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Abstract. We propose a generic mechanism for incentivizing behavior
in an arbitrary finite game using payments. Doing so is trivial if the mech-
anism is allowed to observe all actions taken in the game, as this allows
it to simply punish those agents who deviate from the intended strategy.
Instead, we consider an abstraction where the mechanism probabilis-
tically infers information about what happened in the game. We show
that payment schemes can be used to implement any set of utilities if and
only if the mechanism can essentially infer completely what happened.
We show that finding an optimal payment scheme for games of perfect
information is P-complete, and conjecture it to be PPAD-hard for games
of imperfect information. We prove a lower bound on the size of the pay-
ments, showing that the payments must be linear in the intended level
of security. We demonstrate the applicability of our model to concrete
problems in distributed computing, namely decentralized commerce and
secure multiparty computation, for which the payments match the lower
bound asymptotically.
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1 Introduction

Game theory is the study of strategic reasoning in rational agents, where ra-
tionality means the agents act to maximize their own utility. When all agents
choose such a strategy, we call the resulting interaction an equilibrium. Unfor-
tunately, the equilibrium often does not ensure the best outcome for the agents
involved. The most famous example is the prisoner’s dilemma where two crimi-
nals are arrested and interrogated by police in separate rooms: each criminal can
either cooperate with their accomplice, or defect and give them up to the police,
resulting in a reduced sentence. Here, it is well-known that cooperation is not
an equilibrium, as neither criminal can trust the other not to defect, although it
would be in their common interest to do so. In game theory, this inefficiency is
measured using the price of anarchy (PoA), defined as the ratio of the social op-
timum and the worst possible equilibrium. In seminal work [KP09], Koutsoupias
and Paradimitriou consider a simple model of network routing where the PoA
is shown to be > 1.5. This means the lack of coordination between the agents
leads to a 33% loss of performance compared to the optimal setting in which the
agents coordinate. While this may be problematic on its own, consequences may
be more severe if the interaction we are trying to model is of legal matters or
otherwise related to security. Here, a lack of coordination may lead to irrepara-
ble damage (such as leak of private information) if some agents deviate from the
intended strategy.

Indeed, in cryptography, such complications are the cause of a seemingly
irreconcilable gap between the worlds of rational cryptography and the classic
cryptographic model: in [HT04], Halpern and Teague famously show there is no
deterministic bounded-time interactive protocol for secure function evaluation
on private inputs involving rational agents with a certain class of utility func-
tions, namely agents who prefer to learn the output of the function, but prefer
as few other agents as possible learn the output. By contrast, there are simple
and efficient actively secure protocols when a sufficient subset of the agents are
guaranteed to be honest, even when the remaining agents are allowed to devi-
ate arbitrarily [CDN15]. A weaker notion of security called ‘covert security’ was
proposed by Aumann and Lindell in [ALO7]. Here, agents are allowed to devi-
ate but are caught with some constant non-zero probability. This was extended
by Asharov and Orlandi in [AO12] to publicly verifiable covert (PVC) security
where a certificate is output that can be verified by a third party to determine
if cheating has occurred. The underlying assumption of these protocols is that
the cost associated with the risk of being caught outweighs the benefit of deviat-
ing. Indeed, the problem of misaligned equilibria is usually mitigated in practice
by ensuring appropriate punishment for misbehaving, such as fining deviants,
banning them from participating again, or subjecting them to other legal reper-
cussions, effectively changing the utilities of the game to ensure being honest is,
in fact, an equilibrium. In our example with the prisoner’s dilemma, a criminal
who defects might face consequences after the other criminal is released from
prison, as the adage goes: “snitches get stitches”. Sometimes, it is less clear how
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to punish agents, as when the games are models of interaction on the internet
where agents can be anonymous.

In this work, we consider using payments as a generic way to incentivize the
participating agents to behave in a certain way. We ask the following question.

Can we design a generic mechanism that uses payments to incentivize
behavior in an arbitrary game involving rational agents?

Of course, this is trivial if we allow the mechanism to observe all actions taken
by the parties, as this allows the mechanism to punish parties who deviate from
the inteded strategy. Instead, we consider an abstraction where the mechanism
is only allowed to probabilistically infer information about what happened in
the game. To the best knowledge of the authors, this question has not been
studied in full generality before, in a way that allows for ‘plug-and-play’ with an
arbitrary game with some probabilistic release of information.

1.1 Related Work

Mechanism Design. The use of payments to incentivize behavior is a well-
studied problem in mechanism design, where the payments are often called ‘scor-
ing rules’. Such a rule assigns a score (payment) to each outcome of an inter-
action, and can e.g. be used to elicit truthful responses. In this case, we say
the scoring rule is proper, examples of which include the quadratic scoring rule
and the logarithmic scoring rule [Sel98JGR07]. A mechanism for which an agent
maximizes their utility by reporting their beliefs truthfully is said to be truthful.
The logarithmic scoring rule is used by Prelec to implement a truthful mech-
anism for voting in the Bayesian truth serum (BTS) model [Pre04]. This was
extended to ‘robust BTS’ by Witkowski and Parkes [WP12] that instead uses the
quadratic scoring rule. Scoring rules are also used in peer prediction methods
ILC17], Bayesian markets [Bail7] and choice matchings [CPRT19]. Payments
are also used more generally in the generic Vickrey-Clarke-Groves (VCG) mech-
anism for obtaining a socially optimal outcome [Vic61|Cla71lGro73]. However,
the VCG mechanism is fundamentally limited to games that involve distributing
a set of ‘items’ among a set of players. It is not obvious how this would apply to
an arbitrary extensive-form game.

Distributed Computing. There are numerous works in the literature that
take advantage of payment schemes to incentivize the participants to behave
honestly. Such payment schemes are usually implemented by deploying a smart
contract on a blockchain; the protocol starts with each party submitting a ‘de-
posit’ that is repaid only if they are found to act as intended. The work most
related to ours is by George and Kamara [GK20] who propose a framework for
incentivizing honesty using ‘adversarial level agreements’ that specify damages
parties must pay if found to act adversarially. We will show later that their
model can be recovered as a special case of our model. Recently, Faust, Hazay,
Kretzler and Schlosser propose ‘financially backed covert security’ [FHKS21] to
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punish parties who are caught deviating in a PVC protocol. Their work is fo-
cused on the cryptographic implementation, and as a result, they do not formally
analyze the equilibria induced by their mechanism. In [ZDH19], Zhu, Ding and
Huang propose a protocol for 2PC that incentivizes honesty using a PVC aug-
mented with a deposit scheme. In [DWAT17], Dong et al. propose a protocol that
uses deposit schemes to incentivize honesty in outsourcing cloud computations.
BitHalo [Zim15] implements an escrow using deposits and multisigs that was
analyzed in [BBMT15] by Bigi et al. In [AK19], Asgaonkar and Krishnamachari
propose a smart contract for decentralized commerce of digital goods using dual
deposits. This was extended by Schwartzbach to non-digital goods in [Sch21] in
a way that uses deposits optimistically. Deposits have also been used for ‘truth-
telling mechanisms’: in [ABV™18|, Adler et al. propose a system, Astraea, that
uses deposits and rewards to incentivize a group of voters to decide to valid-
ity of a proposition. Kleros [LAGI9] uses a similar mechanism to implement a
decentralized court system.

Economics. In the economics literature, the payment schemes that we study are
known as ‘deposit-refund systems’ [FW00]. They are often studied in the context
of environmental issues for incentivizing compliance with laws and regulations.
In [GCSTPOT], Grimes-Casey et al. propose a game-theoretic model using such
deposit-refund systems to analyze consumer behavior with refillable plastic bot-
tles. Indeed, deposit-refund systems are currently used in many countries for
closing the gap between the marginal private cost and the marginal external
cost of disposing of e.g. bottles, batteries, tires, and consumer electronics, see
e.g. [Walll] for an overview. Such systems can also be used at a higher level of
governance: in [McE13], McEvoy studies deposit-refund systems as a means of
enforcing nations to comply with international environmental agreements.

1.2 Our Contributions

We propose a generic mechanism to incentivize behavior in an arbitrary n-player
finite games with the use of payments. This is a trivial task if the mechanism can
observe all actions taken in the game; instead, our model assumes the mechanism
can probabilistically observe actions taken by the agents. We show that payments
can be used to implement any set of utilities if and only if the mechanism can
essentially infer the entire execution of the game (Lemma ). We show that
our model generalizes similar models in the literature, such as ‘adversarial level
agreements’ by George and Kamara [GK2(] retained as a special case. We sketch
how to implement the payments in a distributed setting by letting agents deploy
a smart contract on a blockchain. We demonstrate how to use payments for
decentralized commerce to solve the ‘eBay problem’, such that neither buyer
nor seller has an incentive to cheat.

We investigate the computational complexity of computing an optimal de-
posit scheme, in the sense that the payments are minimized. For games of perfect
information, we observe that the problem is equivalent to linear programming
under logspace reductions, thus showing the following.
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Theorem 1 (Informal). Finding an optimal deposit scheme for a finite game
of perfect information, or showing no suitable deposit scheme ezists, is P-complete.

For games of imperfect information, it is well-known that even computing an
equilibrium is PPAD-complete, so it is unlikely there is an efficient algorithm for
finding an optimal deposit scheme in these cases. As a consequence, we conjecture
that finding an optimal deposit scheme for finite games of imperfect information
is PPAD-hard.

To showcase the applicability of our model, we apply it to the problem of
secure multiparty computation. We show that payments can be used, together
with what is known as a ‘publicly verifiable covert secure protocol’ [ALOTAO12],
to yield a secure protocol for secure function evaluation involving rational agents.
We stress that this does not violate the impossibility result of Halpern and
Teague for the simple reason that they explicitly assume the utilities are not
quasilinear, hence not allowing payments.

Theorem 2 (Informal). Any function f can be computed with 6-strong game-
theoretic security with rational agents by augmenting an e-deterrent PVC proto-
col with a payment scheme where each party pays O(1 + §/¢).

Finally, we prove a lower bound on the size of the largest punishment (equiva-
lently, deposit) for all games that are ‘self-contained’. We show the punishments
must be linear in the size of the desired level of security. Note that this matches
asymptotically the bound of Theorem [2 since n, s, and ¢ are constant for any
fixed PVC protocol.

Theorem 3 (Informal). Any self-contained payment scheme that achieves
d-strong game-theoretic security in a game of n players must have a mazimum
punishment of size 2(1+43+/n/s), where s is the number of observable outcomes.

The paper is organized as follows. We start in Section [3 by defining our model
of payment schemes. We show how to implement a payment scheme using a
smart contract, and prove that payments can be used to implement any set
of utilities if and only if the mechanism can essentially infer all information
about what happened. In Section [, we consider the computational complexity
of finding payment schemes and prove Theorem [Il Next, in Section 5l we apply
the framework to secure MPC and prove Theorem [2l Finally, in Section @ we
show a lower bound on the size of the maximum deposits and prove Theorem Bl

2 Preliminaries and notation

In this section we briefly state some preliminaries needed for the purpose of self-
containment, as well as to establish notation. The set of all real vectors with n
elements is given by R™, and the set of all m x n matrices is given by R™>*", We
use a boldface font to refer to vectors and matrices, and reserve capital symbols
A for matrices, and lowercase symbols u for vectors. The n X n identity matrix is
denoted I,,. We may denote by 0, resp. 1 as either matrices or vectors containing
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only 0, resp. 1 and trust it is clear from the context what we mean. To emphasize
the size, we may write e.g. 0" as the vector [0,0,...,0]" € R". For a matrix
A = (aij) S Rmxn, we denote by VGC(A) = [all, A12y .+ Alp,A21 4+« .+, amn]T S
R™™ the vectorized version of A, resulting from ‘flattening’ the matrix to turn
it into a vector. Note that this is a linear operation. If a € R", b € R are two
vectors, we denote by al|b € R the ‘concatenation’ of a and b.

2.1 Game Theory

We mostly assume familiarity with game theory and refer to [OR94] for more
details. We give a brief recap to establish notation. An extensive-form game
consists of a rooted tree T', the leaves of which are labeled with a utility for each
player. We denote by L C T the set of leaves in T', and suppose some arbitrary
but fixed order on its elements, ¢1, 2, . . . £,,. We assume the existence of an nxm
matrix U = (u;;) € R"*™, called the utility matrix of G, that for each player P;
specifies how much utility u;; they receive when the game terminates in the leaf
¢; € L. The remaining nodes T\ L are partitioned into n sets, one belonging to
each player. The game is played, starting at the root, by recursively letting the
player who owns the current node choose a child to descend into. We stop when
a leaf ¢; is reached, after which player P; is given wu;; utility. A mapping s; that
dictates the moves a player P; makes is called a strategy for that player, and is
said to be pure if it is deterministic, and mixed otherwise. A set of strategies
s = (s1,82,...,8,), one for each player, is called a strategy profile and defines
a distribution on the set of leaves in the game. We overload notation and let
u;(s) denote the expected utility for player P; when playing the strategy profile
s. It C C{1,2,...n} is a set of indices of players, a coalition, we denote by —C'
its complement so that we may write a strategy profile s as s = (s¢, s—¢). As
solution concept, we will use a refinement of regular Nash equilibria that takes
into account deviations by more than a single party, see [ADGHO06] for details
on this model. Formally, a strategy profile s* is said to be a t-robust (Nash)
equilibrium if for every strategy s with |C| < ¢, and every ¢ € C, it holds that:

ui(s™) 2 ui(sc,sZc)

A subgame of G is a subtree G’ C G such that whenever v € G’ and v € G is
a child of u, then v € G’. A strategy profile that is a t-robust equilibrum for
every subgame of G is said to be a t-robust subgame perfect equilibrium (SPE).
These definitions suffice for so-called games of perfect information, where at
each step, a player knows the actions taken by previous players, though, more
generally, we may consider partitioning each set of nodes belonging to a player
into information sets, the elements of which are sets of nodes that the player
cannot tell apart. A game of perfect information is a special case where all
information sets are singletons.
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3 Payment Schemes

In this section, we present our model of games with payment schemes and show
when they can be used to ensure it is rational to play an intended strategy. We
consider games of perfect information as every such game allows for backward
induction to determine an SPE in linear time in the size of the game tree.
In general, we should not hope to efficiently determine an optimal payment
scheme for games of imperfect information, as it is well-known that finding an
equilibrium in these games is PPAD-complete as shown by Daskalakis, Goldberg
and Papadimitriou [DGPQ9].

We consider a set of n parties Py, Ps, ..., P, playing a fixed finite extensive-
form game G of perfect information. The parties are assumed to be risk-neutral
such that they aim to maximize their expected utility. We also assume the par-
ties have quasilinear utilities such that we can use payments to change their
incentives. We take as input a unique pure strategy profile s* that we want the
parties to play that we call the honest strategy profile for lack of a better term.
Note that s* is required to be pure, since it is impossible to determine (without
multiple samples) if a player played a mixed strategy. This has the effect that
s* defines, at each branch in the game, a unique ‘honest move’ that the corre-
sponding party must play. Our goal is to construct a procedure I" that takes as
input a game G in a black-box way and produces an equivalent game I'(G) that
implements a different utility matrix E such that s* is an equilibrium.

Information Structures In order to construct the procedure I', we need to be
able to infer something about what happened during the execution of the game,
as otherwise we are simply ‘shifting’ the utilities of the game, not changing the
structure of its equilibria. We call a mechanism that enables inferring information
from a game an information structure. We assume playing the game emits a
symbol from a fixed finite alphabet X' of possible outcomes that can be observed
by an outside observer. This alphabet serves as a proxy for how the parties
acted in the execution of the game. We associate with each leaf of the game a
distribution on Y. When the game terminates, we sample a symbol according to
the distribution and output that symbol.

Definition 1. An information structure for G is a pair (X, ®) where X is a
finite alphabet of symbols with some arbitrary but fixed order on its symbols,
01,02,...05 for s =|X|, and where ® = (¢r;) € R**™ is a matriz of emissions
probabilities such that every column of ® is a pdf on the symbols of X. o

Given a finite game with an information structure, a payment scheme I is a
mechanism that can be used to change the utilities of the game. At the end of
the game, the payment scheme rewards or punishes the parties based on what
was emitted by the information structure. We assume quasilinearity, that is,
the utilities of the game are given in the same unit as some arbitrarily divisible
currency which the payment scheme is able to process. A party P; is indifferent
to obtaining an outcome that gives them wu;; utility and receiving u;; money.
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In other words, we make the implicit assumption that ‘everything has a price’
and intentionally exclude games that model interactions with events that are
not interchangeable with money. This circumvents the impossibility result of
Halpern and Teague who implicitly assume a fixed total order on the set of
possible outcomes. By contrast, quasilinearity allows the payment schemes to
alter the order by punishing or rewarding parties with money.

Definition 2. A payment scheme for (G,Z) is a matrix A = {\ix} € R™*%,
where T = (X, ®) is an information structure for G, and N\, is the utility lost
by P; when observing the symbol o, € X o

In our definition, A is a matrix that explicitly defines how much utility A;; party
P; loses when the payment scheme observes the symbol o, € X. When the game
is played reaching the leaf ¢;, by quasilinearity the expected utility of party P; is
the utility they would have received in a normal execution, minus their expected
loss from engaging with the payment scheme:

S
E[P; utility in leaf £;] = ui; — Y Air ¢r; = [U — A®];; (1)
k=1

Correspondingly, the game I'*(G) is said to implement the utility matriz E if
E=U-A®d.

For the remainder of this paper, we study when and how A can be instanti-
ated to ensure I'*(G) implements some E with desirable properties.
Note that A is allowed to contain negative entries which means parties are
compensated, i.e. receive back more utility from the payment scheme than they
initially deposited. Of course, this necessitates that some other party loses their
deposit. In general, we may want the payment scheme to ‘break even’, in the
sense that all column sums of A are zero. However, this severely restricts the
class of utility matrices that can be implemented.

Lemma 1. To implement E with zero inflation, each column of U — E must
sum to zero.

Proof. First of all, note that any A that implements E must satisfy A® = U—E.
Any such A can be written as A = Xy + K where Xj is a fixed solution and K
is any element in the cokernel of ®, i.e. K® = 0. In order for A to have zero
inflation, it must hold that 1T (X +K) = 0, which implies that 17K = —1TX,.
Now assume A has zero inflation, then we can multiply by ® from the right to
yield 1TK® = —1TX,®. But K is an element of the cokernel of ®, and X is
a solution to the equation, so it must hold that 0 = —17(U — E) which implies
the columns of U — E sum to zero. a

3.1 Trivial Information Structures

One might be tempted to simply choose a utility matrix E with some properties
that we like and solve for A to yield a protocol with those properties. Unfor-
tunately, as we will show, this is only possible for information structures that
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are ‘trivial’ in the sense that they leak all essentially all information about what
happened.

Lemma 2. Let U € R™™ & € R**"™ be fivzed matrices, and let X be a fized
alphabet of size |X| = s. Then there exists a Ag for each E € R"*™ such that
Ag implements E if and only if ® is left-invertible.

Proof. We prove each claim separately:

<« If ® is left-invertible, then for any fixed E we can let Ag := (U —E)®~!
where @1 is a left-inverse of ®. It follows that U — A® = U — (U —
E)® !® = U - U + E = E, which means that Ag implements E, as we
wanted to show.

= Suppose there is such a Ag for each E. This means that we can always find
Ag that solves U — E = Ag®. Assume for the sake of contradiction that
there are fewer symbols than leaves. This means there must be a leaf for
which the deposits is a fixed linear combination of the deposits of the other
leaves which means there must be an E that we cannot implement. But
this is a contradiction so we assume there are at least as many symbols as
leaves. This means we can choose E such that U — E is left-invertible with
left-inverse F € R™*"  which means that FAg® = I,,,. But this means that
FAg is the left-inverse of ®, a contradiction. a

In particular, we can only implement any E we want if there are at least as many
symbols as leaves in the game tree, and that these symbols are not duplicates, i.e.
the distributions of symbols across the leaves are linearly independent. Since we
are considering pdfs which are normalized, linear independence means the pdfs
are pairwise distinct. This means we can only ‘do what we want’ if the smart
contract is basically able to infer completely what happened in the execution of
the game. Of course, this makes the problem trivial as mentioned, as intuitively,
we can simply keep a deposit for all players who deviated from the intended
strategy.

3.2 A Special Case: Adversarial Level Agreements

We now show how the model of ‘adversarial level agreements’ (ALAs) by George
and Kamara [GK20] can be recovered as a special case of our model. An ALA
for a game with n players consists of 1) a description of the intended strategy for
each player, and 2) a vector of damages d € R™ that specifies how much utility
d; party P; should lose when found to deviate from the intended strategy. Their
model does not explicitly consider deviations by more than a single party, so we
can state this as an information structure with the following alphabet:

E:{T7J—17J—25"'7J—n}
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Here, T means all parties were honest, and |; means P; deviated. The emission
matrix ® depends on the specific application. An ALA then corresponds to a
payment scheme of the following form.

0d;y 0 --- 0
00dg--- 0
A=, . .. .
00 0---d,

Note that we can easily generalize this to deviations by any ¢ < n parties by
including more symbols, e.g. 119 or 1456.

3.3 Payment Schemes as Smart Contracts

We now explain informally how a payment scheme can be deployed in practice
as a smart contract running on a blockchain, see Fig. [[lfor a depiction. Note that
there are many subtleties in getting this rigorous, see e.g. [FHKS2TKKK21] for
more formal cryptographic modeling. At a high level, we want to ensure party
P; loses A\ utility when the symbol o is observed. We can implement this by
defining A} := maxpc1 2.5} Air and letting each party P; make a deposit of
size A} to a smart contract before playing the game. Afterwards, the parties are
repaid appropriately by the payment scheme to ensure their utility is as dictated
by A. Suppose we fix some payment scheme I, then the augmented game I'(G)
is played as follows:

1. Each P; makes a deposit of A} to the payment scheme.

2. The game G is played, reaching a leaf ¢;.

3. A symbol oy, is sampled from ¥ according to the pdf in the ;% column of
P

4. Each party P; is repaid A\ — A\j.

This can be implemented in a fairly straightforward manner using a scripting
language and deployed as a smart contract running on a blockchain, assuming
access to some information structure with known bounds on the emission prob-
abilities. We stress that this is only one possible implementation of a payment
scheme suitable in any scenario, even over the internet when parties are anony-
mous. The important thing is that party P; loses A;; utility when symbol oy,
is observed. When parties are not anonymous and can be held accountable, the
payment scheme can be used in an optimistic manner as was argued by George
and Kamara.

3.4 Game-Theoretic Security

We now define what it means for a game to be secure in a game-theoretic sense.
Intuitively, security should mean the honest strategy profile is an equilibrium,
though this is likely not sufficient for some applications. The fact that the hon-
est strategy profile is an equilibrium does not mean it is the only equilibrium.
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@)

(3)

AL = Atk

Fig. 1. Illustration of how the payment scheme I" augments a game G. First, in (1),
parties make a deposit to I'. Then, in (2), the game is run as usual, and a symbol
or € X is emitted to I'. Finally, in (3), I" repays the parties based on the symbol it
received from G.

Namely, there might be several dishonest strategy profiles with the same proper-
ties, and there is no compelling argument for why parties should opt to be honest
in the face of ambiguity. In fact, there might be reasons for being dishonest that
are not captured by the utilities of the game, say for spite or for revenge. To rem-
edy this, we want to quantify how much utility parties lose by deviating from the
honest strategy profile, in effect measuring the cost of dishonesty. We introduce
a parameter 0 such that being dishonest results in the deviating parties losing at
least § utility. A game with this property is considered secure against §-deviating
rational parties. We give the definition by Schwartzbach [Sch21] that generalizes
t-robust subgame perfect equilibria for finite games of perfect information.

Let G be a fixed finite game with n players and m leaves, and let U € R"*™
be the corresponding utility matrix, and let (X', ®) be some fixed information
structure on G. We say a utility vector u is C-inducible in G for a coalition C
if there is a strategy sc such that playing s = (s¢, s* ) terminates in a leaf ¢
labelled by u with non-zero probability.

Definition 3. Let G be a game, and s* an intended strategy profile. We say
G has é-strong t-robust game-theoretic security if for every subgame of G, and
every C-inducible vector u in that subgame with |C| < t, and every i € C, it
holds that:

ui(s*) >u; + 6 (2)

In other words, every coalition of < t parties that deviates from s* at any point in
the game should lose at least 0 utility for each deviating party. We note that for
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finite games of perfect information, t-robust subgame perfect equilibria is retained
as a special case of this definition by letting § = 0.

3.5 Example: Decentralized Commerce

In this section, we demonstrate the applicability of our model by considering the
problem of decentralized commerce (the ‘eBay problem’). Here, a seller S wants
to sell an item 4t over the internet to a buyer B for £ money. To make the problem
non-trivial, we assume 4t is physical such that the protocol cannot be entirely
implemented using cryptography (see e.g. [ASW9ISIKTL10alKL10b/DEF18/AK19]
for solutions that work with digital goods). We assume it has a value of y to the
buyer, and a value of x’ to the buyer. To make the problem feasible, we assume
that y > x > 2’ > 0. We consider a simple game where S first decides whether
to send it to B, after which B decides whether or not to pay S. The resulting
extensive-form game is depicted in Fig.

In this simple game, the trade will never be completed, as it is evidently
rational for the buyer to always reject delivery of the item; consequently, it is
rational for the seller not to send the item. This seems to contradict empirical
data, as variants of this game are played successfully all the time. The reason
for this is that, in practice, buyer and seller are not anonymous and can be held
accountable for fraud, and potentially subject to legal repercussions. Also, such
trades are typically processed by a middleman (such as eBay/Amazon/Alibaba)
that may offer some insurance for either buyer or seller. Regardless, our goal is to
augment the game with a payment scheme to avoid having to trust a middleman
and enable fully decentralized commerce.

not send

B: —x B: B: y B:y—=x
S S

- S:z—2

0
0

Fig. 2. Extensive-form representation of the decentralized commerce game. The dom-
inating paths are shown in bold. We observe that the dominating strategy is for the
seller not to send the item, and for the buyer to withhold their payment regardless of
whether they received the item.

To do so, let us first assume the parties use a smart contract to process
the trade, and let us assume we have some means of probabilistically inferring
whether the item was actually shipped. In the blockchain literature, such a mech-
anism is called a blockchain oracle [CE21]. In particular, we assume the oracle
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can recover the ground truth with probability 1 — € for some constant ¢ < %
One potential blockchain oracle is the jury-based system Kleros [LAG19], that
was shown in [CS22] to yield € < 4 under reasonable assumptions on the jurors.
To proceed, we need to define an information structure on the game. We first
define an alphabet of outcomes as follows.

XY ={T,1p,Ls}

Here T is a symbol emitted if the buyer accepts the trade, and 1 p, lg are
outcomes of the oracle if it is invoked, where Lp (resp. Lg) means ‘the buyer
(resp. the seller) was dishonest’. We then define an emissions matrix on the game
as follows.

1 0 0 1
b=[101—-¢ e O
0 ¢ 1—€0

Now, let us assume we want to instantiate payments to ensure the game has z-
strong game-theoretic security. We proceed using backward induction in Fig. 2
letting the corresponding utilities have a difference of > x. This is e.g. achieved
by defining the following ‘desired’ utility matrix E.

E— (—3: 0 y—2x y—x)

r —x -2 -1
In order to implement E, the payment scheme A must satisfy Eq. () as follows.
AP=U-E

ABT (1 —8))\BJ_B +€)\BJ_S E}\BJ_B =+ (1 —E))\BJ_S ABT _ 002x0
AsT (1 —e)Asi, +ersiy €dsiy + (1 —€)Asig AsT 0z 00

This immediately gives ApT = Agt = 0, while the remaining payments are
given by four equations with four unknown and can be solved using Gaussian
elimination to yield the following payment scheme.

2 2(1—¢)
A= (0 —T 1722 x)
0 1—¢ £ /

!
124 ~1-2:7

2(1—¢)

1-2¢
contract, while the seller must make a deposit of size 11:286 z’. To make this more
concrete, suppose we have x = 1008, 2/ = 508, and € = 0.1. Then the buyer must
make a deposit of size A = 2253, while the seller must make a deposit of size
% = 225/4% ~ 578. The large difference in the deposits reflects the fact that
the protocol is ‘biased’ in favor of the buyer. In practice, while x is known to the
mechanism, z’ is usually not. Instead, we can use a variation of this payment
scheme proposed by Schwartzbach [Sch21]. Here, both buyer and seller submit
a deposit of size Az = Ag = z, and the resulting contract is shown to have
(1 — 2¢)a-strong game-theoretic security. Their contract is also optimistic in the
sense that deposits are only used when the buyer disputes delivery of the item.

In other words, the buyer must make a deposit of size z to the smart
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4 Computational Complexity

In this section, we analyze the computational complexity of finding payment
schemes in arbitrary games. For games of perfect information, we observe the
problem is equivalent to linear programming (denoted LP) under logspace-reductions,
thus showing the problem is complete for P.

More formally, we consider the following optimization problem.

PaymentScheme!

Instance: Finite game G with utility matrix U € R™*™ and intended
strategy profile s*; finite alphabet X' with s = |X|, emission matrix ® €
Rs*™ and cost vector ¢ € (R U {oo})™”.

Output: Self-contained payment scheme A € R™"** s.t. I'A(G) has d-strong,
t-robust game-theoretic security, for which ¢'vec(A) is minimized; or L if
no such payment scheme exists.

Here, oo is a formal symbol in the cost function that ‘forces’ the corresponding
payment to equal zero. It does not contribute to the actual cost function. This
can e.g. be used to implement honest invariance, to ensure the utility vector for
the intended strategy remains unchanged. We allow this modeling to simplify
our reductions, though we can make do without this assumption; we sketch how
to do so at the end of the section.

Theorem 1. PaymentSchemef is P-complete for games of perfect information.

We prove this in the next two subsections, by reducing both to and from LP using
logspace-reductions. For games of imperfect information, it is unlikely we can
find an optimal payment scheme to change the equilibrium, as even computing
the equilibrium for these games is known to be PPAD-complete. As a result, we
conjecture the problem to be hard.

Conjecture 1. PaymentSchemef is PPAD-hard for imperfect information games.

4.1 Upper Bound: Reduction to LP

In this section, we show how to reduce PaymentScheme? to LP. Since the feasible
region is a convex polyhedron, it is unsurprising that we can use linear program-
ming to decide the minimal size of the deposits necessary to establish security.
In particular, we can write the necessary constraints for d-strong ¢t-robust game-
theoretic security as a set of linear constraints. For convenience, we will represent
the utility matrix U as a vector u € R™ in row-major order. We will then col-
lect the set of necessary constraints in a matrix ¥®) ¢ R xmm where o)
denotes the number of such constraints. We also let () = [6,6,...,0]" € R
be a vector only containing 6. Note that a(*) is a constant that depends on the
structure of the game.
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Proposition 1. PaymentSchemef can be reduced to LP in logspace.

Proof. First note that the set of utility matrices with J-strong t-robust game-
theoretic security can be recovered as the set of solutions to the following equa-
tion:

Pty > §) (3)

We note that, in general, it is hard to give an exact expression for ¥®) since this
is tightly dependent on the structure of the game, as is a(*). Instead, the matrix
¥ ®) can be computed using a simple recursive procedure. In the base case, the
leaves, there are no constraints. At each branch owned by a player P;, we need
to bound the probability of each undesirable outcome in terms of the honest
outcome u*. To do so, we compute the t-inducible region, defined as the set of
outcomes inducible by a coalition C' containing P; of size < t. For each outcome
v in the t-inducible region, we add a column 1 € R™™ to ) that ensures that
u; > v;+46. To do so, suppose u; and v; have indices a, b respectively, we then let
Yimia < 1, and 9, < —1 and zero elsewhere, and add an entry containing

§ to 6. This procedure can be completed using a single pass of the game tree
by keeping track of the t-inducible region as we go along. Note that there is a
technical issue since our decision variables A are not in vector form, as is usual
of linear programming. To remedy this, we also want to collect the deposits in
a vector A € R™ in row-major order. For a given information structure (X, ®),
we construct a matrix R equivalent to ® in the following way: for every index ij
in A, we construct the ‘base matrix’ L% that is 1 in index 4j, and 0 everywhere
else. We then compute a row of R by computing the product L/ & and putting
it in row-major order. It is not hard to see that the image of ® is isomorphic
to the column space of R, and hence we say A implements the utility vector e
iff e = u — RA. We now substitute this in Eq. @) to get @ (u— RX) > 8¢,
Next, we move the constant terms to the right-hand side to yield the following:

—TORN > 60 — @y (4)

We also have to ensure the payment scheme is self-contained, but this is a simple
set of linear constraints > . ; Xis4x for every k = 1...s. Finally, note that our
objective function is ¢ X, and since all constraints are linear we can produce
the following linear program.

min ¢’ A

st. —PORA> 6 — @y

D> ik =0 Vh=1..s
=1

To deal with oo in the cost function, we may set the corresponding cost of the
linear program to an arbitrary value and add an equality constraint to ensure the
decision variable equals zero. Note that the linear program can be constructed
by maintaining a constant set of pointers to the game given as input, which
concludes the proof. a
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4.2 Lower Bound: Reduction from LP

We now show how to reduce LP to PaymentScheme? using logarithmic space. The
resulting game is a two-player finite game of perfect information. The reduction
can easily be adapted to any d > 0,¢t > 1. Consider an arbitrary instance of
LP, {minc'x | Ax > b,x > 0}, where ¢ = (¢;) € R", A = (a;;) € R™*", and
b = (b;) € R™. Without loss of generality, we will assume that the columns
of A have a positive column sum. This can be achieved by shifting A and b
correspondingly.

Proposition 2. LP can be reduced to PaymentScheme? in logspace.

Proof. At a high level, the reduction is as follows. We first describe the game,
and afterwards derive a suitable information structure. The game consists of two
players Py, P>. The root of the game consists of a move for player P, who wants
to ‘sabotage’ satisfaction of the program. They get utility 1 if they sabotage
an inequality, and 0 otherwise. They are allowed to choose between a set of
m gadgets, one for each inequality a;rx > b;. In addition, they can choose a
‘target’ leaf that pays 0 to both players. Each gadget consists of a move for the
other player P, who can choose whether to satisfy their inequality or not. If they
sabotage their inequality (move ‘left’) they get b, utility, otherwise if they move
‘right’ they get 0 utility. See Fig. Bl for an illustration. Clearly, the SPE of the
game is for P, to move left in the i*® gagdet if b; > 0, and for P; to choose any
convex combination of the gadgets for which the players move left. Our goal is
to design an information structure for which a payment scheme can ensure that
P chooses the target if and only if all inequalities are satisfied.

(0,0)
tarTget

1jj0™

)
T
|
|
|

0) (1,bs) (0

utilities  (1,b1) (0 ,0) (1,bm)  (0,0)
T T T

,
T
|
v v v v v w"
emissions  1]|0™ Ollay 1Jj0™ 0l|az 1jj0™ 0llam

Fig. 3. Depiction of the reduction from LP to PaymentScheme!. The dashed arrows
depict the corresponding information structure (pdf for each leaf). The player P; wants
to sabotage satisfiability of the circuit and gains 1 utility for doing so (0 otherwise).
The player P, will sabotage the i*" gadget (and hence allow P; to win) if and only if the
i'" inequality is not satisfied. A payment scheme corresponds to an assignment of the
variables in the LP-instance, with emission probabilities proportional to the weights,
such that an equilibrium with the target in its support corresponds to a satisfying

assignment of the variables.
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We now describe the information structure of the game. We have to specify an
alphabet and a pdf for each leaf of the game. We will have ¥ = {T, 11, 1o,... L,},
where T means ‘all inequalities are satisfied’, while L; is associated with the de-
cision variable x;. When P, satisfies their inequality, the symbol T is outputted
with probability 1. When P» sabotages their inequality, the column a; is used a
pdf to sample the symbols {x;}7_ ;. Of course, a; is not necessarily a pdf, but we

a;; b;

can normalize it by defining a;; = ST We similarly define b; = ST
k=1 k=17

and use b; in lieu of b; in the gadgets. This operation is well-defined since A
was assumed to have positive column sums, and inequalities are preserved under
positive scaling. To summarize, when a player goes left, the corresponding pdf
is [1,0,0,...,0]T € R"*!' and when a player goes right, the pdf is O||a € R"*!.
As the intended strategy profile s*, we consider any strategy profile where Py
always move right and P, chooses an arbitrary gadget. The cost function ¢ of
the payment scheme will be defined as follows,

n + 1 terms

¢ = [m, 00,€1,Ca,...,Cp) 1 € RVHZ

Now, suppose A € R +Dx(m+1) ig output as an optimal payment scheme. Let
As; denote the i™" row of A (as a column vector) corresponding to the leaf
where P; goes right, and let ®; = (0||a;) be the column of ® corresponding
to going right in the i*® gadget. Now, since some of the weights are oo, we
know that A; = 0 and A.; = 0. Hence, the utility vector going right remains
[1,0,0,...,0]" for each gadget, and the utility for P; remains unchanged. By
optimality and since § = 0,t = 1, we know that s* must an SPE. This means
that P, must receive (at least) as much utility going left as they do going right
(otherwise P; would not hit the target). Then by Eq. (), we must have,

V1. (—@Z—-FA.Q > Bl) — VZ((O”El)T(—A.g) > Ei — Ax>Db

where x := [A;2]™, is the vector consisting of the non-zero (last m) entries
of Ae2. This means that s* is an SPE if and only if the inequalities are satis-
fies. We know further that x > 0 since the payment scheme is self-contained.
Minimization of the objective function ¢'x comes directly from minimization
of ¢Tvec(A), as some of the weights are co. Finally, note that all parts of the
reduction can be performed by maintaining a constant set of pointers, thus con-
cluding the proof. a

Removing co. To remove oo from the optimization problem, we may add an
additional dummy player Ps who provides the necessary ‘liquidity’ to P», while
ensuring P;’s utility is left unchanged (note that the payment scheme must be
self-contained, i.e. column sums of A must be non-negative). We assign to Ps
arbitrary utilities in the reduction, and assign to the payments of P; the opposite
weights given to Ps, i.e. —c; instead of c;. The weights given to the payments
of P, are all zero. It is not hard to see that the resulting payment scheme has
the same set of optimal values, as optimization problems are invariant under



18 Nikolaj I. Schwartzbach

scaling. In addition, all payments to P, must be zero as any solution with non-
zero payments to P are strictly dominated by assigning the payment to either
P; or Pj if the corresponding weights are non-zero. If instead, the corresponding
weights of P», P3 are both zero, we can slightly perturb the cost of P; to e.g. 1
to ensure the utility of P, is unchanged.

5 Case Study: Secure Rational MPC from PVC

In this section, we apply our framework to a more complicated scenario involving
secure multiparty computation (MPC). Our work is similar to [FHKS21], in that
we also use payments to incentivize honesty from a PVC protocol. However, they
focus mainly on the cryptographic modeling, while our focus is mainly game-
theoretic and thus complements their work. We start with a brief and informal
definition of MPC for the purpose of self-containment, and refer to [CDN15] for
more details and formal definitions.

Secure Multiparty Computation (MPC). In MPC, a set of n mutually distrusting
parties Py, Ps, ..., P, want to compute a public function f on their private data
x = (21,2, ...,x,). The parties engage in an interactive protocol that ends with
each of them producing an output y;. The goal is for the output to be correct
such that y; = f(x), and private, meaning the protocol leaks no information
about the inputs of the parties, other than that which can be gathered from
the function output itself. This should hold even if a coalition of ¢ parties are
controlled by a monolithic adversary who tries to break security of the protocol.
MPC is a large research area with many proposed protocols, depending on the
assumptions. One of the weakest notions of security is that of passive security
where correctness and privacy are guaranteed against an ‘honest-but-curious’
adversary, who adheres honestly to the protocol description but tries to collect
more information than they should. Such protocols are typically comparatively
cheap, in contrast to protocols with active security that remain secure even if the
adversary may deviate arbitrarily from the protocol description. Active protocols
are typically orders of magnitude more expensive than their passive counterparts.
To remedy this, Aumann and Lindell [ALO7] propose an intermediate notion of
security called covert security where the adversary is allowed to cheat, but is
caught with some constant non-zero probability. They propose three different
definitions, giving different power to the adversary. The weakest notion is ‘failed
simulation’ where the adversary learns the inputs of the honest parties when
caught, while the strongest is called ‘strong explicit cheat formulation’ where
they do not. In the present section, we opt for the latter, though our model easily
adapts to the former albeit with larger payments. A disadvantage of covert secure
protocols is that they do not allow the participants to convince a third party
who was dishonest which means they are not directly applicable to our setting.
This was augmented to publicly verifiable covert security (PVC) by Asharov and
Orlandi [AO12] where a proof of cheating is output that can be verified by a third
party. The underlying assumption of these protocols is that the adversary suffers



Payment Schemes from Limited Information 19

some cost from being caught, meaning it is rational for them not to cheat. The
typical use-case is that of competing businesses who may wish to perform some
joint computation on trade secrets but are not willing to risk tarnishing their
name. While this may be a reasonable assumption in many cases, it is unclear
that this works in e.g. an anonymous setting where the parties cannot be held
accountable. Instead, we will use a payment scheme to prove it is rational for the
parties not to cheat. Our plan is to analyze the information structure induced
by the definition of covert security. We then apply our payment schemes to the
resulting game and derive values for the deposits of the parties.

X1 KP\ X2 o Xno1 /P\ Xn 1

2 . n

abort; cheat aborts cheat,

Fig.4. The ideal functionality Feyc with the strong explicit cheat formulation rep-
resented as an extensive-form game Gpyc rooted at P;. Our goal is to augment the
functionality with a payment scheme such that it is rational to behave honestly. Note
that in this representation, for clarity there are two distinct leaves when a player P; at-
tempts cheating, though in the following we ‘merge’ the two nodes belonging to nature
for simplicity.

Secure Rational MPC' from PVC. We consider a set of n parties P, Ps,..., P,
interacting with the ideal PVC functionality Fpyc. To analyze the interaction
using game theory, we need to be able to give some bounds on the utilities of
the parties. In order to simplify the presentation, we assume the parties are
homogeneous, in that they have the same utility functions. We further disregard
the cost of running the protocol, e.g. transaction fees, such that any abort; gives
0 utility to all parties. Note that we can always normalize the utilities in a game
as this preserves the total order. As such, we assume a party receives 1 utility
if they send their input and receive back the correct output. If instead a party
cheats and is successful, they receive u™ utility, while a party whose input is
revealed receives u™ utility. As Fpyc does not explicitly punish parties who are
caught cheating, we assume a party who is caught cheating receives 0 utility. As
in [AO12], we are using the strong explicit cheat formulation from [ALOT7], so a
cheater who is caught does not learn the inputs of the honest parties, and as
such earns 0 utility. We are not modeling the fact that parties can send incorrect
inputs, for the simple reason that it is impossible for the payment scheme, in
general, to detect this. We assume that parties always send their input truthfully,
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or rather their true input is defined to be whatever they send to the functionality.
The corresponding information structure would not be able to distinguish the
two classes of leaves, the distributions would be linearly dependent, making
it impossible to instantiate the deposits to ensure security. For some specific
applications however, one could imagine a function that allows to determine if
a party did provide the wrong input. It is not hard to augment our model to
accommodate this scenario, though it is out of scope for the present paper.

To make the problem nontrivial, we require that 4+ > 1 > 0 > u~. Note that
we are assuming the parties are oblivious to the utility earned by other parties.
This is in contrast to [HT04] who assume parties strictly prefer that as few other
parties learn the output as possible. This is not to circumvent their impossibility
result, as this is accomplished by allowing the deposits to alter the total order
of outcomes, i.e. we assume quasilinearity. Rather, it is for simplicity of expo-
sition, though it would be interesting as future work to augment our model to
this setting. We represent the interaction as an extensive-form game Gopyc, and
draw the corresponding tree. W An illustration of the game tree can be found in
Fig. [ Tt is not hard to see that when (1—¢)u™ > 1, the only equilibrium in the
game is for P; to attempt to cheat. Instead, we want all players to play honestly.
First, we need to define an information structure on the game. We first remark
that the structure of the game is such that only one party can deviate in any
given strategy profile. This means we can define the following alphabet of pos-
sible outcomes as, X = {T, abort;, cheaty, aborts, cheats, ..., abort,,, cheat,, }. We
assume the symbols are ordered left-to-right. Here T is a symbol emitted when
no cheating was detected, and no aborting occurred. Note that this overloads
the notation of abort; and cheat;. We now analyze the information structure
induced by the functionality. For simplicity, we will slightly modify the game
tree in Fig. [l Namely, we collapse each subgame corresponding to a move by
nature into a single leaf with expected utility (1 —¢) ut. This allows us to write
a single pdf for that leaf. If we instead insist on having separate leaves, then
the columns are no longer linearly independent; hence Lemma 2] does not apply
directly; however, it still applies if we replace ‘the inverse’ with ‘a left inverse’.
This needlessly complicates the analysis, hence the simplifying assumption. If
all parties are honest, we reach the outcome 1 and the symbol T is emitted. If
some party P; aborts, the output of the honest parties will always be abort;. If
instead, a party attempts to cheat, with probability € they are caught and the
message cheat; is output. If they are not caught, the symbol T is also emitted.
Suppose the leaves of Gpyc are ordered left-to-right in Fig. @l then we can write
the information structure as follows.
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01—-e01l—¢---01-¢1
1 0 00 ---0 0 O
0O ¢ 00 ---0 0 O
O 01 0 ---0 0 O
Pove=1[0 0 0 = -0 0 0
O 000 ---1 00
0O 000 ---0 ¢ O

It is not hard too see that when € > 0, all columns are linearly independent,
and as such ®Ppyc is invertible. In fact, simple Gaussian elimination implies its
inverse is as follows.

0100000
00100 00
00020 00
L, |0o000 100
Ppyc = Co Co
00000 10
00000+ 01
-1 -1 -1
155705200 550

By Lemma 2] we can implement any utility matrix E. In order to obtain (§ 4 1)-
strong game-theoretic security we could for instance define the following:

—-6-60 0---0 01

0 0-6—-0---0 01
E =

0 00 O0--—-06-01

In this setting, any party who deviates gains an expected utility of —J, while
they gain 1 utility by following the strategy honestly. Note that we are only
considering deviations by a single party, as it is not possible for multiple parties
to cheat in our model. In addition, the utility matrix satisfies honest invariance,
in that the utility of the honest strategy profile remains unchanged for all parties.
Now, in order to compute the deposits, we again apply Lemma [ and compute
the appropriate payment scheme:

ut 45 u_ u_

0 ; 0 o 0-- = 0

0 L 0vHg... L0

0 % 0 % (... ¥ 0

APVC:(U_E)QP_\}C: 0 i 0 i 0-- i 0
€ € g
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We now briefly analyze the resulting payment scheme. We note that when T
is emitted, all parties are repaid their deposits in full. When the symbol abort;
is emitted, the party P; loses part of their deposit, while all other parties are
repaid their deposit in full. Finally, when cheat; is emitted, the party P; loses
%, while each P; for j # ¢ loses % Note that we assume v~ < 0, meaning P;
actually gains money from the payment scheme, i.e. receive back more than they
initially deposited. In order for the payment scheme to not mint new money, we
need the following to hold true:
4 _
ut+06 < n—1u

€ €
That is, we must have that 6 > —(u™ +(n—1)u~) > 0 for the transformation to
be implementable in practice, i.e. the payment scheme must be self-contained.
In other words, there is only sufficient funds left over to compensate the honest
parties, if the desired level of security is sufficiently high (and hence the deposits
are large).
Ase < 1and § > 0, we have @ > 4, which means we get a deposit

of size \} = @. Note that the argument is fairly easy to adapt to the non-
+
homogeneous setting, where we would instead get A} = ui;ré, where u; is the

utility gained by party P; when successful in cheating. This shows the following
result.

Theorem 2 (Rational MPC). Let f be a public function and let Py, P, ..., P,
be a set of rational parties with the following utility function: namely, each P;
earns 1 utility by learning the output of the function, and u:r utility from learn-
ing the inputs of the other parties, while they gain u; wutility from another party
learning their input. Then f can be computed with §-strong game-theoretic secu-
rity by augmenting any e-deterrent PVC protocol with a payment scheme where

+
. . Fs—1
P; makes a deposit of size > L TO7 t

. + -
each i, 52—(1@ +Zj7éiui )

In the next section, we show a general lower bound on the maximum deposit
of any self-contained payment scheme, namely of size 2(1 + §\/n/|X|). Note
that this matches asymptotically the deposits in our MPC protocol, assuming
the PVC protocol is fixed (and hence €,n, | X are all constant).

. The protocol is self-contained if only if for

6 A Lower Bound on the Size of Payments

In this section we prove a lower bound on the size of the largest payment neces-
sary to achieve game-theoretic security. We show that the largest deposit must
be linear in the security parameter €, as well as linear in some of the utilities in
the game.

To establish our bound, we use properties of matrix norms. We give a brief
recap of matrix norms for the purpose of self-containment and refer to [GVLI0]
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for more details. We say a mapping |-|| : R™*" — R is a matriz norm if it
satisfies the following properties for all matrices A, B € R™*™ and every scalar
a e R

L. (Positivity). ||[A]| > 0, and ||A| =0 iff A = 0.
2. (Homogeneity). ||aA|l = |af || Al
3. (Subadditivity). ||[A + B < ||A| + [|B].

We denote by |||, the matrix norm induced by the L, norm |[-[|, on vector
spaces, and is defined as follows:

Ax
Al = sup D
SUP T,

If in addition, ||AB]|| < |[A]l - [|IB]||, we say ||-|| is submultiplicative. It can be
shown that ||-||, is submultiplicative for any value of p. Some special cases that
we will need are p = 1, 2, 0o which can be characterized as follows. The quantity
|A|l; equals the maximum absolute column sum of the columns of A, while the
quantity || Al gives the maximum absolute row sum of the rows of A. Our lower
bound is established by noting that we know these sums for the matrices used
in our framework. An example of a matrix norm that is not submultiplicative is
the max norm, ||A[|,,.,. = max; ; |A;;|. However, we can relate this norm to ||-||,
using the following identity.

1Al

AL, > Al > V22

We will need the fact that all matrix norms are equivalent up to scalar multiple,

in the sense that each pair of matrix norms |||, , |||, are related by « ||A]l, <

|All, < B|A]l,, for some constants «, 5 € R. For our purposes, we need the
following bounds:

(5)

1

;ﬁHAMSHMb§¢MMM (6)
1

— < <
ﬁﬂMu_HMb_WMMM> (7)

Establish the lower bound. Let G be a fixed game with information structure
(X, ®). Let (4,t) be fixed, and let T 5D be the corresponding constraints.
We denote by a® the number of rows in ). Now, let A be any feasible
payment scheme. We have already seen that any such A is a solution to the
following equation:

TOAS < wOU - 60 (8)

Applying Egs. (@) and (8) and the properties of ||-||,, we establish the following
bound:
L (leou] s

H ”max = n |2| H‘I’(t)HZ . H@”2

: (9)
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Each row of §® is filled with & , s0 the resulting absolute row sum is n. Similarly,
each row of ¥(*) contains exactly one 1 and one -1, so each absolute row sum is 2.
Finally, each column of ® is a pdf, so its absolute row sum is 1. Combining these
insights with Egs. (@) and (7)) and substituting in Eq. (@) gives the following
bound:

1Al 1 (H\Il(t)UHQ—i—\/W&”L) 1 <5\/H+Hq,<t>UHQ>

> =
meeT /n | Y 2V /]2 2|2 nal)

We note that in general, there is not much to say about H\Il(t)UHQ, as U can lie

in the kernel of (). This occurs if U already establishes exact d-strong t-robust
game-theoretic security.

Note that the bound, strictly speaking, is a bound on the largest absolute
deposit necessary to achieve security, while we are interested in bounding the
largest positive deposit, denoted instead by A} .. . If the game already is secure,
the bound for the largest deposit should be zero, while the above bound is
positive for any § > 0. Indeed, ||A|| .. # Al ax iff we can pay more to a party
to misbehave and still retain security than what we have to pay another party
to behave properly. We note that this depends on the structure of the game
and the intended strategy profile. In particular, it is independent of the security
parameter. For this reason, we denote by Ag) (s*) the minmax deposit required
to obtain 0-strong t-robust game-theoretic security. We note that Ag) > 0 iff the

game is not secure for any § > 0, while Ag) < 0 iff the game is already secure
for 6 = 0.

We note that by definition, Ag) is a trivial lower bound on the size of the
maximum deposit. We combine this with the above bounds to yield the following
lower bound:

Theorem 3. Let G be a game on n players with an information structure
(X, ®), and let s* be the intended strategy profile. If A is self-contained and en-
sures d-strong t-robust game-theoretic security, then the maximum deposit must

satisfy Af,oe > Ag)(s*) + 102 (M)

maxr — |2‘

7 Conclusion and Future Work

In this paper, we proposed a generic mechanism for incentivizing behavior in
games by the use of payments. We analyzed the complexity of finding an optimal
payment scheme and found it to be equivalent to linear programming. We demon-
strated the applicability of our framework to concrete problems in distributed
computing, namely decentralized commerce and secure multiparty computation.
Finally, we proved a lower bound on the payments, showing that the largest pay-
ment must be linear in the security parameter for any self-contained payment
scheme.

We hope that our framework will find applications in distributed computing,
giving a simple, yet expressive model for instantiating payments in a variety of
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protocols. However, more attention is needed for games of imperfect information;
we conjecture it is unlikely there is a generic and efficient way to find payments
for such games, though a formal reduction would be ideal.
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