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Abstract

This paper introduces an objective for optimizing proper scoring rules. The objective is
to maximize the increase in payoff of a forecaster who exerts a binary level of effort to refine
a posterior belief from a prior belief. In this framework we characterize optimal scoring rules
in simple settings, give efficient algorithms for computing optimal scoring rules in complex
settings, and identify simple scoring rules that are approximately optimal. In comparison,
standard scoring rules in theory and practice – for example the quadratic rule, scoring rules
for the expectation, and scoring rules for multiple tasks that are averages of single-task scoring
rules – can be very far from optimal.

1 Introduction

This paper provides a framework for a principal to optimize over proper scoring rules. Proper scor-
ing rules are mechanisms that incentivize a forecaster to reveal her true beliefs about a probabilistic
state. Proper scoring rules are well studied in theory and widely used in practice. The optimization
framework of the paper is relevant for applications that include peer grading, peer prediction, and
exam scoring.

Proper scoring rules incentivize a forecaster to reveal her true belief about an unknown and
probabilistic state. The principal publishes a scoring rule that maps the reported belief and the
realized state to a reward for the forecaster. The forecaster reports her belief about the state. The
state is realized and the principal rewards the forecaster according to the scoring rule. A scoring
rule is proper if the forecaster’s optimal strategy, under any belief she may possess, is to report
that belief. Proper scoring rules are also designed for directly eliciting a statistic of the distribution
such as its expectation.

Not all proper scoring rules work well in any a given scenario. This paper considers a mathe-
matical program for optimization of scoring rules where (a) the objective captures the incentive for
the forecaster to exert effort and (b) the boundedness constraints prevent the principal from scaling
the scores arbitrarily. For (a), we focus on a simple binary model of effort where the forecaster does
or does not exert effort and with this effort the forecaster obtains a refined posterior distribution
from the prior distribution on the unknown state (e.g., by obtaining a signal that is correlated with
the state). We adopt the objective that takes the perspective of the forecaster at the point of the
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decision with knowledge of both the prior and the distributions of posteriors that is obtained by
exerting effort. We want a scoring rule that maximizes the difference in expected scores for the pos-
terior distribution and prior distribution. For (b), we impose the ex post constraint that the score
is in a bounded range, i.e., without loss, between zero and one. Notice that this program would
be meaningless without a constraint on the scores - otherwise the score could be scaled arbitrarily
- and it would be meaningless without considering the difference in scores between posterior and
prior - otherwise any bounded scoring rule scaled towards zero plus a constant close to the upper
bound would be near optimal.

The first step in pursuing the optimization of scoring rules (according to the program of the
previous paragraph) is characterizing the incentive constraint of the forecaster, i.e., that the fore-
caster’s optimal strategy in either the effort or no-effort case is to report her true belief. McCarthy
(1956) characterizes proper scoring rules as ones that induce a convex utility function for the fore-
caster, as a function of her belief, where the scoring rule can be expressed in terms of this utility
function and its pseudo-gradients. This characterization is similar to the incentive compatible char-
acterization of Rochet (1985) for multi-dimensional mechanism design which has enabled the design
of revenue optimal mechanisms (e.g., Daskalakis, Deckelbaum, and Tzamos, 2017). Our optimiza-
tion framework, with this characterization, enables the study of optimal scoring rules under many
paradigms that have proven to be important for mechanism design.

There are several potentially important paradigms for optimization of proper scoring rules (cf.
the paradigms for mechanism design). With a family of Bayesian environments for optimizing
scoring rules:

Characterization. Characterize the optimal scoring rule for any environment in the family (cf.
Myerson, 1981).

Computation. Give a polynomial time algorithm for identifying and executing the optimal scoring
rule for any given environment in the family (cf. Cai, Daskalakis, and Weinberg, 2012a,b;
Alaei, Fu, Haghpanah, Hartline, and Malekian, 2019).

Simple Approximation. For any environment in the family, identify a simple scoring rule that
approximates the optimal scoring rule (cf. Hartline and Roughgarden, 2009).

Prior-independent Optimization. Give a single proper scoring rule that approximates the opti-
mal scoring rule for any environment in the family (cf. Dhangwatnotai, Roughgarden, and Yan,
2015).

Sample Complexity. As a function of the desired precision, bound the number of samples needed
for the principal to identify a scoring rule with objective value that is within the desired
precision of the optimal scoring rule (cf. Cole and Roughgarden, 2014).

This paper focuses primarily on providing characterizations of optimal scoring rules, computing
optimal scoring rules, and identifying simple approximately optimal scoring rules. In addition, first
results on prior-independence and sample complexity are given.

Results. We show that the problem of optimizing scoring rules for general beliefs over a finite
set of states reduces to the problem of optimizing scoring rules for reporting the expectation of
a multi-dimensional state. In scoring rules for the expectation of a multi-dimensional state, the
forecaster is simultaneously reporting the marginal expectations of the state in all dimensions.

We solve for the optimal scoring rule for reporting the expectation in single-dimensional space.
As we expect for single-dimensional mechanism design problems for an agent with linear utility
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Myerson (1981), the optimal scoring rule is a step function (which induces a V-shaped scoring rule
with its lower tip at the expectation of the prior belief). To implement this V-shaped scoring rule,
it is sufficient for the designer to know the prior mean instead of the details on the distribution
over posteriors. We also demonstrate a first result for prior-independent analysis of scoring rules.
Among scoring rules for reporting the expectation, the quadratic scoring rule is within a constant
factor of optimal.

For multi-dimensional forecasting when the distribution over posterior means and the state
space are given explicitly, we provide a polynomial time algorithm that computes the optimal scor-
ing rule. For multi-dimensional forecasting with symmetric distributions, we give an analytical
characterization of the optimal scoring rule as inducing a V-shaped utility function. For multi-
dimensional forecasting without a symmetry assumption, we identify a V-shaped scoring rule that
gives an 8-approximation. This scoring rule can be interpreted as scoring the dimension for which
the agent’s posterior in the optimal single-dimensional scoring rule gives the highest utility. Equiv-
alently, it can be implemented by letting the agent select which dimension to score and only scoring
that dimension (after exerting effort to learn the posterior mean of all dimensions). While optimal
mechanisms generally depend on the distribution over posteriors, our approximation bounds are
proved for simple mechanisms (V-shaped scoring rules) that depend only on the prior mean, and do
not require detailed knowledge of the distribution over posteriors. For the peer grading example,
e.g., it is sufficient to know that the mean grade is 0.8 ∈ [0, 1]. In addition, due to the simple form
of the V-shaped scoring rule, even when the designer is ignorant of the prior mean, the designer can
estimate it using samples and the expected incentive loss for using the sample estimate is negligible.
Finally, we show that the ad hoc of approach of scoring each dimension separately may have an
multiplicative loss in incentives for effort that is linear in the size of the dimension.

An extensive discussion of future directions is given in Section 7.

Application to Peer Grading. Our framework for optimization of scoring rules firmly places
the problem within the literature on mechanism design. A significant challenge for algorithmic
methods in mechanism design is a lack of applications to which researchers can readily apply
mechanism design results. Optimization of scoring rules, however, has application to peer grading
and can be deployed in classrooms where algorithms researchers teach. The questions of this paper
were in fact motivated by the failure of classical approaches to scoring rules in this context.

While peer grading may be employed to reduce effort of course staff, a primary concern is in
improving learning outcomes. For peers to learn from peer reviewing they must be incentivized to
put in effort, i.e., the peer reviews themselves must be graded. One way to algorithmically grade
peer reviews is to compare the peer’s marks to ground truth marks provided by the teaching staff.
Specifically, a peer can be asked to review the submission and forecast the true marks.

If the grading rubric has multiple elements (denoted by n), the natural approach from the
literature would be to score each dimension separately and then take the sum. In contrast the
optimal multi-dimensional rule is not the sum over separate rules but the maximum over separate
scoring rules. For a prior such that independently for each dimension, the signal reveals the state
with probability 1

n
, these two are significantly different. Specifically, the incentives for effort for the

separate scoring rule is O( 1
n
) while the incentives for effort for optimal scoring rule is O(1). Thus

optimal scoring rule can be unboundedly better than separate scoring rule. For further details, see
Theorem 4.6.

Related Work. Characterizations of scoring rules for eliciting the mean and for eliciting a finite-
state distribution play a prominent role in our analysis. Previous works show, in various contexts,
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that scoring rules are proper if and only if their induced utility functions are convex. McCarthy
(1956) characterized proper scoring rules for eliciting the full distribution on a finite set of states.
Osband and Reichelstein (1985) characterized continuously differentiable scoring rules that elicit
multiple statistics of a probability distribution. Lambert (2011) characterized the statistics that
admit proper scoring rules and characterized the uniformly-Lipschitz-continuous scoring rules for
the mean of a single-dimensional state. Abernethy and Frongillo (2012) characterized the proper
scoring rules for the marginal means of multi-dimensional random states in the interior of the report
space. We augment this characterization by showing that the induced utility function converges to a
limit on the boundary of the report space. This augmentation enables us to write the mathematical
program that optimizes over the whole report space.

Most of the prior work looking at incentives of eliciting information considers a fundamentally
different model from ours. This prior work typically focuses on the incentives of the forecaster to ex-
ert effort to obtain a signal (a.k.a., a data point), but then assumes that this data point is reported
directly (and cannot itself be misreported). In this space, Cai, Daskalakis, and Papadimitriou
(2015) considers the learning problem where the principal aims to acquire data to train a classifier
to minimize squared error less the cost of eliciting the data points from individual agents. The mech-
anism for soliciting the data from the agents trades off cost (in incentivizing effort) for accuracy of
each individual point. Chen, Immorlica, Lucier, Syrgkanis, and Ziani (2018) and Chen and Zheng
(2019) consider the estimation of the mean of a population data. Their objective is to minimize
the variance of the resulting estimator subject to a budget constraint on the cost of procuring the
data (from incentivizing effort).

A few papers have considered incentivizing effort under a proper scoring rule for a single-
dimensional state. Osband (1989) considers incentivizing the forecaster to reduce variance under
constraints that result in the optimal scoring rule being quadratic. Zermeno (2011) considers a
slightly different model and derives that the optimal scoring rule has V-shaped utility; our work
begins with such a result for our model. Neyman, Noarov, and Weinberg (2021) consider a fore-
caster with access to costly samples of a Bernoulli distribution and characterizes optimal scoring
rules in the limit as the sample cost approaches zero. Detailed discussion of these results is deferred
to Appendix A. Our main contrasting result is the approximate optimality of the V-shaped scoring
rule for binary effort and forecasts over multi-dimensional state spaces.

There are several papers on optimizing scoring rules following the model proposed in our pa-
per. Hartline et al. (2021a) extend the framework to the setting where the agent’s effort is multi-
dimensional (e.g., corresponding to independent tasks) and the agent can independently exert effort
in each dimension. The main result of this extension is that the intuition that linking incentives
across different dimensions is beneficial generalizes. The authors propose a generalization of the
V-shaped scoring rule that is approximately optimal, which requires the agent to predict k states
correctly instead of one (where k is a constant depending on the primitives). Hartline et al. (2021b)
extend the framework to the setting where the agent’s effort is continuous (but single-dimensional)
and the cost of the agent’s effort is private to the agent. In this case the principal benefits from
offering several scoring rules (and agents with different costs choose different ones), each offered
scoring rule is V-shaped. The model also allows for the principal to have negative utility for pay-
ments to the agent. Chen and Yu (2021) consider our objective of maximizing the incentives of
binary effort in a max-min design framework. For example, they show that the quadratic scoring
rule is max-min optimal over a large family of distributional settings. Kong (2021) generalizes
the framework from single-agent scoring rules to multi-agent peer prediction, i.e., without ground
truth. In peer prediction, the designer needs to cross reference the reports of different agents to
verify the informativeness of the report.

Scoring rules are also widely studied in the literature on peer prediction where ground truth
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is unknown and agent reports must be compared to each other. Frongillo and Witkowski (2017)
considers the optimization goal of incentive for effort in single-task peer prediction. The differences
in this model result in incomparable results.

With broad strokes, our work connects the studies of optimal mechanisms and optimal scor-
ing rules. A few points of connection are especially pertinent. Characterizions of incentives in
scoring rules and multi-dimensional mechanisms are similar. The multi-dimensional characteri-
zation for mechanism design is given by Rochet (1985). One of our main results shows that a
good scoring rule for a multi-dimensional state is the max-over-separate scoring rule, while averag-
ing over separate scoring rules is far from optimal. This result parallels the main contribution of
Jackson and Sonnenschein (2007), that linking independent decisions improves incentives in mecha-
nism design. This result also connects simple scoring rules to simple mechanisms like the bundling-
or-selling-separately mechanism of Babaioff, Immorlica, Lucier, and Weinberg (2014). Finally, the
polynomial time algorithms we give for computing optimal scoring rules (in the cases where we do
not provide simple analytic charcterizations) are based on Briest, Chawla, Kleinberg, and Weinberg
(2015).

Organization. Section 2 formally defines the program for optimizing proper scoring rules. This
program is simplified by appropriate characterizations of proper scoring rules which are adapted
from the prior literature. Section 3 considers scoring rules for eliciting the posterior mean of a
single-dimensional random state. It characterizes the optimal scoring rule for any distribution over
posteriors, it shows that the quadratic scoring rule can be an arbitrarily bad approximation to
the optimal scoring rule, but it shows that, nonetheless, the quadratic scoring rule is within a
constant factor of the optimal prior-independent scoring rule. Section 4 considers scoring rules for
eliciting the marginal poster means of a multi-dimensional random state. It gives a polynomial time
algorithm for computing the optimal rule, it characterizes the optimal rule when the distribution of
posterior means is symmetric, it gives a simple scoring rule that is approximately optimal without
symmetry, and it shows that the average of separate scoring rules for each dimension can be a linear
approximation in worst case. Section 5 considers scoring rules for eliciting the full distribution over
a finite state space. It shows that there is a polynomial time algorithm for computing the optimal
scoring rule and it shows that scoring rules that elicit the mean can be arbitrarily far from optimal.
We apply our framework for optimization of scoring rules to peer grading in Section 6. We provide
interpretations of the scoring rules we designed from Section 4 in this application. Finally, Section 7
overviews a number directions for future research that may be promising.

2 Preliminaries

In this section, we present a formal program for the optimization of proper scoring rules for multi-
dimensional random states. Section 2.1 describes the basic setting for scoring rules and provides an
informal description of the optimization problem for scoring rules that elicit the marginal means of
the distribution. In Section 2.3, we discuss the characterization of proper scoring rules for eliciting
the mean with a weak regularity condition. Section 2.2 gives the formal program for optimizing
scoring rules for the mean.

A reason for our focus on scoring rules for eliciting the mean is that, even for continuous state
spaces, the communication requirements of eliciting the mean are reasonable. Moreover, as we show
in Appendix B.3, the problems of optimizing scoring rules for eliciting the full distribution reduce
to problems of optimizing scoring rules for the mean by augmenting the state space.
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2.1 The Scoring Rule Optimization Problem

This paper considers the problem of optimizing scoring rules. A scoring rule maps an agent’s
reported belief about a random state and the realized state to a payoff for the agent. Our model
allows the agent to refine her prior belief by exerting a binary effort. Our objective is to maximize
the agent’s perceived benefit from exerting effort, i.e., the expected difference in score from reporting
the prior and posterior distributions.

There is a prior distribution D ∈ ∆(Θ) over the true state θ ∈ Θ where Θ ⊆ Rn is any n
dimensional space. The distribution D is public information for both the agent and the principal,
and in addition, the agent may privately observe a signal about the true state, which induces a
posterior G. We denote the probability the agent will obtain the posterior G by f(G). We focus on
scoring rules that elicit the mean of the posterior, i.e., the scoring rule asks the agent to report the
marginal means of her posterior, and scores the agent based on her report and the realized state.
Let µG be the mean of posterior G and µD be the mean of the prior distribution D. Let R ⊆ Rn

be the report space including all possible posterior means µG and let r ∈ R be the report of the
agent. A simple property of means, the report space is the convex hull of the state space. Two
constraints on the scoring rules are the boundedness constraint and the proper constraint1.

Definition 1. A scoring rule S(r, θ) is proper2 for eliciting mean if for any distribution G and
report r ∈ R, we have

Eθ∼G [S(µG, θ)] ≥ Eθ∼G [S(r, θ)] .

Definition 2. A scoring rule S(r, θ) is bounded by B in space R × Θ if S(r, θ) ∈ [0, B] for any
report r ∈ R and state θ ∈ Θ.

The goal for the principal is to design a bounded proper scoring rule that maximizes the dif-
ference in expected score between agents who exert effort and those who do not. Next, we will
informally define the optimization program.

Informal program. The problem of maximizing the difference in expected score given the maxi-
mum score of B, the state space Θ, the report space which is the convex hull of the state space, i.e.,
R = conv(Θ), and the distribution over posteriors f can be written as the following optimization
program:3

max
S

EG∼f,θ∼G [S(µG, θ)− S(µD, θ)] (1)

s.t. S is a proper scoring rule for eliciting the mean,

S is bounded by B in space R×Θ.

The above program aims to optimize the incentive for the agent to exert effort. Consider the
situation where the agent has a private stochastic cost for obtaining a signal of the true state. If

1These two constraints are natural and standard in the scoring rule literature. For eliciting the mean, the restriction
on proper scoring rules is not without loss in the optimization program (1). For eliciting the full distribution in
Section B.3 and 5, it is without loss to consider the proper constraint.

2Our notion of proper scoring rule is weakly proper rather than strictly proper. Most of the literature on scoring
rules does not have an objective and to obtain non-trivial results requires scoring rules to be strictly proper. When
optimizing scoring rules there is no meaningful difference between strictly proper and proper as the strictness can be
arbitrarily small and therefore provide insignificant additional benefit. Note that any weakly proper scoring rule can
also be made strictly proper by taking an arbitrarily small convex combination with a strictly proper scoring rule.

3In Appendix F, we provide characterizations for a similar model where the ex post bounded score constraint is
replaced with the bounded in expectation constraint.
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the agent chooses to pay the cost, she sees the realized signal, forms a posterior about the true
state, and optimizes according to the posterior. The agent will only choose to pay the cost if her
expected gain from obtaining the signal, i.e., the objective value in Program (1), is higher than her
cost. By designing the optimal scoring rule for Program (1), we also maximize the probability that
the agent chooses to pay the cost. This paper will not formally model such costs.

2.2 Eliciting the Mean with Canonical Scoring Rules

There is a canonical approach for constructing proper scoring rules. In this section we specify
Program (1) to canonical proper scoring rules. In the next section we show that this specification
is without loss for the program. The following definition and proposition are straightforward from
first-order conditions and can be found, e.g., in Abernethy and Frongillo (2012). We defer the proof
of Proposition 2.1 to Appendix B.

Definition 3. A canonical scoring rule for the mean S is defined by convex utility function u :
R → R on report space R, subgradient ξ : R → Rn of u, and function κ : Θ → R on state space Θ
as

S(r, θ) = u(r) + ξ(r) · (θ − r) + κ(θ). (2)

Proposition 2.1. Canonical scoring rules are proper.

The following two lemmas allow the objective and the boundedness constraint of Program (1)
to be simplified. The first lemma justifies referring to u as the agent’s utility function and its proof
was observed in the proof of Proposition 2.1.

Lemma 2.2. For any canonical scoring rule for the mean S (defined by u, ξ, and κ), the expected
utility from belief G and truthfully report of µG is

Eθ∼G [S(µG, θ)] = u(µG) +Eθ∼G [κ(θ)] . (3)

Lemma 2.3. Fixing utility function u and subgradients ξ and setting the state-function κ to min-
imize the score bound B, the canonical scoring rule S (defined by u, ξ and κ) satisfies

u(θ)− u(r)− ξ(r) · (θ − r) ≤ B (4)

for any report r ∈ R and state θ ∈ Θ.

We now derive the simplified program for canonical scoring rules. The following notation is
sufficient to describe this simplified program and is adopted throughtout the paper. For proper
scoring rules for eliciting the mean, the posterior mean and report are denoted by r in report space
R. The distribution over posterior beliefs induces a distribution over posterior means, slightly
abusing notation, we denote both distributions by f . Specifically, f(r) =

∫
G:µG=r

f(G) dG, i.e., the
density at posterior mean r is equal to the cumulative density of posteriors G with mean µG = r.
The prior mean of the distribution µD is equal to the mean of the posterior means, denoted µf ,
i.e., µD = Eθ∼D [θ] = Er∼f [r] = µf .

By Lemma 2.2, the objective function in Program (1) for canonical scoring rules can be simpli-
fied as

EG∼f,θ∼G [S(µG, θ)− S(µD, θ)] =

∫

∆(Θ)
[u(µG)− u(µD)] f(G) dG =

∫

R

[u(r)− u(µf )] f(r) dr.
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Note that the simplified objective function does not depend on subgradient ξ or state function κ,
the latter of which is cancelled in the score difference. Thus, the value of the objective function
is uniquely determined by the utility function u and the distribution over posterior means f . We
denote the performance of utility function u given the distribution over posteriors f by

Obj(u, f) =

∫

R

u(r) f(r) dr − u(µf ). (5)

Combining Lemma 2.3 with the simplified objective function (5), and shifting the utility function
by a constant such that u(µf ) = 0, we get the following optimization program for optimizing over
canonical scoring rules. In the next section we show that the restriction to canonical scoring rules
is without loss.

OPT(f,B,Θ) = max
u

∫

R

u(r)f(r) dr (6)

s.t. u is a continuous and convex function, and u(µf ) = 0,

ξ(r) ∈ ∇u(r), ∀r ∈ R,

u(θ)− u(r)− ξ(r) · (θ − r) ≤ B, ∀r ∈ R, θ ∈ Θ,

R = conv(Θ).

Note that for any distribution f and state space Θ, the optimal objective OPT(f,B,Θ) is a
linear function of the maximum score B. In most of the paper, we normalize B = 1 and mainly
consider the state space Θ = [0, 1]n. To simplify the notation, we let OPT(f) = OPT(f, 1, [0, 1]n).
We will write OPT(f,B,Θ) explicitly in Section 4 when we discuss general state spaces with bound
B 6= 1.

2.3 Sufficiency of Canonical Scoring Rules

This section provides a partial converse to Proposition 2.1 and shows that the restriction to canoni-
cal scoring rules is without loss, i.e., Program (1) and Program (6) are equivalent. The converse will
require a weak technical restriction on the set of scoring rules considered.4 With this restriction,
Abernethy and Frongillo (2012) provide a converse to Proposition 2.1 for reports in the relative
interior of the report space. We generalize their observation to the boundary of the report space
when the scoring rule is bounded. The detailed discussion is deferred in Appendix B. Formally, we
have the following result establishing that Program (1) and Program (6) are equivalent.

Definition 4 (Abernethy and Frongillo, 2012). A scoring rule S is µ-differentiable if all directional
derivatives of Eθ∼G [S(µG, θ)] exists for all posteriors G with mean µG in the relative interior of R.

Theorem 2.1. For optimization of the incentive for exerting a binary effort via a bounded and
µ-differentiable scoring rule for the mean, it is without loss to consider canonical scoring rules, i.e.,
Program (1) and Program (6) are equivalent.

3 Eliciting a Single-dimensional Mean

In this section, we focus on the special case of single dimensional state spaces. We characterize the
optimal single dimensional scoring rules for eliciting the mean and show that the optimal scoring

4The literature on scoring rules for eliciting the mean, to the best of our knowledge, obtains converses to Proposi-
tion 2.1 only with restrictions. For example, Lambert (2011) assumes the scoring rules are continuously differentiable
in the agent’s report. The restriction we employ is weaker than differentiability.
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0 1µf

u(0)
u(1)

u(0) + u′(0)

r θu(r) + u′(r)(θ − r)

u(θ)

(a)

0
1µf

u(0)
u(1)

(b)

Figure 1: The figure on the left hand side illustrates the bounded constraint for proper scoring rule
for single dimensional states. The figure on the right hand side characterizes the optimal scoring
rule (solid line) for single dimensional states. In this figure, for any convex function u (dotted line)
that induces a bounded scoring rule, there exists another convex function ũ (solid line) which also
induces a bounded scoring rule and weakly improves the objective.

rules are simple and only depend on the prior mean of the distribution. We compare the quadratic
scoring rule to the optimal scoring rule and show that the quadratic scoring rule, though it can
be far from optimal for specific distributions over posteriors, it is approximately optimal in the
prior-independent setting.

In this section we normalize the state space Θ so that its convex hull, i.e., the report space R,
is [0, 1] and the boundedness constraint is given by B = 1.

3.1 Characterization of Optimal Scoring Rules

In this part, we characterize the optimal proper scoring rules for a single dimensional state. First
note that for single dimensional scoring rules, the boundedness constraint of Program (6) can be
further simplified.

Lemma 3.1. For state space Θ with convex hull [0, 1] and any utility function u, there exists a
µ-differentiable proper scoring rule induced by function u which is bounded by B = 1 if and only if
there exists a set of subgradients ξ(r) ∈ ∇u(r) such that

u(1) − u(0)− ξ(0) ≤ 1 and u(0)− u(1) + ξ(1) ≤ 1.

Proof. By Lemma B.3, it is sufficient to consider only convex function u such that there exists a
set of subgradients ξ(r) satisfying constraints that for any r, θ ∈ [0, 1]

u(θ)− u(r)− ξ(r) · (θ − r) ≤ 1.

By convexity of utility u and the monotonicity of subgradients ξ on report space R = [0, 1], it is
straightforward to observe that the left-hand side of the boundedness constraint is maximized at
θ ∈ {0, 1} with r = 1− θ (see Figure 1a).

With Lemma 3.1, Program (6) can be written as

max
u

∫ 1

0
u(r)f(r) dr (7)

s.t. u(r) is convex and u(µf ) = 0,

ξ(r) ∈ ∇u(r),∀r ∈ [0, 1],

u(1) − u(0) − ξ(0) ≤ 1,

u(0) − u(1) + ξ(1) ≤ 1.
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The main result of this section is the following characterization of the optimal solutions to Program (7).

Definition 5. A function u is V-shaped at µ if there exists parameters a and b such that u(r) =
a (r − µ) for r ≤ µ and u(r) = b (r − µ) for r ≥ µ.

Utility functions that are V-shaped at prior mean µf are induced by scoring rules with the
following simple form. If the agent reports the prior mean her score is zero. For reports above the
prior mean, the score is equal to b (θ−µf ); and for reports below the prior mean, the score is equal
to a (θ−µf ). I.e., as discussed in Section 2.2, the agent’s report picks out the supporting hyperplane
of the utility function on which to evaluate the state. Note that the implementation of the V-shaped
scoring rule only needs the knowledge of the prior mean µf , and does not need the distribution
over posteriors. We show the following theorem on the optimal solutions of Program (7). We defer
its proof to Appendix C.

Theorem 3.1. For any distribution f over the posterior means with expectation µf and state space
Θ with convex hull [0, 1], the optimal solutions of Program (7) are V-shaped at µf with parameters
b = a+ 1/max{µf , 1− µf} and objective value OPT(f) = Er∼f [max(r − µf , 0)]/max(µf , 1− µf ).

5

As mentioned above, we see from Theorem 3.1 that the set of utility functions that optimizes
Program (7) only depends on the prior mean µf and not the general shape of the distribution over
posterior means f .

An important special case for our subsequent analyses is when the mean of the posteriors is
in the center of the report space, i.e., µf = 1/2 for report space [0, 1]. In this case, an optimal
utility function u is V-shaped at 1/2 with u(0) = u(1) = 1/2. In fact, the symmetric case where f
is the uniform distribution on the extremal poster means {0, 1} obtains the highest objective value
for Program (7) with OPT(f) = 1/2. These two observations are fomalized in the following two
corollaries.

Corollary 3.2. For any distribution f over the posterior means with expectation µf = 1/2, one of
the optimal solution of Program (7) is symmetric and V-shaped at 1/2 with u(0) = u(1) = 1/2.

Corollary 3.3. The objective value of any utility function u that is feasible for Program (7) on
distribution f of posterior means is at most 1/2, i.e., Obj(u, f) ≤ 1/2.

Proof of Corollary 3.3 is deferred to Appendix C.2.

3.2 The Quadratic Scoring Rule and Prior-independent Approximation

The previous section showed that the optimal single-dimensional scoring rule depends on the distri-
bution over posteriors and, more specifically, on the mean of this distribution. On the other hand,
standard scoring rules in theory and practice, like the quadradic scoring rule, are prior-independent,
i.e., they do not depend on the principal’s prior distribution (over posterior distributions of the
agent), cf. Dhangwatnotai, Roughgarden, and Yan (2015). This section focuses on the quadratic
scoring rule. It gives the characterization in terms of utility of the quadratic scoring rule for elic-
iting the mean of a single-dimensional state. It analizes the approximation factor of the quadratic
scoring rule with respect to the optimal scoring rule, and shows that the performance of the former
is quadratic in the performance of the latter. Specifically, the ratio of performances is unbounded as
the performance of the optimal scoring rule approaches zero (and such a sequence of prior distribu-
tions exists). Thus, we conduct the prior-independent analysis on families of priors which give the

5By slightly perturbing the utility function u, the V-shaped scoring rule can be transformed into a strictly proper
scoring rule with an arbitrarily close objective value.
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same performance of the optimal scoring rule (cf. the “max/max ratio” of Ben-David and Borodin,
1994). Within each such family, the quadratic rule is approximately optimal among all prior-
independent scoring rules.

The following observations will be useful in our analysis of the quadratic and other prior-
independent scoring rules. First, for prior-independent analysis, the designer does not know the
prior mean µf of the distribution. Therefore, we consider Program (7) equivalently with the agent’s
utility for reporting the prior mean u(µf ) subtracted from the objective and without the constraint
u(µf ) = 0. Second, in the worst case it is sufficient to only consider posterior distributions that are
uniformly drawn as one of two deterministic points. This latter result is formalized in the following
lemma.

Lemma 3.4. For any distribution f over posterior means, there exists another distribution f̃ over
posterior means with 2 point masses that satisfies OPT(f̃) = OPT(f) and for any convex function
u, Obj(u, f̃ ) ≤ Obj(u, f).

Proof. For any distribution f with prior mean µf , let f̃ be the distribution that has

• a point mass at Ef [r
′|r′ < µf ] with probability Prf [r

′ < µf ];

• a point mass at Ef [r
′|r′ ≥ µf ] with probability Prf [r

′ ≥ µf ].

By Theorem 3.1, it is easy to verify that the optimal does not change, i.e., OPT(f) = OPT(f̃),
and for any convex u, by Jensen’s Inequality, we have Obj(u, f̃) ≤ Obj(u, f).

The quadratic scoring rule that is the focus of this section is defined as follows.

Definition 6. The [0, 1]-bounded quadratic scoring rule for eliciting the mean with state and report
spaces Θ = R = [0, 1] is Sq(r, θ) = 1 − (θ − r)2. For functions uq(r) = r2 and κq(θ) = 1 − θ2 the
quadratic scoring rule is Sq(r, θ) = uq(r) + u′q(r) · (θ − r) + κq(θ).

Lemma 3.4 enables the identification of the worst-case performance the quadratic scoring rule.
Recall that, by Corollary 3.3, the optimal objective value is at most 1/2, i.e., OPT(f) ∈ (0, 1/2].

Theorem 3.2. Let Fc be the set of distributions such that the objective value of the optimal scoring
rule is c ∈ (0, 1/2], i.e., OPT(f) = c for any f ∈ Fc. We have that for utility function uq of quadratic
scoring rule,

min
f∈Fc

Obj(uq, f) = c2.

As will be evident from the proof of Theorem 3.2, for any c ∈ (0, 1/2] there is a non-trivial family
of distributions Fc for which OPT(f) = c. Since the worst-case performance of the quadratic scoring
rule on Fc is minf∈Fc

Obj(uq, f) = c2, the prior-independent approximation factor of the quadratic
scoring rule is unbounded. In fact, as we show next, this result is not a limitation of the quadratic
scoring rule. For the family of distributions Fc, any prior-independent scoring rule can at most
guarantee a worst-case objective value of O(c2). Thus, the quadratic rule is within a constant factor
of the prior-independent optimal rule. We defer the proof of Theorem 3.2 to Appendix C.3, and
Theorem 3.3 to Appendix C.4.

Theorem 3.3. Let Fc be the set of distributions over posterior means such that the objective value
of the optimal scoring rule is c ∈ (0, 1/2], i.e., OPT(f) = c for any f ∈ Fc. For any convex and
bounded utility function u, we have

min
f∈Fc

Obj(u, f) ≤ min(12 ,
8c2

(1−4c)2
) ≤ 32c2.
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Combining Theorem 3.2 with Theorem 3.3, the quadratic scoring rule approximates any prior-
independent scoring rule in terms of worst case payoff.

Theorem 3.4. For any constant c ∈ (0, 1/2], let Fc be the set of distributions such that the objective
value of the optimal scoring rule is c, i.e., OPT(f) = c for any f ∈ Fc. Let U be the set of convex
and bounded utility functions u. For quadratic utility function uq, we have

min
f∈Fc

Obj(uq, f) ≥
1

32
max
u∈U

min
f∈Fc

Obj(u, f).

Note that in Theorem 3.4, the quadratic scoring rule does not exploit the extra information
that OPT(f) = c and still achieves a constant approximation to the optimal max-min scoring rule
in worst case.

Although the quadratic scoring rule is approximately max-min optimal, the approximation ratio
between the quadratic scoring rule and the optimal scoring rule can still grow unboundedly as the
optimal objective value OPT(f) vanishes to zero. In the following theorem, we will show that
for any fixed distribution over posterior mean with variance σ2, the performance of the quadratic
scoring rule is an approximation of the optimal solution within a factor of the standard deviation σ.
That is, the quadratic scoring rule is approximately optimal when the distribution over posterior
mean is sufficiently disperse. We defer the proof of Theorem 3.5 to Appendix C.5.

Theorem 3.5. For any σ ∈ [0, 1], any distribution over posterior mean f with variance σ2, we have

Obj(uq, f) ≥ σ ·OPT(f).

4 Elicitation of a Multi-dimensional Mean

In this section, we focus on the case when the state space is multi-dimensional. We first give
a polynomial time algorithm that identifies the optimal scoring rule for the problem when the
posterior distribution and the set of realizable states are given explicitly. Then we characterize
the optimal scoring rule for symmetric distributions over posterior means, and propose a simple
scoring rule that is approximately optimal for asymmetric distributions. Finally, we show that the
standard approach in both theory and practice of scoring the agents separately in each dimension
is not a good approximation to the optimal multi-dimensional scoring rule.

4.1 Computing the Optimal Scoring Rule

We adopt an approach from Briest, Chawla, Kleinberg, and Weinberg (2015) and show that when
the state space and the support of the posterior means are finite, there exists a polynomial time
algorithm that solves the optimal scoring rule for eliciting the marginal means of a posterior.

Theorem 4.1. Given any n-dimensional state space Θ with |Θ| = d states and any distribution f
with support size m over posterior means, there exists an algorithm that computes the optimal
proper bounded scoring rule for eliciting the mean in time polynomial in n, m, and d.

To prove this theorem, we introduce a proposition stating the equivalence of Bayesian auction
design and the design of proper scoring rules. With this equivalence result, we can solve Program (6)
with finite reports using a linear program with (n+1)(m+d+1) variables and a quadratic number
of constraints. We defer the proof of Proposition 4.1 to Appendix D.1, and the proof of Theorem 4.1
to Appendix D.2.
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Proposition 4.1. A function u is the utility function of a µ-differentiable B-bounded proper scoring
rule for eliciting the mean on report space R = conv(Θ) and n-dimensional state space Θ if and
only if there exists allocation and payment functions x(·) and p(·) satisfying

1. Bayesian incentive compatible: x(r) · r − p(r) ≥ x(r′) · r − p(r′), for any report r, r′ ∈ R;

2. bounded utility difference: x(θ) · θ− p(θ) ≤ B+ x(r) · θ− p(r), for any report r ∈ R and state
θ ∈ Θ;

3. induced utility is u(r) = x(r) · r − p(r) for any r ∈ R.

Note that the bounded utility difference property means the utility loss for misreporting r with true
state θ is at most B.

4.2 Optimal Scoring Rules for Symmetric Distributions

This section characterizes the optimal multi-dimensional scoring rule when the distribution over
posteriors is symmetric about its center. Program (6) is optimized by a symmetric V-shaped utility
function. This characterization affords a simple interpretation for rectangular report and state
spaces, specifically, the optimal scoring rule can be calculated by taking the maximum score over
optimal single-dimensional scoring rules for each dimension, i.e., it is a max-over-separate scoring
rule. As these single-dimensional scoring rules depend only on the prior mean, so does the optimal
multi-dimensional scoring rule. We first give the characterization and then give the interpretation.

Definition 7. A n-dimensional distribution f is center symmetric if there exists a center in the
report space, i.e., C ∈ R such that for any r ∈ R, f(r) = f(2C − r).

Note that for any center symmetric distribution f over posterior means, the mean of the prior
coincides with the center of the space, i.e., µf = C. The following definition generalizes symmetric
V-shaped functions to multi-dimensional state and report spaces.

Definition 8. A function u is symmetric V-shaped in report and state space R = Θ with non-
empty interior and center C if utility is zero at the center, i.e., u(C) = 0, utility is 1/2 on the
boundary, i.e., u(r) = 1/2 for r ∈ ∂R, and all other points linearly interpolate between the center
and the boundary, i.e., u(α · r + (1− α) · C) = α

2 for any α ∈ [0, 1] and r ∈ ∂R.

V-shaped utility functions on convex and center symmetric spaces are bounded and convex, i.e.,
they are feasible solutions to Program (6). The proof of Lemma 4.2 is deferred to Appendix D.3.

Lemma 4.2. For any convex and center symmetric report and state space R = Θ with non-empty
interior, the center symmetric utility function is convex and bounded for B = 1.

The following theorem is proved by following a standard approach in multi-dimensional mech-
anism design, e.g., Armstrong (1996) and Haghpanah and Hartline (2015). The problem is relaxed
onto single-dimensional paths, solved optimally on paths, and it is proven that the solution on
paths combine to be a feasible solution on the whole space. Note that in relaxing the problem onto
paths, constraints on pairs of reports that are not on the same path are ignored. The full proof of
Theorem 4.2 is deferred to Appendix D.4. Similar to the single dimensional V-shaped scoring rule,
the implementation of multi-dimensional V-shaped scoring rule only requires the knowledge of the
prior mean µf .

Theorem 4.2. For any center symmetric distribution f over posterior means in convex report and
state space R = Θ, the optimal solution for Program (6) is symmetric V-shaped.
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In the remainder of this section we give an interpretation of scoring rules that correspond to
V-shaped utility functions on rectangular report and state spaces. On such spaces, these optimal
scoring rules can be implemented as the maximum over separate scoring rules (for each dimension).
Intuitively, the max-over-separate scoring rule rewards the agent only on the dimension the the
agent will receive highest expected payment according to his posterior belief.

The definition of max-over-separate scoring rule is formally introduced in Definition 9, and it
is easy to verify that a max-over-separate scoring rule is proper and bounded if is based on single
dimensional scoring rules that are proper and bounded.

Definition 9. A scoring rule S is max-over-separate if there exists single dimensional scoring rules
(Ŝ1, . . . , Ŝn) such that

1. For any dimension i, Ŝi(ri, θi) = ûi(ri)+ ξ̂i(ri) · (θi− ri)+ κ̂i(θi) where ξ̂i(ri) is a subgradient
of convex function ûi(ri) and κ̂i(θi) = βi is a constant.

2. the score is S(r, θ) = Ŝi(ri, θi) where i = argmaxj Ŝj(rj, rj).

The incentives of max-over-separate is ensured by the equality of Ŝj(rj, rj) (from condition 2)
and Eθj∼Gj

[Sj(rj , θj)] for any marginal posterior distribution Gj on dimension j with mean rj .
Specifically, since the function κ̂j is a constant function of the state, all posteriors Gj with the
same mean induce the same expected score.

We conclude the section by showing that, for rectangular report and state spaces, symmetric
V-shaped utility functions, which are shown to be optimal by Theorem 4.2, can be implemented
by max-over-separate scoring rules.

Lemma 4.3. Symmetric V-shaped function u in n-dimensional rectangle report and state space
R = Θ =×n

i=1[ai, bi] with function κ(θ) = 1/2 can be implemented as max-over-separate scoring

rule with single dimensional bounded proper scoring rules {Ŝi}
n
i=1 where

Ŝi(ri, θi) =

{
− 1

bi−ai
(θi − µDi

) + 1
2 for ri ≤ µDi

,
1

bi−ai
(θi − µDi

) + 1
2 for ri ≥ µDi

,

where µDi
= (ai + bi)/2 is the ith coordinate of the prior mean µf .

Proof. First, it is easy to verify that the single dimensional scoring rules Ŝi are proper and bounded
in [0, 1]. For each dimension i, the utility function for each single dimensional scoring rule Ŝi is
V-shaped with

ûi(ri) =

{
− 1

bi−ai
(ri − µDi

) ri ≤ µDi

1
bi−ai

(ri − µDi
) ri ≥ µDi

, and κ̂i(θi) = 1/2.

By Definition 9, the max-over-separate scoring rule S is S(r, θ) = Ŝi(ri, θi) where i ∈ argmaxj ûj(rj),
and hence the utility function for max-over-separate scoring rule S can be computed as u(r) =
maxi∈[n] ûi(ri), which coincides with the symmetric V-shaped function u.

Corollary 4.4. For any center symmetric distribution f over posterior means in rectangular report
and state space R = Θ, a max-over-separate scoring rule is optimal.

Finally, these max-over-separate scoring rules have an indirect choose-and-report implemen-
tation where the agent reports the dimension to be scored on and the mean for that dimension.
This indirect implementation has a practical advantage that when the communication between
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Figure 2: This figure depicts a two-dimensional state space. The state space Θ = [0, 1]2 and its
point reflection around the prior mean µf are shaded in gray. The extended report and state space
are depicted by the region within the thick black rectangle.

the principal and the agent is costly since in n-dimensional spaces, it requires only reporting two
rather than n numbers. Note that choose-and-report and max-over-separate are essentially the
same scoring rule, with different implementations.

Definition 10. A scoring rule S is choose-and-report if there exists single dimensional scoring
rules (Ŝ1, . . . , Ŝn) such that the agent reports dimension i and mean value ri, and receives score
S((i, ri), θ) = Ŝi(ri, θi).

An agent’s optimal strategy in the choose-and-report scoring rule for proper single-dimensional
scoring rules (Ŝ1, . . . , Ŝn) is to choose the dimension i with the highest expected score according

to the posterior distribution, i.e., i = argmaxj Eθj∼Gj

[
Ŝj(µGj

, θj)
]
, and to report the mean of

the posterior for that dimension, i.e., µGi
. As described above, the advantage of such an indirect

scoring rule is that it only requires the agent to report two values to the principal. Lemma 4.5
illustrate a nice properties of choose-and-report scoring rules, with proof deferred to Appendix D.5.

Lemma 4.5. The choose-and-report scoring rule S defined by proper and bounded single-dimensional
scoring rules (Ŝ1, . . . , Ŝn) is itself proper and bounded.

4.3 Approximately Optimal Scoring Rules for General Distributions

When the distribution is not symmetric, max-over-separate scoring rules may not be optimal for
Program (6). However, we show that the optimal max-over-separate scoring rule is approximately
optimal for any asymmetric and possibly correlated distribution over a high dimensional rectangular
space.

To show this, we symmetrize the distribution over posteriors, and construct a V-shaped scoring
rule on the symmetrized distribution. This V-shaped scoring rule can be implemented as a max-
over-separate scoring rule on the original problem, which only requires the knowledge of prior
mean.

Theorem 4.3. For any distribution f over posterior means in n-dimensional rectangular report and
state space R = Θ =×n

i=1[ai, bi], the utility function u of optimal max-over-separate scoring rule for
Program (6) achieves at least 1/8 of the optimal objective value, i.e. Obj(u, f) ≥ 1/8 ·OPT(f,B,Θ).

In the following discussion, we assume without loss of generality that µDi
≥ (ai + bi)/2 for every

dimension i. The proof of this theorem introduces the following constructs:

• The extended report and state space are R̃ = Θ̃ =×n
i=1[ai, 2µDi

− ai]. These are rectangular
and contain the original report and state spaces R = Θ. See Figure 2.
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• The symmetric extended distribution of f on the extended report space is f̃(r) = 1
2(f(r) +

f(2µf − r)). Note in this definition that the original distribution f satisfies f(r) = 0 for any

r ∈ R̃ \R.

Theorem 4.3 now follows by combining the following five lemmas, with proofs provided in Appen-
dices D.6 and D.7.

Lemma 4.6. Evaluated on any distribution over posterior means f , the optimal max-over-separate
scoring rule for the distribution f and the state space Θ is at least as good as the optimal scoring
rule for the extended distribution f̃ and the extended state space Θ̃.

Lemma 4.7. The symmetric optimizer ũ for the symmetric extended distribution f̃ and extended
state space Θ̃ attains the same objective value on the original distribution f , i.e., Obj(ũ, f) =
OPT(f̃ , B, Θ̃).

Lemma 4.8. On extended state space Θ̃, the optimal value of Program (6) for the symmetric
extended distribution f̃ is at least half that for the original distribution f , i.e., OPT(f̃ , B, Θ̃) ≥
1
2OPT(f,B, Θ̃).

Lemma 4.9. For any distribution over posterior means f , the optimal value of Program (6) on the
extended state space Θ̃ is at least a quarter of that of the original state space Θ, i.e., OPT(f,B, Θ̃) ≥
1
4OPT(f,B,Θ) or equivalently OPT(f, 4B, Θ̃) ≥ OPT(f,B,Θ).

4.4 Robustness to Distributional Knowledge

By Theorem 4.3, the optimal max-over-separate scoring rule is approximately optimal, and to
implement such a scoring rule, it is sufficient to know the prior mean of the distribution. In this
section, we show that we can even relax the assumption of exact knowledge of the prior mean, and
show that the designer can approximately attain the performance of the optimal max-over-separate
scoring rule by having an estimate of the prior mean. To simplify the presentation, we will focus
on the state space Θ =×n

i=1[0, 1] and score bound B = 1. The results can be directly extended to
general rectangular state spaces and any score bound B > 0.

Theorem 4.4. For any ǫ > 0, any distribution f with prior mean µD in state space Θ =×n
i=1[0, 1],

for any µ such that ‖µ−µD‖∞ ≤ ǫ, the incentive for effort of the V-shaped scoring rule for µ is at
least that of the V-shaped scoring rule for µD less 3ǫ.

The proof of Theorem 4.4 is deferred to Appendix D.8. Note that in the following theorem we
show that the prior mean can be estimated efficiently using samples.

Theorem 4.5. For any ǫ > 0, δ > 0, any distribution f with prior mean µD in state space
Θ =×n

i=1[0, 1], letting µ be the empirical mean with 1
ǫ2

· log n
δ
samples, with probability at least

1− δ, we have ‖µ− µD‖∞ ≤ ǫ.

Proof. By Chernoff-Hoeffding inequality, we have that for any sequence of k independent random
variables {ri}

k
i=1 bounded in [0, 1] with the same mean m, we have

Pr

[∣∣∣∣∣
1

k

k∑

i=1

ri −m

∣∣∣∣∣ ≥ ǫ

]
≤ 2 exp(−2nǫ2).

Thus, with 1
ǫ2

· log n
δ

samples, by union bound, we have that with probability at least 1 − δ,
‖µ− µD‖∞ ≤ ǫ.
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Remark: In the proof of Theorem 4.5, we do not require the samples are drawn from i.i.d.
distributions. Instead we only impose the constraint of independence with the same mean. This
is particularly helpful if our estimate of the prior mean is from historical reports from different
agents as the distribution of reports may vary from agent to agent as their abilities for acquiring
information vary. However, all these distributions have the same mean by Bayesian plausibility.

Note that in the case the estimated mean is far from the prior mean, which occurs with proba-
bility at most δ, the loss in incentive for effort is at most 1. Combining Theorems 4.4 and 4.5, by
setting δ = ǫ, we have the following corollary.

Corollary 4.10. For any ǫ > 0, any distribution f with prior mean µD in state space Θ =

×n
i=1[0, 1], letting µ be the empirical mean with 1

ǫ2
· log n

ǫ
samples, the expected incentive for effort

of the V-shaped scoring rule for µ is at least that of the V-shaped scoring rule for µD less 4ǫ.

4.5 Inapproximation by Separate Scoring Rules

One way to design the scoring rule for an n-dimensional space is to average independent scoring
rules for the marginal distributions of each dimension. In this section we show that the worst-
case multiplicative approximation of scoring each dimension separately and scoring optimally is
Θ(n). Moreover, the upperbound O(n) holds for general correlated report distributions, while the
lowerbound Ω(n) holds for independent distributions. The proof of Theorem 4.6 is deferred to
Appendix D.9.

Definition 11. A scoring rule S is a separate scoring rule if there exists single dimensional scoring
rules (S1, . . . , Sn) such that S(r, θ) =

∑
i Si(ri, θi).

Theorem 4.6. In n-dimensional rectangular report and state spaces, the worst-case approximation
factor of scoring each dimension separately is Θ(n).

5 Eliciting the Full Distribution

In Appendix B.3, we gave a reduction from the problem of optimal scoring rules for eliciting the
full distribution over a finite state space to the problem of optimal scoring rules for eliciting the
marginal means over a multi-dimensional state space. This reduction is based on representing
the state space by an indicator vector. In this section, we first observe that the optimal scoring
rule can be found in polynomial time when the distribution of posteriors is given explicitly. This
result is a simple corollary of Theorem B.2 and Theorem 4.1. Second, we show that even for single
dimensional state space with finite size, the gap in performance between the optimal scoring rule
for eliciting the mean and the optimal scoring rule for eliciting the full distribution is unbounded.

Corollary 5.1. Given any finite state space Θ with |Θ| = d and any distribution f with support
size m over posteriors, there exists an algorithm that computes the optimal proper bounded scoring
rule for eliciting the full distribution in time polynomial in m and d.

Proof. This result follows from combining Theorem B.2 (the reduction from full distribution re-
porting to reporting the mean) and Theorem 4.1 (polynomial time computation of the optimal
scoring rule for the mean).

We now show that the multiplicative gap between the optimal proper scoring rule for eliciting
the full distribution and the optimal proper scoring rule for eliciting the mean is unbounded, even
when the size of the state space is a constant. The proof of Theorem 5.1 is deferred to Appendix E.1.
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Theorem 5.1. For any ǫ ∈ (0, 12 ], there exists a state space Θ with size |Θ| = 4, and a distribution f
over the posteriors on space Θ such that the objective value of optimal scoring rule for eliciting full
distribution is at least 1/4, while the objective value of optimal scoring rule for eliciting mean is at
most ǫ.

6 Application to Peer Grading

Peer grading systems manage the the assignment, collection, and aggregation of peer reviews, e.g.,
CrowdGrader (de Alfaro and Shavlovsky, 2013) and Mechanical TA (Wright et al., 2015). The
primary focus in peer grading algorithms has been in aggregating scores from peer reviewers to
produce accurate grades for submissions (e.g., Karger et al., 2014; Zhang et al., 2016). There is also
an important non-algorithmic literature on measuring impact of peer grading on learning outcomes
(e.g. Sadler and Good, 2006; Gielen et al., 2010). Unfortunately, these papers do not carefully
consider the incentives of the peers to produce high quality peer reviews. In this section, we apply
our framework of optimization of scoring rules to the peer grading scenario for incentivizing the
peers to exert effort.

In this application, there are m submissions of the assignment and each student is required to
grade one of the submissions. We assume that the instructor has access to the true grade of each
submission, and the goal of the instructor is to incentivize the students to exert effort through
grading their evaluation of the assignments. That is, students are incentivized to have a better
understanding of the course material through evaluating other students’ submissions. Note that if
the instructor only has access to the truth grades for a subset of submissions, the technique of spot
checking can be applied here, while the incentive for effort decreases linearly in probability of spot
checking.

The instructor announces the n-dimensional marking criteria. This criteria can be in the form
of a grading rubric or it can be tags of common mistakes. E.g., for an inductive proof tags might
include “missing base case” or “unclear induction hypothesis”. (For example, such a system for
tagging common mistakes has been previously employed for automated feedback systems, e.g.,
Stephens-Martinez et al., 2017.) Given the marking criteria, each peer will mark the submissions by
submitting a prediction µi ∈ [0, 1] for whether the submission satisfies each criterion i ∈ {1. . . . , n}.

These predictions are then be graded by a scoring rule with ground truth marks for the submis-
sion that are provided by course staff. Naturally such a scoring rule needs to satisfy the boundedness
constraint. We assume that the effort of the peer is binary in this setting, either she can read the
submission to have a refined prediction of the true mark for each criterion, or her optimal strategy
is to submit her prior belief, i.e., the class average mark for the criterion across all submissions.

Theorem 4.3 suggests that the max-over-separate scoring rule approximately maximizes the
incentives for the peers to exert effort. This scoring rule assumes knowledge of the prior probabilities
for each criterion; however, these quantities can be estimated efficiently by aggregating the true
grades and the reports from the peers for the m− 1 remaining submissions with negligible loss on
the incentives (Corollary 4.10).

In this peer grading context the max-over-separate scoring rule has a natural interpretation.
Consider criterion i with µDi

> 1/2 and ri < µDi
. The utility from the single dimensional scoring

rule for i given posterior belief ri is

ûi(ri) =
1

2µDi

· (µDi
− ri) =

1

2
−

ri
2µDi

.

Specifically, the more surprising the report is (i.e., the smaller ri is and the bigger µDi
is) the

higher the peer’s expected score. According to the max-over-separate scoring rule, the peer is only
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scored against the realized criteria for which her utility according to her posterior is the highest.
Interpreting the criteria as common mistakes, good scoring rules are ones that reward the peer for
spotting the mistakes that occur more rarely.

7 Conclusions

In this paper, we develop a framework for optimizing scoring rules. Our objective is to maximize the
incentive for the forecaster to exert a binary level of effort subject to a boundedness constraint on
the ex post score of the scoring rule. We characterize the optimal scoring rule for eliciting the mean
in single-dimensional state spaces and in multi-dimensional state spaces with center symmetric
distributions. More generally, we give a polynomial time algorithm for computing the optimal
scoring rule when the posterior distributions are given explicitly. We also show that the simple
max-over-separate scoring rule is a constant approximation to the optimal scoring rule for eliciting
the mean for any asymmetric distribution. Our novel scoring rules contrast with standard scoring
rules in theory and practice which are far from optimal in our model.

There are a number of open directions for the study of the model proposed in the paper. First,
can an (approximately) prior-independent optimal scoring rule be identified for multi-dimensional
state spaces? Second, is the max-over-separate scoring rule a constant approximation to the optimal
scoring rule for eliciting the full distribution over a finite set of states? The difficulty of the latter
question comes from the fact that a distribution is a point in the simplex and our analysis of the
approximation of max-over-separate uses the fact that the report space is a rectangular region.

We have shown that the optimal prior-independent scoring rule, e.g., for single-dimensional
states, does not obtain a constant approximation to the optimal scoring rule. This result suggests
that, for practical implementation of good scoring rules, a theory of sample complexity for scoring
rules is needed. Such a theory would enable the principal to identify a pretty good scoring rule
from samples of the posterior distributions.

There are a number potentially interesting extensions to our model that could be considered.
Towards prior-independent scoring rules, it would be interesting to consider settings with multiple
forecasters. For example, Osband (1989) considers an extension of the basic one-forecaster model
where there are multiple forecasters and only the one whose report is closest to the true state
receives a reward. Could it be that there is a Bulow and Klemperer (1996) style result where there
is a prior-independent scoring rule for several forecasters that outperforms the optimal scoring rule
for fewer forecasters, e.g., one forecaster?

An important generalization of our model is to one with non-binary levels of effort. In Osband
(1989) and Neyman, Noarov, and Weinberg (2021) the forecaster exerts a single-dimensional effort
for learning more accurate prior. The objective of these papers is the accuracy of the forecast as is
measured by its prediction error. It would be interesting to evaluate our max-over-separate scoring
rule with richer levels of possible effort and compare it to the optimal scoring rule. One of our main
motivations for considering multi-dimensional states is the case where these dimensions correspond
to different elicitation tasks, e.g., peer graders evaluating different submissions, peer prediction of
different labeling tasks, or exam answers of different questions. For these tasks the effort is also
multi-dimensional. Optimization of scoring rules with multi-dimensional effort is a critical problem
for these applications.

Another variation to the model considers the case where the principal has to pay a cost to
observe the distinct dimensions of a realized state. For example, in the peer grading application,
the multi-dimensional state corresponds to a peer’s reviews of different submissions. It is costly
to obtain ground truth labels for the submission grades, e.g., by having an instructor grade the

19



submission, and a natural approach is to use spot checking. However, the most natural approach,
namely spot checking one of the submissions and assigning a grade based on an optimal scoring
rule for that submission, corresponds to averaging over separate scoring rules which we have shown
is very far from optimal. Are there scoring rules that are near optimal but are more frugal with
costly evaluation of the state?
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A Detailed Discussion of Related Work.

In this section we give a detailed discusson of some of the most related works.
The early work of Osband (1989) is close to ours in that it assumes that the agent has a

prior and, with a continuous level effort, can receive a signal from which the prior is updated to a
posterior. The principal then aims at optimizing a quadratic loss function while incentivizing the
agent to both put in effort and truthfully report the posterior. Osband (1989) imposes additional
constraints on the scoring rule such that the restricted optimal scoring rule is quadradic. In our
setting of binary effort, we impose no constraint on the scoring rule except the ex post boundedness,
and we find that the optimal scoring rule for incentivizing effort is V-shape instead of quadratic.

Zermeno (2011) considers the optimization of scoring rules in the binary state setting, and he
shows that among all scoring rules that induces a certain level of effort, the V-shaped scoring rule
is the one that minimizes the expected transfer from the principal to the agent. This objective is
qualitatively different from ours, where we consider the objective of maximizing the agent’s expected
surplus for exerting effort, subject to the ex post boundedness constraint. In addition, the model
in Zermeno (2011) is restricted in the following two ways: 1) it only considers single dimensional
(i.e., binary states) optimization problem; 2) agent’s cost of effort is known to the principal. In our
paper, we show that the V-shaped scoring rule is optimal in the single dimensional problem even
when the agent has private cost of effort, and more importantly, in the multi-dimensional problem,
the V-shaped scoring rule is approximately optimal for eliciting effort.

Contemporaneously with and independently from our work, Neyman, Noarov, and Weinberg
(2021) consider the optimization of scoring rules for a binary state setting with uniform prior. The
forecaster has access to costly samples and solves the optimal stopping problem given the cost
and the scoring rule. They show that all scoring rules can be ranked by an incentivization index
such that when the cost of the forecaster’s samples converges to zero, the scoring rule with higher
incentivization index induces lower prediction error given that the forecaster optimizes his expected
reward net the cost. The authors characterize the scoring rule that maximizes the incentivization
index. The main difference between their paper and ours is: in their model, different scoring rules
only lead to prediction error with lower order terms that vanishes to zero, and under equilibrium the
forecaster acquires almost perfect information about the state. In contrast, in our model, scoring
rule plays a crucial rule for incentivizing effort, and both the additive gap and the multiplicative
gap between the optimal scoring rule and heuristic scoring rules (e.g., quadratic scoring rules) for
providing incentives can be large.

Frongillo and Witkowski (2017) considers the same optimization goal of maximizing incentive
in the different single-task peer prediction setting. In the peer prediction model, the designer
does not have access to a sample of the ground truth and must cross reference the reports from
different agents to elicit the truthful report. Thus, the truthful peer prediction mechanism is unique
up to positive affine transformations. Their optimization program reduces to the optimization of
the parameters for affine transformations, which is significantly different from the optimization of
scoring rules.

B Missing Proofs in Section 2

B.1 Proofs in Section 2.2

Proof of Proposition 2.1. Canonical scoring rules have the following simple interpretation. By mak-
ing a report r, the agent selects the supporting hyperplane of u at r on which to evaluate the state.
This supporting hyperplane has gradient ξ(r) and contains point (r, u(r)). The agent’s utility is
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equal to the value of the realized state θ on this hyperplane (plus constant κ(θ) which is indepen-
dent of the agent’s report). With utility given by a random point on a hyperplane, the expected
utility is equal to its mean on the hyperplane. When the agent’s true posterior belief is that the
state has mean r, the agent’s expected utility is u(r) (plus a constant equal to the expected value
of κ(·) under the agent’s posterior belief; summarized below as Lemma 2.2). Misreporting r′ with
belief r gives a utility equal to the value of r on the supporting hyperplane with gradient ξ(r′) at
r′. By convexity of u, a report of r gives the higher utility of u(r).

Proof of Lemma 2.3. Similar to the proof of Proposition 2.1, canonical scoring rules (Definition 3)
can be interpreted via supporting hyperplanes of the utility function. The first term on the left-
hand side of (4) upper bounds the utility that an agent can obtain at state θ, specifically, it is the
utility from reporting state θ. The remainder of the left-hand side subtracts the utility that the
agent obtains from report r in state θ, i.e., it evaluates, at state θ, the supporting hyperplane of u
at report r. Thus, the boundedness constraint requires the difference between the utility function
and the value of any supporting hyperplane of the utility function to be bounded at all states θ ∈ Θ.
Figure 1(a) illustrates this bound.

The subgradient in {ξ(r) : r ∈ R} that maximizes the right-hand side of the inequality identifies
the range of ex post score of the agent for this scoring rule. To enforce that the score is within
[0, B], we select κ(θ) equal to the negative of the lower endpoint of this range so that the score is
0 for the report with the worst score at state θ.

Of course, since the score bound is B, this inequality is tight for some r ∈ R and θ ∈ Θ.

B.2 Proof of Theorem 2.1

In this section, we will formally prove Theorem 2.1. In the subsequent discussion, the boundary of
the report space is denoted by ∂R and the interior of the report space by relint(R) = R \ ∂R.

Lemma B.1 (Abernethy and Frongillo, 2012). Any proper and µ-differentiable scoring rule for
eliciting the mean S coincides with a canonical scoring rule (defined by u, ξ, and κ) at reports in
the relative interior of the report space, i.e., it satisfies equation (2) for all r ∈ relint(R).

The main new results need to show that canonical scoring rules are without loss for Program (1)
are extensions of Lemma B.1 to the boundary of the report space ∂R. The form of scoring rules
considered enters the program in two places: the objective and the boundedness constraint. The
two lemmas below show that canonical scoring rules are without loss in these two places in the
program.

Lemma B.2. Any µ-differentiable, bounded, and proper scoring rule S for eliciting the mean is
equal in expectation of truthful reports to a canonical scoring rule (defined by u, ξ, and κ), i.e., it
satisfies equation (3).

Lemma B.3. For any µ-differentiable and proper scoring rule S for eliciting the mean that in-
duces utility function u (via Lemma B.2) and satisfies score bounded in [0, B], there is a canonical
scoring rule defined by u (and some ξ and κ) that satisfies the same score bound, i.e., it satisfies
equation (4).

Note that Lemma B.2 implies that the utility function u corresponding to any µ-differentiable
scoring rule S can be identified (via the equivalent cannonical scoring rule); thus, the assumption
of Lemma B.3 is well defined. Lemma B.2 and Lemma B.3 combine to imply that Program (1) and
Program (6) are equivalent.
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Next, we will formally prove Lemma B.2 and B.3. First we show that when the scoring rule
is bounded, the corresponding functions u(r), ξ(r), κ(θ) in the characterization of Lemma B.1 are
bounded in the interior as well.

Lemma B.4. For any bounded scoring rule S, there exist convex function u : R → R and function
κ : Θ → R such that for any report r ∈ relint(R) and any state θ ∈ Θ,

S(r, θ) = u(r) + ξ(r) · (θ − r) + κ(θ)

where ξ(r) ∈ ∂u(r) is a subgradient of u, and functions u(r), ξ(r), κ(θ) are bounded for any report
r ∈ relint(R) and any state θ ∈ Θ.

Proof. Since scoring rule S is bounded, let B̄θ = supr∈relint(R) S(r, θ) and Bθ = infr∈relint(R) S(r, θ).
Let r̂ ∈ relint(R) be a report in the interior such that both u(r̂) and ξ(r̂) are finite. Note that for
any state θ ∈ Θ, state θ locate on the boundary of the report space, i.e., θ ∈ ∂R, and the report
space is a linear combination of the state space.

For any report r ∈ relint(R), by the convexity of function u, we have

u(r) ≥ u(r̂)− ξ(r̂) · (r − r̂)

and hence u(r) is bounded below.
Next we show that u(r) is bounded above for any report r ∈ relint(R). We first show that

fixing any state θ, any report r which is a linear combination of θ and r̂ has bounded utility u(r).
If u(r) ≤ u(r̂), then naturally u(r) is bounded above. Otherwise, note that

B̄θ −Bθ ≥ S(r, θ)− S(r̂, θ) = u(r) + ξ(r) · (θ − r)− u(r̂)− ξ(r̂) · (θ − r̂)

≥ (u(r)− u(r̂)) ·
‖θ − r̂‖

‖r̂ − r‖
+ u(r̂)− u(r̂)− ξ(r̂) · (θ − r̂) ≥ u(r)− u(r̂)− ξ(r̂) · (θ − r̂),

where the first inequality holds because the scoring rule is bounded. The second inequality holds
because the convex function u projected on line (θ, r̂) is still a convex function. The last inequality
holds because report r lies in between θ and r̂. Therefore, we have that u(r) is bounded above
for report r lies in between θ and r̂. For any state θ ∈ Θ, let û(θ) = limk→∞ u(rk) where {rk}∞k=1

is a sequence of report on line (θ, r̂) that converges to θ. Since u(rk) are bounded for any rk, we
have that û(θ) is bounded as well. Since the report space is a subset of the convex hull of the state
space, we have that for any report r ∈ relint(R), u(r) is upper bounded by the convex combination
of û(θ), which is also bounded by above.

For any state θ ∈ Θ, we have

S(r̂, θ) = u(r̂) + ξ(r̂) · (θ − r̂) + κ(θ),

which implies κ(θ) is bounded since all other terms are bounded.
Finally, for any report r ∈ relint(R) and any state θ ∈ Θ,

S(r, θ) = u(r) + ξ(r) · (θ − r) + κ(θ),

which implies ξ(r)·(θ−r) is bounded. Since the boundedness holds for all directions, the subgradient
ξ(r) must also be bounded.

Lemma B.5. Given any state space Θ and report space R with non-empty interior, for any dis-
tribution G ∈ ∆(Θ) with mean µG, there exists a sequence of posteriors {Gk} such that for any
bounded function φ(θ) in space Θ, we have {Eθ∼Gk [φ(θ)]} converges to Eθ∼G [φ(θ)].
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Proof. Since space R has a non-empty interior, let G̃ be a distribution with mean µ
G̃
in the interior

of R. Let the sequence of posteriors Gk = (1− 1/k) ·G+ 1/k · G̃. For any bounded function φ(θ) in
space Θ, we have

lim
k→∞

Eθ∼Gk [φ(θ)] = lim
k→∞

[(1 − 1/k) · Eθ∼G [φ(θ)] + 1/k · E
θ∼G̃

[φ(θ)]] → Eθ∼G [φ(θ)] .

Proof of Lemma B.2. By Lemma B.1, for µ-differentiable proper scoring rule S, there exists convex
function u : R → R and function κ : Θ → R such that for any report r ∈ relint(R) and any state
θ ∈ Θ, we have

S(r, θ) = u(r) + ξ(r) · (θ − r) + κ(θ)

where ξ(r) ∈ ∇u(r) is a subgradient of u. By Lemma B.4, since the scoring rule is bounded,
function u is convex and bounded and hence continuous in the interior. Thus, we can well define
the value of u on the boundary as its limit from the interior, i.e., set u(r) = limk→∞ u(rk) for any r
on the boundary of the report space R and {rk}∞k=1 as a sequence of interior reports converging to
r. Thus we can replace the convex function u with continuous and convex function u for bounded
scoring rules and the characterization still holds in the interior.

For any bounded proper scoring rule, we have that u(r) is bounded for any report r ∈ relint(R)
and κ(θ) is bounded for any state θ ∈ Θ. Given any posterior G such that µG ∈ ∂R, let {Gk} be
the sequence of posteriors constructed in Lemma B.5.

1. The identity function φ(θ) = θ is bounded. Therefore, the mean of the posteriors converges,
i.e., limk→∞ µGk = µG. And all means {µGk} are in the interior of R.

2. Function κ(θ) is bounded. Therefore, the expected value for function κ converges. That is,
limk→∞Eθ∼Gk [κ(θ)] = Eθ∼G [κ(θ)].

3. The ex post score S(r, θ) is bounded. Therefore, the expected score for reporting µG converges,
i.e., limk→∞Eθ∼Gk [S(µG, θ)] = Eθ∼G [S(µG, θ)].

Moreover, considering the sequence of expected score for reporting µGk with distribution G, we
have

lim
k→∞

Eθ∼G [S(µGk , θ)] = lim
k→∞

[u(µGk) +Eθ∼G [ξ(µGk) · (θ − µGk)] +Eθ∼G [κ(θ)]]

= lim
k→∞

[u(µGk) +Eθ∼Gk [κ(θ)]] = lim
k→∞

[Eθ∼Gk [S(µGk , θ)]

where the second equality holds because limk→∞Eθ∼Gk [κ(θ)] = Eθ∼G [κ(θ)] and limk→∞ µGk = µG.
Combining the equalities, we have

Eθ∼G [S(µG, θ)] = lim
k→∞

Eθ∼Gk [S(µG, θ)] ≤ lim
k→∞

Eθ∼Gk [S(µGk , θ)]

= lim
k→∞

Eθ∼Gk [S(µGk , θ)] = lim
k→∞

Eθ∼G [S(µGk , θ)] ≤ Eθ∼G [S(µG, θ)]

where the inequalities holds by the properness of the scoring rule. Therefore, all inequalities must
be equalities, and hence

Eθ∼G [S(µG, θ)] = lim
k→∞

Eθ∼Gk [S(µGk , θ)] = lim
k→∞

Eθ∼Gk [u(µGk) + κ(θ)] = u(µG) +Eθ∼G [κ(θ)] .

where the last equality hold since function u is continuous.
Finally, given any bounded, continuous and convex function u with bounded subgradients and

any bounded function κ, the corresponding canonical scoring rule is proper, bounded, and the
expected score coincides.
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Proof of Lemma B.3. If a proper scoring rule S is induced by function u and bounded by B in
space Θ, by Lemma B.1, there exists function κ : Θ → R such that for any report r ∈ relint(R)
and any state θ ∈ Θ,

S(r, θ) = u(r) + ξ(r) · (θ − r) + κ(θ)

where ξ(r) ∈ ∇u(r) is a subgradient of u. Moreover, the score S(r, θ) ∈ [0, B] for any report and
state r ∈ R, θ ∈ Θ. Thus, it holds that for any report and state r ∈ relint(R), θ ∈ Θ

S(θ, θ)− S(r, θ) = u(θ)− u(r)− ξ(r)(θ − r) ≤ B.

For any report R ∈ ∂R, there exists a sequence of reports ri such that {rk} converges to r and
ξ(r) = limk→∞ ξ(rk) is a subgradient at report r. Thus, it holds that for any report r ∈ ∂R and
state θ ∈ Θ,

S(θ, θ)− S(r, θ) = u(θ)− u(r)− lim
k→∞

ξ(rk)(θ − r) ≤ B.

Therefore, the canonical scoring rule defined by u with the same function κ is proper and bounded
in [0, B].

B.3 Proper Scoring Rules for Optimally Eliciting the Full Distribution

The previous discussions in this section focused on scoring rules for eliciting the mean of the
posterior distribution. Note that elicitation of the mean is a restriction on scoring rules and in
general, the principal could solicit the full distribution and reward the agent accordingly. In this
section, we will show that, with respect to optimization and approximation, the problems of eliciting
the full posterior distribution over a finite state space reduces to problems of eliciting the mean of
a multi-dimensional state space.

Note that the sum of probabilities for all states is 1. So the report space is a |Θ|-dimensional
simplex, i.e., R = {r ∈ [0, 1]|Θ| :

∑
i ri = 1}. For simplicity, for any posterior distribution G, we

also use G to denote the |Θ|-dimensional vector of probabilities for the posterior distribution. For

any finite state space Θ = {θ(j)}
|Θ|
j=1, we rewrite state θ(j) as |Θ|-dimensional vectors, i.e., θ

(j)
i = 1

if i = j and θ
(j)
i = 0 otherwise. It is easy to verify that R = conv(Θ). Next we introduce the

characterization of proper scoring rules for eliciting the full distribution.

Definition 12. A scoring rule S is proper for eliciting the full distribution in space Θ if for any
distribution G ∈ ∆(Θ) and any report G′ ∈ R, we have

Eθ∼G [S(G, θ)] ≥ Eθ∼G

[
S(G′, θ)

]
.

Theorem B.1 (McCarthy, 1956). For any finite state space Θ and corresponding report space R,
a scoring rule S is proper for eliciting the full distribution in space Θ if and only if there exists a
convex function u : R → R such that for any report G ∈ R and any state θ ∈ Θ, we have

S(G, θ) = u(G) + ξ(G) · (θ −G),

where ξ(G) ∈ ∇u(G) is a subgradient of u.

Similar to Lemma B.2, if the scoring rule is bounded, then the utility function u in Theorem B.1
is bounded and continuous. The proof of continuity is the same as Lemma B.2 and hence omitted
here.

Note that there is no function κ(θ) in the characterization of Theorem B.1. The reason is that
here for any finite state space Θ, any scoring rule S(G, θ) = u(G) + ξ(G) · (θ − G) + κ(θ), there
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exists another convex function û such that S(G, θ) = û(G)+ ξ(G) · (θ−G), where ξ(G) ∈ ∇û(G) is
a subgradient of û. The objective value for reporting the full distribution with distribution f and
scoring rule S is

Obj(u, f) = EG∼f,θ∼G [S(G, θ)− S(D, θ)] =

∫

R

[u(G)− u(D)] f(G) dG.

Thus the form of the objective function for reporting the full distribution coincides with the
objective function for reporting the mean. Moreover, it is easy to verify that the bounded constraint
coincides as well. This result follows because distributions with finite state space Θ can be viewed
as |Θ|-dimensional perfectly negatively correlated distributions with Bernoulli marginals. One
important property of Bernoulli distributions is that reporting the full distribution is equivalent
to reporting the mean of the distribution. Since reporting the full distribution and reporting the
mean have the same characterization in this case, by viewing the distribution as |Θ|-dimensional
correlated distribution, we have the following theorem.

Theorem B.2. For any finite state space Θ, report space R = conv(Θ), and any distribution f ∈ R
over posteriors, scoring rule S is optimal for eliciting the full distribution if and only if it is optimal
for eliciting the mean.

C Missing Proofs in Section 3

C.1 Proof of Theorem 3.1

Proof of Theorem 3.1. Consider any feasible solution u(r) of Program (7). We construct a V-
shaped utility function ũ(r) as

ũ(r) =

{
−u(0)

µD
(r − µD) for r ≤ µD,

u(1)
1−µD

(r − µD) for r ≥ µD.

The construction of ũ is illustrated in Figure 1b. It is easy to see that ũ is convex, ũ(µD) = 0 and
ũ(r) ≥ u(r) for any r ∈ [0, 1]. Therefore, the objective value for function ũ is higher than objective
value for function u. Moreover, we have ũ(0) = u(0), ũ(1) = u(1), ũ′(0) ≥ ξ(0) and ũ′(1) ≤ ξ(1),
which implies ũ is also a feasible solution to Program (7). Thus, an optimal solution is V-shaped.

Next we focus on finding the optimal V-shaped function ũ for Program (7). Let a = −u(0)/µD =
ũ′(0) and b = u(1)/(1− µD) = ũ′(1). Since function ũ satisfies the constraints in Program (7), we get

b(1− µD) = ũ(1) ≤ 1 + ũ(0) + ũ′(0) = 1− a · µD + a,

b(1− µD) = ũ(1) ≥ ũ′(1) + ũ(0)− 1 = b− a · µD − 1,

which implies b ≤ a + 1/(1− µD) and b ≤ a + 1/µD. If b < a + 1/max{µD , 1− µD}, then we can either
increase b or decrease a to get a better feasible V-shaped utility function. Suppose we fix parameter
a, the objective value is pointwise maximized for any report r when b = a+ 1/max{µD , 1− µD}.

Next we fix the optimal choice for parameter b. Note that the objective value given any param-
eter a is

∫ 1

0
u(r)f(r) dr =

∫ µD

0
a(r − µD)f(r) dr +

∫ 1

µD

(
a+

1

max(µD, 1− µD)

)
(r − µD)f(r) dr

=
1

max(µD, 1− µD)

∫ 1

µD

(r − µD)f(r) dr, (8)

which invariant of parameter a. Therefore, any V-shaped utility function with parameters satisfying
b = a+ 1/max{µD , 1− µD} is optimal and obtains objective value given by equation (8).
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C.2 Proof of Corollary 3.3

Proof of Corollary 3.3. In the characterization of the optimal performance of Theorem 3.1, i.e.,

OPT(f) = Er∼f [max(r − µD, 0)]/max(µD, 1− µD),

it is easy to see that the numerator is maximized and the denominator is minimized in when the
distibution of posterior means f is uniform on the extreme points {0, 1}. For this distribution, the
numerator is 1/4 and the denominator is 1/2. Thus, OPT(f) = 1/2.

C.3 Proof of Theorem 3.2

Proof of Theorem 3.2. Suppose the distribution over report f(r) has two point masses, which is
a with probability p, and b > a with probability 1 − p. Then, we have the mean of prior is
µD = pa + (1 − p)b and a < µD < b. Without loss of generality, we can assume that µD ≤ 1

2 .
By Theorem 3.1, it holds that

c = OPT(f) =
1

max{µD, 1− µD}
· (1− p)(b− µD) =

p(1− p)(b− a)

max{µD, 1− µD}
. (9)

For quadratic scoring rule with utility function uq(r) = r2 (Definition 6), we have

Obj(uq, f) = Er∼f [uq(r)]− uq(µD) = p(a2 − µ2
D) + (1− p)(b2 − µ2

D) = p(1− p)(b− a)2. (10)

Combining equations (9) and (10), we have

Obj(uq, f) = (max{µD, 1− µD})
2 ·

c2

p(1− p)
.

The worst case ratio is achieved when Obj(uq, f) is minimized, i.e., µD = 1
2 and p = 1

2 , which gives
minf∈Fc

Obj(uq, f) = c2.

C.4 Proof of Theorem 3.3

To simplify the proof of Theorem 3.3, we define the benchmark ÕPT as an approximate upper-
bound on OPT:

ÕPT(f) = 2max(µD, 1− µD)OPT(f) = 2Er∼f [max(r − µD, 0)] .

Notice that max(µD, 1 − µD) ∈ [1/2, 1]; thus, OPT(µD) ≤ ÕPT(µD) ≤ 2OPT(µD). Thus, ap-

proximation of benchmark ÕPT is equivalent to approximation of OPT up to a factor of two.
Theorem 3.3 is obtained from Lemma C.1 and the bound of c ≤ c̃ ≤ 2 c.

Lemma C.1. Let Fc̃ be the set of distributions over posterior means such that benchmark ÕPT is
c̃ ∈ (0, 1/2]. For any convex and bounded utility function u, we have

min
f∈Fc

Obj(u, f) ≤ min(12 ,
2c̃2

(1−2c̃)2
) ≤ 8c̃2.

Proof. A convex and bounded utility function u has monotone derivative u′ and, by Lemma 3.1,
the amount this derivative increases on its [0, 1] domain is u′(1)−u′(0) bounded by 2. Consider any
positive integer d and partition the [0, 1] domain of u into d intervals of width 1/d. By the pigeon
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hole principle, one part must contain at most the average increase of u′, i.e., there exists interval
[a, b = a+ 1/d] with u′(b)− u′(a) ≤ 2/d.

Consider distribution fd defined as the uniform distribution over deterministic points a and b
with mean µd = a+ 1/2d. By the definition of benchmark ÕPT:

ÕPT(fd) = 2Er∼fd [max(r − µd, 0)] =
1
2d .

Calculating the objective value of utility function u, we have

Obj(u, fd) =
u(a) + u(b)

2
− u(µd) ≤

u′(b)− u′(a)

2
·
b− a

2
=

1

2d2
,

where the inequality follows from identifying an optimal utility u satisfying u′(b) − u′(a) ≤ 2/d. It
is u′(r) = − 1/d for r ∈ [a, µd) and u′(r) = 1/d for r ∈ (µd, b]. Combining the two bounds with

ÕPT(fd) = c̃ we see that Obj(u, fd) ≤ 2 c̃2 for c̃ ∈ {1/2d : d ∈ {1, . . .}}.
To extend this bound to all c̃ ∈ [0, 1/2], observe that the bound on Obj(u, fd) easily extends

to Obj(u, fd′) for non-integral d′ ≥ d, while the value of ÕPT(fd′) holds as calculated for non-

integral d′. Thus, we can obtain bounds for non-integral d′ by combining bounds on ÕPT(fd+1) and

Obj(u, fd). Solving for the bound on Obj(u, fd) in terms of c̃ = ÕPT(fd+1): for any c̃ ∈ (0, 1/2] there

exists f ∈ Fc̃ with Obj(u, f) ≤ min(12 ,
2c̃2

(1−2c̃)2 ) ≤ 8 c̃2. The first inequality holds by substituting

d = 1/2c̃ − 1 into the formula of Obj(u, fd), the second inequality uses Obj(u, f) ≤ 1/2 and notes
that the bound of the first inequality is trivial until c̃ ≤ 1/4, and thereafter the denominator is lower
bounded by 1/4.

C.5 Proof of Theorem 3.5

Proof. By Theorem 3.1, there is an optimal utility function that is V-shaped at µf with parameters
|a| , |b| ≤ 1. Thus, we have

OPT(f) =

∫ µD

0
a(r − µD)f(r) dr +

∫ 1

µD

b(r − µD)f(r) dr ≤ Er∼f [|r − µD|] .

By Definition 6, the objective value of the quadratic scoring rule is

Obj(uq, f) = Er∼f [uq(r)− uq(µD)] = Er∼f

[
(r − µD)

2
]
.

By Jensen’s inequality, we have

Er∼f [|r − µf |] = Er∼f

[√
(r − µf )2

]
≤

√
Er∼f [(r − µf )2] =

Er∼f

[
(r − µf )

2
]

σ
,

where the last equality is due to Er∼f

[
(r − µf )

2
]
= σ2.

D Missing Proofs in Section 4

D.1 Proof of Proposition 4.1

Proof of Proposition 4.1. For the “if” direction: if the allocation x and payment p satisfies the
above conditions, by Rochet (1985) and the Bayesian incentive compatibility, the utility function u
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is continuous and convex, and ξ(r) = x(r) is a feasible subgradient of the utility function. By the
bounded utility difference, we have that

u(θ)− u(r)− ξ(r) · (θ − r) = x(θ) · θ − p(θ)− x(r) · r + p(r)− x(r) · (θ − r)

= x(θ) · θ − p(θ)− x(r) · θ + p(r) ≤ B,

which implies utility function u corresponds to a µ-differentiable B-bounded proper scoring rule.
For the “only if” direction: given a utility function u of a µ-differentiable bounded proper

scoring rule for eliciting the mean, by Lemma B.3, there exists a set of subgradients ξ(r) ∈ ∂u(r)
such that

u(θ)− u(r)− ξ(r) · (θ − r) ≤ B

for any report r ∈ R and state θ ∈ Θ. Setting the allocation as x(r) = ξ(r), and the payment as
p(r) = r ·ξ(r)−u(r), it is easy to verify that this allocation and payment satisfy all three conditions
above.

D.2 Proof of Theorem 4.1

Proof of Theorem 4.1. Denote the finite set of state space as Θ = {θj}
d
j=1, Let the support of

distribution f over posterior means be {ri}
m
i=1. Denote the probability that posterior mean ri

happens as fi. For simplicity, denote r0 = µD as the mean of the prior and rm+j = θj as the report
for pointmass distribution on states for any j ∈ [d]. Program (6) is equivalent to the following
program.

max
{xi,pi}i∈{0,...,m+d}

∑

i∈[m]

(xi · ri − pi) fi (11)

s.t. x0 · r0 − p0 = 0,

xi · ri − pi ≥ xi′ · ri − pi′ , ∀i, i′ ∈ {0, . . . ,m+ d},

(xi · ri − pi)− (xi′ · ri − pi′) ≤ B ∀i ∈ {m+ 1, . . . ,m+ d}, i′ ∈ {0, . . . ,m+ d}.

Note that Program (11) is a linear program with number of variables and constraints polynomial
in n, m, and d; and hence there exists a polynomial time algorithm that optimally solves it. Next
we will formally prove the equivalence of Program (6) and Program (11).

For one direction: For any utility function u that is a feasible solution to Program (6), by
Proposition 4.1, there exists corresponding allocation and payment functions x and p. Let the
variables in Program (11) be xi = x(ri), pi = p(ri), for any i ∈ {0, . . . ,m+ d}. It is easy to verify
that this is a feasible solution to Program (11) with the same objective value.

For the other direction: For any feasible solution {xi, pi}i∈{0,...,m+d} to Program (11), define the
utility function

u(r) = max
i∈{0,...,m+d}

xi · r − pi

for any report r ∈ R. We show that this utility function u satisfies Program (6) and has the same
objective value. Obviously, the utility function u is continuous and convex. For any i ∈ {0, . . . ,m+
d}, the utility function u(ri) = xi · ri − pi by the definition of Bayesian incentive compatibility,
and hence the objective value of Program (6) given by this utility u equals the objective value
of Program (11). Moreover, for any report r ∈ R, letting i′ = argmaxi∈{0,··· ,m+d} xir − pi, the
allocation xi′ is a subgradient of the utility function u(r) at report r. Thus, we have for any state
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θ(j) ∈ Θ

u(θ(j))− u(r)− ξ(r) · (θ(j) − r) = (xm+j · θ
(j) − pm+j)− (xi′ · r − pi′)− xi′ · (θ

(j) − r)

= (xm+j · θ
(j) − pm+j)− (xi′ · θ

(j) − pi′) ≤ B,

where the last inequality holds by the bounded utility difference property. Therefore, utility function
u is a feasible solution to Program (6), which establishes the equivalence of two programs.

D.3 Proof of Lemma 4.2

Proof. The following geometry of the utility function is easy verify. First, convexity of report space
R implies convexity of u. Second, consider the n + 1 dimensional space R × [−1/2, 1/2], where the
n+1st dimension represents the utility u. The utility function defines a truncated convex cone with
vertex equal to (µD, 0) and base at height 1/2 with cross section R. Consider the point reflection,
henceforth, the reflected cone, of this convex cone around its vertex (µD, 0). By basic properties
of cones and their point reflections, this reflected cone has the same supporting hyperplanes as the
original cone. By the symmetry assumption of R around µD, the reflected cone is equal to the
mirror reflection of the original cone with respect to the u = 0 plane. Consequently, the base of
the reflected cone at u = −1/2 has cross section equal to R.

We now argue that the utility function satisfies the boundeness constraint, restated for conve-
nience (with report r ∈ R and state θ ∈ Θ):

u(θ)− u(r)−∇u(r) · (θ − r) ≤ 1.

By definition of the V-shaped utility, we know that the first term is at most 1/2. The second and
third terms, together, can be viewed as subtracting the evaluation, at state θ, of the supporting
hyperplane of u at r. The highest point in the reflected cone for any θ ∈ R is −u(θ) and this
point lower bounds the value of θ in any of the reflected cones supporting hyperplanes (which are
the same as the original cones supporting hyperplanes). By definition, the reflected cone satisfies
−u(θ) ≥ −1/2 for θ ∈ R. We conclude, as desired, that the difference between the first term and
the second and third terms is at most 1.

D.4 Proof of Theorem 4.2

Proof. Consider relaxing the optimization problem on the general space solve it independently on
lines through the center. Specifically, consider the conditional distribution of f on the line segment
through the center µD and the boundary points r and 2µD − r on ∂R. Center symmetry implys
symmetry on this line segment. By Corollary 3.2, the solution to this single-dimensional problem
is symmetric V-shaped, i.e., with u(r) = u(2µD − r) = 1/2 and u(µD) = 1/2.

The solutions on all lines through the center µD coincide at µD with u(µD) = 0. They can
be combined, and the resulting utility function u is a symmetric V-shaped function (Definition 8).
Lemma 4.2 implies that u is convex and bounded and, thus feasible for the original program. Since
it optimizes a relaxation of the original program, it is also optimal for the original program.

D.5 Proof of Lemma 4.5

Proof. Given posterior distribution G, let i be the dimension that maximizes the agent’s expected

utility under separate scoring rules Ŝ1, . . . , Ŝn, i.e., i = argmaxj Eθj∼Gj

[
Ŝj(µGj

, θj)
]
, and let
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ri = µGi
be the mean of the posterior on dimension i. For report r = (i, ri) and any other

report r′ = (i′, r′i), we have

Eθ∼G [S(r, θ)] = Eθi∼Gi

[
Ŝi(ri, θi)

]
≥ Eθi′∼Gi′

[
Ŝi′(µGi′

, θi′)
]
≥ Eθi′∼Gi′

[
Ŝi′(r

′
i′ , θi′)

]
= Eθ∼G

[
S(r′, θ)

]
.

The first and last equality hold by the definition of choose-and-report proper scoring rules, and
the first inequality holds by the definition of dimension i. The second inequality holds since each
single dimensional scoring rule is proper. Thus the choose-and-report scoring rule S is proper.
Moreover, if each single dimensional proper scoring rule Ŝi is bounded, it is easy to verify that the
choose-and-report scoring rule S is also bounded.

D.6 Proofs of Lemma 4.6-Lemma 4.8

Proof of Lemma 4.6. This result follows because the extended distribution is symmetric on the
extended state space, thus, its optimal scoring rule is max-over-separate (Corollary 4.4). This
scoring rule can be applied to the original space where it is still max-over-separate. The optimal
max-over-separate scoring rule for the original space is no worse.

Proof of Lemma 4.7. Let ũ be the optimal utility function corresponding to OPT(f̃ , B, Θ̃). Since
the distribution f̃ is center symmetric, by Theorem 4.2, the utility function ũ is symmetric V-
shaped. Thus, we have

OPT(f̃ , B, Θ̃) =

∫

R̃

ũ(r) f̃(r) dr

=
1

2

∫

R

ũ(r) f(r) dr +
1

2

∫

R

ũ(2µD − r) f(r) dr

=

∫

R

ũ(r) f(r) dr = Obj(ũ, f).

Proof of Lemma 4.8. Let û be the optimal solution of Program (6) with distribution f and state
space Θ̃, i.e., Obj(û, f) = OPT(f,B, Θ̃). On the other hand, utility function û may not be optimal
for distribution f̃ , thus, OPT(f̃ , B, Θ̃) ≥ Obj(û, f̃). We have,

OPT(f̃ , B, Θ̃) ≥ Obj(û, f̃) =

∫

R̃

û(r) f̃(r) dr =
1

2

∫

R

ũ(r) f(r) dr +
1

2

∫

R

ũ(2µD − r) f(r) dr

≥
1

2

∫

R

ũ(r) f(r) dr =
1

2
OPT(f,B, Θ̃)

where the final inequality follows from convexity of û,
∫
R
(2µD−r) f(r) dr = µD, Jensen’s Inequality,

and û(µD) = 0.

D.7 Proof of Lemma 4.9

The approach to proving Lemma 4.9, i.e., OPT(f,B, Θ̃) ≥ 1
4OPT(f,B,Θ), is as follows. Let u be

the optimal utility corresponding to OPT(f,B,Θ). We construct ũ that (a) exceeds u at all point
r ∈ R and (b) is feasible for OPT(f, 4B, Θ̃). The utility function ũ/4, thus, has objective value at
least 1

4OPT(f,B,Θ) and is feasible for OPT(f,B, Θ̃). The optimal utility is only better.
The proof of the lemma introduces the following constructs.
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Figure 3: The figure on the left hand side illustrates a hyperplane for report r′ on the boundary
of the report space, which is shifted from a tangent plane of u at the boundary r′. The figure on
the right hand side illustrates the extended utility function ũ that takes the supremum over all
hyperplanes shifted from the feasible tangent planes to intersect with the (µD, 0) point.

• The extended utility function ũ for program OPT(f, 4B, Θ̃) given utility function u for the
program OPT(f,B,Θ) is defined as follows.

Feasibility of u for Program (6) defines subgradients {ξ(r) : r ∈ R} that satisfy the bound-
edness condition. Let Gu be the set of all subgradients of u that satisfy the boundedness
constraint. Clearly the latter set contains the former set. Define the extended utility function
ũ as the convex function defined by the supremum of the supporting hyperplanes given by
the subgradients Gu shifted to intersect with the (µD, 0) point. See Figure 3.

Convexity of u implies that its supporting hyperplane at r with subgradient ξ(r) is below
u(µD) = 0 at µD. Thus, relative to the supporting hyperplanes of u these supporting hyper-
planes of ũ are shifted upwards.

The extended utility function ũ is convex-conical as it is defined by supporting hyperplanes
that all contain point (µD, 0).

• The extended state spaces are Θ ⊂ Θ̃′ ⊂ Θ̃′′ ⊂ Θ̃. State space Θ̃′ is the union of the original
state space and its point reflection about µD as Θ̃′ = Θ∪{2µD− θ : θ ∈ Θ}, state space Θ̃′′ is
the convex hull of Θ̃′, and state space Θ̃ (as previously defined) is the extended rectangular
state space containing Θ̃′′.

Lemma 4.9, i.e., OPT(f, 4B, Θ̃) ≥ OPT(f,B,Θ), follows by combining the following lemmas.

Lemma D.1. For any feasible solution u for Program (6), the extended utility function ũ is at
least u, i.e., ũ(r) ≥ u(r) for any report r ∈ R.

Lemma D.2. For any feasible solution u for Program (6) with score bound B and state space Θ,
the extended utility function ũ is a feasible solution of Program (6) with score bound 2B and state
space Θ.

Lemma D.3. Any convex-conical utility function ũ that is a feasible solution of Program (6) with
score bound 2B and state space Θ is a feasible solution to Program (6) with bound 2B and state
space Θ̃′.
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Lemma D.4. Any convex-conical utility function ũ that is a feasible solution of Program (6) with
score bound 2B and state space Θ̃′ is a feasible solution to Program (6) with bound 2B and state
space Θ̃′′ = conv(Θ̃′).

Lemma D.5. Any convex-conical utility function ũ that is a feasible solution of Program (6) with
score bound 2B and state space Θ̃′′ is a feasible solution to Program (6) with bound 4B and state
space Θ̃.

Proof of Lemma D.1. Since the supporting hyperplanes of ũ are shifted upwards relative to u, we
have ũ(r) ≥ u(r) at all r ∈ R. Thus, ũ obtains at least the objective value of u, i.e., Obj(f, ũ) ≥
Obj(f, ũ).

Proof of Lemma D.2. First, the subgradients of ũ are a subset of the subgradients of u that satisfy
the boundedness constraint. Lemma D.6 (stated and proved at the end of this subsection) shows
that the set of subgradients Gu of u that satisfy the boundedness constraint is closed. As ũ is
defined the supremum over these hyperplanes, closure of the set implies that the supremum at any
report r ∈ R is attained on one of these hyperplanes.

Now observe that in the construction of ũ, the supporting hyperplanes of u are shifted up by at
most B. The boundedness constraint corresponding to state µD and the report r with subgradient
ξ(r) ∈ ∇u(r) implies that the supporting hyperplane corresponding to ξ(r) at r has value at
least −B at µD. Thus, in the construction of the extended utility function ũ, the hyperplane
corresponding to ξ(r) is shifted up by at most B and, at any state θ ∈ Θ, ũ(θ) ≤ u(θ) +B.

Finlly, the boundedness constraint is the difference between the utility at a given state and the
value of any supporting hyperplane of the utility evaluated at that state. From u to ũ the former
has increased by at most B and the latter is no smaller; thus, ũ satisfies the boundedness constraint
on state space Θ with bound 2B.

Proof of Lemma D.3. The lemma follows by the geometries of the boundedness constraint and
convex cones. The boundedness constraint requires a bounded difference between the utility at any
state (in the state space) and the value at that state on any supporting hyperplane of the utility
function (corresponding to any report in the report space). For convex-conical utility functions, the
supporting hyperplanes are also supporting hyperplanes of the cone defined by the point reflection of
the utility function around its vertex (µD, 0), henceforth, the reflected cone. Thus, the boundedness
constraint for convex-conical utility function requires that the difference between the original cone
and the reflected cone be bounded at all states in the state space.

The original space Θ and the reflected state space {2µD − θ : θ ∈ Θ} are symmetric with
respect to the original cone and the reflected cone. Thus, if states in the original state space are
bounded, by comparing a state on the cone to the same state on the reflected cone; then states in
the reflected state space are bounded by comparing its reflected state (in the original state space)
on the reflected cone to its reflected state on the original cone.

Thus, if a boundedness constraint holds on Θ it also holds on the reflected state space {2µD−θ :
θ ∈ Θ} and their union.

Proof of Lemma D.4. Consider the cone and reflected cone defined in the proof of Lemma D.3 and
the geometry of the boundedness constraint. Notice that, by convexity of the cone defining the
utility function ũ and concavity of the reflected cone, the convex combination of the bounds, i.e.,
the difference of values of states on these two cones, of any set of states is at least the bound of
the convex combination of the states. Hence, if the boundedness constraint holds on state space
Θ̃′, then it holds on its convex hull Θ̃′′ = conv(Θ̃′).
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Proof of Lemma D.5. Consider any ray from µD. Since the utility ũ is a convex cone, the utility
on this ray is a linear function of the distance from µD. The same holds for this ray evaluated
on the point reflection of the utility at µD. The difference between these utilities is also linear.
Thus, by the geometry of the boundedness constraint for convex-conical utility functions, on any
ray from µD, the bound is linear. Considering the state space Θ̃′′ and Θ̃, if the former is scaled by
a factor of two around µD, then it contains the latter (by simple geometry, see Figure 2). Thus, if
the convex-conical utility function ũ satisfies bound 2B on state space Θ̃′′ it satisfies bound 4B on
state space Θ̃.

Lemma D.6. For any feasible solution u for Program (6), the set Gu of all subgradients of u
satisfying the bounded constraints is a closed set.

Proof. By Lemma B.2, any feasible solution u for Program (6) is convex, bounded and continuous
with bounded subgradients. For any convex, bounded and continuous function u, let {ξk(rk)}∞k=1 ⊆
Gu be a convergent sequence of subgradients in set Gu, where rk is the report corresponds to the
kth subgradient. Let ξ∗ = limk→∞ ξk(rk) be the limit of the subgradients. Since the report space
is a closed and bounded space, there exists a subsequence of reports {rkj}∞j=1 ⊆ {rk}

∞
k=1 such that

{rkj}∞j=1 converges. Letting report r = limj→∞ rkj , we have report r is in the report space, i.e.,

r ∈ R. Moreover, we have limj→∞ ξkj(rkj ) = limk→∞ ξk(rk) = ξ∗. Next we show that ξ∗ is a
subgradient for some report r ∈ R such that the bounded constraints of the induced scoring rule
are satisfied for any state θ ∈ Θ, i.e., ξ∗ ∈ Gu,r.

First for any state θ, we have

u(r) + ξ∗ · (θ − r) = lim
j→∞

[u(rkj) + ξ∗ · (θ − rkj)]

= lim
j→∞

[u(rkj) + ξkj(rkj) · (θ − rkj)] ≤ u(θ),

where the first equality holds because function u and function ξ∗ · r are continuous and bounded in
reports. The inequality holds because ξkj (rkj) is a subgradient for report rkj . Thus ξ∗ is subgradient
for report r. Next we show that the scoring rule induced by subgradient ξ∗ is bounded for report
r. For any state θ, we have

u(θ)− u(r)− ξ∗ · (θ − r) = u(θ)− lim
j→∞

[u(rkj ) + ξkj (rkj) · (θ − rkj)] ≤ u(θ)− (u(θ)−B) = B,

where the inequality holds because the subgradient ξkj(rkj) satisfies the bounded constraint for
report rkj at state θ, i.e., ξkj(rkj ) ∈ G

u,r
kj and u(rkj ) + ξkj(rkj ) · (θ − rkj) ≥ u(θ)−B. Therefore,

ξ∗ ∈ Gu,r ⊂ Gu, which implies the set Gu is a closed set.

D.8 Proof of Theorem 4.4

Proof. Note that by definition, it is easy to verify that the utility function uµD
satisfies

uµD
(r) = max

i

1

2max{µDi
, 1− µDi

}
|ri − µDi

|

and hence

Obj(uµD
, f) = Er∼f

[
max

i

1

2max{µDi
, 1− µDi

}
|ri − µDi

|

]
.
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Moreover, we have

Obj(uµ, f)−Obj(uµD
, f)

= Er∼f

[
max

i

1

2max{µi, 1− µi}
|ri − µi| −max

i

1

2max{µDi
, 1− µDi

}
|ri − µDi

|

]
− uµ(µD)

≥ −3ǫ,

which implies that the incentive for effort of the V-shaped scoring rule for µ is at least that of the
V-shaped scoring rule for µD less 3ǫ, and the theorem holds. Note that the last inequality holds
because

uµ(µD) = max
i

1

2max{µi, 1− µi}
|µDi

− µi| ≤ max
i

|µDi
− µi| ≤ ǫ

and for any dimension i ∈ [n],

1

2max{µDi
, 1− µDi

}
|ri − µDi

| ≤
1

2max{µDi
, 1− µDi

}
(|ri − µi|+ ǫ)

≤
1

2max{µDi
, 1− µDi

}
|ri − µi|+ ǫ ≤

1

2max{µi, 1− µi}
|ri − µi|+ 2ǫ.

D.9 Proof of Theorem 4.6

Proof. We first argue the upper bound that scoring separately in rectangular report and state
spaces guarantees an O(n) approximation. By Theorem 4.3, there exists proper and bounded
single-dimensional proper scoring rules (S1, . . . , Sn) such that the induced max-over-separate S is
an 8-approximation to the optimal scoring rule. Let Ŝ be the separate scoring rule induced by
single-dimensional proper scoring rules ( 1

n
S1, . . . ,

1
n
Sn). It is easy to verify that scoring rule Ŝ is

bounded, with objective value at least 1
n
fraction of that for scoring rule S. Thus, separate scoring

rule Ŝ is an O(n) approximation to the optimal scoring rule.
We now give an example of a symmetric distribution over posteriors over the space R = Θ =

[0, 1]n such that the approximation is Ω(n). Consider the i.i.d. distribution over posterior means f
with marginal distribution fi dimension i defined by

ri =





1 w.p. 1/2n,

1/2 w.p. 1− 1/n,

0 w.p. 1/2n.

The prior mean for each dimension is 1/2 and by Corollary 3.2, the optimal scoring rule for each
dimension i has V-shaped utility function ûi with ûi(0) = ûi(1) = 1/2 and ûi(1/2) = 0. Thus, the
expected objective value for the optimal scoring rule of dimension i is 1/2Prri∼fi [ri ∈ {0, 1}] = 1/2n.
Any average of optimal separate scoring rules, thus, has objective value 1/2n.

Now consider the max-over-separate scoring rule which has a (multi-dimensional) symmetric
V-shaped utility function u and is optimal (see Definition 8 and Theorem 4.2). The objective value
is Er∼f [u(r)]. Importantly u(r) = 0 if r = (1/2, . . . , 1/2) and, otherwise, u(r) = 1/2. Thus,

OPT(f) = 1/2Prr∼f [r 6= (1/2, . . . , 1/2)]

= 1/2 (1− (1− 1/n)n) ≥ 1/2 (1− 1/e).

Thus, the approximation ratio of optimal separate scoring to optimal scoring is at least e n/e− 1

(and this bound is tight in the limit of n).
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E Missing Proofs in Section 5

E.1 Proof of Theorem 5.1

Proof. Consider the following single dimensional problem with state space Θ = {0, 1/2−ǫ, 1/2+ǫ, 1}.
The distribution over posteriors is

1. pointmass distributions at state 0 and 1 with probability ǫ/2 each.

2. pointmass distributions at state 1/2 − ǫ and 1/2 + ǫ with probability (1 − ǫ)/2 each.

Thus, the prior mean is µD = 1/2 and by Corollary 3.2 the optimal scoring rule for reporting the
mean is V-shaped with u(0) = u(1) = 1/2 and u(1/2) = 0. Utility is linear above and below the
mean with magnitude of its slope equal to 1; thus, u(1/2 ± ǫ) = ǫ. The expected utility under the
above distribution is

Er∼f [u(r)] =
1
2 ǫ+ ǫ (1− ǫ) ≤ ǫ,

assuming ǫ ≤ 1/2.
Consider the following mechanism for reporting the full distribution. The designer combines the

low states as L = {0, 1/2− ǫ} and the high states as H = {1/2+ ǫ, 1} and uses a scoring rule for the
indicator variable that the state θ is high, i.e., the variable is 1 if θ ∈ H and 0 if θ ∈ L. Note that
for Bernoulli distributions, reporting the distribution is equivalent to reporting the mean of the
distribution. The mean of the posteriors of this indicator variable is µD = 1/2. For the indicator on
high states, the symmetric V-shaped utility function of Corollary 3.2 is optimal. Its performance is

Er∼f [u(1[r ∈ H])] = 1/2.

Combining these two analyses, the approximation factor of the optimal scoring rule for the
mean is at least 2/ǫ. As ǫ approaches zero, the approximation ratio is unbounded.

F Eliciting the Mean with an Expected Score Bound

In this section, we provide the optimal scoring rule for eliciting the single-dimensional mean under
a boundedness constraint on the expected score. We consider the following optimization program:

max
S

EG∼f,θ∼G [S(µG, θ)− S(µD, θ)] (12)

s.t. S is a proper scoring rule for eliciting the mean,

S is non-negative in space R×Θ,

EG∼f,θ∼G [S(µG, θ)] is upper bounded by B.

We consider this optimization program with restriction to canonical scoring rules. By Defini-
tion 3, we write the single dimensional version of this optimization program as follows:

max
u

∫

R

u(r)f(r) dr (13)

s.t. u is a continuous and convex function,

u(µD) = 0,

u(r) + u′(r) · (θ − r) + κ(θ) ≥ 0, ∀r ∈ [0, 1], θ ∈ [0, 1],

EG∼f,θ∼G [u(r) + κ(θ)] ≤ 1.
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Theorem F.1. The optimal solution for Program (12) is V-shaped.

To prove Theorem F.1, we show there is a feasible V-shaped utility function that gives the same
objective.

Proof. Consider any feasible solution u of Program (12). We construct a V-shaped utility function
ũ as follows:

ũ(r) =

{
−
∫ µD

0 u(x)f(x)dx/
∫ µD

0 xf(x)dx · (r − µD) for r ≤ µD,∫ 1
µD

u(x)f(x)dx/
∫ 1
µD

xf(x)dx · (r − µD) for r ≥ µD.

This V-shaped utility function ũ has the same objective value as the utility function u. We then
show that this V-shaped utility function ũ is a feasible solution of Program (12).

It is easy to see that ũ is a continuous and convex function and ũ(µD) = 0. We now show that
there exists a function κ such that the scoring rule defined by ũ and κ is bounded in expectation
and non-negative in space R×Θ. Since u is a feasible solution, there exists a function κ such that
function u and κ satisfies constraints in Program (13). Thus, we have for any θ ∈ [0, 1]

κ(θ) ≥ max
r∈[0,1]

{−u(r)− u′(r) · (θ − r)}.

Since function u is convex, we have for any θ ∈ [0, 1]

max
r∈[0,1]

{−u(r)− u′(r) · (θ − r)} = max{−u(1) − u′(1) · (θ − 1),−u(0) − u′(0) · θ}.

We then show that u(0) ≥ ũ(0) and u′(0) ≤ ũ′(0). Note that the V-shaped utility function
satisfies

∫ µD

0 u(r)f(r)dr =
∫ µD

0 ũ(r)f(r)dr. If u(0) < ũ(0), then by the convexity of function u, we
have for any r ∈ [0, µD]

u(r) ≤ (1− r/µD)u(0) < (1− r/µD)ũ(0) = ũ(r),

which contradicts with
∫ µD

0 u(r)f(r)dr =
∫ µD

0 ũ(r)f(r)dr. If u′(0) > ũ′(0), then by the convexity of
function u, we have u(r) > ũ(r) for any r ∈ [0, µD], which also contradicts with

∫ µD

0 u(r)f(r)dr =∫ µD

0 ũ(r)f(r)dr.
Similarly, we have u(1) ≥ ũ(1) and u′(1) ≥ ũ′(1). Thus, we have for θ ∈ [0, µD]

−ũ(1)− ũ′(1) · (θ − 1) = −ũ′(1) · (θ − µD) ≤ −u′(1) · (θ − µD) ≤ −u(1)− u′(1) · (θ − 1),

where the last inequality is due to the convexity of function u. Similarly, we have for θ ∈ [µD, 1]

−ũ(0) − ũ′(0) · θ = −ũ′(0) · (θ − µD) ≤ −u′(0) · (θ − µD) ≤ −u(0)− u′(0) · θ.

Combining these two inequalities, we derive that

max{−ũ(1)− ũ′(1) · (θ − 1),−ũ(0)− ũ′(0) · θ} ≤ max{−u(1) − u′(1) · (θ − 1),−u(0) − u′(0) · θ},

which means the same function κ also satisfies constraints of Program (13) for the V-shaped utility
function ũ. Therefore, this V-shaped function ũ is also a feasible solution, which completes the
proof.
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