a cardinality at
least half of the size of the maximum matching.

3 Notably, Goyal et al. (2021) considered the general case of stochastic usage durations and showed that BALANCE
is at most 0.626 (< 1−1/e) competitive. They proposed an adaptation of BALANCE that achieves the best possible
guarantee of (1− 1/e) for arbitrary usage distributions when capacities are large (or equivalently, when fractional
allocations are allowed).
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Our main result answers the above question in affirmative. In particular, we propose two different
algorithmic approaches for designing online algorithms whose competitive ratios are strictly better
than 0.5. In a nutshell, our first approach is based on modifying the RANKING algorithm of Karp
et al. (1990) (and the perturbed greedy of Aggarwal et al. (2011)) to deal with challenges unique
to the matching of reusable resource. Our second approach is based on extending the concept of
online correlated selection (OCS), introduced and studied in Fahrbach et al. (2020), to the case
of reusable resources. We refer to this extended procedure as online correlated rental (OCR ). We
then design a primal-dual algorithm that uses this algorithmic construct as a sub-routine. Both
approaches eventually lead to structured ways of correlating the randomized tie-breaking rule of
the greedy algorithm across different rounds. Both approaches also rely on the primal-dual analysis
framework to quantify the effect of these structures on improving the competitive ratio of the
naive greedy algorithm. By incorporating these two different approaches, we propose two final
algorithms, namely Periodic Reranking (Algorithm 1) and OCR-based Primal-Dual (Algorithm 3).
Our main technical results are the following two theorems, establishing the first competitive ratio
results that beat the competitive ratio 0.5 of the naive greedy algorithm for the (vertex-weighted)
online bipartite matching of reusable resources.

Theorem 1 (Main Result I). The Periodic Reranking algorithm (Algorithm 1 with β =
0.89), achieves a competitive ratio of Γ≈ 0.589 in the (vertex-weighted) OBMRR problem.

Theorem 2 (Main Result II). The OCR-based Primal-Dual algorithm (Algorithm 3 with
the OCR subroutine as described in Algorithm 2), achieves a competitive ratio of Γ≈ 0.505 in the
(vertex-weighted) OBMRR problem.

We leave the discussions around the details of our technical contributions including the details
of our algorithmic constructs and our proof techniques to Section 3 (first approach) and Section 4
(second approach). In Appendix A, we consider a variant of our setting where arrival times are
continuous. Our main results extend as is to this setting too.

In what follows we elaborate on some further related work to help positioning our results better
in the literature.

1.1. Further Related Work Our work relates to and contributes to several streams of lit-
erature in operations research and computer science.

Online bipartite allocations. Our results fit into the rich literature on online bipartite matching (with
vertex arrival) and its extensions. Besides the work mentioned earlier, the analysis of RANKING
was later clarified and considerably simplified by Birnbaum and Mathieu (2008) and Goel and
Mehta (2008). Another line of work closely related to our problem studies the online assortment
optimization with non-reusable resources (e.g., Golrezaei et al. 2014, Ma and Simchi-Levi 2020)
and reusable resources (e.g., Gong et al. 2021, Feng et al. 2019, 2021a, Goyal et al. 2021) in the
adversarial setting, in which the online algorithm decides on subsets of resources to display to an
adversarial stream of arriving consumers. Several of these work introduce and analyze variants of
the “inventory balancing” algorithm — which are all inspired by the BALANCE algorithm and its
analysis in the seminal work of Mehta et al. (2007) for the Adwords problem. In addition to these
settings, there is a vast body of work on online matching and (non-reusable) resource allocation
in stochastic and hybrid/mixed models of arrival. For a comprehensive review of these work, see
Mehta et al. (2013). Last but not least, Moharir et al. (2015) introduced a unit inventory model
where the arrival sequence is divided into slots and resources are reusable with a (deterministic)
usage duration of one slot. At the beginning of each slot, arrivals are sequentially revealed within
a short (infinitesimal) amount of time. The number and types of arrivals in a slot is arbitrary. A
resource can be matched to at most one arrival in each slot and a resource matched in slot t is
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available for rematch in slot t+ 1. Consequently, the decision across slots are independent and it
can be shown that the classic RANKING algorithm is still (1− 1/e) competitive. Moharir et al.
(2015) proposed several new algorithms, including a (1−1/e) competitive reranking algorithm that
samples a new rank for the resources at the beginning of each slot. In fact, they show this result
for the more general case where arrivals have heterogeneous match deadlines. Overall, their setting
and results are incomparable to ours.

Primal-dual framework. Our randomized dual-fitting analysis borrows some aspects of the random-
ized primal-dual analysis of RANKING (and its extensions) discovered in Devanur et al. (2013).
An economics interpretation of this primal-dual analysis is also studied recently in Eden et al.
(2021). At high-level, our primal-dual analysis also bears some resemblance with the primal-dual
framework in the Adwords problem (Buchbinder et al. 2007, Mehta et al. 2007), online fractional
matching with free-disposal (Feldman et al. 2009a), the online bipartite matching with concave
returns on the offline nodes (Devanur and Jain 2012), and the modified primal-dual framework for
Adwords with random permutations (Devanur and Hayes 2009). Our dual-fitting style of analysis
shares similarities with Esfandiari et al. (2015), Huang et al. (2020a). Another related recent line
of work is on multi-stage bipartite allocations and matchings, where similar-in-spirit primal-dual
analysis frameworks are discovered using ideas from convex programming duality, e.g., Feng and
Niazadeh (2020), Feng et al. (2021b).

Online correlated selection. As mentioned earlier, the concept of online correlated selection was first
introduced in Fahrbach et al. (2020) and subsequently used in Huang et al. (2020b). Furthermore,
there are very recent work on improving this technique and extending it to the more general setting
of multi-way online correlated selection (Blanc and Charikar 2022, Gao et al. 2022). Importantly,
all of these work consider the non-reusable version of the problem while our technical developments
in Section 4.1 consider resources that are reusable.

Other models. We note that a parallel stream of work considers the online bipartite allocations
of reusable (and also non-reusable) resources in a Bayesian setting, both for the online prophet
inequality matching (e.g., Alaei et al. 2012, Dickerson et al. 2018) and its extension to online
Bayesian assortment optimization (e.g., Rusmevichientong et al. 2020, Baek and Ma 2019, Ma
et al. 2021, Feng et al. 2020). In this setting, the arrival type (which encode rewards and usage
durations) are drawn from known distributions which can be varying across time. For a detailed
review of these settings, see Gong et al. (2021) and Feng et al. (2020). The model and the results
in this line of work is incomparable to ours due to the fundamental difference between adversarial
arrival and Bayesian arrival. Some other problems that are indirectly related to us are (i) online
bipartite stochastic matching (e.g., Feldman et al. 2009b, Bahmani and Kapralov 2010, Manshadi
et al. 2012, Mehta et al. 2015, Jaillet and Lu 2013), (ii) online bipartite matching with stochastic
rewards (e.g., Mehta and Panigrahi 2012, Goyal and Udwani 2020, Huang and Zhang 2020) and
(iii) the rich literature on stochastic i.i.d. online packing LP and convex programming with large
budgets (e.g., Feldman et al. 2010, Devanur et al. 2011, Agrawal and Devanur 2014).

Organization In Section 2, we start by formalizing the LP relaxation of the OBMRR problem.
We then present our first algorithm based on the idea of periodic reranking in Section 3. We
provide a primal-dual analysis for this algorithm in Section 3.1. We then switch to our second
algorithm based on the idea of online correlated selection for reusable resources in Section 4. We first
present the idea of OCR in Section 4.1. We then describe our OCR-based primal-dual algorithm
in Section 4.2.1 with the construction of the dual variables, and we finally show how the OCR
guarantee helps in analyzing the competitive ratio using a primal-dual proof in Section 4.2.2.

2. LP Relaxation and Primal-Dual Framework Our algorithms and their analyses rely
on the linear programming relaxation of OBMRR. In this LP relaxation, we associate a variable
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xi,j to every edge (i, j)∈E of the graph. Since every online vertex j should be matched to at most
one offline vertex, the summation of xi,j over edges incident to j should be at most 1. On the other
hand, offline vertices are reusable and we know that if an offline vertex i gets matched, it will be
available for re-allocation after d time units. This is equivalent to saying that an offline vertex i
should be matched at most once in every time interval of size of d. For every offline vertex i we have
a set of constraints in the LP relaxation which states that the summation of the edges incident to
i in any interval of length d should be at most 1. The primal and dual linear programs of OBMRR
are given below.

Primal (P ) Dual (D)
max

∑
(i,j)∈E ri ·xi,j s.t. min

∑
i∈V,t∈[1,|U |]αi,t +

∑
j∈U βj s.t.

∀j ∈U :
∑

i∈V xi,j ≤ 1 ∀(i, j)∈E : βj +
∑j

t=max{j−d+1,1}αi,t ≥ ri
∀i∈ V, t∈ [1, |U |] :

∑
j∈[t,t+d−1] xi,j ≤ 1 ∀i∈ V, t∈ [1, |U |] : αi,t ≥ 0

∀i∈ V, j ∈U : xi,j ≥ 0 ∀j ∈U : βj ≥ 0

It is interesting to mention that unlike the LP for the bipartite matching with non-reusable
resources, the above LP relaxation above is not necessarily integral (and hence it is a strict relax-
ation to the optimum offline benchmark).
Remark 1. The integrality gap of the LP relaxation of OBMRR is at least 7

6
. Consider the

graph below, and assume that d= 3. It is easy to see that the size of the optimal matching is 3.
However, we can get a feasible fractional solution of size 3.5 by setting xi,j to 0.5 for every edge.

v1 v2 v3

u1 u2 u3 u4

Figure 1. An example for the OBMRR with an integrality gap of 7
6
. In this example V = {v1, v2, v3} and U =

{u1, u2, u3, u4}.

We use the dual-fitting primal-dual framework to provide competitive ratio guarantees for our
algorithms. This is a versatile and general technique for proving guarantees for online matching
and related problems. Throughout the paper, our algorithms always maintain a feasible primal
solution. To do so, we let xi,j to be the probability that edge (i, j) is in the matching generated by
the algorithm. Then, the primal objective P is equal to the expected objective of the algorithm.
We also construct a dual certificate for each algorithm. This dual will either be constructed only
for the sake of the analysis (Section 3.1) or it will be maintained and used by the online algorithm
itself (Section 4.2). The following lemma describes how the dual certificate helps with proving
competitive ratios. The proof is available in Appendix C.

Lemma 1. Suppose an online algorithm maintains a primal assignment {xi,j} with objective
value P , and there is a dual assignment {αi,t, βj} with objective value D satisfying these conditions:

(i) Reverse weak duality: P ≥D,
(ii) Approximate dual feasibility: there exists Γ∈ (0,1], so that

∀(i, j)∈E : βj +

j∑
t=max{j−di+1,1}

αi,t ≥ Γri.

Then, the algorithm is Γ-competitive.
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3. First Approach: Periodic Reranking In this section, we provide the details of our first
approach based on a natural extension of the classic Ranking algorithm of Karp et al. (1990), and
propose the Periodic Reranking (PR) algorithm (Algorithm 1). In Section 3.1, we establish a lower
bound on the competitive ratio of this algorithm using a primal-dual analysis.

The main new ideas in our algorithm are (i) using reranking, i.e., drawing fresh randomized
ranks occasionally, and (ii) reranking on a periodic schedule every d time units, where d is the usage
duration of resources. To gain insight into the usefulness of reranking and periodicity, consider the
classic RANKING algorithm on the example below.

Example 3.1 Consider a setting with two reusable resources {1,2}, identical rewards, usage dura-
tion d > 0 and four arrivals. The first and third arrivals have edges to both resources. The second
arrival only has an edge to resource 2. The fourth arrival only has an edge to resource 1. The first
two arrivals occur in close proximity to each other (less than d time apart). The second and third
arrivals are well separated in time (more than d units apart). Finally, the last two arrivals also
occur close to each other (similar to the first two). Observe that the matching decisions at arrivals
one and two have no impact on the availability of resources at arrival three. The RANKING algo-
rithm will randomly rank the two resources. Since ranks are not changed, arrivals one and three
are always matched to the same resource. Therefore, arrival two is matched if and only if arrival
four is not matched. In contrast, the optimal match is obtained by ranking resource 1 over resource
2 for the first two arrivals and then reversing the ranks for the remaining two arrivals.

The example does not give an upper bound on the overall performance of RANKING but
illustrates a key difficulty in analyzing the performance of RANKING for reusable resources. In
general, when the ranking is fixed, “right” matching decisions on early arrivals (matching the first
arrival to resource 1), may imply “wrong” decisions on later arrivals (matching the third arrival to
resource 1). Reranking provides a natural way to mitigate this analytical issue, as it untangles the
the dependence between matching decisions for arrivals that are well separated across time and
makes it tractable to analyze the resulting algorithm. At the same time, it is important to note
that reranking should be done at an appropriate frequency. Consider the algorithm that reranks
resources at every arrival. When vertex weights are identical, say ri = 1 ∀i ∈ V , this algorithm is
equivalent to the following randomized algorithm: Match every arrival (that can be matched) by
sampling a resource uniformly randomly. This algorithm, called Random, is known to have worst
case performance same as greedy even for non-reusable resources (Karp et al. 1990).

Now consider periodic reranking every d units of time. First, it operationalizes the insight that
a decision to match a resource to arrival j does not affect the resource availability after arrival
j+ d− 1. Second, within a period, this maintains the same rank and avoids the pitfall of frequent
reranking.4 We formalize the periodic reranking idea in Algorithm 1.

At the start of the planning horizon, the PR algorithm (independently) samples a random seed
yi ∈ U [0,1], for every i ∈ V . Using this seed, and a monotonically increasing trade-off function
g :R→ [0,1], the algorithm evaluates reduced prices ri(1− g(yi)) ∀i∈ V . Observe that the reduced
prices change over time. In particular, after every d units of time, PR samples new seeds for
the resources. Re-sampling over periods of length d ensures that resources have a new seed every
time they return to the system after a match. Given the reduced prices, PR matches each arrival
to an available neighbor with the highest reduced price at the moment of arrival. The name
Periodic Reranking comes from the following observation. When rewards ri = 1 ∀i∈ V , due to the
monotonicity of g, the algorithm is equivalent to reranking resources after every d units of time
and matching arrivals to the best ranked available neighbor.

4 The key insight is that in the time span of one usage duration, each resource can be matched at most once, presenting
a scenario similar to non-reusable resources. Indeed, PR reduces to RANKING when d≥ T .
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ALGORITHM 1: Periodic Reranking (PR)

Inputs: Set of resources V , usage duration d, parameter β;
Let g(x) = eβ(x−1) and S = V ;

Every d time units: Generate new i.i.d. ranks yi ∼U [0,1] ∀i∈ V ;

for every new arrival j do
Update set S by adding resources that returned since arrival j− 1;
Match j to i∗ = arg max

i∈S, (i,j)∈E
ri(1− g(yi));

S = S\{i};
end

When resources are non-reusable, say d= |U |, PR reduces to the Perturbed Greedy (PG) algo-
rithm. For the PG algorithm, Aggarwal et al. (2011) showed that choosing g(x) = ex−1 leads to
the best possible guarantee of (1− 1/e) for OBM with arbitrary rewards. In PR, we consider the
family of functions g(x) = eβ(x−1) parameterized by β > 0. Our analysis dictates the choice of β. In
particular, β = 0.89 optimizes the guarantee that can be achieved with our analysis.

3.1. Competitive ratio analysis using primal-dual Our analysis relies on the randomized
primal-dual framework of Devanur et al. (2013), which is based on constructing a randomized dual
certificate. Before getting into the details of our construction, we define some required notations.

Notations: Recall that PR reranks in fixed periods of length d. Let K = d|U |/de denote the total
number of periods and let k(j) denote the period that contains arrival j ∈U . To ensure that k(j)−1
is well defined for every j ∈U , we add a dummy period (of time interval d) prior to the first arrival.
This period does not have any arrivals and simply ensures that k(j)≥ 2 for every arrival. Let yki
denote the k-th seed of resource i. Note that yki is the seed of i in period k ∈ [K]. Let Y denote
the vector of all random seeds. Given a resource i∈ V and arrival j ∈U , let Y−i,j denote the vector

of all seeds except y
k(j)
i and y

k(j)−1
i . In other words, Y−i,j captures all seeds except the seed of i

during periods k(j)− 1 and k(j). We use E
y
k(j)
i , y

k(j)−1
i

[·] to denote expectation with respect to the

randomness in seeds y
k(j)
i and y

k(j)−1
i .

Dual construction: In order to define our dual candidate, we first define random variables βj(Y ),
αi,j(Y ) and subsequently set βj = EY [βj(Y )] and αi,j = EY [αi,j(Y )]. Inspired by Devanur et al.
(2013), we set βj(Y ) and αi,j(Y ) as follows.
• Initialize all dual variables to 0.
• Conditioned on Y , for each match (i, j) in PR set of assigned edge, let

βj(Y ) = ri

(
1− g

(
y
k(j)
i

))
, (1)

αi,j(Y ) = ri g
(
y
k(j)
i

)
. (2)

Dual certification: Now we show our constructed dual satisfies Lemma 1 for Γ≈ 0.5893.

Lemma 2. The dual candidate given by (1) and (2) satisfies constraint (i) of Lemma 1.

Proof. Let PR(Y ) denote the matching output by PR given seed vector Y . From (1) and (2),
we have,

βj(Y ) +αi,j(Y ) = ri ∀(i, j)∈PR(Y ).

Summing over all edges in the matching PR(Y ) completes the proof.
�
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It remains to show that constraints (ii) of Lemma 1 hold for the desired value of Γ. For OBM,
Devanur et al. (2013) prove a stronger statement in terms of conditional expectations. We follow
a similar strategy.

Lemma 3. Consider an edge (i, j) ∈E and seed Y−i,j. Suppose that for the candidate solution
given by (1) and (2), we have

E
y
k(j)
i , y

k(j)−1
i

βj(Y ) +

j∑
t=max{j−d+1,1}

αi,t(Y )
∣∣Y−i,t

≥ Γ ri, (3)

for some value Γ> 0. Then, constraint (ii) of Lemma 1 is satisfied for edge (i, j) ∈E with the
same Γ.

Proof. The lemma follows by taking expectation over Y−i,j on both sides of (3).
�

For a given value of seed y
k(j)−1
i , resource i may be matched to an arrival in period k(j)−1 such

that it is unavailable at j for all values of seed y
k(j)
i . Therefore, a stronger version of (3) where we

also fix y
k(j)−1
i and consider a conditional expectation only w.r.t. random seed y

k(j)
i , does not hold

for any non-trivial value of Γ. This necessitates an analysis where consider an expectation w.r.t.
both y

k(j)−1
i and y

k(j)
i . In a hypothetical scenario where i is available at j for all values of y

k(j)−1
i ,

it can be shown that inequality (3) holds for Γ = (1− 1/e) (when β = 1). Of course, in reality, i
may not be available at j for some values of y

k(j)−1
i and this scenario leads to a lower value of Γ

(= 0.589) in our analysis.
We now prove (3) for every edge (i, j) ∈ E and seed Y−i,j. To this end, fix an arbitrary edge

(i, j) and seed Y−i,j. To simplify notation, let y1 = y
k(j)−1
i and y2 = y

k(j)
i . Further, let PR(y1, y2)

denote the matching output by PR given seeds y1, y2 for i and with other seeds fixed according to
Y−i,j. Since Y−i,j is fixed, for simplicity, let βj(y

1, y2) denote βj(y
1, y2, Y−i,j). Similarly, for t ∈ U ,

let αi,t(y
1, y2) denote αi,t(y

1, y2, Y−i,j). We also write the conditional expectation Ey1,y2 [· | Y−i,j] as
Ey1,y2 [·].

Let St(y
1, y2) denote the set of resources available at arrival t∈U in PR(y1, y2). Given y1 ∈ [0,1],

for every arrival t∈U , define the critical threshold yct (y
1) as the solution to,

ri
(
1− g

(
yct (y

1)
))

= max
v∈St(y1,1), (v,t)∈E

rv
(
1− g

(
yk(t)
v

))
.

Due to the monotonicity of function g, there is at most one solution to this equation. If there is no
solution, we let yct (y

1) = 0. At a high level, the critical threshold at arrival t captures the highest
reduced price at the arrival when resource i is “removed” in period k(j) (achieved by setting y2 = 1).
Similar to the analysis of OBM (Devanur et al. (2013)), this scenario serves as a foundation for

establishing lower bounds on Ey1, y2 [βj(y
1, y2)] and Ey1, y2

[∑j

t=max{j−d+1,1}αi,t(y
1, y2)

]
.

Recall that k(j) is the period that contains j. Let p(j) = {1, · · · , j} ∩ k(j) denote the sub-
interval of period k(j) that includes all arrivals prior to (and including) j. We let Sp(j)(y

1,1) =
∪t∈p(j)St(y1,1) i.e., Sp(j)(y

1,1) denotes the set of all resources that are available at some
point of time in interval p(j). The next lemma gives useful lower bounds on βj(y

1, y2) and∑j

t=max{j−d+1,1}αi,t(y
1, y2), when resource i is available at some point in the interval p(j).

Lemma 4. Given y1 ∈ [0,1] such that i∈ Sp(j)(y1,1), we have,
a) βj(y

1, y2) ≥ βj(y
1,1) ≥ ri

(
1− g(ycj(y

1))
)
∀y2 ∈ [0,1].

b)
∑j

t=max{j−d+1,1}αi,t(y
1, y2) ≥ 1(y2 < ycj(y

1)) rig(y2) ∀y2 ∈ [0,1].
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Since every resource is matched at most once within each period, the bounds in Lemma 4 are quite
similar to their counterparts in the classic OBM setting where resources are matched at most once
(Devanur et al. 2013). For a proof, see Appendix C.

Next, we show a useful lower bound on
∑j

t=max{j−d+1,1}αi,t(y
1, y2) when i 6∈ Sp(j)(y1,1).

Lemma 5. Given y1 ∈ [0,1] such that i 6∈ Sp(j)(y1,1), we have,
∑j

t=max{j−d+1,1}αi,t(y
1, y2) ≥

rig(y1) ∀y2 ∈ [0,1].

Proof. Given i 6∈ Sp(j)(y1,1), we have that i is matched in period k(j)−1 to an arrival t′ > j−d.
From (2), we have αi,t′(y

1, y2) = ri g(y1). Thus,

j∑
t=max{j−d+1,1}

αi,t(y
1, y2) = αi,t′(y

1, y2) ≥ ri g(y1) ∀y2 ∈ [0,1].

�
Notice that Lemma 4 and Lemma 5 apply to mutually exclusive and exhaustive scenarios.

Combining Lemma 4(b) with Lemma 5 gives a lower bound on
∑j

t=max{j−d+1,1}αi,t(y
1, y2) for all

(y1, y2)∈ [0,1]2. In the proof of Lemma 9, we turn this into a desired lower bound on the expectation

Ey1,y2

[∑j

t=max{j−d+1,1}αi,t(y
1, y2)

]
.

In the scenario where i ∈ Sp(j)(y1,1), Lemma 4(a) lower bounds βj(y
1, y2) as a function of the

critical threshold ycj(y
1). It remains to lower bound βj(y

1, y2) when i 6∈ Sp(j)(y1,1) and find conve-
nient bounds on ycj(y

1). To this end, Lemma 7 first gives a sharp characterization of the set of values
of y1 that lead to each scenario. Lemma 8 builds on this characterization to upper bound ycj(y

1) in
two crucial scenarios. Finally, Lemma 9 fills in the gaps and puts the various pieces together. The
next lemma gives a structural result that will be used to prove Lemma 7.

Lemma 6. Consider a value z ∈ [0,1] such that for y1 = z, i is matched to some arrival, say
t(z), in period k(j)− 1. Then, for every y1 ≤ z, i is matched in period k(j)− 1 to arrival t(z) or
an arrival that precedes it.

Proof. Recall that except y1 and y2, all seeds are fixed. The value of y2 does not affect the output
of PR in periods prior to k(j). Similarly, the value of y1 does not affect the matching prior to
period k(j)− 1. Since every resource can be matched at most once during a single period, when
y1 = z, t(z) is the unique arrival matched to i during period k(j)− 1.

Now, let ri(y
1) = ri(1− g(y1)) and consider the change in the matching during period k(j)− 1

as we vary y1 in the interval (0, z). Suppose there exists a value y1 = z′, with z′ < z, such that i
is not matched prior to t(z) in period k(j)− 1 (if no such value exists, we are done). Then, for
y1 = z′, i is available at t(z) and the matching prior to t(z) is identical to the matching when y1 = z.
Hence, the set of resources available at t(z) is identical for both values of y1. Since ri(z

′)≥ ri(z)
(by monotonicity of function g for β > 0), i must be matched to t(z) when y1 = z′. This completes
the proof. �

Lemma 7. There exists values z1, z2 ∈ [0,1], such that z1 ≤ z2 and,
a) i∈ Sp(j)(y1,1) ∀y1 ∈ (z2,1] and i is not matched to any arrival in period k(j)− 1.
b) i 6∈ Sp(j)(y1,1) ∀y1 ∈ (z1, z2) and i is matched to some arrival in period k(j)− 1.
c) i∈ Sp(j)(y1,1) ∀y1 ∈ [0, z1) and i is matched to some arrival in period k(j)− 1.

Proof. Recall that Sp(j)(y
1,1) denotes the set of all resources that are available at some point of

time in interval p(j). Observe that the value of y2 does not influence the scenario i.e., whether i is
in (or not in) Sp(j)(y

1,1).
Let z2 ∈ [0,1] be the highest value such that for y1 = z2, i is matched in period k(j)− 1. Set

z2 = 0 if no such value exists. From Lemma 6, we have that for every y1 < z2, i will continue to
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be matched in period k(j)− 1 and, in fact, to (possibly) earlier arrivals. Thus, there is a unique
threshold z2 ∈ (0,1) such that i is matched in period k(j)− 1 for every y1 ≤ z2, and unmatched in
period k(j)− 1 for every y1 > z2. If i is unmatched in period k(j)− 1, then i ∈ Sp(j)(y1,1). This
gives us part (a) of the lemma.

Next, let z1 ∈ [0, z2] be the highest value such that i∈ Sp(j)(y1,1) for for y1 = z1. In other words,
i returns from its match in k(j)− 1 in time to be available at some arrival in p(j). Set z1 = 0 if no
such value exists. From Lemma 6, for every y1 < z1, i is matched (possibly) even earlier in period
k(j)− 1. Therefore, i∈ Sp(j)(y1,1) for every y1 < z1. This corresponds to part (c) of the lemma.

Finally, by definitions of thresholds z1 and z2, when y1 ∈ (z1, z2), we have that y1 is matched in
period k(j)− 1 but i 6∈ Sp(j)(y1,1). This corresponds to part (b). �

Lemma 8. The following statements are true.
a) For every y1 ∈ (z2,1], we have ycj(y

1) = ycj(1).
b) For every y1 ∈ (z1, z2), we have ycj(y

1)≤ ycj(1).

Proof. From Lemma 7(a), we have that for every y1 ∈ (z2,1], resource i is unmatched in period
k(j)− 1. Therefore, with y2 fixed at 1, the matching output by PR is identical for every value of
y1 > z2. This proves part (a).

Let rt(y
1, y2) denote the reduced price of the resource matched to arrival t∈U in the matching

PR(y1, y2). Set rt(y
1, y2) = 0 if t is unmatched. To prove part (b), fix an arbitrary value y1 = z ∈

(z1, z2) and consider the matching PR(z,1). From Lemma 7(b), we have that i is matched in period
k(j)− 1 but does not return prior to j. Let t(z) denote the arrival matched to i in period k(j)− 1
and let T ′ = {t∈U | t(z) ≤ t ≤ j}. Since t(z)≥ j−d+ 1, every resource is matched to at most one
arrival in T ′. Now, given that g(x) is strictly increasing in x (for β > 0), to prove ycj(z) ≤ ycj(1),
it suffices to show that rt(y

1,1)≥ rt(1,1) ∀y1 ∈ (z1, z2), t∈ T ′. Note that 1− g(1) = 0 for every β.
Therefore, when y1 = 1, the reduced price of arrival matched to i is 0, same as if the arrival were
unmatched. Combining this observation with the fact that PR matches each arrival greedily based
on reduced prices, the inequality rt(y

1,1)≥ rt(1,1) follows from,

St(1,1)\{i} ⊆ St(y1,1) ∀y1 ∈ (z1, z2), t∈ T ′. (4)

We prove (4) via induction over the set T ′. The first arrival in T ′ is t(z). From Lemma 6, prior
to t(z), resource i is not matched to any arrival in period k(j)−1 in the matching PR(1,1). Thus,
PR(1,1) and PR(z,1) are identical prior to t(z) and St(z)(1,1) = St(z)(z,1). Now, suppose that (4)
holds for all arrivals t < t′, for some t′ ∈ T ′. We show that (4) holds for arrival t′ as well.

For the sake of contradiction, suppose there exists a resource v ∈ St′(1,1)\(St′(z,1)∪{i}). Recall
that St(1,1)\{i} ⊆ St(z,1) for all t < t′. Thus, v is matched to arrival t′ − 1 in PR(z,1), where
t′ − 1 > t(z). Since every resource is matched to at most one arrival in T ′, we have, St′(1,1) ⊆
St′−1(1,1). Thus, v ∈ St′−1(1,1)\{i} ⊆ St′−1(z,1) i.e., in PR(1,1), resource v is available but not
matched to t′− 1. This contradicts the fact that PR matches greedily based on reduced prices.

�
The next lemma combines all possible scenarios given in Lemma 7 to lower bound (3). Then, the

proof of Theorem 1 follows via standard algebraic arguments. Let g(x) = eβ(x−1) for some β ∈ (0,1].
Let G(x) be the antiderivative of g(x).

Lemma 9. There exists values z1, z2 ∈ [0,1] with z1 ≤ z2, such that

Ey1,y2

βj(y1, y2) +

j∑
t=max{j−d+1,1}

αi,t(y
1, y2)


≥ ri

[
G(z2)−G(z1) + (1− g(yct (1)))(1− z1) + (1− z2) (G(yct (1))−G(0)) + z1(1− g(0))

]
.
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Proof. Observe that for any random variable X derived from y1, y2, we have,

Ey1,y2 [X] = (1− z2)Ey1,y2

[
X | y1 > z2

]
+ (z2− z1)Ey1,y2

[
X | y1 ∈ (z1, z2)

]
+ z1Ey1,y2

[
X | y1 < z1

]
.

We prove the main claim by establishing lower bounds on each of the three terms on the RHS.

Case I: y1 > z2. From Lemma 7(a), when y1 > z2, i is not matched in period k(j)− 1. Thus,
PR(y1, y2) = PR(1, y2) ∀y1 > z2 i.e., in this case, the matching does not change with y1. From
Lemma 4(a) and Lemma 8(a), we have

βj(y
1, y2)≥ ri

(
1− g(ycj(1))

)
∀y1 ∈ (z2,1], y2 ∈ [0,1].

Taking expectation over randomness in y1, y2, we have

Ey1

[
Ey2 [βj(y

1, y2) | y1 > z2]
]
≥Ey1

[
ri
(
1− g(ycj(1))

)]
= ri

(
1− g(ycj(1))

)
.

Finally, from Lemma 4(b) and Lemma 8(a), we have,

Ey1

Ey2

 j∑
t=max{j−d+1,1}

αi,t(y
1, y2) | y1 > z2

 ≥ Ey1

[
Ey2 [1(y2 < ycj(1)) rig(y2)] | y1 > z2

]
,

= Ey1

[
ri

∫ ycj (1)

0

g(x)dx | y1 > z2

]
,

= ri (G(ycj(1))−G(0)).

Case II: z1<y
1<z2. In this case, i is not available in period k(j) prior to arrival t and the value

of y2 does not affect the matching until after arrival t. From Lemma 5, we have,

Ey1,y2

 j∑
t=max{j−d+1,1}

αi,t(y
1, y2) | y1 ∈ (z1, z2)

≥ ri ∫ z2

z1

g(x)dx = ri (G(z2)−G(z1)).

From Lemma 8(b), we have

Ey1,y2

[
βj(y

1, y2) | y1 ∈ (z1, z2)
]

= Ey1

[
βj(y

1,1) | y1 ∈ (z1, z2)
]
≥ ri

(
1− g(ycj(1))

)
.

Case III: y1<z1. In this case, i∈ Sp(j)(y1,1). From Lemma 4(a), we have

Ey2 [βj(y
1, y2) | y1 < z1]≥ ri

(
1− g(ycj(y

1))
)
. (5)

From part (b) of Lemma 4,

Ey2

 j∑
t=max{j−d+1,1}

αi,t(y
1, y2) | y1 < z1

≥Ey2

[
1(y2 < ycj(y

1)) rig(y2) | y1 < z1

]
= ri

(
G(ycj(y

1))−G(0)
)
.

(6)
Combining (5) and (6), we have,

Ey2

βj(y1, y2) +

j∑
t=max{j−d+1,1}

αi,t(y
1, y2) | y1 < z1

 ≥ ri
[
1− g(ycj(y

1)) +G(ycj(y
1))−G(0)

]
,

= ri

[
1− g(ycj(y

1)) +
1

β

(
g(ycj(y

1))− g(0)
)]
,

≥ ri min
x∈[0,1]

[
1− g(x) +

1

β
(g(x)− g(0))

]
,

= ri (1− g(0)).
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The first equality uses the fact that G(x) = 1
β
g(x)+c, where c is some constant. The second equality

follows from the fact that h(x) = 1− g(x) + 1
β

(g(x)− g(0)), is a non-decreasing function of x for
β ∈ (0,1]. Thus,

Ey1

Ey2

βj(y1, y2) +

j∑
t=max{j−d+1,1}

αi,t(y
1, y2) | y1 < z1

≥ ri (1− g(0)).

�
Proof of Theorem 1. Let

f(z1, z2, x) =G(z2)−G(z1) + (1− g(x))(1− z1) + (1− z2) (G(x)−G(0)) + z1(1− g(0)).

We show that, min0≤z1≤z2≤1, x∈[0,1] f(z1, z2, x)> 0.589 for β = 0.89. Then, using Lemma 9 completes
the proof. First, using the fact that G(x) = 1

β
g(x) + c, where c is some constant, we have,

f(z1, z2, x) =
1

β
(g(z2)− g(z1)) + (1− z1) (1− g(x)) +

1− z2

β
(g(x)− g(0)) + z1 (1− g(0))

=
1

β
(g(z2)− g(z1)) + 1− g(0)

β
(1− z2 +βz1) +

g(x)

β
(1− z2 +βz1−β) (7)

To find the minimum of this function, consider the following cases.

Case I: 1−z2 ≥β(1−z1). In this case, (7) is minimized at x= 0. Thus,

f(z1, z2, x) ≥ 1

β
(g(z2)− g(z1)) + 1− g(0)

≥ 1− g(0) = 1− e−β,

where we used the fact that g(z2)≥ g(z1) for β ≥ 0 and z2 ≥ z1.

Case II: 1−z2<β(1−z1). In this case (7) is minimized at x= 1. Thus,

f(z1, z2, x) ≥ 1

β
(g(z2)− g(z1)) +

1− g(0)

β
(1− z2 +βz1)

Observe that the function −eβz1 + c z1, where c is some constant, is concave in z1. Thus, (8) is

minimized at z1 = 0 or z1 = min
{
z2,1− 1−z2

β

}
. In fact, z2 ≥ 1− 1−z2

β
for every β ≤ 1. Therefore,

f(z1, z2, x) ≥ min

{
1

β

(
eβ(z2−1)− e−β

)
+

1− e−β

β
(1− z2) ,

1

β

(
eβ(z2−1)− ez2−1

)
+ 1− e−β

}
≥ min

{
1

β

(
eβ(z2−1)− e−β

)
+

1− e−β

β
(1− z2) , 1− e−β

}
,

where we used the fact that eβ(z2−1)− ez2−1 ≥ 0 for β ≤ 1 and z2 ∈ [0,1].
Combining both cases, we have that

f(z1, z2, x)≥min

{
min
z2∈[0,1]

1

β

(
eβ(z2−1)− e−β

)
+

1− e−β

β
(1− z2) , 1− e−β

}
.

The first term inside the minimum is the solution to a convex minimization problem. It is easy to
(numerically) verify that when β = 0.89, both terms are greater than 0.5893, giving us the desired
guarantee. We numerically tried different values of β to arrive at the conclusion that 0.89 is the
best choice for β. When β = 1, we have a minimum value of 0.554. �
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Figure 2. With β = 0.89, the straight line (red) is y = 1 − e−β > 0.5893 and the curve (purple) is y =
1
β

(
eβ(x−1)− e−β

)
+ 1−e−β

β
(1−x)≥ 0.5893. Other values of β lead to a lower minimum point.

4. Second Approach: Primal-Dual with Online Correlated Rental In this section,
we describe our second approach based on an extension of the online correlated selection (OCS)
technique in Fahrbach et al. (2020), which we refer to as Online Correlated Rental (OCR). To
see the connection between our problem and the OCR technique (formally defined later), we first
describe the architecture of our second proposed algorithm for the OBMRR problem.

Our proposed algorithm based is an online primal-dual algorithm maintaining a feasible primal
and an infeasible dual assignment for the LP in Section 2 as online vertices arrive. Upon the arrival
of an online vertex, we use two algorithms in sequence, referred to as the outer and inner algorithms,
to select its offline match. First, the outer algorithm uses the current dual assignment of offline
vertices to suggest (or equivalently propose) either one or two of these offline vertices as potential
matches. Note that the outer algorithm ignores the availability of its suggested vertices. When this
algorithm suggests a single vertex, which we also refer to as a deterministic query, the vertex is
matched if it is available. However, when two vertices are suggested, which we also refer to as a
randomized query, the inner randomized algorithm is then executed to select which one to match.
This is inspired by a similar idea in Fahrbach et al. (2020), where the online integral algorithm
pushes its allocation towards more fractional allocations by suggesting two choices rather than one.

One simple candidate for the inner algorithm mentioned above is selecting one of the two vertices
independently with probability 1

2
. It can be shown that this approach fails to improve over 0.5-

competitive. To make an improvement, intuitively, the goals are:
(i) Ensuring that a matched resource i is not used in the next d− 1 time units and hence the final

matching decisions are feasible given the reusability of the resources,
(ii) For each resource i, making sure that its allocation decisions in rounds that can potentially

affect each other (i.e., rounds with distance at most d− 1) are negatively correlated; in other
words, if this vertex is suggested and not chosen in round j, it will become more likely to be
chosen if suggested again in the next d− 1 rounds, and vice versa.

The new technical ingredient of our algorithm is the randomized procedure that handles the afore-
mentioned conflicts among the reusable resources suggested by the outer algorithm over time, in
a way that it satisfies both properties (i) and (ii) above. This randomized procedure is indeed
what we called OCR earlier. In what follows, we first study the design of the OCR procedure as
an abstract problem in Section 4.1. We then show how to use OCR as an inner algorithm with a
suitable primal-dual outer algorithm in Section 4.2
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4.1. Online correlated rental In order to design an appropriate OCR procedure, we first
formalize the intuitive “negative correlation criteria” in property (ii) for the online matching of
reusable resources. On the way to formalizing this intuition, we obtain a new interpretation of the
OCS procedure for non-reusable resources, which can be extended to the reusable setting.

Overview of the technique Consider an offline vertex i, and suppose its probability of being
available at time j is pij. If vertex i is suggested by the outer algorithm in a deterministic query,
it will increase the expected size of the matching by pij. If the vertex i is one of two vertices
suggested by the outer algorithm in a randomized query, we can increase the expected size of the
matching including i by pij/2 if we use a uniform random allocation (with no correlation) to select
between the two. Note that the other proposed vertex will also contribute. The idea behind our
OCR procedure is to add a communication across different rounds of this inner selection so that a
vertex that is less likely to be selected (although available) at some time is slightly more likely to
be available in future related rounds and vice versa. This communication should also happen in an
almost symmetric fashion, so that we can maintain a default lower-bound on the increase in the
expected size of the matching as if the decisions were made uniformly at random and independently
over time.

The exact implementation of this communication can be thought of as leaving probabilistic
temporary messages on offline vertices recording their previous selection decisions. If an offline
vertex i is queried at time j and is selected, we will occasionally tag it with this outcome for the
next d− 1 rounds. Should it be suggested again in this window of time, it will be less likely to be
selected. Likewise, an offline vertex i′ which is suggested but not selected will have a chance to be
tagged with a message making it more likely to be selected in the next d− 1 rounds. As long as
this successful message-passing happens with a constant probability, the resulting OCR algorithm
will satisfy our desired guarantee.

We start by formalizing the OCR problem and the desired performance guarantee of our OCR
procedure, and then later show how to design an algorithm that achieves this guarantee.

4.1.1. Basics and definitions Let Q1,Q2, · · · ,Q|U | be the sequence of suggestions made by
the outer algorithm where the outer algorithm suggests Qj to the inner algorithm at the time j,
and each Qj contains one or two offline vertices. Upon arrival of each Qj, the OCR algorithm –
which acts as the inner algorithm – has to choose one offline vertex i ∈Qj. The outer algorithm
then adds i to the matching if i is available at the time j.

Consider an online algorithm that selects one of the vertices in Qj uniformly at random. We
first analyse the expected size of the matching returned by this algorithm. We say that round j is
deterministic if |Qj|= 1, and randomized if |Qj|= 2. Considering an offline vertex i, and let ∆µij be
the probability that i is matched at the round j. If i /∈Qj, it is clear that the online algorithm will
not select i, and we have ∆µij = 0. Now consider a round j where i∈Qj. Since the online algorithm
selects one of the vertices in Qj uniformly at random, the algorithm selects i with the probability
of 1/2 if round j is a randomized round and 1 if it is a deterministic round. Although the algorithm
picks i with the probability of at least 1/2, it does not necessarily imply that ∆µij ≥ 1/2. The
reason is that vertex i might be matched in the time interval of [j−d+ 1, j− 1], and consequently
not be available at the time j. We claim that the probability that i is matched in the time interval
of [j− d+ 1, j− 1] is

∑j−1

t=j−d+1 ∆µit.

Claim 1. For any time j and any offline vertex i, the probability that i is matched in the time
interval of [j− d+ 1, j− 1] is

∑j−1

t=j−d+1 ∆µit.

Proof. Let X i
t be a random variable which is 1 if i is matched at the round t and is 0 otherwise.

Therefore, we are looking for the following probability.

Pr

[ j−1∨
t=j−d+1

X i
t

]
.
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Note that upon matching i at a time t, vertex i will not be available before the time t+d. Therefore,
vertex i can be matched at most once in [j− d+ 1, j− 1], and events X i

t ’s are mutually exclusive.
We then have,

Pr

[ j−1∨
t=j−d+1

X i
t

]
=

j−1∑
t=j−d+1

Pr
[
X i
t

]
.

Note that by the definition we have ∆µit = Pr[X i
t ], which implies the claim. �

By the claim above the probability that vertex i is available upon arrival of Qj is 1 −∑j−1

t=j−d+1 ∆µit. We define pij = 1−
∑j−1

t=j−d+1 ∆µit to be the probability that i is available at the
time j. In the online algorithm that we described, the decision of the algorithm in the round j is
independent of its decisions in the previous rounds. Thus, we have

∆µij = Pr[i gets selected at the round j] · pij .

Therefore,

∆µij =


0 i /∈Qj

pij i∈Qj and |Qj|= 1

pij/2 i∈Qj and |Qj|= 2

As mentioned earlier, the goal in OCR is to outperform this simple randomized algorithm which
selects one of the vertices in Qj uniformly at random, by introducing some negative correlations
between the decisions of the randomized rounds. Specifically, OCR guarantees that if vertex i was
in Qj and it was not picked by OCR, then vertex i should have a slightly better chance to get
selected next time that the outer algorithm proposes i to the OCR.

Given the sequence Q1,Q2, · · · ,Q|U |, we use previj to denote the previous occurrence of the offline
vertex i among the Qj’s before the time step j. Specifically, previj is the largest index j′ < j such
that i∈Qj′ . We also define previj to be −∞ if vertex i has not appeared in any of Q1,Q2, · · · ,Qj−1.
We are now ready to give a formal definition of OCR.
Definition 1 (γ-OCR). An algorithm is γ-OCR for a 0 ≤ γ ≤ 1, if for every round j and

every offline vertex i the following holds.

∆µij ≥


0 i /∈Qj

pij i∈Qj and |Qj|= 1

pij/2 i∈Qj and |Qj|= 2 and j′ ≤ j− d
pij/2 + γ(pij′ −∆µij′) Otherwise,

(8)

where in the equation above j′ = previj and ∆µij denotes the probability that i gets picked as
matched at the round j.

Note that in the definition above the term pij′ −∆µij′ is the probability that i was available at
the time j′ but it was not picked by OCR. It is easy to verify that the algorithm that selects one
of the vertices in Qj uniformly at random is 0-OCR. Therefore, the main challenge is to show the
existence an OCR algorithm for a γ > 0.

We now show the existence of an 1/32-OCR algorithm.

Proposition 1. Algorithm 2 is an 1/32-OCR online algorithm (as in Definition 1)
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ALGORITHM 2: 1/32-OCR Algorithm

Upon receiving a proposal Qj ;
if |Qj |= 1 then

Let assume Qj = {i1};
τi1,[j+1,j+d−1] = unknown;
Select i1;

else
Let assume Qj = {i1, i2} ;
With the probability of 1/2, round j is a sender:

Draw `,m∈ {1,2} uniformly at random ;
τim̄,[j+1,j+d−1] = unknown ;
if m= ` then
τim,[j+1,j+d−1] = selected;

else
τim,[j+1,j+d−1] = not-selected ;

end
With the probability of 1/2, round j is a receiver:

Draw m∈ {1,2} uniformly at random ;
if τim,j = selected then
`= m̄;

else
Draw `∈ {1,2} uniformly at random;

end
τi1,[j+1,j+d−1] = unknown;
τi2,[j+1,j+d−1] = unknown;

Select i`;
end

4.1.2. OCR algorithm and analysis Before proceeding to the proof of Proposition 1, we
provide an overview of Algorithm 2. The algorithm maintains a state variable τi,j for every offline
vertex i and time j. Let j′ = previj, if τi,j is either selected or not-selected it means that the result
of Qj′ can be used at the time j to give us a negative correlation. Otherwise, if τi,j is unknown,
it means that we can not use the result of the last occurrence of i. In Algorithm 2, with a slight
abuse of notation we use τi,[l,r] to denote all state variables τi,l, τi,l+1, · · · , τi,r.

Suppose that the algorithm receives a pair Qj = {i1, i2} at the time j. Then the algorithm decides
to be a receiver or sender at this round uniformly at random with the probability of 1/2. In a
sender round, the algorithm uses a fresh random bit to select i` where `∈ {1,2} is chosen uniformly
at random. the algorithm also uses a new random bit to select m∈ {1,2} at random. The algorithm
then updates state variables τim,[j+1,j+d−1] to reflect whether we have selected im in this round.
Specifically, we set state variables τim,[j+1,j+d−1] to be selected if `=m and we set τim,[j+1,j+d−1] to
be not-selected otherwise. We also reset the state variables for im̄ by setting τim̄,[j+1,j+d−1] to be
unknown where m̄ is an abbreviation for 3−m. We remark that in a sender round, we only change
the state variables for the next d− 1 rounds. Therefore, the decision of the algorithm in a sender
round can only affect the next d− 1 rounds.

In a receiver round, the OCR uses the state variables that have been set in previous rounds.
The algorithm chooses m∈ {1,2} uniformly at random and uses the state variables of vertex im to
provide a negative correlation. Consider the case τim,j is not-selected. This means that the OCR did
not pick im the previous time this vertex was proposed to the algorithm. In this case, the algorithm
selects im for the round j. When τim,j is selected, the case is similar and the algorithm selects im̄
at this round. When τim,j is unknown, the algorithm selects ` ∈ {0,1} uniformly at random, and
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selects i` at this round. At the end of a receiver round the algorithm resets the state variables for
the future rounds by setting τi1,[j+1,j+d−1] and τi2,[j+1,j+d−1] to be unknown.

What we have discussed so far was our OCR algorithm for randomized rounds. Consider a
deterministic round and suppose that the algorithm receives Qj = {i1}. In this case the algorithm
selects i1, and resets the state variables of i1 for the future rounds by setting τi1,[j+1,j+d−1] to be
unknown.

Proof of Proposition 1 We now show that Algorithm 2 is 1/32-OCR. Our analysis relies
on a simple fact. Let µi(Q1,Q2, · · · ,Q|U |) be expected the number of times that the algorithm
matches vertex i when it receives sequence of vertices Q1,Q2, · · · ,Q|U |. We show that we always
have µi(Q1,Q2, · · · ,Q|U |) = µi(Q|U |,Q|U |−1, · · · ,Q1). This fact shows that if Algorithm 2 receives
the sets Q1,Q2, · · · ,Q|U | in the reversed order, it matches every offline vertex the same number

times in expectation. For the simplicity of the presentation, we use ~Q[l,r] as an abbreviation for the
sequence Ql,Ql+1, · · · ,Qr when l≤ r, and for the sequence Ql,Ql−1, · · · ,Qr when l > r.

Claim 2. For any sets of proposed vertices Q1,Q2, · · · ,Q`, and every offline vertex i the fol-
lowing holds.

µi(Q[1,`]) = µi(Q[`,1]) .

The proof of the claim above is deferred to Appendix B.
We now show that Algorithm 2 is 1/32-OCR. Let Q1,Q2, · · · ,Q|U | be the sets proposed by the

outer algorithm. We show that the expected matching returned by Algorithm 2 satisfies eq. (8).
By the definition of µi, for any round j, µi(Q1, · · · ,Qj) is the expected number of times that
the algorithm matches i for the first j rounds. Therefore, µi(Q1, · · · ,Qj) − µi(Q1, · · · ,Qj−1) is
the expected increment in the size of the matching in round j, which is the probability that the
algorithm matches i at the round j. Therefore, we have

∆µij = µi(Q1, · · · ,Qj)−µi(Q1, · · · ,Qj−1) . (9)

By applying Claim 2, we get the following.

∆µij = µi(Qj, · · · ,Q1)−µi(Qj−1, · · · ,Q1) . (10)

We can re-write (10) as

∆µij = µi( ~Q[j,1])−µi( ~Q[j−1,1]) (11)

Consider Algorithm 2 for the input sequence ~Q[j,1] and an offline vertex i, we derive a lower bound
on the expected number of times that the algorithm matches i. First, we claim that in order to find
the expected size of the matching of vertex i, we can only look at the decisions of the algorithm
for rounds that i is proposed. If we consider a randomized round Qj = {i1, i2}, the algorithm picks
each of i1 and i2 with the probability of 1/2 when the probability is taken over all random decisions
of the algorithm. Algorithm 2 just introduces a slight negative correlation between its decision for
different rounds. Although the decision of the algorithm for a round Qj which contains vertex i
might be correlated to other rounds that does not contain i, these correlations does not affect the
number of times that the algorithm matches i. Therefore, for the analysis of the algorithm, we can
only consider the rounds that contain i and the correlations between these rounds.

We now consider the different cases of definition of 8, and we show that our algorithm satisfies
the properties of OCR.
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• Case 1; i /∈Qj: As we discussed earlier we can only consider rounds that i is proposed to the
algorithm. Since i is not proposed in round j, the algorithm does not match i, and goes to the
next round. Therefore, in this case we have µi( ~Q[j,1]) = µi( ~Q[j−1,1]). By (11), we have

∆µij = µi( ~Q[j,1])−µi( ~Q[j−1,1]) = 0 .

• Case 2; i∈Qj and |Qj|= 1: In this case, the algorithm is given a deterministic round. Therefore,
the algorithm picks and matches i with the probability of 1. After matching i, this vertex
becomes available for matching again only after d time units when set Qj−d arrives. In this
case the algorithm cannot match i when the sets Q[j−1,j−d+1] arrive. Therefore the decisions and
correlations of the algorithm for these rounds does not affect the expected size of the matching.
Therefore, we have µi( ~Q[j,1]) = 1 +µi( ~Q[j−d,1]). We then have,

∆µij = µi( ~Q[j,1])−µi( ~Q[j−1,1]) = 1 +µi( ~Q[j−d,1])−µi( ~Q[j−1,1]) (12)

In the following observation we show that µi( ~Q[j−1,1])−µi( ~Q[j−d,1]) =
∑j−1

t=j−d+1 ∆µit.

Observation 1 For any j′ < j,

µi( ~Q[j,1])−µi( ~Q[j′,1]) =

j∑
t=j′+1

∆µit.

Proof. We can re-write µi( ~Q[j,1])−µi( ~Q[j′,1]) as follows.

µi( ~Q[j,1])−µi( ~Q[j′,1]) =

j∑
t=j′+1

(
µi( ~Q[t,1])−µi( ~Q[t−1,1])

)
.

Using equation (11), we then have

µi( ~Q[j,1])−µi( ~Q[j′,1]) =

j∑
t=j′+1

(
µi( ~Q[t,1])−µi( ~Q[t−1,1])

)
=

j∑
t=j′+1

∆µit .

�
By the observation above and (12) we have

∆µij = 1 +µi( ~Q[j−d,1])−µi( ~Q[j−1,1]) = 1−
j−1∑

t=j−d+1

∆µit .

Note that by the definition 1−
∑j−1

t=j−d+1 ∆µit is equal to pij. Therefore, ∆µij = pij which completes
the proof for this case.

• Case 3; i∈Qj, |Qj|= 2, and previj ≤ j−d: Let j′ = previj, then Qj′ is the next time that vertex

i is proposed to the algorithm in the sequence ~Q[j−1,1]. Recall that Algorithm 2 upon making a
decision for a sender round, changes the state variables for the next d− 1 rounds. In the case
that j′ ≤ j− d, the algorithm does not change the state variables of Qj′ . Consider the sequence
of proposals Q[j,1] and consider the algorithm when it receives Qj. The algorithm selects i with
the probability of 1/2 regardless it is a sender or a receiver round (Since Qj is the first round in
the backward sequence). Also the sender round does not change the state variables for the next
time vertex i gets proposed to the algorithm. Therefore with the probability of 1/2, algorithm
selects i, and we get the expected matching of size 1 +µi( ~Q[j−d,1]). Furthermore, the algorithm
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does not select i with the probability of 1/2. In this case the algorithm basically goes to next
round and we get the expected matching of size µi( ~Q[j−1,1]). Therefore,

µi( ~Q[j,1]) =
1

2
· (1 +µi( ~Q[j−d,1])) +

1

2
·µi( ~Q[j−1,1]) . (13)

Hence,

∆µij = µi( ~Q[j,1])−µi( ~Q[j−1,1]) By (11).

=
1

2
·
(
1 +µi( ~Q[j−d,1])−µi( ~Q[j−1,1])

)
By (13).

=
1

2
·
(
1−

j−1∑
t=j−d+1

∆µit
)

=
pij
2

Observation 1. .

• Case 4; i∈Qj, |Qj|= 2, and previj > j−d: This is the only case that algorithm uses the negative
correlation between the decisions for different rounds to get a better solution. Let j′ = previj,
We further divide this case into two subcases.
—Qj′ is a deterministic round: First note that when Qj′ is deterministic round, we have

∆µij′ = pij′ according to what we have already discussed. Also, the decision of a deterministic
round does not rely on the state variables, and Algorithm 2 always resets state variables
after a deterministic round. Considering the backward sequence Q[j,1], the algorithm selects
i with the probability of 1/2 when it receives Qj regardless of if it is a sender or a receiver
round. Therefore with the probability of 1/2, our algorithm selects i, and we get the expected
matching of size 1 + µi( ~Q[j−d,1]). Also, with the probability of 1/2, our algorithm does not
select i when it receives Qj. In this case vertex i only has a higher chance to get selected next
times this vertex is proposed to the algorithm. This depends on the realized edges incident
to Qj. Therefore, if the algorithm does not select i, the expected size of the matching in the
remaining sequence is at least µi( ~Q[j−1,1]). Therefore,

µi( ~Q[j,1])≥
1

2
· (1 +µi( ~Q[j−d,1])) +

1

2
·µi( ~Q[j−1,1]) .

We then have

∆µij = µi( ~Q[j,1])−µi( ~Q[j−1,1]) By (11).

≥ 1

2
·
(
1 +µi( ~Q[j−d,1])−µi( ~Q[j−1,1])

)
=

1

2
·
(
1−

j−1∑
t=j−d+1

∆µit
)

Observation 1.

=
pij
2

=
pij
2

+ γ(pij′ −∆µij′) ,

where the last equality relies on the fact that pij′ = ∆µij′ and pij′ −∆µij′ = 0.

—Qj′ is a randomized round: Consider the backward sequence Q[j,1], and let µireceiver( ~Q) be
the expected size of the matching for vertex i, given that the round Qj is a receiver round, and
let µisender( ~Q) be the expected size of the matching given that the Qj is a sender round. Note
that at each randomized round the algorithm chooses to be a sender or a receiver uniformly
at random. Therefore for any input sequence ~Q such that the first round of ~Q is a randomized
round, we have

µi( ~Q) =
1

2
·µireceiver( ~Q) +

1

2
·µisender( ~Q) . (14)
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Consider the input sequence ~Q[j,1] and suppose that Qj is a receiver round. Since this is a
first round in the backward sequence and all state variables are default values, the algorithm
just selects i with the probability of 1/2 and proceeds to the next round. Similar to what we
discussed for the previous case, if the algorithm selects i, the expected size of the matching is
1 +µi( ~Q[j−d,1]). Otherwise, it is µi( ~Q[j−1,1]). Thus,

µireceiver( ~Q[j,1]) =
1

2
· (1 +µi( ~Q[j−d,1])) +

1

2
·µi( ~Q[j−1,1]) . (15)

Now consider a sender round Qj. The algorithm selects i with the probability of 1/2. In
this case the algorithm cannot match i again within the next d − 1 rounds. Therefore, in
this case the expected size of the matching is 1 + µi( ~Q[j−d,1]). Otherwise suppose that the
algorithm did not select i which happens with the probability of 1/2. Let Qj = {i1, i2}. In this
case algorithm selects m ∈ {0,1} uniformly at random and changes the state variables for im
to create a negative correlation for the next rounds. Suppose im 6= i which happens with the
probability of 1/2. In this case, the algorithm might have a realized edge between this round
and one of the other rounds that i is proposed to the algorithm. In this case the algorithm has
a better chance to select i for the next rounds. However, the existence of this realized edge
cannot be guaranteed and we can say that in this case the algorithm returns a matching with
the expected size of at least µi( ~Q[j−1,1]) in the remaining sequence. In the remaining of the
analysis we assume that the algorithm does not pick i for round Qj, and im = i for this round.

In this case the algorithm sets the state variables τi to not-selected for the next d−1 rounds
to introduce a negative correlation. Now consider the round that the algorithm receives i which
isQj′ . If round Qj′ is sender round, the algorithm does not use the previous state variables and
we get an expected matching size of µisender( ~Q[j′,1]). Now Consider a receiver round Qj′ . Let
Qj′ = {i′1, i′2}. In this case algorithm selects m∈ {0,1} uniformly at random and uses the state
variables for i′m to ensure a negative correlation. If i′m 6= i, the algorithm might have a realized
edge between rounds Qj and Qj′ which causes a negative correlation. However, the existence of
such an edge cannot be guaranteed. Therefore, in this case we can assume that algorithm does
not uses the state variables. Thus, we get at a matching of size least µireceiver( ~Q[j′,1]). However,
if i′m is equal to i, the algorithm ensures a negative correlation between rounds Qj and Qj′ .
Therefore the algorithm selects i, and we get an expected matching size of 1 +µi( ~Q[j′−d,1]).

Putting all together, for a sender round Qj we have

µisender( ~Q[j,1])≥
1

2
·
(
1 +µi( ~Q[j−d,1])

)
+

1

4
·µi( ~Q[j−1,1])

+
1

8
·µisender( ~Q[j′,1]) +

1

16
·µireceiver( ~Q[j′,1]) +

1

16
·
(
1 +µi( ~Q[j′−d,1])

)
(16)

By Equation (14), we then have

µi( ~Q[j,1]) =
1

2
·µireceiver( ~Q[j,1]) +

1

2
·µisender( ~Q[j,1])

≥ 1

4
· (1 +µi( ~Q[j−d,1])) +

1

4
·µi( ~Q[j−1,1])

+
1

4
·
(
1 +µi( ~Q[j−d,1])

)
+

1

8
·µi( ~Q[j−1,1])

+
1

16
·µisender( ~Q[j′,1]) +

1

32
·µireceiver( ~Q[j′,1])

+
1

32
·
(
1 +µi( ~Q[j′−d,1])

)
By (15) and (16).
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By simplifying the inequality above we get

µi( ~Q[j,1])≥
1

2
· (1 +µi( ~Q[j−d,1])) +

3

8
·µi( ~Q[j−1,1])

+
1

16
·µisender( ~Q[j′,1]) +

1

32
·µireceiver( ~Q[j′,1])

+
1

32
·
(
1 +µi( ~Q[j′−d,1])

)
Note that by Equation (14), we have µi( ~Q[j′,1]) = 1

2
·µisender( ~Q[j′,1])+ 1

2
·µireceiver( ~Q[j′,1]). Thus,

we can re-write the inequality above as

µi( ~Q[j,1])≥
1

2
·
(
1 +µi( ~Q[j−d,1]) +µi( ~Q[j−1,1])

)
+

1

32
·
(
1 +µi( ~Q[j′−d,1])−µireceiver( ~Q[j′,1])

)
.

Therefore,

∆µij = µi( ~Q[j,1])−µi( ~Q[j−1,1]) By (11).

≥ 1

2
·
(
1 +µi( ~Q[j−d,1])−µi( ~Q[j−1,1])

)
+

1

32
·
(
1 +µi( ~Q[j′−d,1])−µireceiver( ~Q[j′,1])

)
(17)

We complete the proof using the claim below. The proof is available in Appendix C.

Claim 3. For any backward sequence ~Q[j,1] where Qj is a randomized round, the following
holds.

µireceiver( ~Q[j,1])≤ µi( ~Q[j,1])≤ µisender( ~Q[j,1]) .

It follows from the claim above and Inequality (17) that

∆µij ≥
1

2
·
(
1 +µi( ~Q[j−d,1])−µi( ~Q[j−1,1])

)
+

1

32
·
(
1 +µi( ~Q[j′−d,1])−µireceiver( ~Q[j′,1])

)
≥ 1

2
·
(
1 +µi( ~Q[j−d,1])−µi( ~Q[j−1,1])

)
+

1

32
·
(
1 +µi( ~Q[j′−d,1])−µi( ~Q[j′,1])

)
=

1

2
·
(
1−

j−1∑
t=j−d+1

∆µit
)

+
1

32
·
(
1−

j′∑
t=j′−d+1

∆µit
)

Observation 1.

=
1

2
· pij +

1

32
· (pij′ −∆µij′) ,

which completes the analysis and shows that Algorithm 2 is 1/32-OCR.

4.2. Primal-dual algorithm We now present our final primal-dual algorithm based on the
OCR algorithm proposed in Section 4.1. We then provide a primal-dual analysis of the algorithm
to show the competitive ratio of Γ≈ 0.505.

Overview Given the type of guarantees by the OCR procedure as in Definition 1, we develop a
primal-dual algorithm and its analysis. Our method follows a similar logic as the recent primal-
dual techniques in Huang et al. (2020b) and Fahrbach et al. (2020). We end up with identifying
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constraints that should be satisfied by our competitive ratio Γ and our dual assignments in order

to guarantee approximate dual feasibility. We finish the analysis by setting up a factor revealing

linear program that maximizes Γ given these constraints, and find the optimal solution (up to any

desired precision) by appropriate discretization and running a computer program.

4.2.1. Description of the algorithm Our OCR-based Primal-Dual (OPD) algorithm is

represented in Algorithm 3. At each round, the algorithm selects a set of at most two vertices,

and propose these vertices to the OCR algorithm. Consider the round j of the algorithm and let

Q1,Q2, . . . ,Qj−1 be the previous set of vertices proposed by the algorithm, and let Qj be the new

set proposed by the algorithm. We define the marginal contribution of the Qj as follows.

Algorithm 3 and its analysis relies on the primal dual LP of OBMRR. Our algorithm maintains

an online primal dual solution of OBMRR. In the primal solution we set xi,j = ∆µij. Therefore, the

size of the primal solution is always equal to the expected size of the matching returned by the

algorithm. Let Qj be the query proposed by the algorithm at the time j. Let i ∈Qj, be a vertex

proposed to OCR at the step j of the algorithm. Proposing this vertex increases the expected size

of dual solution by ∆µij. Our algorithm maintains a dual solution by increasing dual variables αi,j
and βj by ∆αij and ∆βij respectively. Our algorithm always guarantee that ∆αij + ∆βij = ri ·∆µij.
Thus, the size of the dual solution is always equal to the size of primal solution. Later in this

section, we explain how we determine values of ∆αij and ∆βij.

At each round, our online primal dual algorithm finds a set of at most two vertices that maximizes

βj, and proposes this set to OCR. Note that our primal-dual algorithm does not look at the

random decisions of OCR. Nevertheless, we can assume that we find an online matching which

is constructed in the following way. Whenever OCR selects a vertex i, we add that vertex to the

matching if vertex i is available. This vertex will not be available for the next d time-units, although

OCR might pick this vertex again during this time period.

Consider a randomized round Qj, and an offline vertex i ∈Qj. Let j′ = previj, thus Qj′ is the

previous occurrence of i. Suppose that j′ > j − d. Then, a γ-OCR algorithm guarantees that i is

selected with at least probability of pij/2 + γ(pij′ −∆µij′). Recall that pij′ −∆µij′ is the probability

that i was available at time j′ but is not picked by OCR. Let uij = pij′ −∆µij′ , and let qij be the

probability that i was not available at the time j′ but became available due to re-usability before

or at the time j. It is then clear that the probability that i is available at the time j is equal to

uij + qij. Therefore,

pij = uij + qij .

We can then rewrite the bound guaranteed by OCR as follows.

pij/2 + γ(pij′ −∆µij′) = pij/2 + γuij = (uij + qij)/2 + γuij = (1/2 + γ)uij + qij/2 .

This shows that whenever vertex i was available at the time j′ but it is not matched by the

algorithm, the OCR algorithm guarantees that it will be picked next time with a probability

slightly larger than 1/2. However, if it is the first time that i is proposed after it became available

again, the algorithm still picks i with the probability of 1/2. We set the dual variables based on

the values of uij and qij. Intuitively, we assign a different weight to dual variables whenever i is

proposed to OCR for the first time after becoming available again. For a vertex i in Qj, we set

∆βij = β1 · ri · qij/2 + β2 · ri · (∆µij − qij/2), where β1 ≥ β2 are constants that we optimize through
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this section. We also set ∆αij = (1− β1) · ri · qij/2 + (1− β2) · ri · (∆µij − qij/2). Note that for the
consistency of our notations we set qij = pij whenever previj ≤ j−d (In this case we also have pij = 1).

ALGORITHM 3: OCR-based Primal-Dual (OPD)

for each online vertex j do
Find a set Qj ⊆N(j) with the size at most two vertices that maximizes βj , where N(j) is the set of
neighbors of the online vertex j;
Propose Qj to a γ-OCR algorithm, and update primal-dual variables accordingly ;
Let i be the vertex picked by the OCR. Add (i, j) to the matching if i is available at the time j ;

end
Return the matching ;

4.2.2. Primal-Dual Analysis It is clear from our dual assignments in Section 4.2.1 that we
always have ∆βij + ∆αij = ri ·∆µij. Therefore, the size of the primal and dual solutions are always
equal. In this section we show that for the proper choices of β1 and β2, our algorithm satisfies
the approximate dual feasibility as it is defined in Lemma 1. We begin our analysis by simple a
observation about the dual variables.

Claim 4. Let i be a vertex in Qj, and assume that we have assigned the dual variables according
to the rule we discussed earlier. We then have

j−1∑
t=max{j−d+1,1}

αi,t ≥ (1−β1) · ri ·ϕij + (1−β2) · ri · (1− pij −ϕij) ,

where ϕij = min{1− pij, (1− qij)/2}.
Proof. Consider a vertex i, if we consider time steps j − d+ 1, j − d+ 2, · · · , j − 1, this vertex

has a contribution of 1− pij to the size of the matching. Let T ⊆ [j − d+ 1, j − 1] be all the time
steps between j − d + 1 and j − 1 (inclusive) such that the algorithm has proposed i to OCR.
Now consider a time t∈ T where i is proposed to OCR. If it is the first time that i gets proposed
to OCR after becoming available (which happens with the probability of qit), we increase ∆αit by
(1−β1) · ri · qit/2. If vertex i gets matched with a probability greater than qit/2 at the time t or if it
was available at the time t and gets matched in later steps, we add (1−β2) portion of its marginal
contribution to ∆αit. Note that (1−β2) is larger than (1−β1) since β1 ≥ β2. Thus,

j−1∑
t=max{j−d+1,1}

αi,t =
∑
t∈T

αi,t ≥ (1−β1) · ri ·
∑
t∈T

qit/2 + (1−β2) · ri · (1− pij −
∑
t∈T

qit/2)

We now claim that
∑

t∈T q
i
t/2≤ ϕij where ϕij = min{1− pij, (1− qij)/2} which proves the claim. It

is easy to see that
∑

t∈T q
i
t/2≤ 1− pij. The reason is that for every time t ∈ T that vertex i gets

proposed to OCR, it gets matched with the probability of at least qit/2, so it will not be available
at time j with that probability. We also claim that

∑
t∈T q

i
t/2 ≤ (1 − qij)/2. The reason is that

vertex i can get matched at most once in every time interval of length d. Thus, vertex i cannot
get available twice in a time interval of length d, and we have

∑
t∈T q

i
t + qij ≤ 1. This implies that∑

t∈T q
i
t/2≤ (1− qij)/2 and completes the proof of the claim. �

Let (i, j) be an edge in the graph. We consider the following cases.
• Round j is a randomized round, and i∈Qj: Since the algorithm did not choose to propose
i to OCR in a deterministic round, the value of βj is at least ∆βij when i is proposed in a
deterministic round. Therefore, we have

βj ≥∆deterministicβ
i
j ≥ β1 · ri · qij/2 +β2 · ri · (∆µij − qij/2)

≥ β1 · ri · qij/2 +β2 · ri(pij − qij/2) . (18)
(Since in a deterministic round ∆µij = pij).
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Also, since i∈Qj, and the algorithm proposes i in a randomized round, ∆µij ≥ pij/2. Therefore,

αi,j = ∆αij = (1−β1) · ri · qij/2 + (1−β2) · ri · (∆µij − qij/2)
≥ (1−β1) · ri · qij/2 + (1−β2) · ri · (pij/2− qij/2) . (19)

Therefore, the LHS of the approximate duality constraint is equal to

βj +

j∑
t=max{j−d+1,1}

αi,t =

By (18)︷︸︸︷
βj +

By (19)︷︸︸︷
αi,j +

By Observation 4︷ ︸︸ ︷∑j−1

t=max{j−d+1,1}
αi,t

≥ ri ·
(
1− pij/2 +β2(ϕij + 3pij/2− 1)−β1ϕ

i
j

)
.

Thus, the approximate duality constraint reduces to

1− pij/2 +β2(ϕij + 3pij/2− 1)−β1ϕ
i
j ≥ Γ . (20)

• Round j is a deterministic round, and i ∈Qj: Since i ∈Qj, and the algorithm proposes i
in a deterministic round, ∆µij = pij. Therefore,

αi,j = ∆αij = (1−β1) · ri · qij/2 + (1−β2) · ri · (∆µij − qij/2)
≥ (1−β1) · ri · qij/2 + (1−β2) · ri · (pij − qij/2) . (21)

Therefore, the LHS of the approximate duality constraint is equal to

βj +

j∑
t=max{j−d+1,1}

αi,t ≥
By (21)︷︸︸︷
αi,j +

By Observation 4︷ ︸︸ ︷∑j−1

t=max{j−d+1,1}
αi,t

≥ ri ·
(
1 +β2(ϕij + qij/2− 1)−β1(ϕij + qij/2)

)
.

Thus, the approximate duality constraint reduces to

1 +β2(ϕij + qij/2− 1)−β1(ϕij + qij/2)≥ Γ . (22)

• Round j is a randomized round, and i /∈Qj: LetQj = {i1, i2}. Recall that the algorithm picks
the set Qj that maximizes βj. Therefore, ∆βi1j is at least ∆βij for when we propose Q′j = {i2, i}
at the round j instead of Qj. Similarly, ∆βi2j is at least ∆βij for when we propose Q′′j = {i1, i} at
the round j instead of Qj. Let j′ = previj be the previous occurrence of i. We further divide this
case into two different cases.
— When i is not appeared in the last d proposed sets to OCR i.e., j′ ≤ j − d: In this

case we have qij = pij = 1 , and ∆βij is ri · β1/2, when we propose i in a randomized round.

Thus, ∆βi1j and ∆βi2j are both at least ri ·β1/2. Therefore, the LHS of approximate duality is
at least

βj +

j∑
t=max{j−d+1,1}

αi,t ≥ βj ≥ 2(β1/2) · ri = β1 · ri , (23)

and, the approximate duality constraint reduces to

β1 ≥ Γ . (24)
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— The other case is when j′ > j − d: In this case OCR guarantees that ∆µij is at least
(1/2+γ)uij +qij/2 when we proposes i in a randomized round. We can then give a lower bound
on the value of βj as follows.

βj ≥ 2ri ·
(
β1q

i
j/2 +β2(1/2 + γ)uij

)
= β1 · ri · qij +β2 · ri · (1 + 2γ)uij . (25)

Therefore, the LHS of the approximate duality constraint is equal to

βj +

j∑
t=max{j−d+1,1}

αi,t ≥
By (25)︷︸︸︷
βj +

By Observation 4︷ ︸︸ ︷∑j−1

t=max{j−d+1,1}
αi,t

≥ ri ·
(
1− pij +β2

(
(1 + 2γ)uij + pij +ϕij − 1

)
+β1(qij −ϕij)

)
.

Thus, the approximate duality constraint reduces to

1− pij +β2

(
(1 + 2γ)uij + pij +ϕij − 1

)
+β1(qij −ϕij)≥ Γ . (26)

• Round j is a deterministic round, and i /∈Qj: Inspired by Huang et al. (2020b) we introduce
a set of new constraints to enforce the superiority of randomized rounds. We then show that this
set of new constraints can reduce this case to the previous case. Consider a vertex i and round
j, and let ∆deterministicβ

i
j be the ∆βij when i gets proposed in a deterministic round, and let

∆randomizedβ
i
j be the ∆βij when i gets proposed in a randomized round. We then add the following

set of constraints.

2∆randomizedβ
i
j ≥∆deterministicβ

i
j . (27)

Note that we can re-write the inequality above as following.

β1 · ri · qij +β2 · ri · (1 + 2γ)uij ≥ β1 · ri · qij/2 +β2 · ri · (pij − qij/2)
⇒ β1q

i
j +β2(1 + 2γ)uij ≥ β1q

i
j/2 +β2(pij − qij/2) . (28)

We now show that given these set of constraints, we can reduce this case to the previous case.
Let Qj = {i′} be the deterministic proposal in round j. Since the algorithm did not propose the
set Q′j = {i, i′} at this round, we can say that βj = ∆deterministicβ

i′
j ≥∆randomizedβ

i
j + ∆randomizedβ

i′
j .

Also, by (27) we have 2∆randomizedβ
i′
j ≥ ∆deterministicβ

i′
j . By combining this with the previous

inequality we get ∆randomizedβ
i
j ≤∆randomizedβ

i′
j . Thus,

βj ≥∆randomizedβ
i
j + ∆randomizedβ

i′

j ≥ 2∆randomizedβ
i
j .

This is the exact guarantee that we had for βj in the previous case. Thus, by adding the con-
straints (27) we can reduce this case to the previous case.

Optimizing the Competitive Ratio: We solve an LP whose variables are Γ, β1, and β2, in
order to find the optimal competitive ratio.

max Γ
subject to

∀pij, qij ∈ [0,1], qij ≤ pij : Eqn(20), (22), (24), (26), (28)
β1 ≥ β2 ≥ 0 .

Although the constrainsts of the LP have variables like ϕij and uij, these variable are a function
of pij and qij. Thus, we only have to consider the constraints of LP for different values of pij and qij.
In fact it is straightforward to verify that Γ = β1 = 3+4γ

6+6γ
and β2 = 1

2+2γ
is a feasible solution to the

LP above. Note that we showed that an 1/32-OCR always exists. This immediately implies that
the competitive ratio of our algorithm is at least 3+4·1/32

6+6·1/32
= 50/99≈ 0.50505.
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5. Conclusion We considered a fundamental generalization of classic bipartite online match-
ing, where resources are reusable and used for an (identical) deterministic duration on every match.
We motivated and introduced two new algorithms, Periodic Reranking, that strikes a careful bal-
ance between greedy and Ranking by reranking resources on a periodic schedule, and OCR-based
primal-dual algorithm, that extends the powerful online correlated selection technique to reusable
resources. We established a proof-of-concept result that we can obtain competitive ratios strictly
better than 0.5 with either of our algorithms. On our way to prove these results, we showed various
novel structural properties of our algorithms, provided simpler understanding of existing results in
the literature, and extended several tools to the case of non-reusable resources.

Open problems Recall that a (1− 1/e) upper bound for OBMRR follows from the fact that
OBMRR reduces to online bipartite matching (OBM) for large d. As OBMRR generalizes OBM,
this upper bound continues to hold. The main open problem left unanswered in our paper is
whether one can obtain the competitive ratio of 1− 1/e for OBMRR. It is worth noting that for
small (but non-trivial) values of d, such as d = 2, the upper bound of (1− 1/e) does not apply.
Another important open problem is whether one can beat the competitive ratio of 0.5 when different
resources have different usage durations, or when usage durations are stochastic i.i.d. over time.
One can also ask whether in these settings one can obtain an OCR algorithm with the types of
performance guarantees we have in this paper. Finally consider two candidate algorithms: Ranking,
which keeps the same randomized ranking for the resources at each time, and Reranking on Return
(RoR), which reranks a resource every time it returns back to the system after a match. Notice that
PR generates a new rank more frequently than RoR. In RoR, if a resource is not highly ranked
then it may not be matched and its rank is not reset. Consequently, RoR does not fully succeed in
untangling dependence between matching decisions at arrivals that are well separated. Analyzing
the performance of either RoR or Ranking remain as challenging open problems.

Acknowledgments. The authors thank the anonymous EC referees for their careful com-
ments and feedback. The authors also thank Vineet Goyal and Garud Iyengar for many insightful
discussions on this topic.
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Appendix A: Continuous Time Model In a continuous time version of the problem, we
have an increasing function a :U →R+ that maps arrivals j ∈U to arrival times a(j). The difference
a(j+1)−a(j) can be arbitrarily small. If a resource is matched to arrival j, it is unavailable during
the time interval (a(j), a(j) + d]. There can be an arbitrary number of arrivals in this interval. In
contrast, in the discrete time model a resource in use is unavailable for exactly d− 1 arrivals. For
simplicity, we focus on the discrete time model but our algorithms and performance guarantees
translate as is to the continuous time model. In fact, by adding dummy arrivals and adjusting time
scales, we can cast an instance of the continuous model with |U | arrivals and usage duration d into
an instance of the discrete model with |U |2 arrivals and usage duration |U |.

Recall that a (1− 1/e) upper bound for OBMRR follows from the fact that OBMRR reduces
to OBM for large d. As OBMRR generalizes OBM, this upper bound continues to hold. However,
for small (but non-trivial) values of d, such as d = 2, the upper bound of OBM does not apply.
For the continuous time model, this upper bound holds for all non-zero values of d. To see this,
we use the fact that there can be an arbitrary number of arrivals in any given time duration to fit
a hard instance(s) of OBM into a duration smaller than d. More generally, this implies that the
continuous model is equally hard for all finite and non-zero d i.e., if there is an upper bound of α
for duration d′, one can scale the hard instances to obtain an α upper bound for any other (finite
and non-zero) duration d.

Appendix B: Proof of Claim 2 In order to prove the Claim 2, we first have to define the
dependency graph.

Dependency Graph. Let Q1,Q2, · · · ,Q` be the sequence of the sets proposed by the outer
algorithm, we define the dependency graph G= (V,E) as follow. In the dependency graph G we
have a vertex for every set Qj, i.e., V =

{
Qj : j ∈ [`]

}
. Also, for every offline vertex i we have an

edge (Qj,Qj′)i between two sets Qj and Qj′ if both Qj and Qj′ are randomized rounds, i∈Qj,Qj′ ,
and i is not in any set proposed to the algorithm between the times j and j′. We use subscript i
in the edge (Qj,Qj′)i to distinguish parallel edges.

Consider an edge (Qj,Qj′)i in the dependency graph, and by symmetry assume that Qj is
proposed to OCR algorithm before Qj′ . In this case the decision of OCR for rounds Qj and Qj′

is perfectly negatively correlated, and it selects i in exactly one of Qj or Qj′ if (i) round Qj is a
sender round, (ii) OCR selects im = i in round Qj, (iii) round Qj′ is a receiver round, (iv) OCR
selects im = i in round Qj′ . However, this perfect negative correlation is not always guaranteed,
and conditions (i)-(iv) should all be met to have a negative correlation. In this case, we say edge
(Qj,Qj′)i is realized and is in the realized dependency graph.

For each edge (Qj,Qj′)i in the dependency graph, there is a probability of 1/16 that this edge
gets realized in the realized dependency graph. The reason is that OCR satisfies conditions (i)-(iv)
each with the probability of 1/2. Moreover, it is easy to verify that every vertex in the realized
dependency graph have at most one realized edge. Consider a sender round Qj, and let im = i be the
vertex selected by OCR in order to provide a negative correlation. In this case the corresponding
vertex of Qj in the realized dependency graph can have at most one edge in the form of (Qj,Qj′)i
where Qj′ is the next time that vertex i is proposed to the algorithm. We can use a similar argument
to show that every receiver round has at most one realized edge as well. Therefore, every vertex
has a degree of at most one in the realized dependency graph, i.e., realized edges form a matching
between vertices of the dependency graph.

We are now ready to prove Claim 2.
[ Proof of Claim 2] We call the input sequence Q1,Q2, · · · ,Q` the forward sequence, and the input

sequence Q`,Q`−1, · · · ,Q1 the backward sequence. For any offline vertex i we show that expected
number of times the algorithm matches i in the forward and backward sequence is the same. Let
~X = 〈X1,X2, · · · ,X`〉 be random variables where Xj is 1 when OCR selects i when it receives Qj
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in the forward sequence, and is 0 otherwise. Similarly, let ~Y = 〈Y1, Y2, · · · , Y`〉 be random variables
where Yj indicates whether OCR has selected i when it receives Qj (at the time `− j + 1) in the
backward sequence. In order to prove the claim we show that the joint distribution of ~X random
variables is the same as ~Y random variables. In other words, let ~b∈ {0,1}` be any binary vector of
length |U |, we show the following.

Pr
[
~X =~b

]
= Pr

[
~Y =~b

]
. (29)

We first show how (29) directly implies Claim 2. Let µ� and µ� be random variables which indicate
the number of times the algorithm matches i in the forward and backward sequences respectively.
Consider a vector ~b ∈ {0,1}`, assuming (29), ~X and ~Y are equal to ~b with the same probability.
We first show that if the ~X and ~Y are both equal to a vector ~b, then the algorithm matches vertex
i exactly the same number of times in forward and backward sequences. In specific we show the
following.

Observation 2For any vector ~b∈ {0,1}`, we have

E
[
µ� | ~X =~b

]
=E

[
µ� |~Y =~b

]
.

R ecall that for an offline vertex i, the way that the outer algorithm constructs the matching
using the decisions of OCR is that it adds i to the matching whenever it is available and get selected
by OCR. Let ~b= 〈b1, b2, · · · , b`〉, and 0≤ j1 < j2 < · · ·< jk be all indices such that bjk′ is 1 where

k′ ∈ [k]. By conditioning on ~X =~b, we can say that the OCR algorithm selects i when it receives
Qj1 ,Qj2 , · · · ,Qjk . In the forward sequence, the algorithm first matches i when it proposes Qj1 , and
then vertex i gets available after d time units. Therefore, the next time the algorithm matches i
is the smallest index j′ ∈ {j1, · · · , jk} such that j′ ≥ j1 + d, and the algorithm continues matching
i in the same way. It is easy to verify that the number of times that our algorithm matches i is
equal to the maximum number of times that we can match i at the time units {j1, · · · , jk} without
violating the reusability constraints (i.e., we should not match i twice within any time interval of
length d).

Now consider the backward sequence. By conditioning on ~Y =~b, we can say that OCR selects i
in exactly the same proposed sets Qj1 ,Qj2 , · · · ,Qjk . However, in the backward sequence the first
time that algorithm matches i is when it proposes Qjk , and then it cannot match i again when
it proposes sets Q[jk,jk−d+1]. Similar to the forward sequence, it is easy to see that the number of
times that the algorithm matches i is equal to the maximum number of times that we can match
i without violating the reusability constraints. Therefore, the expected size of the matching in the
forward and backward sequences is the same.

Using the observation above and assuming (29), we can easily prove Claim 2 as follows.

µi(Q[1,`]) =E[µ�]

=
∑

~b∈{0,1}`

E
[
µ� | ~X =~b

]
Pr
[
~X =~b

]
=

∑
~b∈{0,1}`

E
[
µ� | ~X =~b

]
Pr
[
~Y =~b

]
By (29).

=
∑

~b∈{0,1}`

E
[
µ� |~Y =~b

]
Pr
[
~Y =~b

]
By Observation 2.

=E[µ�] = µi(Q[`,1]) ,

which implies the claim. Therefore, in order to show the correctness of Claim 2, we only need to
prove Equation (29).
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Let G = (V,E) be the dependency graph for the forward sequence. It is easy to see that the
dependency graph for the backward sequence is G as well. Recall that in the dependency graph, we
have a vertex for every proposed set. Since both forward and backward sequences have the same
proposed sets, they have the same vertices in the dependency graph. Furthermore, they have the
same set of edges in the dependency graph. As we discussed earlier we add an edge (Qj,Qj′)i (in
the forward sequence) between two sets Qj and Qj′ if both Qj and Qj′ are randomized rounds,
i ∈ Qj,Qj′ , and i is not in any set proposed to the algorithm between Qj and Qj′ . In that case
(Qj,Qj′)i will be in the dependency graph of the backward sequence as well, since i is proposed in
Qj and Qj′ but not in any set in-between them.

We further claim that the probability distribution of realized dependency graph is also the same
for forward and backward sequences. Let E�, E� be the set of realized edges in the forward and
backward sequences, respectively. We specifically show that for any set of edges S ⊆E, the realized
edges E� and E� will be equal to S with the same probability. I.e.,

Pr
[
E� = S

]
= Pr

[
E� = S

]
. (30)

Consider an edge (Qj,Qj′)i in the dependency graph where j < j′. In this case this edge is in
the realized dependency graph of the forward sequence if (i) round Qj is a sender round, (ii) OCR
selects im = i in round Qj, (iii) round Qj′ is a receiver round, (iv) OCR selects im = i in round
Qj′ . As we discussed earlier OCR satisfies each of conditions (i)-(iv) each with the probability of
1/2. Note that conditions (i) and (ii) are related to decisions of the algorithm when it receives
Qj, and with the probability of 1/4 the algorithm satisfies these conditions. Also conditions (iii)
and (iv) are only related to decisions of the algorithm when it receives Qj′ which they met with
the probability of 1/4. Another way to interpret the realization of dependency graph is as follow.
Vertex Qj has at most 4 edges in the dependency graph, and it satisfies the conditions (i)-(iv) for at
most one of them each with the probability of 1/4. The same thing holds for vertex Qj′ . It satisfies
the conditions for at most one of its incident edges each with the probability of 1/4. Therefore, we
get the same distribution of realized dependency graphs if each vertex selects at most one of its
incident edges each with the probability of 1/4, and we add an edge to the realized graph if it has
been selected by both of its endpoints.

Now consider the same edge (Qj,Qj′)i in the dependency graph of the backward sequence. In this
case the algorithm receives the proposed set Qj′ before Qj. Therefore, this edge is in the realized
dependency graph of the backward sequence if (i) round Qj′ is a sender round, (ii) OCR selects
im = i in round Qj′ , (iii) round Qj is a receiver round, (iv) OCR selects im = i in round Qj. We
can still interpret the realization of the dependency graph as if each vertex selects at most one of
its incident edges each with the probability of 1/4, and we add an edge to the realized graph if it
has been selected by both of its endpoints. Therefore, the probability of distribution of dependency
graphs are the same for both forward and backward sequences which implies (30).

As we discussed the distribution the realized dependency graph is the same for both forward
and backward sequences. We further claim that for every offline vertex i the proposed sets that
OCR selects i also have the same distribution for the forward and backward sequences. As we
discussed earlier, edges in the realized dependency graph form a matching, and each edge represents
a perfect negative correlation between the decisions of OCR. We first claim that in order to find
the joint distribution of rounds in which the algorithm picks i, we can only look at the decisions
of the algorithm for rounds that i is proposed. If we consider a randomized round Qj = {i, i′}, the
algorithm picks each of i and i′ with the probability of 1/2 when the probability is taken over
all random decisions of the algorithm. Algorithm 2 just introduces slightly negative correlation
between its decision for different rounds. Now consider an edge (Qj,Qj′)i′ in the realized dependency
graph where Qj′ does not contain i. Although the decision of the algorithm has a perfect negative
correlation the rounds Qj′ and Qj, vertex i still gets selected by the algorithm with the probability



Delong, Farhadi, Niazadeh, Sivan, Udwani: Online Bipartite Matching with Reusable Resource
33

of 1/2 at round Qj. Also, the decision of the algorithm for the round Qj is independent of its
decisions for other rounds that i is proposed.

It follows that the distribution of the algorithm for selecting vertex i is as follows. Consider a
randomized round Qj 3 i. If Qj has no incident edges in the realized dependency graph, then the
algorithm selects i with the probability of 1/2 independently. Otherwise, let assume that there is
an edge between Qj and Qj′ in the dependency graph. If i /∈Qj′ , the algorithm still selects i he
probability of 1/2 and this decision is independent of other rounds that i is proposed. If i∈Qj′ , the
algorithm selects i in exactly one of Qj and Qj′ each with the probability of 1/2. Furthermore, for
a deterministic round Qj 3 i, the algorithm selects i with the probability of 1. It follows that the
distribution of the rounds that the algorithm selects i is the same for both forward and backward
sequences if they share a same dependency graph. In other words, for every set of edges S ⊆E in
the realized graph and any vector ~b∈ {0,1}`, we have

Pr
[
~X =~b |E� = S

]
= Pr

[
~Y =~b |E� = S

]
. (31)

Therefore we have

Pr
[
~X =~b

]
=
∑
S⊆E

Pr
[
~X =~b |E� = S

]
Pr
[
E� = S

]
=
∑
S⊆E

Pr
[
~X =~b |E� = S

]
Pr
[
E� = S

]
By (30).

=
∑
S⊆E

Pr
[
~Y =~b |E� = S

]
Pr
[
E� = S

]
By (31).

= Pr
[
~Y =~b

]
,

which proves (29) and completes the proof of the Claim 2.

Appendix C: Missing Proofs
Proof of Lemma 1. {αi,t/Γ}i,t, {βj/Γ}j is a feasible dual assignment, due to the approximate

dual feasibility. Denoting the optimal LP objective value by OPT, by weak duality we have D/Γ≥
OPT. Combined with the reverse weak duality, we have P ≥ Γ ·OPT, as desired. �

Proof of Lemma 4. Part(a): By definition of ycj(y
1), we have βj(y

1,1) ≥ ri
(
1− g(ycj(y

1))
)
. It

remains to show that, βj(y
1, y2) ≥ βj(y

1,1). Let rt(y
1, y2) denote the reduced price of the resource

matched to arrival t∈U in the matching PR(y1, y2). Set rt(y
1, y2) = 0 if t is unmatched.

Since g(x) is strictly increasing in x (for β > 0), it suffices to show that

rt(y
1, y2)≥ rt(y1,1) ∀y2 ∈ [0,1], t∈ k(j).

Note that 1− g(1) = 0 for every β. Therefore, when y2 = 1 the reduced price of arrival matched to
i is 0, same as, if the arrival were unmatched. Combining this observation with the fact that PR
matches each arrival greedily based on reduced prices, it suffices to show that,

St(y
1,1)\{i} ⊆ St(y1, y2) ∀y2 ∈ [0,1], t∈ k(j). (32)

We prove (32) via induction over arrivals in period k(j). Let t(y2) denote the first arrival in
period k(j) where i is available. Matchings PR(y1,1) and PR(y1, y2) are identical prior to t(y2).
Thus, St(y2)(y

1,1) = St(y2)(y
1, y2). Now, suppose that (32) holds for all arrivals t < t′ ∈ k(j). We

show that (32) holds for arrival t′ as well.
For the sake of contradiction, suppose there exists a resource v ∈ St′(y1,1)\(St′(y1, y2) ∪ {i}).

Recall that St(y
1,1)\{i} ⊆ St(y1, y2) for all t < t′. This occurs only if v is matched to arrival t′− 1

in PR(y1, y2), where t′ − 1≥ t(y2). Since every resource is matched at most once in a period, we
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have, St′(y
1,1)⊆ St′−1(y1,1). Thus, v ∈ St′−1(y1,1)\{i} ⊆ St′−1(y1, y2) i.e., in PR(y1,1), resource v

is available but not matched to t′ − 1. This contradicts the fact that PR matches greedily based
on reduced prices.

Part(b): Let T ′ denote the set of arrivals in the interval k(j)∩{j−d+ 1, · · · , j}. We are given that
resource is available at some point in this interval. Further, every resource is matched to at most
one arrival in T ′. Consider an arbitrary value y2 = z ∈ [0,1] and the matching PR(y1, z).

First, if i is matched to an arrival in T ′, then by definition of dual variables (2), we have that∑j

t=max{j−d+1,1}αit(y
1, z) ≥ rig(z). On the other hand, if i is not matched to any arrival in T ′,

then, PR(y1, z) is identical to PR(y1,1) until after arrival j. Therefore, arrival j is matched to the
same resource in both in PR(y1, z) and PR(y1,1), despite i being available. Thus, ri(1− g(z))<
ri(1− g(ycj(y

1))) i.e., z > ycj(y
1). �

Proof of Claim 3. We prove the claim using an induction on the size of ~Q. When | ~Q|= 1, there
is no difference between sender and receiver rounds and the claim clearly holds. Now suppose that
| ~Q|> 1. Let j′ = previj, then by (16) we have

µisender( ~Q[j,1])≥
1

2
·
(
1 +µi( ~Q[j−d,1])

)
+

1

4
·µi( ~Q[j−1,1])

+
1

8
·µisender( ~Q[j′,1]) +

1

16
·µireceiver( ~Q[j′,1]) +

1

16
·
(
1 +µi( ~Q[j′−d,1])

)
Note that by Equation (14), we have µi( ~Q[j−1,1]) = µi( ~Q[j′,1]) = 1

2
·µisender( ~Q[j′,1])+ 1

2
·µireceiver( ~Q[j′,1]).

Thus,

µisender( ~Q[j,1])≥
1

2
· (1 +µi( ~Q[j−d,1])) +

1

2
·µi( ~Q[j−1,1])

+
1

16
·
(
1 +µi( ~Q[j′−d,1])−µireceiver( ~Q[j′,1])

)
≥ µireceiver( ~Q[j,1]) +

1

16
·
(
1 +µi( ~Q[j′−d,1])−µireceiver( ~Q[j′,1])

)
By (15).

Note that we always have 1 + µi( ~Q[j′−d,1]) ≥ µi( ~Q[j′,1]), since 1 + µi( ~Q[j′−d,1]) describes an event
that i got matched at Qj′ deterministically. Thus,

µisender( ~Q[j,1])≥ µireceiver( ~Q[j,1]) +
1

16
·
(
µi( ~Q[j′,1])−µireceiver( ~Q[j′,1])

)
.

Also, by the induction hypothesis we have µi( ~Q[j′,1])−µireceiver( ~Q[j′,1])≥ 0. Thus, using the inequal-

ity above we can say that µisender( ~Q[j,1]) ≥ µireceiver( ~Q[j,1]). By combining this with (14) we get

µisender( ~Q[j,1])≥ µi( ~Q[j,1])≥ µireceiver( ~Q[j,1]) which completes the proof for the induction, and proves
the claim. �
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