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This study proposes two new dynamic assignment algorithms to match refugees and asylum seekers to geo-

graphic localities within a host country. The first, currently implemented in a multi-year pilot in Switzerland,

seeks to maximize the average predicted employment level (or any measured outcome of interest) of refugees

through a minimum-discord online assignment algorithm. Although the proposed algorithm achieves near-

optimal expected employment compared to the hindsight-optimal solution (and improves upon the status quo

procedure by about 40%), it results in a periodically imbalanced allocation to the localities over time. This

leads to undesirable workload inefficiencies for resettlement resources and agents. To address this problem,

the second algorithm balances the goal of improving refugee outcomes with the desire for an even allocation

over time. The performance of the proposed methods is illustrated using real refugee resettlement data from

a large resettlement agency in the United States. On this dataset, we find that the allocation balancing

algorithm can achieve near-perfect balance over time with only a small loss in expected employment com-

pared to the pure employment-maximizing algorithm. In addition, the allocation balancing algorithm offers

a number of ancillary benefits compared to pure outcome-maximization, including robustness to unknown

arrival flows and greater exploration.
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1. Introduction

Host countries have, in recent years, been faced with increasing flows of refugees and asylum seekers.

Currently, the United Nations Refugee Agency estimates that there are over 26 million refugees

worldwide (United Nations 2020). In most countries that accept refugees and/or asylum seekers,

refugees and asylum seekers are assigned and relocated (at least on a preliminary basis) across

various localities by migration authorities. The capacity quotas or target distributions of refugees

across the localities are determined by authorities on a yearly or other regular basis. Increasing

inflows pose a strain on host countries, whose goal is to help these new arrivals achieve economic self-

sufficiency and other positive integration outcomes. Accordingly, a number of countries have begun

to explore and implement outcome-based geographic matching in their refugee resettlement and/or

asylum programs. Therefore, recent research studies the problem of efficiently assigning refugees

to localities in order to maximize outcomes such as employment (Bansak et al. 2018, Trapp et al.

2018). This research falls within a broader area of policy interest as national resettlement programs

seek new approaches to help ever-increasing flows of refugees and asylum seekers better integrate

(e.g. find employment) in their host countries (e.g. Mousa 2018, Andersson et al. 2018, Gölz and

Procaccia 2019, Olberg and Seuken 2019, Acharya et al. 2021, Ahani et al. 2021).

Outcome-based matching was introduced in the context of refugee and asylum-seeker assignment

by Bansak et al. (2018), with the goal of leveraging administrative data to improve key refugee out-

comes (e.g. employment in the host country) by optimizing refugees’ geographic assignment within

a country. To do so, machine learning methods are used to predict refugees’ expected outcomes in

each possible landing location as a function of the refugees’ personal characteristics. Those expected

outcomes are then used as inputs into constrained optimal matching procedures to determine a

location recommendation for each refugee. Since its proposal, outcome-based matching has been

piloted by the Swiss State Secretariat of Migration (SEM) in collaboration with the Bansak et al.

(2018) research team, and by HIAS (a resettlement agency in the United States) in collaboration

with Trapp et al. (2018), with future interest expressed by other countries and agencies as well.
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A greedy approach to the refugee assignment problem—one that assigns each refugee to the

location with the highest predicted outcome—is suboptimal because of the capacity constraints of

the locations. Namely, each location only has a certain number of slots in a given time period (for

the United States, the time period is one year, but this can vary across host countries). Therefore,

Bansak et al. (2018) and other previous studies on outcome-based refugee matching (e.g. Trapp

et al. 2018, Gölz and Procaccia 2019) have proposed optimal matching approaches to the refugee

assignment problem that takes into account these capacity constraints.

This paper, along with the concurrent work of Ahani et al. (2021), is the first to consider the

dynamic aspect of the outcome-maximization matching problem. In many countries—including

the United States (US), Switzerland, Sweden, the Netherlands, and Norway—refugees and asylum

seekers must be assigned to a locality virtually immediately upon being processed by resettlement

authorities. As a result, each arriving refugee or asylum seeker case (an individual or family) is

typically assigned in an online fashion, and these assignments cannot be reversed. The dynamic

aspect of this problem introduces a key trade-off between immediate and future rewards: assigning

a current case to a location results in an immediate reward (namely, the employment score of the

current case at that location), but also uses up a slot at that location for future arrivals.

The goal of this paper is to develop a new assignment algorithm that dynamically matches refugees

and asylum seekers to localities within host countries in order to improve employment outcomes

while maintaining a smooth balance on the load placed over time on the receiving localities—

which include burdens placed on local communities, service providers, and resettlement agents.

This paper introduces two new dynamic matching algorithms. The first is a “minimum-discord”

outcome-maximization algorithm that seeks to maximize the refugees’ expected employment (or any

alternative outcome of interest), and is currently employed in a three-year pilot implementation in

Switzerland, undertaken by the Swiss State Secretariat of Migration in collaboration with academic

researchers (see Bansak et al. 2018). The proposed algorithm is a special case of the Bayes Selector

algorithm introduced by Vera and Banerjee (2020), whose goal is to minimize the likelihood that

the online algorithm makes a decision that conflicts with an offline benchmark in each time period.
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The second algorithm proposed in this paper is an extension that integrates principles of load

balancing into the objective. Because each locality has a given amount of resources (e.g. number

of resettlement officers) that cannot be transferred across localities, maintaining a steady workload

is crucial and is a first-order concern of many host countries. Hence, building on the minimum-

discord outcome-maximization algorithm and borrowing ideas from queuing theory, the second

algorithm incorporates wait time minimization into the assignment process. This allows refugees

to be dynamically assigned to localities in a way that improves their expected employment scores

while also maintaining a balanced allocation across the localities over time.

This paper focuses on the US context, although the methods presented can be readily applied

within other host countries, and are currently employed in a pilot program in Switzerland. The per-

formance of the proposed algorithms is demonstrated on real refugee resettlement data from one of

the largest resettlement agencies in the US. We find that the minimum-discord outcome-maximizing

algorithm achieves near-optimal employment compared to the hindsight-optimal solution. However,

this algorithm results in significant imbalance at the localities over time. Modeling each locality

as a single server queue, imbalance is measured through the total wait time and idle time at each

location. The allocation balancing algorithm is able to drastically decrease both wait time and idle

time with surprisingly little loss in employment.

Finally, the allocation balancing algorithm also offers several ancillary benefits. In particular, the

balancing algorithm provides an immediate solution to the issue of an unknown total number of

arrivals. For example, when the final number of arriving refugees or asylum seekers ends up being

lower than initial plans/projections, the final allocation could end up being far from the desired

year-end allocation proportions, as quotas will be filled for certain localities but not others. In

smoothing the allocation across localities over time, the balancing algorithm averts this problem. As

an additional benefit, the balancing algorithm also helps to improve the resilience of the underlying

learning system through greater exploration.
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1.1. Contributions

1. Minimum-discord outcome-maximizing dynamic assignment algorithm. We propose

a “minimum-discord” online algorithm that assigns arriving refugees to locations within a host coun-

try. The goal of the algorithm is to maximize the sum of individual outcomes along a horizon, while

obeying the capacity constraints of each location. This is accomplished through a Monte-Carlo-

sampling-based method that seeks to minimize the probability of choosing the “wrong” assignment

in each time period compared to an offline benchmark. This is referred to as a “minimum-discord”

approach. The proposed method not only achieves near-optimal performance compared to the

hindsight-optimal solution, but is also readily explainable—a desirable property in policy settings.

2. Allocation balancing dynamic assignment algorithm. We demonstrate that an outcome-

maximizing assignment (not only online algorithms but even a hypothetical implementation of the

hindsight-optimal solution) can result in severe periodic imbalance across the localities over time.

Thus, we develop a second online algorithm that explicitly balances the trade-off between outcomes

and wait time at the localities using a single parameter, γ, that controls the weight placed on

allocation balancing. Larger values of γ result in greater balance (less wait time and idle time).

3. Results on real US refugee resettlement data. The results of the proposed methods are

tested on real refugee resettlement data from one of the largest resettlement agencies in the US.

Using the cases that arrived in 2016 as our test cohort, the minimum-discord outcome-maximizing

algorithm achieves 95% of the hindsight-optimal employment. The 5% optimality gap is primarily

due to non-stationarity in the true arrival process. When the arrival dates of the cases are ran-

domly perturbed to mimic a stationary process, the optimality percentage of the proposed algorithm

increases to 99.5%. The performance of our algorithm is compared to the employment achieved

under the actual historical assignments, as well as greedy and random assignment baselines, which

achieve 69%, 81%, and 67% of the hindsight-optimal employment, respectively.

Using the allocation balancing algorithm, we demonstrate the trade-off between total employment

and wait time as γ varies. As an example, for a particular choice of γ, the allocation balancing

algorithm is able to significantly reduce wait time (by 88%) and idle time (by 76%) with only a 2%

decrease in employment.
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1.2. Related Literature

This paper is related to the existing literature on refugee assignment, online stochastic bipartite

matching, one-sided matching with queues, and load balancing. In what follows, we provide an

overview of the most relevant literature from each stream.

1.2.1. Geographic Assignment of Refugees Prior research has proposed different schemes

for refugee matching both across and within countries based on refugee and/or host location prefer-

ences (Fernández-Huertas Moraga and Rapoport 2015, Moraga and Rapoport 2014, Andersson and

Ehlers 2016, Delacrétaz et al. 2016, Nguyen et al. 2021). However, the lack of systematic data on

preferences has thus far been a barrier to implementing these preference-based schemes.

In contrast, outcome-based matching was introduced in the context of refugee and asylum-seeker

assignment by Bansak et al. (2018), with the goal of leveraging already existing data to improve

key refugee outcomes (e.g. employment in the host country). However, the dynamic aspect of the

problem is not considered by Bansak et al. (2018), nor by most previous studies on outcome-based

refugee matching (Trapp et al. 2018, Gölz and Procaccia 2019, Acharya et al. 2021). While Andersson

et al. (2018) consider dynamically matching asylum seekers to localities, they focus on the goals of

Pareto efficiency and envy-freeness across localities as opposed to outcome maximization.

The work by Ahani et al. (2021) is the closest to this paper. Like this paper, Ahani et al. (2021)

propose a dynamic matching algorithm to assign arriving refugees to locations within host countries

with the goal of outcome maximization. For each newly arriving household, both the algorithm

proposed in this paper and that of Ahani et al. (2021) use a sampling procedure to solve many

instances of the offline matching problem for the remaining horizon. Ahani et al. (2021) then propose

using dual variables from the offline problems to inform the assignment of the current arrival—a

method referred to as the potentials method. The algorithm proposed in this paper, on the other

hand, assigns the current arrival to the location that minimizes the probability of a disagreement

between the online algorithm and an offline benchmark. Both methods perform similarly on the

data used in this paper. Our “minimum-discord” method, however, is both easily explainable and

extends naturally to include allocation balancing, which is the focus of this paper.
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1.2.2. Stochastic Online Bipartite Matching Refugee matching is a special case of stochas-

tic online bipartite matching, which has been a focus of operations and computer science researchers

since the seminal work of Karp et al. (1990).

Two key features differentiate the refugee matching setting from the classic online matching

problem. First, it is a weighted matching problem. Second, there is effectively an infinite number

of arrival “types,” due to the large number of underlying covariates used to predict the outcome

weights. While weighted online matching problems are well-studied, most existing methods rely

on an assumption of finite types (Jaillet and Lu 2012, Bumpensanti and Wang 2020, Vee et al.

2010, Devanur and Hayes 2009). Although, in theory, the covariate domain could be discretized and

adapted to a finite-type setting, this is undesirable. While there is prior research on distribution-free

resource allocation problems, the performance guarantees of these algorithms nonetheless rely on

a stationarity assumption (Devanur et al. 2019), which would not hold in practice in our setting.

Rather, we seek to develop explainable methods that perform well, and do not focus on theoretical

performance guarantees. The proposed method is built on recent work by Vera and Banerjee (2020).

Vera and Banerjee (2020) introduce a new framework for designing online policies given access to

an offline benchmark. This framework is used to develop a meta-algorithm (“Bayes Selector") for

implementing low-regret online decisions across a broad class of allocation problems, including the

assignment problem. In each state, the Bayes Selector chooses an action at each time interval that

minimizes the likelihood of disagreement with an offline benchmark.

When the number of arrival types is finite, Vera and Banerjee (2020) show that the Bayes Selector

algorithm achieves constant regret for many special cases of the online assignment problem. This

result is also proven in Arlotto and Gurvich (2019) for the multisecretary problem. In this paper, the

outcome-maximization algorithm proposed can be thought of as a special case of a Bayes Selector

with infinite arrival types. When arrival types are drawn from a continuous distribution, Bray (2019)

shows that the multisecretary problem—which is a special case of the refugee matching problem with

only two locations—no longer has bounded regret. Additionally, Freund and Banerjee (2019) extend
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the methods introduced in Vera and Banerjee (2020) to more general decision-making problems, in

particular showing that the uniform regret bound does not hold in settings with large uncertainty

about the time horizon, which is likely to be the case in the refugee matching context.

1.2.3. Allocation Balancing This paper develops an online matching algorithm that not only

improves outcomes for refugees, but also balances the allocation to receiving locations (or, more

generally, assignment options) over time. This aspect of the paper is related to one-sided matching

with queues. In our setting, each location can be thought of as having a dedicated queue, since

location assignments are made immediately and cannot be changed.

A subset of online bipartite matching considers queuing systems. The topology of the queuing

system is critical to the analysis method, and most research in this area either focuses on optimally

designing the underlying topology, or has topology that is substantially different from the refugee

matching context (e.g., Afeche et al. (2021), Leshno (2019), Vera et al. (2020)).

Balseiro et al. (2021) propose an algorithm for online resources allocation that combines a welfare-

maximizing objective with an arbitrary regularizer on the total consumption of each resource. This

regularizer term can model what they call “load balancing”—ensuring that the total level of con-

sumption of each resource is balanced at the end of the horizon. While this has a similar flavor to

our problem, we are interested in maintaining evenness in the allocation throughout the horizon.

The kidney exchange literature also considers queueing models. For example, Ünver (2010) devel-

ops an online mechanism for allocating kidneys with the goal of reducing wait time. Bertsimas et al.

(2013) develop online kidney allocation policies that balance efficiency, fairness, and wait times.

Recent work by Ding et al. (2018) also considers trade-offs between efficiency and fairness. However,

unlike in our setting, the kidney exchange problem has a single queue.

Because of the structure of the refugee matching problem (namely, the fact that each location has

its own queue and decisions are irrevocable), the allocation-balancing problem bears similarity to

load balancing in computer science (Azar 1998). However, the utility of load balancing algorithms

is limited in our setting because of our additional goal of outcome-maximization.
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The remainder of the paper is organized as follows. Section 2 provides background on the refugee

resettlement process in the US and more details on the dataset used in this study. Section 3

defines notation and describes the assumption of the model and dynamics. Section 4 formulates the

offline outcome-maximization assignment problem, proposes an algorithm for the online setting, and

demonstrates the performance of the method using the US data. Section 5 introduces the alloca-

tion balancing component of the problem and proposes a new heuristic that balances employment

outcomes and wait time. Section 6 discusses additional benefits of integrating allocation balancing

beyond the balancing itself. Section 7 concludes.

2. Setting and Data: Refugee Resettlement in the US

This section provides more detail on the specific context of refugee resettlement in the US, from

which data are drawn for the application presented in this paper. Note, however, that the pro-

posed methods are applicable to many other countries where refugees and asylum seekers must be

dynamically assigned to localities, including Switzerland, Sweden, the Netherlands, and Norway.

2.1. Setting and Dynamics

In the US, the target number of refugees that will be resettled each year is determined by an

annual cap set in advance of the start of the year. Refugees who are accepted into the US are then

distributed across nine non-governmental resettlement agencies according to a proportionality key

that is also set in advance. Finally, each of those agencies maintains its own network of localities

to which they assign newly arrived refugees, with capacities for each locality also determined in

advance. In reality, because the total number of refugees that will arrive in a given time frame is

not exactly known beforehand, the location capacities are revised throughout the year. For most of

the paper, it will be assumed that the total number of incoming refugees is known in advance. The

additional complexity of an unknown number of arrivals will be addressed in Section 6.1.

Furthermore, refugees are accepted and resettled into the United States on a rolling basis, without

full knowledge of future acceptances. The resettlement agencies hence need to make their geographic
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assignment decisions dynamically. In the US, these assignment decisions are made on a weekly basis.

In other countries that follow a similar resettlement process, the assignment is done immediately

for each case(individual or family) upon processing or arrival. Thus, throughout the paper, it is

assumed that assignment decisions are made online (i.e., each case is immediately assigned to a

locality before the next case). Appendix A.6.2 discusses how the proposed methods can be extended

to settings with batching. We note that batching only makes the problem easier, and any online

algorithm can be trivially extended to settings with batching by ignoring the batches and assigning

members of a batch one by one. However, the method discussed in Appendix A.6.2 takes advantage

of the additional information obtained under batching to improve performance.

Under the status quo assignment procedure, decisions are driven primarily by capacity constraint

considerations across the resettlement locations, without a systematic attempt to optimize with

respect to refugee employment. Our own analysis shows that the status quo assignment procedure

performs similarly (although slightly better) than a random assignment mechanism.

After arriving at a locality, resettlement officers and service providers help the individual or

family obtain housing, receive benefits, find employment, enroll the children in school, etc. These

resettlement agents and their related resources cannot move between locations. Therefore, achieving

a balanced workload over time for each locality—and hence avoiding the possibility of overloading or

overwhelming a locality at any point in time—is desirable and a first-order concern of resettlement

agencies both in the US and in other host countries.

2.2. Data

The data used in this study include (de-identified) information on refugees of working age (ages

18 to 64) who were resettled in 2015-2016 into the United States by one of the largest US refugee

resettlement agencies. Only “free cases” (those without prior US ties) were included in this study,

as the resettlement location for arriving cases with existing US ties (family already living in the

United States) is predetermined. The decision to exclude cases with US ties from this study is
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further discussed in Appendix A.3. In the paper, for simplicity of exposition, it is assumed that all

free cases could be assigned to any location with remaining capacity.

Placement officers at the agency centrally assigned each case in the dataset to one of approximately

40 resettlement locations in the US. The data contain details on the cases’ characteristics (such as

age, gender, origin, and education), their assigned resettlement locations, and whether each refugee

was employed 90 days after arrival. In the US, refugees’ employment status 90 days after their

arrival is the key (and only) outcome metric that the resettlement agencies are required to report

and that is tracked by the US government, making it the natural metric for outcome optimization.

To test the methods in this paper, employment scores are predicted for every case-locality com-

bination for each case that arrived in 2015-2016 (N=1,919). For each case, a vector of employment

scores is constructed, where each element corresponds to the average probability for working-age

individuals within that case of finding employment if assigned to the particular locality. If a certain

case cannot be assigned to a particular location (for example, due to a medical condition), this

incompatibility can easily be included in the proposed algorithms by setting the employment score

for this case–location combination equal to a large negative number. Because of this straightforward

adjustment, we do not discuss potential incompatibility constraints in the paper.

To generate each case’s outcome score vector, the same methodology is employed as in Bansak

et al. (2018). Specifically, we use the data to generate models that predict the expected employment

success of a working-age individual at any of the locations, as a function of their background

characteristics. These models were then applied to the families who arrived in 2016 to generate their

expected employment success at each location, which comprise their employment score vectors. For

details of the employment score prediction method, we refer the reader to Bansak et al. (2018).

This paper assumes that the employment scores are given for each case, and evaluates the proposed

assignment algorithms relative to the predicted employment scores.

The free cases that were resettled in 2016 (N=1,175) are treated as the test cohort in this paper.

That is, the proposed algorithms are applied to this particular cohort, in the specific order in
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which the families are logged as having actually arrived to the US. The 2015 arrivals are utilized

as historical data from which samples are drawn in the proposed algorithms. To further mimic the

real-world process by which these families would be assigned dynamically to locations, real-world

capacity constraints are also employed such that each location can only receive the same number of

cases that it actually received.

3. Notation and Preliminaries

Throughout, [K] denotes the set of integers {1, ...,K}. An indicator function is denoted by 1{·}.

Additionally, ej denotes a vector with a value of one in the j-th component and zeros elsewhere.

For a matrix W ∈ RN1×N2 and vector w ∈ RN2 , [w;W] ∈ R(N1+1)×N2 denotes a new matrix whose

first row is w.

LetM be the number of localities, indexed by j, with capacities/slots sj. The capacities represent

the number of individuals that each location can accommodate. Without loss of generality, we will

assume that one case arrives each time period, and thus let T denote both the number of arrivals

and the time horizon. It is assumed that T is known a priori and
∑M

j=1 sj = T , although Section

6.1 addresses the situation where T is unknown.

The arriving cases are indexed by t. For simplicity of exposition, it will be assumed that each case

is comprised of exactly one individual. However, Appendix A.6.3 shows how the proposed methods

can be easily extended to account for varying case sizes. We will let aj(t) be the number of cases

allocated to location j after the allocation at time t, and define s̃j(t) := sj − aj(t) as the remaining

slots at location j after time t (i.e., at the start of time t+ 1).

The assignment of case t to location j results in a scalar outcome, wtj. In the US context, the

value of wtj represents the probability that case t will find employment within 90 days if assigned

to location j. In this paper, the outcome scores wtj are assumed to be known. In practice, they

are estimated using a machine learning model that takes a large number of covariates as input (see

Bansak et al. 2018). In the online assignment problem, an arriving case is completely defined by its

employment score vector, wt (which is a function of the case’s underlying covariates). Thus, we will
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use the matrix W with elements wtj to denote an arbitrary population of T cases. Additionally, let

Wt be shorthand for a population of arrivals from time t through T .

We will work in the underlying probability space (Ω,F ,P), where ω ∈Ω denotes a sample path of

arrivals. Thus, there is a one-to-one correspondence between Ω and the set of all matrices W, and

fixing ω also fixes wt for all t ∈ [T ]. The vectors s̃(t− 1) and set {wl}l∈[t] fully describe the state

of the online assignment problem at time t. Therefore, let St := (̃s(t− 1),{wl}l∈[t]) denote the state

at time t. Note that if the arrivals in each time period are assumed to be independent, then the

state could be described simply by s̃(t− 1) and wt. To formalize the dynamics of the problem, the

following features are assumed:

1. Blind Sequentiality: The cases are assigned in an order that is exogenously determined and

unknown in advance, and each case t must be assigned before case t+ 1 is assigned.

2. Non-anticipativity: Each case t is assigned without knowledge of the outcome scores of the

future arrivals.

3. Permanence: Assignments cannot be changed once they are made.

These features are representative of the real-world dynamics in many countries. Batching, which

partially violates the non-anticipativity assumption, makes the assignment problem easier. Appendix

A.6.2 demonstrates how this small violation of non-anticipativity can be incorporated into the

proposed algorithms, resulting in performance gains.

The binary variables ztj are the key decision variables, with ztj = 1 if case t is assigned to location

j and ztj = 0 otherwise. Let Φ denote a full assignment of cases to locations such that the number

of cases assigned to each location is exactly equal to the location’s capacity, and let φ(t) denote

the assignment for case t (and thus ztφ(t) = 1). Therefore, wtφ(t) is the outcome of case t under

assignment Φ, which could also be written as
∑

j ztjwtj. The total employment score of matching

Φ is given by

w(Φ) :=
T∑
t=1

wtφ(t) =
T∑
t=1

M∑
j=1

wtjztj. (1)

To capture the allocation balancing problem, each location will be treated as a server with a

dedicated queue. Although there are no physical queues, this modeling framework captures the



Bansak and Paulson: Dynamic Refugee Assignment
14

relevant trade-offs. To that end, it is assumed that each location has a processing rate, ρj, based

on the resources (i.e. resettlement officers, service providers, and other related resources) at that

location. This is the rate at which location j can handle incoming cases. For example, if ρj = 1/2,

then location j is able to handle one case every two periods on average. Resettlement officers, service

providers, and local community resources cannot be moved across locations. Therefore, we assume

that ρj is stationary. Furthermore, we will assume that capacities are set to be commensurate with

processing rates, so that ρjT = sj. In other words, over the entire time horizon of T periods, location

j’s allocated capacity is equal to its processing rate multiplied by T . Note that this assumption

is essentially met by design in the resettlement program, as capacities for each location are pro-

grammatically decided on the basis of the resources at each location. In practice, ρj could also be

estimated through interviews with the resettlement officers and service providers.

The build-up of location j at time t, for t≥ 2, is given by

bj(t) = max{0, bj(t− 1)− ρj + ztj} (2)

with bj(1) = z1j for all j ∈ {1, ...,M}. Notice that this is the build-up after the assignment at time t

but before the processing at time t. This represents the number of cases either waiting or in process

at time t. For each location, the ideal build-up level is in the interval (0,1], indicating that the

location is actively settling a case and no cases are waiting. Location j incurs wait time cost if

bj(t)> 1, and is idle at time t if bj(t) = 0.

4. Outcome Maximization

This section proposes a minimum-discord online assignment algorithm that seeks to maximize the

sum of outcome scores (i.e. the overall employment level in the US refugee resettlement context)

across the horizon. In this section, the build-up at each location is not considered. Section 5 will

extend this algorithm by proposing a modified version that additionally seeks to minimize build-up.

First, we introduce the offline version of the outcome-maximization problem. For a given set of

arrivals W, the offline optimization problem is:
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max
Z

T∑
t=1

M∑
j=1

wtjztj

s.t.
∑
j

ztj = 1 ∀ t∈ [T ]

∑
t

ztj = sj ∀ j ∈ [M ]

Z∈ {0,1}T×M

(OutcomeMax)

where Z—the decision variable—is the assignment matrix with elements ztj. The solution to Out-

comeMax is the outcome-maximizing assignment for a population W. When a particular pop-

ulation or sample path is specified, we may write this problem as OutcomeMax(W) or Out-

comeMax(ω). Thus, if W corresponds to the test cohort, OutcomeMax(W) solves the hindsight-

optimal assignment for the test cohort, and its objective value represents an upper-bound for any

assignment of the test cohort. It is well-known that an optimal solution to OutcomeMax can be

found by solving the linear programming (LP) relaxation of OutcomeMax.

The true online assignment problem is a dynamic program. In other words, the algorithm must

make an assignment, given the current state, without knowledge of the outcome score vectors

of future arrivals. Because of the online nature of the problem, it is helpful to let the notation

OutcomeMax(Wt, s̃(t− 1)) describe solving OutcomeMax for time steps t onward for popula-

tion Wt, starting with capacities s̃(t− 1).

In theory, the optimal solution to the dynamic problem could be found by solving Bellman’s

equation, given by

Vt(St) = max
φ(t)∈[M ]

(
wtφ(t) +

∫
ω∈Ω

P(ω|St)Vt+1(̃s(t− 1)− eφ(t),{wl}l∈[t] ∪w(ω)t+1)

)
s.t. eφ(t) ≤ s̃j(t− 1) ∀ j ∈ [M ]

(3)

The optimal policy is the maximizer of the right-hand side of the equation above. Due to the

so-called “curse of dimensionality” (Bellman 1966) arising from the large number of locations and

continuous outcome scores, Problem 3 cannot be solved directly, even if the probabilities P(ω|St)

were known. Many heuristics and approximation methods have been proposed to solve Problem 3.
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Our chosen solution method, a special case of the Bayes Selector method introduced in Vera and

Banerjee (2020), is described in the following section.

4.1. Minimum-Discord Online Algorithm

Let

Q(φ(t), St) := {ω ∈Ω : φ(t) /∈ arg max
j

(
wtj +Vt+1(̃s(t− 1)− ej,{wl}l∈[t] ∪w(ω)t+1)

)
} (4)

be the event that assigning case t to location φ(t) is not optimal according to OutcomeMax(ω).

This definition allows for the possibility that there are multiple optimal decisions according to the

offline benchmark (in our case, due to the continuous employment scores, it is quite unlikely for this

to be the case). Furthermore, let

q(φ(t), St) := P[Q(φ(t), St)|St] (5)

be the disagreement probability. The most general version of the Bayes Selector algorithm proposed

by Vera and Banerjee (2020) chooses the location at time t that minimizes q(φ(t), St) or an over-

approximation of q(φ(t), St). The algorithm proposed in this paper chooses the location which

minimizes an approximation of these disagreement probabilities in each time period. This approach

is referred to as minimum-discord, since the goal is to minimize the likelihood of disagreement

with the offline optimal solution at time t. We note that this method does not take into account

the degree of disagreement. An alternative and more complex algorithm could select the location

that minimizes the expected optimality gap, as opposed to minimizing the likelihood of making a

suboptimal decision. This is elaborated on in Appendix A.6.1.

Although Vera and Banerjee (2020) establish performance guarantees for the Bayes Selector algo-

rithm in many settings, the assumptions that underlie these guarantees do not hold in our setting

with infinite “types” and an unknown underlying distribution. The focus of this paper is on proposing

explainable algorithms with strong empirical performance that are capable of solving the real-world

problem at hand. Nonetheless, in A.1 we provide a characterization of the expected regret of any
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online algorithm in terms of the disagreement probabilities, following Lemma 1 of Vera and Banerjee

(2020).

In this context, the difficulty in determining q(φ(t), St) is that we have placed no assumptions

on the underlying arrival process. Therefore, in this section we describe a Monte Carlo sampling

procedure for estimating the disagreement probabilities. The intuition is as follows. When case t

arrives, we generateK random trajectories of future arrivals t+1 through T , denoted by {Wk
t+1}Kk=1.

For each random trajectory k ∈ [K], the offline problem OutcomeMaxt([wt;W
k
t+1], s̃(t− 1)) is

solved. In other words, for each random trajectory, the offline optimal solution is found for cases t

through T (where cases t+1 through T are realized by the random trajectory) under the remaining

location slots s̃(t − 1). Let nj(t) be the number of times that case t is assigned to location j

across the K trajectories. The quantity 1− q(j,St)—namely, the probability that location j is an

optimal action—is approximated by nj(t)/K. Therefore, minimizing our approximation of q(j,St) is

equivalent to assigning case t to location arg maxj nj(t), that is, the location that they were assigned

to most often in the random instances. The proposed method is formally defined below.

Method 1 (MinDiscord) blank

Case t is assigned to location

φ(t) := arg max
j∈[M ]

K∑
k=1

zktj,

where

Zk = arg max
Z

OutcomeMax([wt;W
k
t+1], s̃(t− 1)).

The Monte Carlo sampling approach requires a “global population” to sample from, which we

denote by A. In this paper, A is comprised of the 2015 arrivals. Algorithm OnlineMinDiscord,

defined below, is the online assignment algorithm that employs Method 1 in each time period.

We note that OnlineMinDiscord will perform particularly well under the following conditions:

1. Stage-wise independence: Each outcome score vector is independent of all others.

2. Stationarity of stochastic process: Outcome score vectors are produced by the same probability

distribution which does not change over time.
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Algorithm OnlineMinDiscord (Min-Discord Online Assignment)
initialize s̃j(0)← sj for all j ∈ {1, ...,M}
for t in 1, ..., T do

for k in 1, ...,K do
Wk

t+1← T − t randomly drawn cases from set A
Zk← arg max OutcomeMax([wt;W

k
t+1], s̃(t− 1))

end for
φ(t)← arg maxj

∑
k z

k
tj

s̃(t)← s̃(t− 1)− eφ(t)

end for
return ΦMD = {φ(t)}t=1...T

When these properties hold, the Monte-Carlo sampling procedure results in unbiased approximations

of the future arrivals. Thus, the proposed methods perform well because they have access to a

reasonable approximation of the future. These properties, however, are not a requirement, and the

algorithms can still be used if these properties are violated. In practice, and especially in refugee

resettlement contexts, the stochastic process is non-stationary. We note that, depending on the level

of non-stationarity and data availability, the performance of Algorithm OnlineMinDiscord can

be improved by using more recent data to comprise the set A.

4.2. Performance of Outcome-Maximizing Algorithms

Figure 1 shows the results of applying OnlineMinDiscord to the 2016 arrivals. Arrivals in 2015

serve as the set of historical data, A, from which to sample. Throughout the paper, unless otherwise

specified, we use K = 10 for OnlineMinDiscord.

We compare OnlineMinDiscord to four benchmarks: the actual historical assignment, the

hindsight-optimal solution, greedy assignment, and random assignment. The first benchmark assigns

each case to the location that they were assigned to in reality under the status quo procedures.

Although, for this benchmark, we could measure employment according to whether or not the

cases actually found employment in reality (since this is contained in the data), for all benchmarks

we measure employment according to the predicted employment scores, W, so that they are all

evaluated with respect to the same metric. (We note, however, that using actual employment results

in an almost identical total employment score for this benchmark.)
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The hindsight-optimal solution is included as a benchmark because, while it cannot be performed

in a real-world dynamic context, it sets an upper bound of what is achievable by any algorithm. In

the greedy algorithm, each case is assigned sequentially to the location with the highest expected

employment score for that case, out of locations with remaining capacity. Finally, the employment

score under random assignment for case t is given by
∑

j∈[M ]wtj
sj
T
, which we include as a simple

reference point. A comparison of OnlineMinDiscord to the method proposed by Ahani et al.

(2021) is also included in the Appendix, though we note that the methods perform quite similarly.

Figure 1 Results of online algorithms on employment for US refugees in 2016.

Random

Actual

Greedy

OnlineMinDiscord

Hindsight−Opt

0.0 0.2 0.4
Average outcome

Figure 1 shows the results. OnlineMinDiscord achieves 95% of the employment score of the

hindsight-optimal solution. This is compared to the greedy, random, and “actual assignment” bench-

marks, which achieve 81%, 67%, and 69% of the hindsight optimal employment levels, respectively.

We note that the 5% optimality gap of OnlineMinDiscord is primarily due to nonstationarity

in the arrival process. When the arrival dates of the cases are randomly perturbed—mimicking a

stationary process—the optimality percentage of the proposed algorithm increases to 99.5%. This

was calculated as the average optimality percentage across five random instances, where in each

instance the arrival dates of the cases are randomly shuffled; in each of these instances, the optimal-

ity percentage was between 99.4% and 99.6%. However, the focus of this paper is on the performance

of the proposed algorithms on the real, non-stationary, arrival data.

4.3. Allocation Imbalance Under Outcome Maximization

Although the proposed method performs well in terms of maximizing outcomes, it results in signifi-

cant wait time and idle time at the localities. To demonstrate the periodic imbalance resulting from
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applying OnlineMinDiscord, Figure 2 (left) shows the cumulative allocation to the largest nine

locations over the horizon. Figure 2 (right) shows the build-up at each location over time, computed

according to Equation (2). Waiting time can be calculated as the area under the curves in Figure

2 (right), and idle time occurs when these curves are at a value zero. Under OnlineMinDiscord,

there is severe imbalance that manifests at almost all locations. Assuming (without loss of general-

ity) one arrival per period, and thus a horizon of 1,175 periods, the average number of idle periods

per location is 212 periods. Additionally, when a location is not idle, the average wait time per

period per location is 15.4 cases. Thus, each location is idle about 18% of the time, and when they

are not idle, has a backlog of over fifteen cases on average.

Figure 2 Allocation to top 9 locations over time (left), and build-up at each location (right) using Algorithm

OnlineMinDiscord.
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We note that this is not simply a consequence of the particular choice of online algorithm, nor

entirely a consequence of the online nature of the problem: even the hindsight-optimal solution

results in imbalance over time. A figure demonstrating the imbalance resulting from the hindsight-

optimal solution can be found in Appendix A.5.

So what accounts for this periodic imbalance over time? Consider the non-stationarity of arrivals.

If a batch of “similar” cases arrives, imbalance will likely occur. The goal of OnlineMinDiscord

is strictly to maximize outcomes while meeting the capacity constraints at the end of the horizon,

not to ensure balance over time, and thus a batch of cases may all be assigned to the same location.

In reality, because refugee inflows are, in part, due to international events, there can be clustering

of arrivals with specific background characteristics—particularly with respect to country of origin,
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which is one of the predictors that underlies the employment scores. Thus, it can be common for

batches of “similar” cases to arrive close together, contributing to an imbalanced allocation. These

observations motivate the use of an algorithm that actively balances the allocation over time to

each locality. The proposed method is described in the next section.

Further, even if the arrival process were truly stationary, explicitly balancing the allocation may

still be desirable to mitigate against random deviations from a balanced allocation. Appendix A.5

shows the allocation over time and build-up for five random instances where the arrival dates of the

cases are randomly permuted in order to mimic a stationary process.

5. Allocation Balancing

In this section, the additional objective of minimizing wait time and idle time is added to the online

matching problem. Because the number of slots at each location is fixed, minimizing wait time is

effectively equivalent to minimizing wait time and idle time. Therefore, we focus on minimizing

wait time explicitly, while also noting the subsequent impact of the proposed methods on idle time.

For simplicity of exposition, we will assume that the cost of wait time is identical across locations,

although extending the algorithm to the non-identical case is straightforward.

5.1. Offline Benchmark

First, consider a new variant of the offline benchmark. The new offline allocation-balancing outcome-

maximizing optimization problem is given by:

max
Z,b

T∑
t=1

M∑
j=1

wtjztj − γ
T∑
t=1

M∑
j=1

dbj(t)− 1e1{bj(t)> 1}

s.t.
M∑
j=1

ztj = 1 ∀ t∈ [T ]

T∑
t=1

ztj = sj ∀ j ∈ [M ]

bj(t) = max{0, bj(t− 1) + ztj − ρj} ∀ t∈ {2, ..., T}, j ∈ [M ]

bj(1) = z1j ∀ j ∈ [M ]

Z∈ {0,1}T×M

(Balance)
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Recall that bj(t) denotes the build-up at location j at time t, and ρj is again the processing rate

of location j. In the objective function of Balance, wait time cost is incurred when bj(t)> 1, and

dbj(t)− 1e is the number of cases waiting at time t. The parameter γ is a weight that balances the

trade-off between outcomes and wait time cost, and can be thought of as the cost of wait time. In

practice, this parameter could be set either according to a cost-benefit analysis such that the units

of measure were commensurate with one another, or according to an empirically driven decision on

a value that results in acceptable balance across locations over time.

Let Balance(Wt, s̃(t−1),b(t−1)) denote solving Balance from time t onward, for population

Wt with slots s̃(t − 1) and initial buildup b(t − 1). Recall that in OnlineMinDiscord, Out-

comeMax is solved K times for each new arrival, each time using a randomly generated sample

of future arrivals. This same approach will be used to develop the new online allocation-balancing

outcome-maximizing assignment algorithm.

Consider the most straightforward extension of OnlineMinDiscord. For K randomly drawn

populations {Wk
t+1}k=1,...,K , we would solve Problem Balance([wt;W

k
t+1], s̃(t− 1),b(t− 1)). The

final choice of location for case t would again be given by

arg max
j∈[M ]

∑
k∈[K]

zktj,

where Zk is the optimal assignment matrix for the kth random draw.

Unfortunately, unlike OutcomeMax, Balance cannot be solved to optimality as a linear pro-

gram. The variables bj(t) are defined by non-linear expressions, and the objective function of Bal-

ance is also non-linear. Due to advances in mixed-integer programming (MIP), Balance can still

be solved using state-of-the-art MIP solvers. However, solving this problem K times may take min-

utes or even hours, depending on the length of the horizon. For this reason, we propose an alternative

method that uses an approximate version of Balance in the online algorithm that results in the

same run-time as OnlineMinDiscord.
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5.2. Online Allocation Balancing Algorithm

In this section we propose an approximate version of Balance to use as the offline benchmark

in the online allocation-balancing algorithm. Balance is difficult to solve because wait time and

idle time depend on the entire sequence of arrivals and are non-linear functions of the assignment

variables. In the online setting, the past assignments to each location are readily observable. Thus,

at time t, the online algorithm has access to bj(t− 1) for all locations j. We take advantage of this

information when constructing the approximation method.

Consider the following problem at time t:

max
Z

T∑
l=t

M∑
j=1

wljzlj − γ
M∑
j=1

ztj

⌈
bj(t− 1)− ρj

ρj

⌉
1{bj(t− 1)> 0}

s.t.
M∑
j=1

zlj = 1 ∀ l ∈ {t, ..., T}

T∑
l=t

zlj = s̃j(t) ∀ j ∈ [M ]

Z∈ {0,1}N×M

(GBalance)

Notice that GBalance takes b(t− 1) as input, and only weights the employment score of case t

by the marginal wait time cost incurred by case t. The wait time that case t experiences if assigned

to location j is the amount of time until all earlier cases are done being processed, starting from

time t, namely
⌈
bj(t−1)−ρj

ρj

⌉
. Because b(t− 1) is known prior to the t-th arrival, GBalance has a

linear objective function. Thus, the optimal solution to GBalance can be found by solving its LP

relaxation. In fact, solving GBalance is as fast as solving OutcomeMax, making this problem

appealing for use in an online setting.

To build intuition for GBalance, we present the following lemma, which bridges Balance and

GBalance.

Lemma 1. The objective function of Balance is equivalent to

T∑
t=1

M∑
j=1

wtjztj − γ
T∑
t=1

M∑
j=1

ztj

⌈
bj(t− 1)− ρj

ρj

⌉
1{bj(t− 1)> 0}. (6)
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The objective function of GBalance is a greedy version of Expression 6—namely, it does not

calculate wait time for the entire horizon, but does so only for the current arrival. Therefore, it

handles wait time in a greedy fashion (hence the name Greedy Balance).

Although the greedy method does not work well when it comes to outcome maximization, it

does work well for minimizing wait time. The reason that a greedy approach does not work well

for outcome maximization is that taking a slot from location j—especially if this location is “good”

for many cases—is irreversible and has implications on the achievable outcomes for future arrivals.

In terms of wait time, taking a slot from location j has two effects. First, this action immediately

increases the build-up at location j. This could make it less likely for arrivals in the near-future

to be assigned to location j, which could be consequential especially if, for some of these arrivals,

location j is highly desirable. However, this effect is short-lived: it is only relevant if an arrival in

the near future (i.e., before the current arrival can be fully processed) would also be sent to location

j. Thus, if there are many locations, or if location j has few slots, this immediate effect is mitigated.

Sending case t to location j also has an indirect effect on the overall congestion of the system.

Taking a slot at location j means that location j will be less congested in the future. Specifically,

at each location, the ratio of remaining slots to the remaining time horizon impacts the expected

wait time across all sample paths. However, for a given sample path, the arrival order is more

consequential for wait time than a small change in the capacity vector. Therefore, especially when

the horizon is long, this effect is likely to be limited. Additionally, to the extent that current build-up

is a proxy for future build-up, the greedy approach already takes congestion into account.

Accordingly, we propose a new method for assigning a single arrival to a location. Method 2 is

similar to Method 1, but assigns the current arrival based on the solution to GBalance instead of

OutcomeMax as in Method 1.

Method 2 (Allocation-Balancing MinDiscord) blank

Case t is assigned to location

φ(t) = arg max
j∈[M ]

∑
k∈[K]

zktj,
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where

Zk = arg max
Z

GBalance
(
[wt;W

k
t+1], s̃(t− 1),b(t− 1)

)
The new online algorithm, based on Method 2, is presented below in Algorithm OnlineBalance.

Algorithm OnlineBalance (Allocation-Balancing Online Assignment)
1: initialize s̃j(0)← sj for all j ∈ {1, ...,M}
2: for t in 1, ..., T do
3: for k in 1, ...,K do
4: Wk

t+1← T − t randomly drawn cases from set A
5: Zk← arg min GBalance([wt;W

k
t+1], s̃(t− 1),b(t− 1))

6: end for
7: φ(t)← arg maxj

∑
k z

k
tj

8: s̃(t)← s̃(t− 1)− eφ(t)

9: b(t)←max{0, (b(t− 1)−ρ)1t≥2 + eφ(t)}
10: end for
11: return ΦGB = {φ(t)}t=1...T

To emphasize the fact that solving GBalance is equivalent to solving OutcomeMax with

modified weights, we note that the inner loop of OnlineBalance can equivalently be written as:

w̃tj←wtj − γ
⌈
bj(t− 1)− ρj

ρj

⌉
1{bj(t− 1)> 0} ∀ j ∈ [M ]

Wk
t+1← T − t randomly drawn cases from set A

zk← arg minOffline([w̃t;W
k
t+1], s̃(t− 1))

5.3. Results and Discussion

Recall that the parameter γ controls the trade-off between allocation balancing and outcome maxi-

mization. Therefore, the policymaker can choose or tune this parameter to obtain the desired level

of employment and allocation balance. In situations in which the payoff/cost of outcomes, wait

time, and idle time can all be measured in or converted to a common metric (such as payoff/cost in

dollars), policymakers might want to set γ to the specific value that leads to maximization of that

common metric. Another approach would be to use empirical experiments to tune γ to a value that

establishes an acceptable degree of balance across locations over time.
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Figure 3 shows the employment level and wait time incurred by various values of γ. Although

we do not show idle time, we note that it is strongly correlated with wait time. The vertical axis

of Figure 3 shows the employment level under a particular value of γ divided by the employment

level when γ = 0 (i.e., under pure outcome-maximization). Interestingly, the highest employment

level is not achieved when γ = 0, but when γ is slightly positive, likely due to the non-stationarity

in the arrival process. This result may simply be due to idiosyncrasies in the particular arrival data

rather than necessarily a general result. That being said, the results at least tentatively suggest

that, aside from the direct load balancing benefits, the allocation-balancing method may also help

to amplify the benefits and/or add robustness to the outcome-maximization objective in the face of

non-stationarity.

As can be seen from Figure 3, wait time can be dramatically reduced with virtually no loss (and,

again, perhaps with a gain) in employment. The ideal region in Figure 3 is the top left—where wait

time is minimized, and employment is maximized. Based on this plot, a policymaker could choose an

appropriate value of γ to achieve their desired balance of employment versus allocation balancing.

Figure 3 Trade-off between outcome maximization and allocation balancing.
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To illustrate these results in greater detail, Figure 4 shows the allocation of the 2016 arrivals

using OnlineBalance with γ = 0.005. This can be compared to Figure 1. From visual inspection

alone, it is clear that applying OnlineBalance results in a much more balanced allocation over

time. Indeed, the average idle time per location in Figure 4 is 51 days (compared to 212 days under

OnlineMinDiscord), and the average wait time per non-idle day is 1.87 (compared to 15.4).
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Furthermore, the total employment score obtained using OnlineBalance with γ = 0.005 is 98%

of the score obtained with OnlineMinDiscord.

Figure 4 Allocation to top 9 locations over time, using heuristic with γ = .005.
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6. Additional Benefits of Allocation Balancing

This section discusses additional benefits of using OnlineBalance as opposed to OnlineMinDis-

cord. While OnlineBalance was developed in order to achieve balanced workloads across the

localities, allocation balancing also helps to address two other potential issues.

6.1. Unknown T

Up until this section, it was assumed that the number of arrivals in a given time horizon, and

capacities for each location, are known a priori. Furthermore, it was assumed that
∑

j sj = T . In

the real-world setting of refugee resettlement, the number of refugees (or asylum seekers) arriving

in a given time period is typically not known exactly. For instance, in the context of asylum seeker

assignment in European countries like Switzerland, authorities can make projections, but the exact

number of people who will arrive at their borders and claim asylum each year is fundamentally

uncertain. Thus, target quotas can be set for each of the 26 Swiss cantons on the basis of annual

arrival projections, but those quotas must be revised throughout the year as the number of actual

arrivals becomes clear.

Therefore, in practice the assumption of known T and s—which underlies Algorithms Online-

MinDiscord and OnlineBalance—is often violated. The method proposed by Ahani et al. (2021)

is also highly dependent on the assumption of known T and capacities. Ahani et al. (2021) address
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the issue of unknown T by demonstrating that their proposed methods still perform well (in terms

of maximizing outcomes) under capacity revisions, and propose strategies for revising the capacities

during the year. A similar dynamic revision method is also currently being used in the Swiss pilot

program, which uses the OnlineMinDiscord algorithm.

Note that the initial number of slots allocated to each location is based upon a desired proportion-

ality key across locations (e.g. proportional to the total population or other measures of capacity

and resources in the location). Therefore, adding new slots if needed is a straightforward task: they

are simply added according to the predetermined proportion. However, adjusting the capacities

downward if the number of arrivals is less than expected is more difficult. Refugees that have already

been assigned to a location cannot be reassigned. Suppose that at time t′, it is realized that the

total number of arrivals will be less than initially expected. If location j’s slots have already been

used up by time t′, no slots can be removed from location j. Thus, the final allocation of refugees to

locations will end up imbalanced at the end of the year. If, however, the algorithm maintains balance

throughout the year, scaling T upward or downward has little impact on performance or balance.

By expressly maintaining this balance, OnlineBalance implicitly accommodates uncertainty in

T effectively, straightforwardly, and without necessitating additional strategies.

6.2. Exploration

Although this paper does not focus on the outcome prediction methodology, the prediction and

assignment steps are not completely independent. In this paper, it was assumed that the outcome

weights are known. In practice, these outcome weights are estimated from historical data. To use

the proposed methods, reliable weights must be determined for every combination of covariates and

locations. If these weights are generated via statistical estimation procedures, maintaining some

degree of exploration—assigning similar cases to different locations—is crucial to the resiliency of

the estimation performance given the non-stationarity of the environment. The need for exploration

in situations where individual decisions are made on the basis of estimated payoffs is, of course, a

well-known issue and is not unique to the refugee matching context.
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A non-stationary contextual bandit framework could be used to formally address this problem.

However, without formalizing the bandit version of this problem, we note that the balancing heuris-

tic achieves higher levels of exploration than a purely outcome-maximizing approach. Intuitively,

because of the balancing component of the objective function, the assignment of a case not only

depends on their predicted employment score and the remaining capacity vector (as in an outcome-

maximizing online algorithm), but also depends on the current build-up at each location.

To demonstrate this idea, we run OnlineMinDiscord and OnlineBalance 100 times each

for the last 500 arriving cases in 2016, where the arrival order is randomly permuted in each of

the 100 iterations. Let case i be the case that arrived i−th in the true arrival sequence. In the 100

random iterations, they could arrive on any of the 500 days. For each case, we compute the number

of times that they are assigned to each location. Let `i,1 be the location that case i is most often

assigned to, `i,2 be their second most assigned location, etc. Let n`i,k be the number of times that

case i was assigned to their kth most-assigned location. Figure 5 shows a bar chart of the average

value of n`i,k/100 under OnlineMinDiscord and OnlineBalance. Note that
∑

k n`i,k = 100 for

each case i. If n`i,1 = 100, then n`i,k = 0 for all k > 1, and case i did not “explore” at all. The more

uniform the values of n`i,k , the greater the exploration.

Based on visual inspection of Figure 5, it is clear that OnlineBalance results in greater explo-

ration than OnlineMinDiscord. Under OnlineBalance, the average value of n`i,1/100 is less

than 0.4, whereas under OnlineMinDiscord the value is about 0.475. Thus, under OnlineBal-

ance, on average a case is assigned to their “top” location less than 40% of the time, whereas under

OnlineMinDiscord, they are assigned to their top location almost 50% of the time. Additionally,

the average number of unique locations the same case was assigned to under OnlineMinDiscord

was 8.17, versus 13.3 under OnlineBalance.

7. Conclusions

This study proposed two assignment algorithms for matching refugees to localities. The first method

seeks to maximize the employment scores of all refugees over a horizon by minimizing the proba-

bility of disagreement between the online algorithm and an offline benchmark. On the US refugee
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Figure 5 Average probability of being assigned to the kth location, where locations are ordered at the case-level

according to their assignment probabilities.
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resettlement data used in this study, this method is able to achieve 95% of the hindsight-optimal

employment score. This is a significant improvement over the actual historical assignment, random

assignment, and greedy assignment, which achieve 69%, 67% and 82% of the hindsight-optimal

employment scores, respectively.

However, this algorithm—and any outcome-maximizing algorithm—may result in severe periodic

imbalance across the localities. In the setting of refugee resettlement, this imbalance is extremely

undesirable as it leads to increased strain and highly variable workloads for the local caseworkers,

service providers, and other community members who help each newly arriving family get settled.

Therefore, we proposed a second assignment algorithm that directly seeks to balance the allocation

over time to the localities, while still achieving high outcome levels. On the US refugee resettlement

data used in this study, the allocation balancing method is able to significantly increase balance

with little to no loss in employment, depending on the importance placed on allocation balance

versus employment scores.

By all indications, the challenges and scale of forced migration will continue to grow into the

future. The methods presented here build upon recent research on outcome-based refugee assignment

and could be integrated into refugee resettlement and asylum programs in many host countries—

such as the United States, Netherlands, Switzerland, Sweden, and Norway—to help improve the

lives of some of the world’s most vulnerable populations.
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Appendix

A.1. Regret of OnlineMinDiscord

The total regret of OnlineMinDiscord is defined as:

R(OnlineMinDiscord) :=w(ΦMD)−w(Φ∗)

where w(·) is defined in Equation (1) and Φ∗ denotes the hindsight-optimal matching (namely, the

solution to OutcomeMax(W) where W is the true test cohort).

Suppose that, at time t, an arbitrary online algorithm assigns case t to location φ(t). The expected

disagreement cost is defined as

dt(φ(t), St) =E[OutcomeMax([wt;W(ω)t+1], s̃(t− 1))

− (wtφ(t) + OutcomeMax(W(ω)t+1, s̃(t− 1)− eφ(t)))|St].
(A.1)

This is the amount that the online algorithm loses at time t compared to the offline benchmark

starting in the same state. Lemma A.1 below characterizes the expected regret of OutcomeMax

in terms of the disagreement probabilities, analogous to Lemma 1 of Vera and Banerjee (2020).

Lemma A.1. Let φ(t)MD be the location that case t is assigned to under OnlineMinDiscord.

Under the stage-wise independence and stationarity assumptions,

E[R(OnlineMinDiscord)] =
T∑
t=1

dt(φ(t)MD, St)≤ δmax
T∑
t=1

q(φ(t)MD, St),

where δmax is an upper bound on the disagreement cost.

Before proving Lemma 1, note that in the setting of this paper, the outcome scores are probabilities

so the disagreement costs cannot be greater than one. Thus, an upper bound on the expected regret

is simply given by
∑T

t=1 q(φ(t)MD, St). As mentioned before, note that OnlineMinDiscord does

not minimize the expected disagreement cost at each step, but rather it minimizes the probabil-

ity of disagreement at each step. Therefore, it minimizes an upper bound on the expected regret

(Lemma A.1). Appendix A.6.1 presents an alternative version of the algorithm that does minimize

the expected disagreement cost at each step.
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Proof of Lemma A.1 Let v(·) denote the objective value of a particular optimization prob-

lem. Let W denote the employment scores for a cohort of interest. Let Ψ∗t (s̃(t − 1)) :=

EWt [v(OutcomeMax(Wt, s̃(t− 1)))] denote the expected sum of outcome scores of the optimal

assignment for all cases t onward, starting with capacity vector s̃(t− 1).

Given the assignment of case t to φ(t), the expected disagreement cost at time t can be written

as:

dt =EWt+1
[Ψ∗t (s̃(t− 1))−

(
wtφ(t) + Ψ∗t+1(s̃(t− 1)− eφ(t))

)
|wt].

This is equivalent to Expression A.1 in the main text, where we have dropped the arguments in

dt(·) for simplicity.

Note that the expression above relies on the stage-wise independence assumption. Rearranged,

and showing the same result for case t+ 1, yields:

wtφ(t) =EWt+1
[Ψ∗t (s̃(t− 1))|wt]−EWt+1

[Ψ∗t+1(s̃(t− 1)− eφ(t))|wt] + dt

w(t+1)φ(t+1) =EWt+2
[Ψ∗t+1(s̃(t))|wt+1]−EWt+2

[Ψ∗t+2(s̃(t)− eφ(t+1))|wt+1] + dt+1

Now note that, by the assumptions of stationarity and stagewise independence:

EWt+1
[Ψ∗t+1(s̃(t− 1)− eφ(t))|wt] =EWt+1

[EWt+2
[Ψ∗t+1(s̃(t))|wt+1,wt]].

where s̃(t) = s̃(t− 1)− eφ(t).

Therefore, the expected sum of the outcome scores for assigning each item via Φ can be written

as:

EW

[
T∑
t=1

wtφ(t)

]
=EW [Ψ∗1(s)] +

T∑
t=1

dt,

and thus the expected regret of assignment Φ is given by

E[R(φ)] =EW

[
T∑
t=1

wtφ(t)−Ψ∗1(s)

]
=

T∑
t=1

dt.

This states that the expected regret of an assignment Φ is equal to the sum of the expected disagree-

ment costs at each time step. Note that this expression for regret applies to any online algorithm

Φ.
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Therefore, it is natural to develop an online assignment algorithm that minimizes the disagreement

cost at each time period. The algorithm OnlineMinDiscord does not minimize the disagreement

cost explicitly, but instead minimizes the probability of disagreement. Appendix A.6.1 proposes an

online algorithm that minimizes the disagreement cost directly. This algorithm is more computa-

tionally taxing than OnlineMinDiscord.

The sum of expected disagreement costs can also be written as

E

[
T∑
t=1

dt1{Q(φ(t), St)}

]
.

where Q(φ(t), St) is the event that assignment φ(t) disagrees with the offline benchmark at time t. If

there is no disagreement, then the disagreement cost is zero. This expression can be upper bounded

by:

E

[
T∑
t=1

dt1{Q(φ(t), St)}

]
≤ δmaxE

[
T∑
t=1

1{Q(φ(t), St)}

]
= δmax

T∑
t=1

q(φ(t), St)

where δmax is an upper bound on the disagreement costs. In our setting, because the outcome scores

correspond to employment probabilities, the disagreement cost in any time period is upper bounded

by one. Thus, the expected total regret can be bounded above by the number of disagreements:

E[R(φ)]≤E

[
T∑
t=1

1{Q(φ(t), St)}

]
=

T∑
t=1

q(φ(t), St).

where q(φ(t), St) is again the disagreement probability of action φ(t) in state St. �

A.2. Proof of Lemma 1

Recall that bj(t) = bj(t− 1)− ρj + ztj is the buildup after the assignment at time t but before the

processing at time t, and bj(1) = z1j. In order to prove the lemma, we must show that the following

expressions are equivalent:
T∑
t=1

M∑
j=1

dbj(t)− 1e1{bj(t)> 1}, (A.2)

and
T∑
t=1

M∑
j=1

ztj

⌈
bj(t− 1)− ρj

ρj

⌉
1{bj(t− 1)> 0} (A.3)
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The first expression is the wait time component of the objective of Balance. Intuitively, the former

expression calculates the wait time cost incurred per period, whereas the latter calculates the costs

per case. To see this, notice that dbj(t)−1e is the number of cases waiting at time t, and
⌈
bj(t−1)−ρj

ρj

⌉
is the number of periods that case t waits before being serviced. Let qtj :=

⌈
bj(t−1)−ρj

ρj

⌉
.

Now consider the following string of equalities for expression A.3:

T∑
c=1

zcjqcj =
T∑
c=1

zcj

c+qcj−1∑
t=c

1

=
T∑
c=1

T∑
t=1

zcj1{t∈ {c, ..., c+ qcj − 1}}

=
T∑
t=1

T∑
c=1

zcj1{t∈ {c, ..., c+ qcj − 1}}.

Intuitively, the last equality above exactly counts the number of cases that are waiting to be pro-

cessed at time t. Case c is waiting in time periods t ∈ {c, ..., c+ qcj − 1} and is being processed in

time periods t ∈ {c+ qcj, c+
⌈
bj(t−1)−ρj+1

ρj

⌉
− 1} (since d1/ρje is the processing time). Therefore,

dbj(t)e—which is the number of cases being processed or serviced at time t, is equal to
∑T

c=1 zcj1{t∈

{c, ..., c+ qcj − 1}}.

Thus, we can write

T∑
c=1

zcj1{t∈ {c, ..., c+ qcj − 1}}

= dbj(t)e−
T∑
c=1

zcj1

{
t∈
{
c+ qcj, ..., c+

⌈
bj(t− 1)− ρj + 1

ρj

⌉
− 1

}}
.

Since only one case can be processed at a time, the term

T∑
c=1

zcj1

{
t∈
{
c+ qcj, ..., c+

⌈
bj(c− 1)− ρj + 1

ρj

⌉
− 1

}}

can be at most equal to one for each t, and is exactly equal to one unless location j is idle at time

t. Otherwise, this term is zero. Therefore,

T∑
c=1

zcj1

{
t∈
{
c+ qcj, ..., c+

⌈
bj(c− 1)− ρj + 1

ρj

⌉
− 1

}}
= 1{bj(t)> 0},
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and thus

T∑
c=1

zcj1{t∈ {c, ..., c+ qcj − 1}}= dbj(t)e−1{bj(t)> 0}= dbj(t)− 1e1{bj(t)> 1}.

Therefore, the objective function of Problem Balance can be re-written as

T∑
t=1

M∑
j=1

wtjztj − γ
T∑
t=1

M∑
j=1

ztj

⌈
bj(t− 1)− ρj

ρj

⌉
1{bj(t− 1)> 0}.

�

A.3. Data scope

As noted in the main text, we included only free cases in the empirical demonstrations of our

methods, and the location quotas that were employed were based on the actual distribution of

free cases in the time frame of interest. We excluded cases with existing family ties from these

demonstrations because they must be assigned to wherever their family is, regardless of any other

considerations. Hence, given their predetermined location assignments, it is not possible to optimize

their placement to improve outcomes or to balance their allocation. That being said, their exclusion

from our empirical demonstrations does constitute a deviation from a real-world implementation,

though the degree of deviation depends on the extent to which family-tie cases "compete" for

location slots with free cases and the amount of impact they have on location build-up.

With respect to the former consideration, at one extreme is a situation in which there is no

advance information on how many arrivals will have family ties (and where those family ties will

be), such that assignment of both free cases and family-tie cases must be made according to a shared

capacity system, where they are "competing" for the same slots. At the other extreme, family-tie

arrivals can be known, determined, or selected in advance. This would allow the location capacities

to be separated out for free cases (i.e. the total quotas net of those dedicated to the family-tie cases),

as in how the empirical demonstrations have been presented in this paper. In the United States

and other countries, the reality will be somewhere in between these two extremes, as it is generally

possible to use recent trends and knowledge of prior arrivals who have indicated they have "trailing"
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family members to control or project (with a degree of uncertainty) the number of arrivals who will

have family ties and where those ties are.

With respect to the latter consideration on the contribution of the family-tie cases to location

build-up, it is again useful to consider two extremes. At one extreme, those cases would contribute to

build-up in the exact same manner as free cases, which would then have implications for balancing

the dynamic assignment decisions made for free cases. At the other extreme, the family networks and

relationships that family-tie cases have at their receiving locations would eliminate the processing

time and costs imposed on resettlement resources and hence result in negligible or no impact on

build-up. Again, the reality is somewhere in the middle.

The assignment of family-tie cases could be directly incorporated or subsumed into the algorithms

presented in this study in a number of different ways. (The most straightforward way would be

to change nothing and simply include the family tie cases while forcing their assignment to their

predetermined locations, assuming that quotas are shared and all cases contribute to build-up in

the same manner.) The best manner in which to do so and the degree to which it would impact

the results for free cases, however, will depend on precisely where on each of the two spectrums

described above the reality lies, which would be specific to the implementing institutional context

and require detailed guidance from resettlement authorities.

We note that free cases may also have certain location incompatibilities. For example, if a case

has certain medical or educational needs, this may prevent them from being assigned to particular

localities. These incompatibilities can be included in the proposed algorithms by setting wtj =−M ,

for some large constant M , if case t cannot be assigned to location j.

A.4. Scalability of OnlineMinDiscord

Although OutcomeMax can be efficiently solved as an LP, the inner loop of OnlineMinDis-

cord—namely, solving K iterations of OutcomeMax—could still be time intensive when the

horizon is large. For reference, solving OutcomeMax with a horizon of length 500 takes about 0.5

seconds. (This run-time was obtained using Gurobi on a Macbook Pro with a 2.3 GHz Dual-Core
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Intel Core i5 processor and 8GB of RAM.) Thus, for example, running 10 random trajectories for

a horizon of length 3,000 could take about 30 seconds, which is not insignificant. It is not atypical

for the largest resettlement agencies in the US to receive over 5,000 cases in a given year. Although

runtime is not a first-order concern, it is nonetheless desirable for our algorithms to provide location

assignments in a matter of seconds, not minutes.

Thus, we also propose a method to efficiently scale up OnlineMinDiscord when T is large.

Instead of simulating the entire remaining horizon of T − t arrivals, the proposed scaling method

only samples a portion of the remaining horizon. This method, described next, is independent of

OutcomeMax and can be applied to any extant online assignment algorithm.

First, we set a horizon limit, h. Instead of drawing T−t units each time step, we draw min{h,T−t}

units. Additionally, we replace s̃j with ŝj(t) in OutcomeMax, where ŝj(t) is a scaled version of

the locations’ capacities such that
∑

j ŝj = min{h,T − t}+ 1.

The capacities ŝj(t) are determined through the following procedure. For a vector of inte-

gers x, let expand(x) be a set consisting of integer elements 1 through length(x) such that

element i is repeated xi times. For example, expand([2,3,1])={1,1,2,2,2,3}. The scaled capac-

ity vector ŝj(t) is obtained by randomly sampling min{h,T − t} + 1 slots, without replace-

ment, from expand(s̃(t)) and re-grouping these slots based on location. Let the function

sample(x,n) denote sampling n elements from the set x without replacement. Then, ŝj(t) =∑min{h,T−t}
k=1 1{sample(expand(s̃(t)),min{h,T − t})k = j}. When this scaling method is applied with

horizon h, OnlineMinDiscord will be denoted by OnlineMinDiscord-H(h).

Another method to reduce run-time, when desirable, is to decrease the number of sampled trajec-

tories in each time step. This method does not improve scalability (i.e., the run-time in each time

period still increases super-linearly as a function of the horizon length), however it can decrease

run-time by many factors. Figure A.1 (left) shows the performance of OnlineMinDiscord using

the scaling method with horizons of 50 and 100. Figure A.1 (right) shows the performance of

OnlineMinDiscord with a smaller number of sample trajectories (K = 1,5).
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Figure A.1 Performance of OnlineMD as the parameters H and K vary.

A.5. Additional Computations

Figure A.2 shows the allocation over time and build-up for five random instances where the test

cohort of arrivals (N=1,175) are randomly drawn from the entire population of 2015 and 2016

arrivals, and their arrival order is randomly permuted. In this case, the data generating process

is stationary by design, and the population used for sampling is identical, in probability, to the

test cohort. Although Figure A.2 is much more balanced than Figure 2, random deviations from

a balanced allocation can still occur. Thus, even in this case, explicitly enforcing balance is still

beneficial. Furthermore, we will show that our balancing method can be implemented with no

additional computational costs, and with very little loss in predicted employment.

Figure A.2 Allocation to top 9 locations over time (left), and build-up at each location (right), with a random

arrival order. Results for five random instances are shown.
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Figure A.3 (left) compares the average employment level achieved by the algorithms proposed in

this paper to the potentials algorithm of Ahani et al. (2021). Figure A.3 (right) shows the imbalance

resulting from the potentials method of Ahani et al. (2021), which is extremely similar to the

imbalance resulting from OnlineMinDiscord.
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Figure A.3 Performance of all outcome-maximizing algorithms, including the “potentials” method introduced by

Ahani et al. (2021) (left), and the allocation over time obtained under the potentials method (right).

Figure A.4 shows the allocation to the top nine locations over time resulting from the hindsight-

optimal solution. Although the imbalance is not as severe as it is under OnlineMinDiscord,

significant imbalance still persists. This further motivates the need to develop an algorithm that

explicitly takes balance into account.

7 8 9

4 5 6

1 2 3

0 300 600 900 1200 0 300 600 900 1200 0 300 600 900 1200

0

25

50

75

0

20

40

60

0

20

40

0

30

60

90

0

20

40

60

0

20

40

0

50

100

0

20

40

60

80

0

20

40

60

Arrival number

N
um

be
r 

al
lo

ca
te

d

Figure A.4 Imbalance of the hindsight-optimal solution for the employment-maximizing assignment problem.
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A.6. Extensions

A.6.1. Minimum-Risk Formulation

OnlineMinDiscord seeks to minimize the disagreement probability at each time step. An alter-

native algorithm could instead attempt to directly minimize the expected disagreement cost, which

is again given by:

dt =EWt+1
[Ψ∗t (s̃(t− 1))−

(
wtφ(t) + Ψ∗t+1(s̃(t− 1)− eφ(t))

)
|wt]

where Ψ∗t (s̃) := EWt [v(OutcomeMax(Wt, s̃))] denotes the expected sum of employment scores of

the optimal assignment for all cases t onward, starting with capacity vector s̃.

Algorithms such as the potentials method proposed by Ahani et al. (2021) attempt to mini-

mize the disagreement cost by using the dual variables from the capacity constraints of Problem

OutcomeMax as approximations of the following quantity for each location j:

Ψ∗t (s̃(t− 1))−Ψ∗t+1(s̃(t− 1)− j)

This approach (as demonstrated in Figure A.3) appears to perform quite similarly, if not slightly

worse, than OnlineMinDiscord on the data in this study.

The following steps provide a more exact and direct approach to minimizing the disagreement

cost in each time step. We refer to this as the “minimum-risk" approach.

For each location j ∈ [M ]:

1. Sample K arrival trajectories for cases t+ 1 through T , denoted by Wk
t+1, and compute dktj :=

Ψ∗t (W
k
t+1, s̃(t− 1))−

(
wtj + Ψ∗t+1(Wk

t+1, s̃(t− 1)− j)
)
for each trajectory and each j ∈ [M ].

2. Assign case t to arg minj

∑K
k=1 d

k
tj

K
.

Although this method approximates minimizing the disagreement cost exactly, it requires solving

2 ·K ·M instances of OutcomeMax in each time step. If run-time is not an issue, or if both the

number of locations and horizon length are average in size, this method would be an appropriate

choice over OnlineMinDiscord.
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A.6.2. Batching

In the dynamic formulation of the assignment problem presented above, each item is observed and

must be assigned one by one. At the opposite end of the spectrum is, of course, the classic static

formulation of the assignment problem, where all items are observed and assigned simultaneously.

There also exists a middle ground between the dynamic and static formulations, whereby items

are observed and must be assigned in groups or batches. For instance, in the refugee assignment

realm, there may be periodic (e.g. weekly, monthly) cohorts of refugee arrivals that can be assigned

in batches rather than on a purely one-by-one basis. This section extends the dynamic assignment

mechanisms presented above to a batching context.

First, we note that batching cannot hurt the performance of an online algorithm, since the batches

can simply be ignored and the units within batches could be assigned one-by-one using the pro-

posed online assignment algorithms. Batching, therefore, only presents an opportunity for improved

efficiency. We propose two methods for applying our proposed algorithms to a batched setting.

The first method assigns each case in the batch simultaneously, resulting in the largest efficiency

gains. However, it requires solving a MIP many times for each batch. Let Bt be the size of the

batch arriving at time t. For this batch, consider solving the following offline problem, adapted from

GBalance.

max
Z,b

T∑
l=t

M∑
j=1

wljzlj − γ
t+Bt∑
l=t

M∑
j=1

zlj

⌈
bj(l− 1)− ρj

ρj

⌉
1{bj(l− 1)> 0}

s.t.
∑
j

zlj = 1 ∀ l ∈ {t, ..., t+Bt}

∑
l

zlj = s(t)j ∀ j ∈ [M ]

bj(l) = (bj(l− 1) + zlj − ρj)+ ∀ l ∈ {t, ..., t+Bt}

Z∈ {0,1}N×M

(BatchBalance)

BatchBalance is equivalent to GBalance except that the objective function includes the wait

time and idle time incurred by each case in the current batch. In solving BatchBalance at time
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t, the employment scores wl are known for l ∈ {t, ..., t+Bt}, but are not known for cases that arrive

after time t+Bt. Thus, following Method 2, we sample K random trajectories of arrivals from time

t+Bt + 1 onward is a random trajectory of arrivals from time t+ 1 +Bt through T . After solving

BatchBalance for K random trajectories, the current batch is assigned according to

{z∗l }l∈{t,...,t+Bt} = mode
(
{z1

l }l∈{t,...,t+Bt}, ...,{zKl }l∈{t,...,t+Bt}
)

In the pure online setting without batching, this reduces to Method 2. In the pure online setting,

each vector zkt is effectively one dimensional (since it only contains one positive element, it can

be mapped to the one-dimensional domain {1, ...,M}). Therefore, the disagreement probabilities

could be estimated with a reasonable number of samples. However, with batching, the assignment

decision is comprised of Bt assignment vectors, and thus can be mapped to a Bt-dimensional domain

({1, ...,M}Bt). Thus, given the combinatorial complexity of the assignment decision with batching,

obtaining reasonable estimates of the disagreement probabilities potentially requires many more

sample trajectories. When Bt is small, this method is likely to be tractable.

When Bt is large, we propose either assigning cases within the batch one-by-one, or by breaking

down the batch into smaller batches where the method above can be applied. Notice that even if cases

within a batch are assigned one-by-one, knowledge of the employment scores for the entire batch is

nonetheless helpful, and improves the performance of OnlineMinDiscord and OnlineBalance.

Instead of randomly sampling the entire future horizon, we can fix the employment scores for the

remaining cases within the batch, and therefore only need to randomly sample the horizon after the

last case in the batch.

Now consider breaking down a larger batch into smaller batches, with the goal of assigning each

smaller batch simultaneously. Offline, a reasonable batch size can be found by solving BatchBal-

ance with the largest possible horizon and various batch sizes. This provides us with a lookup table

of iteration run-times. Therefore, we can predetermine a reasonable maximum batch size and follow

the procedure described above, using BatchBalance as the offline problem.
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A.6.3. Varying Family Sizes

The paper has assumed for simplicity of exposition that each case has exactly one refugee, which

is not realistic in practice. In reality, families often arrive together and must all be placed together.

Therefore, multiple slots of the same location are often taken simultaneously. The proposed methods

can be trivially extended to accommodate varying family sizes. In particular, a family with multiple

members is a simpler version of the batching problem described above. Because an entire family

must be assigned to the same location, the decision in each time period is still one-dimensional (as

opposed to the general batching problem above where the decision was Bt-dimensional).

Let yt be the family size of case t. We will assume that the employment score vector has already

been mapped from the individual-level to the family-level, as discussed in Bansak et al. (2018) (for

example, the family outcome score vector could be the average of the score vector for each member

of the family). Instead of randomly sampling T − t cases, the algorithm must sample T − yt − t

cases in each random trajectory. In the offline matching problems (OutcomeMax, Balance,

and GBalance), the constraint
∑T

l=t zlj = s̃j(t− 1) changes to ytztj +
∑T

l=t+yt+1 zlj = s̃j(t) . In

algorithms OnlineMinDiscord and OnlineBalance, the only line of code that changes is s̃j(t)←

s̃j(t− 1)− ztj, which changes to s̃j(t)← s̃j(t− 1)− ytztj.


