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Abstract

We study the matching of jobs to workers in a queue, e.g. a ridesharing platform dispatching
drivers to pick up riders at an airport. Under FIFO dispatching, the heterogeneity in trip
earnings incentivizes drivers to cherry-pick, increasing riders’ waiting time for a match and
resulting in a loss of efficiency and reliability. We first present the direct FIFO mechanism,
which offers lower-earning trips to drivers further down the queue. The option to skip the rest
of the line incentivizes drivers to accept all dispatches, but the mechanism would be considered
unfair since drivers closer to the head of the queue may have lower priority for trips to certain
destinations. To avoid the use of unfair dispatch rules, we introduce a family of randomized FIFO
mechanisms, which send declined trips gradually down the queue in a randomized manner. We
prove that a randomized FIFO mechanism achieves the first best throughput and the second best
revenue in equilibrium. Extensive counterfactual simulations using data from the City of Chicago
demonstrate substantial improvements of revenue and throughput, highlighting the effectiveness
of using waiting times to align incentives and reduce the variability in driver earnings.

1 Introduction

Matching marketplaces play an instrumental role in economic exchanges and the allocation of public
and private resources. Over the past decade, the rise of online platforms connecting people with
gig workers has also radically changed many aspects of our daily lives. To improve efficiency and
reduce waiting times, platforms often aim to match rider or grocery delivery trips with the closest
available drivers. When requests are concentrated in space, however, matching by proximity has
unintended consequences. As an example, Amazon drivers have been reportedly hanging their
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(a) Trips from O’Hare. (b) Trips from Midway.

Figure 1: Average trip fare by destination Census Tract in Chicago, for trips originating from the
O’Hare International Airport and the Midway International Airport. See Section 5 for more details.

smartphones in trees near Amazon delivery stations and Whole Foods stores, in order to appear
even closer and gain higher priority for job offers.1 A similar problem existed for Uber and Lyft
at airports and event venues.2 Matching riders to the closest drivers incentivizes drivers to get as
close to the terminal or venue as possible, leading to traffic congestion.3

Many ridesharing platforms now maintain virtual queues at airports for drivers who are waiting
in designated areas, and dispatch drivers from the queue in a first-in-first-out (FIFO) manner.4

This resolves the congestion issues and is also considered more fair by many since drivers who have
waited the longest in the queue are now the first in line to receive trip offers. At major U.S. airports,
however, a driver at the head of the queue will receive the next trip offer in a few seconds under
FIFO dispatching, if she declines an offer from the platform (see Figure 12). As we shall see, this
lowered cost of cherry-picking substantially exacerbates existing problems on incentive alignment.

Figure 1 shows the average trip fare by destination Census Tract in Chicago, for trips originating
from the O’Hare and Midway airports. A short trip from O’Hare to a nearby area pays an average
of $10-$20, but a long trip can pay an average of $60. During busy hours, instead of accepting an
average trip, drivers who are close to the head of the queue are better off declining most trip offers
and waiting for only the highest earning trips. Riders, however, have finite patience, despite being
willing to wait for some time for a match. When each driver decline takes an average of 10 seconds,
2 minutes had passed after a trip with low or moderate earnings (e.g. trips to downtown Chicago)
was offered to and declined by the top 12 drivers in the queue.5 At this point, it is very likely that
the rider cancels her trip request, not knowing when a driver will be assigned, if at all.

1https://www.bloomberg.com/news/articles/2020-09-01/amazon-drivers-are-hanging-smartphones-in-
trees-to-get-more-work, accessed 09/07/2020.

2Airport trips account for 15% of Uber’s gross bookings. See Form S-1 of Uber’s IPO filing: https://www.sec.gov/
Archives/edgar/data/1543151/000119312519103850/d647752ds1.htm.

3https://www.vice.com/en/article/gvy357/the-new-system-uber-is-implementing-at-airports-has-
some-drivers-worried, accessed 02/23/2021.

4https://help.lyft.com/hc/en-us/articles/115012922787-Receiving-Airport-FIFO-pickup-requests,
https://www.uber.com/us/en/drive/dayton/airports/day/, accessed 02/18/2021.

5When offered a trip, Uber and Lyft drivers have 15 seconds to decide whether to accept. https://help.uber.com/
driving-and-delivering/article/getting-a-trip-request?nodeId=e7228ac8-7c7f-4ad6-b120-086d39f2c94c,
https://help.lyft.com/hc/en-/articles/115013080028-How-to-give-a-Lyft-ride, accessed 02/24/2021.
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What we have seen is that in the presence of heterogeneous earnings and finite rider patience,
trips with moderate or low earnings never reach drivers in the queue who are willing to accept them.
This undercuts the platforms’ mission of providing reliable transportation for riders, and leads to
low revenue and trip throughput for the platform. Moreover, fulfilling only the small number of
high earning trips is also a poor outcome for the drivers, since many drivers who just dropped off
a rider at the airport will have to relocate back to the city with an empty car, and those who do
join the queue would need to wait for a very long time for a ride.

Simple fixes by limiting dispatching transparency or drivers’ flexibility are not desirable— in
recent years, ridesharing platforms are moving towards sharing trip destination and earnings es-
timation upfront, as well as providing drivers the options to accept or decline any trips without
penalties.6 Hiding information or imposing penalties are not fully effective either. For example,
experienced drivers often call riders to ask about trip details when destinations are hidden before
the pick-up [Cook et al., 2018]. Forcing drivers to accept every dispatch improves reliability in
the short run, but also imposes a lottery (with possible outcomes ranging from $9 to over $60) on
drivers who might have waited for two hours in line. Such high variance in earnings discourages
future engagement, and leads to drivers’ churning from the platform in the long run.

Recognizing the inefficiencies under FIFO dispatching, alternative mechanisms have been stud-
ied extensively in the literature. In particular, last-in-first-out (LIFO) dispatching is shown to be
optimal in the presence of waiting costs, with or without heterogeneous rewards [Hassin, 1985, Su
and Zenios, 2004]. Intuitively, participants’ losing (instead of gaining) priority over time substan-
tially reduces the incentive to “wait for a better offer”. However, LIFO dispatching is perceived as
“blatantly unfair” by many [Su and Zenios, 2004, Breinbjerg et al., 2016]. Moreover, as discussed by
Hassin [1985] and Su and Zenios [2004], LIFO dispatching is easy to manipulate since participants
may rejoin the queue at the end to (re)gain priority. This renders LIFO unsuitable and ineffective
for ridesharing platforms, as drivers have the option to go offline and online again to rejoin the end
of the virtual queue at any time.

Ideally, platforms may properly price trips by destination and eliminate drivers’ incentives to
cherry-pick. In recent work, Ma et al. [2019] propose the spatio-temporal pricing mechanism, which
is welfare optimal, incentive aligned, and guarantees that drivers at the same origin are indifferent
towards trips to all destinations. This remains an idealized target for our current setting, but is
hard to achieve in practice. Consider, again, the O’Hare example as shown in Figure 1a. Tripling
the fares of the short trips to match the earnings from the long trips is suboptimal. On the other
hand, the platform is unable to decrease driver payouts below some pre-determined per-minute and
per-mile rates, thus earnings from long trips cannot be effectively reduced either.

1.1 Our Results

We study the dispatch of trips to drivers who are waiting in a virtual queue, where some trips
are necessarily more lucrative than the others due to operational constraints. Without the power
to adjust trip prices, the mechanisms we design use drivers’ waiting times in the queue to align
incentives, improve reliability and efficiency, and reduce the variability in drivers’ total payoffs.

6The specific policies and their implementations vary across companies and geographical regions. As an example,
see https://www.uber.com/blog/california/keeping-you-in-the-drivers-seat-1/ (accessed 02/21/2021). This
is in part due to regulatory requirements for categorizing drivers as independent contractors. For context, we cite an
excerpt from California Proposition 22: “The network company does not require the app-based driver to accept any
specific rideshare service or delivery service request as a condition of maintaining access to the network company’s
online-enabled application or platform.”
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The model. We study a continuous time, non-atomic model, with one origin (e.g. the airport)
and stationary arrival rates of riders and drivers. Riders request trips to a number of destinations
with heterogeneous earnings for drivers. Upon the arrival of each rider, or after a rider’s trip request
is declined, the platform offers the rider’s trip to a driver in the queue. Riders are willing to wait
for some time for a match, but have finite patience and will cancel their requests after a certain
number of declines from drivers. Drivers’ waiting in the queue (as opposed to driving elsewhere in
the city, for example) is costly for both the drivers and the platform. Drivers are strategic, aiming
to optimize their total payoff, i.e. the earnings from trips minus the waiting costs they incur.

We study mechanisms that are fully transparent and flexible (see Footnote 6). At any point
in time, drivers know about the supply, demand, the length of the queue and their positions in
their queue. When offered trip requests, drivers are provided trip destinations and earnings upfront
so that they can decide whether to accept based on this information. Moreover, drivers are not
penalized for any actions they take, and have the flexibility to (i) decline any number of trip
dispatches without losing their positions in the queue, (ii) rejoin the virtual queue at the tail at
any point of time, and (iii) decide to not join the queue upon arrival, or leave the queue at any
point of time to perhaps relocate back to the city without a rider.

Main results. To optimize trip throughput and the platform’s net revenue (i.e. total earnings
from completed trips, minus the opportunity costs the platform incurs due to drivers’ waiting in the
queue), the first best outcome has no driver in the queue, and dispatches all drivers upon arrival to
destinations in decreasing order of earnings. However, under the status quo strict FIFO dispatching
where trips are dispatched to each and every driver starting from the head of the queue, drivers
close to the head of the queue are incentivized to cherry-pick and wait for higher-earning trips. We
analyze the equilibrium outcome under strict FIFO and show that with finite rider patience, most
trips except for the highest earning ones become unfulfilled. Drivers’ excessive waiting in the queue
further reduces drivers’ total payoffs as well as the net revenue of the platform.

Recognizing that the moderate and low earning trips never reach drivers in the queue who are
willing to accept them, we first present the direct FIFO mechanism, which offers lower-earning
trips directly to drivers further down the queue. We prove that accepting all dispatches forms a
subgame perfect equilibrium among drivers, and that the equilibrium outcome achieves the first
best trip throughput, and the second best net revenue (i.e. the highest steady state net revenue
achievable by any flexible and transparent mechanism). The direct FIFO mechanism, however,
would be considered unfair in practice since a driver may have lower priority for trips to many
destinations than drivers further down the queue, even when all drivers are non-strategic and accept
every dispatch. Consider the Chicago Midway airport (Figure 1b) as an example. A driver close
enough to the head of the queue will no longer receive any trip back to downtown Chicago, since
direct FIFO skips drivers at the head of the queue when dispatching lower and moderate earning
trips, and all high-earning trips the driver may receive will be heading to the suburbs.

To achieve optimal throughput and revenue without the use of an unfair dispatch rule, we
introduce a family of randomized FIFO mechanisms. A randomized FIFO mechanism is specified
by a set of “bins” in the queue (e.g., the top 10 positions, the 10th to 20th positions, and so on).
Each trip request is first offered to a driver in the first bin uniformly at random. After each decline,
the mechanism then offers the trip to a random driver in the next bin. By sending trips gradually
down the queue in this randomized manner, the randomized FIFO mechanisms appropriately align
incentives using waiting times, achieving the first best throughput and second best net revenue:
the option to skip the rest of the line incentivizes drivers further down the queue to accept trips
with lower earnings; randomizing each dispatch among a small group of drivers increases each
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individual driver’s waiting time for the next dispatch, thereby allowing the mechanism to prioritize
drivers closer to the head of the queue for trips to every destination without creating incentives for
excessive cherry-picking.

Extensive counterfactual simulations using data from the City of Chicago suggest that in com-
parison to strict FIFO dispatching, the randomized FIFO mechanism achieves substantial improve-
ments in revenue, throughput, and driver earnings. Moreover, the variance in drivers’ total payoffs
is small, and diminishes rapidly as riders’ patience increases— with higher rider patience, the
mechanism can more effectively match higher-earning trips with drivers who have incurred higher
waiting costs in the queue. This demonstrates the desirable balance achieved by the randomized
FIFO mechanisms between efficiency, reliability, fairness, and the variability in driver earnings, and
highlights the effectiveness of using waiting times in queue to align incentives and to reduce earning
inequity when the flexibility to set prices is limited due to operational constraints.

1.2 Related Work

Ridesharing platforms. The literature on pricing and matching in ridesharing platforms is
rapidly growing. Castillo et al. [2017] and Yan et al. [2020] establish the importance of dynamic
pricing in maintaining the spatial density of open driver supply, which reduces waiting times and
improves operational efficiency. In the presence of spatial imbalance and temporal variation of
supply and demand, Bimpikis et al. [2019] and Besbes et al. [2020] study revenue-optimal pricing;
Ma et al. [2019] propose origin-destination based pricing that is appropriately smooth in space
and time, achieving welfare optimality and incentive compatibility; Garg and Nazerzadeh [2020]
show that additive instead of multiplicative “surge” pricing is more incentive aligned for drivers
when prices need to be origin-based only. Considering the online arrival of supply and demand and
their distribution in space, Kanoria and Qian [2020], Qin et al. [2020] and Özkan and Ward [2020]
study dynamic matching policies that dispatch drivers from areas with relatively abundant supply,
and Ashlagi et al. [2019], Dickerson et al. [2018] and Aouad and Saritaç [2020] focus on the online
matching between riders and drivers and the pooling of shared rides. In this work, we focus on a
single origin where the optimal destination-based pricing is infeasible due to operation constraints
such that some trips are necessarily more lucrative than the others. This leads to the need of using
drivers’ waiting times to align incentives and to reduce the variability in driver earnings.

The operation of ridesharing platforms is also studied using queueing-theoretic models. Banerjee
et al. [2015] compare optimal dynamic and static pricing policies; Banerjee et al. [2018] propose
state-dependent dispatching policies to minimize unfulfilled demand; Afeche et al. [2018] study
the impact of admission control on platform revenue and driver income; Besbes et al. [2019] show
that in comparison to traditional service settings, higher capacity is needed when spatial density
of available supply affects operational efficiency; Castro et al. [2020] study practical dispatching
policies when drivers have heterogeneous compatibility with trips. These works use queueing-
theoretic frameworks to analyze the availability of driver supply, but study settings where drivers
are spread out in space, and do not consider cherry-picking by drivers. In contrast, we focus on
the matching of trips to drivers who are waiting in a virtual queue, addressing the problem of
dispatching heterogeneous trips to drivers who have incurred different waiting costs in a way that
is reliable, efficient and fair.

Various empirical studies analyze the Uber platform as a two-sided marketplace, focusing on
the labor market of Uber drivers [Hall et al., 2017], the longer-term labor market equilibration [Hall
and Krueger, 2016], the value of flexible work arrangements [Chen et al., 2019], learning-by-doing
and the gender earnings gap [Cook et al., 2018], and the surplus of consumers [Cohen et al., 2016].
In regard to the dynamic “surge” pricing, Hall et al. [2015], Chen and Sheldon [2015], and Lu
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et al. [2018] demonstrate its effectiveness in improving reliability and efficiency, increasing driver
supply during high-demand times, as well as incentivizing drivers to relocate to higher demand
areas. In contrast, we use data from ridesharing platforms (including Uber and Lyft, made public
by the City of Chicago) to estimate the heterogeneity in driver earnings by trip destination. We
also demonstrate via counterfactual simulations the inefficiencies of FIFO dispatching when drivers
are strategic, as well as the substantial improvements achieved by our proposed mechanisms.

Queueing mechanisms. The allocation of resources or jobs to participants waiting in a queue
has been studied extensively in the literature. Naor [1969] first demonstrates the negative exter-
nalities from waiting: when agents make self-interested decisions on whether to join a FIFO queue,
in equilibrium more agents line up in the queue in comparison to the socially optimal outcome.
When monetary transfers are allowed, Naor shows that the optimal outcome can be achieved by
levying an entrance toll, and a large body of subsequent work has studied how to align incentives
and improve system efficiency in various settings (see Hassin [2016] for a comprehensive review).
In many practical settings including ours, however, the use of monetary incentives is restricted due
to regulatory or business constraints.

Without the use of monetary transfers, Hassin [1985] shows that the last-in-first-out (LIFO)
queueing discipline achieves the socially optimal outcome in equilibrium, since when the agent
who has waited the longest in the queue decides whether to leave, she imposes no externality
on any current or future agents. With homogeneous agents who prefer items of higher quality
(i.e. when all patients prefer kidneys from younger and healthier donors in the context of kidney
transplantation), Su and Zenios [2004] demonstrate the excessive organ wastage resulting from
patients’ cherry-picking under FIFO, and proves that LIFO dispatching optimizes organ utilization.
These works highlight the important role of the queueing discipline in shaping participants’ strategic
considerations. As is discussed in these papers, however, LIFO is practically infeasible since the
dispatch rule (i) would be perceived as unfair, and (ii) can be easily manipulated by re-joining the
queue. In this work, we propose practical mechanisms that allow drivers to decline dispatches and
to re-join the queue at any point of time. Moreover, we model the fact that riders’ finite patience
limits the number of times a trip can be dispatched, and prove that no transparent and flexible
mechanism can achieve a better outcome than ours even when assuming infinite rider patience.

On the flip side, Che and Tercieux [2021] establish the optimality of FIFO when the planner has
full flexibility to (i) prevent participants from joining the queue and remove participants from the
queue, and (ii) design the information provided to the participants. The objective is to optimize
a weighted sum of the participants’ utility and the service provider’s profit. Intuitively, when the
planner has the power to ensure that the queue is not too long, FIFO dispatching is the most
effective since it provides the strongest incentive for participants to join and to stay in the queue.

Su and Zenios [2006] and Ashlagi et al. [2020] study settings where an agent’s value for an item
depends on the type of the item and the private type of the agent. Su and Zenios [2006] design
disjoint queue mechanisms that optimize either efficiency or equity (i.e. the minimum utility across
all agent types). Assuming that the value for a match is supermodular in the types of the agent
and the item, Ashlagi et al. [2020] establishes that a monotone disjoint queue mechanism is welfare-
optimal. In both settings, agents cannot decline the allocated items.7 Therefore, the mix of items
dispatched to each queue effectively determines a lottery over items, and the waiting times in the
different queues function as prices and incentivize an agent to choose the lottery intended for her

7The same optimal outcome in Ashlagi et al. [2020] can also be achieved by a FIFO queue that allows agents to
decline undesired items, assuming that the items are infinitely patient, and that the mechanism does not have to
reveal full information on the offered items to the agents.
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type. In contrast, instead of eliciting private information, we focus on improving reliability without
using penalties or hiding information. Our mechanism effectively dispatches every trip according
to “a sequence of lotteries over positions in the queue”, aligning incentives using (i) the option to
skip the rest of the line and (ii) the additional cost of cherry-picking introduced by randomization.

Existing work also compare FIFO and randomized allocation rules in various settings. Assuming
an overloaded queue with fixed length, Bloch and Cantala [2017] show that agents in the queue
prefer FIFO, but randomizing offers among all agents in the queue reduces waste, thus improves
turnover and benefits agents who are not yet in the queue. Also assuming an overloaded queue,
Leshno [2019] focuses on inefficiencies arising from the “mismatch”, i.e. agents accepting their less
preferred item since the wait for the more preferred item is too long. In a buffer queue for agents
who have declined a less preferred item, randomizing offers reduces the variability of the expected
waiting time for the more preferred item and reduces mismatches compared to FIFO. When agents
have heterogeneous preferences over affordable housing developments, Arnosti and Shi [2020] prove
that “individual lotteries” (one for each development) achieves the same outcome as a “wait-list
without choice”, both compelling agents to accept poor matches. More choices (via e.g., wait-list
with choice) leads to better matching, but the authors also establish a trade-off between matching
and targeting agents with worse outside options. In all three settings, the randomization is among
all agents in the queue. In contrast, our proposed mechanisms randomize each dispatch among
drivers from a small segment in the queue, which increases the costs of cherry-picking without
introducing excessive variability in drivers’ total payoffs.

In this work, we focus on settings where participants have the flexibility to decline dispatches
without losing their positions in the queue. Schummer [2021] analyze the impact of limiting this
“deferral right” for various settings, where participants are risk averse or discount the future.

2 Preliminaries

We study a continuous time model, with one origin (e.g. an airport) where trips are dispatched
to drivers who are waiting in a queue. L = {1, 2, . . . , `} denotes the set of ` ∈ Z>0 discrete trip
types (e.g. trips to different destinations). Rider demand and driver supply are non-atomic and are
stationary over time. For each location i ∈ L, µi > 0 denotes the arrival rate of riders requesting
trips to location i (i.e. the mass of riders arriving per unit of time). Upon arrival, riders’ trip
requests need to be dispatched to the drivers. All riders have a patience level of P ∈ Z>0, meaning
that a rider may be willing to wait for a while for a driver to accept her trip request, but she will
cancel her request and leave after the P th time that her trip is declined by the drivers. Each driver
can drive any rider to her destination, and riders do not have preferences over drivers.

Let λ > 0 be the arrival rate of drivers. Upon arrival, the driver may decide whether to join the
queue. The net earnings of a trip to each location i ∈ L is wi, meaning that a driver who completes
a rider trip to location i gets a payoff of wi from the trip, and the payoff of a driver who does not
join the queue or leaves the queue without a rider is normalized to be zero. For each unit of time a
driver spends waiting in the queue, the driver incurs an opportunity cost of c > 0, and the platform
incurs an opportunity cost of cp ∈ [0, c].89 Drivers are strategic, aim to optimize their earnings
from trips minus their waiting costs, and do not have preferences over riders or destinations.

8The opportunity costs for drivers captures the value of their forgone outside options, which include, for example,
the potential earnings a driver can make from driving elsewhere in the city for the same platform instead of waiting
in the queue. Having driver supply tied-up in the queue is thereby potentially costly for the platform as well.

9Drivers who are waiting in the queue may not drive for the same platform at all times, and the market might be
oversupplied already. As a result, the opportunity cost for the platform cp may be lower than that for the drivers.
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An informal timeline of a dispatching mechanism is as follows (see Section 3 for the formal
definition). Upon the arrival of each rider, the mechanism may dispatch the rider’s trip request to
a driver in the queue. If the driver accepts the dispatch, she leaves the queue to pick up the rider.
Otherwise, the trip may be dispatched again, until (i) some driver accepts the trip, or (ii) the rider
cancels her request when her patience runs out (after the trip is declined for P times), or (iii) the
mechanism decides to not dispatch the trip again.10

We consider a setting where the platform has complete information about demand, supply,
opportunity costs, and the earnings from trips to different destinations. We assume drivers have the
same information, and that this is common knowledge amongst the drivers. We study mechanisms
that are fully transparent and flexible. At any point in time, all drivers know the total length of
the queue and their positions in the queue. When offered trip dispatches, drivers are provided trip
destinations and earnings upfront, so that they can decide whether to accept a dispatch based on
this information. Moreover, drivers are not penalized for actions they take, and have the options
to (i) decline dispatches they do not want to accept without losing their position in the queue, (ii)
rejoin the virtual queue at the tail at any point of time, and (iii) decide to not join the queue upon
arrival, or leave the queue at any point of time to perhaps relocate back to the city without a rider.

A platform’s trip throughput is the mass of trips completed per unit of time by drivers in the
queue. A platform’s net revenue is the sum of the net earnings from trips made by drivers per unit
of time, minus the opportunity cost the platform incurs due to drivers’ waiting in the queue (this
opportunity cost models the platform’s loss of revenue elsewhere in the city, due to driver supply
being tied-up in the queue). When drivers are non-strategic and accept all dispatches from the
platform, we refer to the highest achievable trip throughput and net revenue as the first best.

For simplicity of notation, we assume the destinations are ordered such that w1 > w2 > · · · >
w` ≥ 0.11 With stationary and infinitesimal demand and supply, a platform does not need a non-
zero driver queue. In steady state, a platform that aims to optimize its net revenue should keep no
driver in the queue, but dispatch drivers upon their arrival to destinations in decreasing order of
wi until either all drivers are dispatched or all riders are picked-up. Denote the lowest-earning trip
that is (partially) completed as

i∗ = max

i ∈ L
∣∣∣∣∣∣ λ >

i−1∑
j=1

µj

 . (1)

Proposition 1 (The first best). The steady state first best outcome has zero drivers in the queue.
Upon arrival, drivers are dispatched to pick up arriving riders in decreasing order of wi. The
remaining drivers (if any) are suggested to leave without joining the queue. The first best trip
throughput is

TFB = min

{
λ,
∑
i∈L

µi

}
, (2)

10It takes some time for trip dispatches to be accepted or declined by the drivers (see Footnote 5). Drivers in the
queue will be moving forward during the time a trip is repeatedly dispatched, but this does not affect our results since
(i) the dispatch rules and driver strategies we study depend on the positions in the queue instead of the identities of
individual drivers, and (ii) the optimality results we establish focus on the equilibrium outcome in steady state.

11Combining destinations with the same net earnings does not affect the equilibrium outcome of any mechanism we
study. For drivers who are free to decline dispatches based on trip destinations, no trip with wi < 0 will be accepted
since completing one such trip is worse than declining the dispatch and leave the queue immediately without a rider.
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and the first best net revenue is

RFB =
i∗−1∑
i=1

wiµi + wi∗ min

λ−
i∗−1∑
j=1

µi, µi∗

 . (3)

2.1 Strict FIFO Dispatching

The FIFO queue discipline is considered fair by most, and is the default discipline in many everyday
situations [Larson, 1987, Breinbjerg et al., 2016, Platz and Østerdal, 2017]. We show that when
drivers have the flexibility to decline undesired trips, offering each trip to every driver incentivizes
excessive cherry-picking and leads to poor outcomes for the riders, drivers, and the platform. To
avoid ambiguity, we refer to this mechanism as strict FIFO dispatching.

We start by analyzing the equilibrium outcome under strict FIFO dispatching. Consider a rider
request for a trip to location 1. Under strict FIFO, the trip will be accepted by the driver at the
head of the queue, since a trip to location 1 has the highest earnings among all trips the driver may
receive in the queue. Moreover, the (infinitesimal) driver at the head of the queue will be willing to
accept only trips to location 1, since she is the first in line to receive all incoming trip dispatches,
thus she does not have to wait any time for a trip dispatch to location 1.

Similar reasoning holds for drivers who are very close to the head of the queue, and a driver
is willing to accept a trip to location 2 only if the additional waiting cost for a trip to location 1
outweighs the earnings gap w1 − w2. Let τ1,2 be the maximum additional time a driver is willing
to wait for a trip to location 1, in comparison to immediately taking a trip to location 2. We know

τ1,2c = w1 − w2 ⇒ τ1,2 = (w1 − w2)/c. (4)

By Little’s Law, the first position in the queue where the driver is willing to accept a location 2
trip is n2 , µ1τ1,2 = µ1(w1 − w2)/c, since the waiting time from this position to the head of the
queue is τ1,2 when all drivers ahead of this position only accept trips to location 1. For a driver
at position n2, her continuation payoff (i.e. net earnings from the trip the driver accepts minus
the waiting costs the driver incurs from this point of time onward) is w2, regardless of whether the
driver accepted a trip to location 2, or if the driver continued to wait for a trip to location 1.

Similarly, in comparison to accepting a trip to location i + 1, a driver is willing to wait an
additional τi,i+1 = (wi − wi+1)/c units of time for a trip to location i. We can compute the first
positions in the queue where drivers are willing to accept trips to each location i ∈ L, assuming
that riders have infinite patience and will not cancel their trip requests regardless of how many
times their trips have been declined by the drivers (see Figure 2).

Lemma 1 (informal). Assume that riders have infinite patience. Under strict FIFO dispatching,
it is an equilibrium for a driver to accept trip dispatches to each location i ∈ L only if the driver
is at position q ≥ ni in the queue, where n1 , 0 and

ni ,
i−1∑
j=1

(
wj − wj+1

c

j∑
k=1

µk

)
, ∀i ≥ 2. (5)

We provide in Appendix A.1 the formal statement and the proof of the equilibrium outcome
under strict FIFO dispatching. Briefly, we prove by induction that assuming infinite rider patience,
for each location i ∈ L, a driver at position ni in the queue gets a continuation payoff of wi
regardless of whether she accepted a trip to location i or not. Drivers at positions earlier than ni
in the queue are, however, better off waiting for trips with higher earnings.
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Figure 2: The equilibrium outcome under strict FIFO dispatching, assuming infinite rider patience.

When riders have a finite patience level P , however, trip requests to locations i ∈ L with ni > P
will not reach a driver who is willing to accept this trip before the rider’s patience runs out. As a
result, trips to these destinations become unfulfilled, leading to poor efficiency and reliability. The
following example demonstrates that drivers’ excessive waiting in the queue further reduces drivers’
total payoffs as well as the net revenue of the platform.

Example 1. Consider an airport queue, where riders request trips to three destinations L =
{1, 2, 3}. The arrival rate of riders to each destination is µ1 = 1, µ2 = 6, and µ3 = 3, and the net
earnings from these trips are w1 = 75, w2 = 25, w3 = 15, respectively. Intuitively, trips to location 1
represent the rare but high-earning long trips from the airport. Location 2 can be considered as
the downtown area with high trip volumes and medium earnings, and think about location 3 trips
as short rides to the hotels and towns surrounding the airport with low earnings.

Drivers arrive at a rate of λ = 5 per unit of time, and the opportunity costs for the drivers and
the platform are c = cp = 1/3. Considering each unit of time as one minute, this corresponds to
a scenario where a driver driving for the platform elsewhere in the city will make $20 per hour.
Riders have a patience level of P = 12. When it takes an average of 10 seconds for each driver to
decline a dispatch, this corresponds to the riders’ being willing to wait for two minutes for a match
before canceling their trip requests.

The first best. The first best outcome accepts all trips to location 1, and dispatches the remaining 4
units of drivers to trips to location 2. No driver waits in the line. The first best trip throughput is
TFB = 5, and the first best net revenue is RFB = w1+4w2 = 175. This outcome can be implemented,
for example, by forcing each driver to always accept the first trip dispatch she receives. This,
however, introduces a high variance in drivers’ total payoffs (net earnings from trip minus waiting
costs): the average total payoff of a driver who arrived at the queue is 35, and the variance is 400.

Strict FIFO dispatching. Under strict FIFO dispatching, when drivers have the flexibility to decide
which trips to take, the driver at the head of the queue is only willing to accept trips to location 1.
A driver with a location 2 trip in hand is willing to wait an additional τ1,2 = (w1 − w2)/c = 150
minutes for a trip to location 1. Therefore, the first position in the queue where the driver is
willing to go to location 2 is n2 = τ1,2µ1 = 150. With a patience level of 12, riders requesting trips
to location 2 will cancel their trip requests after their requests are declined by the 12th driver in
the queue. Location 3 trips are similarly unfulfilled, thus strict FIFO dispatching achieves a trip
throughput of only Tstrict = 1 per minute.

The remaining 4 units of drivers will need to leave the queue without a rider trip in steady
state. The drivers, however, will not leave if the payoff from joining the queue at the tail is better
than that from relocating without a rider. Drivers are willing to wait for w1/c = 225 minutes for
a trip to location 1, thus the steady state queue length will be µ1w1/c = 225 by Little’s Law. In
equilibrium, drivers get a payoff of zero regardless of whether they joined the queue or left without
a rider. The large number of drivers waiting in the queue is also very costly for the platform, which
achieves in this example a net revenue of zero: Rstrict = w1µ1 − cp(µ1w1/c) = 0.
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Strict FIFO dispatching is fair in the sense that drivers who are closer to the head of the queue
have higher priority for trips to every destination. However, as we have seen in the above example,
dispatching each trip to each and every driver in the queue leads to poor reliability for the riders,
low trip throughput and net revenue for the platform, and zero earnings for the drivers despite their
strategizing for better earnings. In the next section, we will see that by deprioritizing drivers at the
head of the queue for trips to certain destinations (thereby violating what is typically perceived as
fair dispatching), we are able to substantially improve the outcome for the riders, drivers, and the
platform, even without the power to adjust trip prices.

3 The Direct FIFO Mechanism

In this section, we introduce the direct FIFO mechanism. The mechanism is based largely on FIFO
dispatching, but sends lower-earning trips starting from positions further down the queue where
drivers are willing to accept the dispatches for the option to skip the rest of the line. Accepting all
trips forms a subgame perfect equilibrium among drivers, and the mechanism achieves the highest
possible revenue and throughput under any mechanism that is flexible and transparent.

3.1 A Dispatching Mechanism

We first formally define a dispatching mechanism. Let Q ≥ 0 denote the length of the queue, and
let q ∈ [0, Q] be a particular position in the queue. q = 0 and q = Q are the head and the tail of
the queue, respectively, i.e. positions where the drivers have waited the longest and the shortest
time in line. Let h denote the past dispatching history of a particular rider’s trip request. This
represents the positions in the queue to which the trip was offered (if any). Finally, we use φ to
denote the decision to not dispatch a rider’s trip request to any driver.

Definition 1 (Dispatching mechanism). Given the queue length Q, the past dispatching history h
of a trip, and the trip’s destination, a dispatching mechanism determines a probability distribution
over [0, Q] ∪ {φ}. Upon the arrival of a rider, or after a rider’s trip is declined by some driver, the
mechanism either (i) dispatches the trip to a driver at some position q ∈ [0, Q] in the queue, or (ii)
decides to not dispatch the trip (which we denote as φ).

The queue length Q represents the state of the queue. The dispatching mechanisms we study
make dispatch decisions for each trip based on the state and the past dispatch history of this
particular trip, but not on other factors such as how the state had evolved over time, or what
actions the drivers had taken in the past.12 Similarly, we focus on driver strategies that depend
on the queue length and a driver’s position in the queue, and we denote a strategy as a tuple
σ = (α, β, γ). For any queue length Q ≥ 0, and at any position q ∈ [0, Q] in the queue,

(i) α(q,Q, i) ∈ [0, 1] for each location i ∈ L is the probability with which the driver at position q
in the queue accepts the trip dispatch if she is dispatched a trip to location i,

(ii) β(q,Q) ∈ [0, 1] determines the probability with which the driver at position q in the queue
re-joins the queue at the tail (by going offline and online again, for example), and

(iii) γ(q,Q) ∈ [0, 1] is the probability for the driver at q to leave the queue without a rider.

12When a mechanism is allowed to make dispatch decisions based on drivers’ actions in the past, the mechanism
may easily align incentives by no longer sending any trip offers to a driver who had declined a dispatch, for example.
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Let U(q,Q, σ, σ′) denote the random variable representing the continuation payoff of the driver
at position q in the queue, when the current length of the queue is Q, when this driver adopts
strategy σ, and when all other drivers employ strategy σ′ (including those drivers who will arrive
in the future). This includes the net earnings from the trip the driver may complete in the future,
minus the total opportunity cost she incurs from this point of time onward waiting in the queue.
Denote π(q,Q, σ, σ′) , E [U(q,Q, σ, σ′)] as the driver’s expected continuation payoff from position
q onward, where the expectation is taken over randomness in both the mechanism’s decisions and
the strategies of drivers. π(Q,Q, σ, σ′) thus represents the expected payoff of a driver with strategy
σ, who joins the queue when the queue length is Q, and when all other drivers employ strategy σ′.

We define the following properties.

Definition 2 (Subgame-perfect equilibrium). A strategy σ∗ forms a subgame perfect equilibrium
(SPE) among drivers under a mechanism if for any economy and any feasible strategy σ,

π(q,Q, σ∗, σ∗) ≥ π(q,Q, σ, σ∗), ∀Q ≥ 0, ∀q ∈ [0, Q]. (6)

Definition 3 (Individual rationality). A mechanism is individually rational in SPE if under a
strategy σ∗ that forms an SPE among drivers, for any economy,

π(q,Q, σ∗, σ∗) ≥ 0, ∀Q ≥ 0, ∀q ∈ [0, Q]. (7)

Definition 4 (Envy-freeness). A mechanism is envy-free in SPE if under a strategy σ∗ that forms
an SPE among drivers, for any economy,

π(q1, Q, σ
∗, σ∗) ≥ π(q2, Q, σ

∗, σ∗), ∀Q ≥ 0, ∀q1, q2 ∈ [0, Q] s.t. q1 ≤ q2. (8)

Intuitively, under a mechanism that is individually rational and envy-free in SPE, a driver
anywhere in the queue always gets non-negative continuation payoff, and does not envy the expected
continuation earnings of any driver who is further down the queue.

Given a mechanismM and a strategy σ∗ that forms an SPE underM, let Q∗ denote the length
of the queue under σ∗ in steady state. This is the case if the number of drivers joining the queue
per unit of time is equal to the number of drivers dispatched from the queue when (i) the length
of the queue is Q∗ and (ii) all drivers adopt strategy σ∗. Moreover, let zi(σ

∗) denote the fraction
of trips to location i ∈ L that are completed in steady state when all drivers adopt σ∗.

The trip throughput of mechanism M is the amount of trips completed per unit of time under
σ∗ in steady state:

TM(σ∗) ,
∑
i∈L

zi(σ
∗)µi. (9)

The net revenue achieved by mechanismM is the total net earnings all drivers made from trips
per unit of time under σ∗ in steady state, minus the total opportunity costs the platform incurs
due to drivers’ waiting in the queue:

RM(σ∗) ,
∑
i∈L

zi(σ
∗)µiwi −Q∗cp. (10)

When cp = c, the net revenue of the platform is RM(σ∗) =
∑

i∈L zi(σ
∗)µiwi − Q∗c, i.e. the total

net payoffs to all drivers who arrive at the queue.
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The objective of a mechanism is to optimize trip throughput and net revenue achieved in
equilibrium in steady state.13 We say a mechanism is optimal if in equilibrium in steady state
(i) the mechanism achieves the first best trip throughput, and (ii) the mechanism achieves the
second best net revenue i.e., the highest steady sate equilibrium net revenue that is achievable by
any dispatching mechanism that is flexible and transparent, provides trip information to drivers
upfront, and does not penalize drivers for any actions they take.14

3.2 Optimality of Direct FIFO

Definition 5 (Direct FIFO). Under the direct FIFO mechanism, trips to each location i ∈ L are
dispatched in a FIFO manner to drivers starting from position ni (as defined in (5)) in the queue,
when the length of the queue is Q ≥ ni. When Q < ni, trips to location i are not dispatched.

Under the direct FIFO mechanism, the highest earning trips to location 1 are dispatched to
the head of the queue, where the driver have waited for the longest time (thus have incurred the
highest waiting costs). For a trip to location i > 1, the mechanism skips drivers close to the head of
the queue who will be unwilling to accept, and dispatches the trip starting from the nth

i position—
the first position in the queue where the driver is willing to accept a trip to location i under strict
FIFO dispatching assuming infinite rider patience. The following theorem proves that this option
to “skip the rest of the line” incentivizes drivers to accept all dispatches they receive.

Theorem 1 (Incentive compatibility of direct FIFO). It is a subgame-perfect equilibrium for drivers
to accept all dispatches from the direct FIFO mechanism, and to join the queue if and only if the
length of the queue is at most

Q̄ , n` +
w`
c

∑
i∈L

µi. (11)

Moreover, the equilibrium outcome is individually rational and envy-free.

The proof is via induction on queue positions, and is provided in Appendix A.2. Intuitively,
this is a “direct implementation” of the equilibrium outcome under strict FIFO dispatching when
riders have infinite patience (see Lemma 1). Trips are dispatched starting from the positions in the
queue where the drivers are indifferent towards accepting the trip or continuing to wait, and the
equilibrium payoff from joining the queue is non-negative when the queue length is at most Q̄.

When there are more drivers than needed to complete all trips to location 1, the direct FIFO
mechanism does not achieve the first best net revenue— drivers are willing to spend time waiting
for trips with higher earnings, leading to a queue of non-zero length and lowering the net revenue of
the platform. This kind of “strategic waiting” is, however, not avoidable. We prove in the following
theorem that the outcome under direct FIFO achieves the second best net revenue, i.e. the highest
equilibrium net revenue achievable in steady state by any dispatching mechanism that provides trip
destinations upfront and does not penalize drivers for declining dispatches.

13When the platform takes as commission a fixed fraction of the earnings made by the drivers (from the queue as
well as from driving elsewhere in the city), the problem of maximizing a platform’s total commission is equivalent to
that of maximizing the net revenue as defined in (10).

14As we shall see later in this section, a platform may not be able to achieve the first best net revenue in certain
settings, despite achieving the first best trip throughput. This is the case when a mechanism completes the same set
of trips as those under the first best outcome, but drivers’ strategically waiting for higher earning trips leads to a
non-zero equilibrium queue length, thus increasing opportunity cost and reducing the net revenue of the platform.
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(b) The over-supplied scenario, with λ >
∑

i∈L µi.

Figure 3: The steady-state equilibrium outcome under the direct FIFO mechanism.

Theorem 2 (Optimality of direct FIFO). For every economy, the direct FIFO mechanism achieves
in SPE the first best trip throughput. Moreover, the equilibrium outcome achieves the first best net
revenue when cp = 0, and the second best net revenue when cp ∈ (0, c].

We prove this theorem in Appendix A.2. Briefly, we first show that the steady state equilibrium
outcome under direct FIFO is as illustrated in Figure 3. When λ ≤

∑
i∈L µi, i

∗ as defined in (1) is
the lowest-earning trip that is (partially) completed in equilibrium. Drivers will line up for trips to
locations j < i∗ (which have higher earnings than wi∗), but the equilibrium queue length is Q∗ = ni∗

and there is no wait for a trip to location i∗. See Figure 3a. Every driver gets a total payoff of wi∗

regardless of which trip they take, and all trips that are completed under the first-best outcome
are completed. When λ >

∑
i∈L µi, the queue is over-supplied such that all trips are accepted and

completed, and the equilibrium queue length is Q∗ = Q̄ (see Figure 3b). At this point, the drivers
are indifferent between joining the queue and leaving, and all drivers get a zero payoff.

Given that all trips completed under the first best outcome are completed, direct FIFO achieves
the first best trip throughput, and also the first best net revenue if cp = 0 (i.e. when the platform
does not incur any opportunity cost due to drivers’ waiting in the queue). To prove that the
direct FIFO mechanism achieves the second best net revenue when cp > 0, we first establish that
no mechanism can achieve in equilibrium a strictly higher total payoff for all drivers combined.
This implies that if the same set of trips are completed, reducing the equilibrium queue length in
comparison to that under direct FIFO (thereby reducing the total opportunity costs for the drivers
as well as the platform) is not possible. We then prove that completing a different set of trips in
return for a shorter queue cannot be an improvement.

We now revisit the economy analyzed in Example 1 in Section 2.

Example 1 (Continued). Consider the economy in Example 1, for which strict FIFO dispatching
achieves trip throughput Tstrict = 1 and net revenue Rstrict = 0. Under direct FIFO, trips to each
location will be dispatched to drivers in the queue starting at positions n1 = 0, n2 = 150, and
n3 = 360, respectively. With λ = 5, µ1 = 1 and µ2 = 6, the lowest earning trip accepted in
equilibrium will be trips to location i∗ = 2, and the steady state queue length is Q∗ = n2 = 150.

Upon arrival at the tail of the queue at n2, one unit of driver moves on to wait for trips to
location 1, and the remaining 4 units of drivers immediately accept trips to location 2 and leave.
In equilibrium, all drivers get the same total payoff of w2 = 25. The platform achieves a trip
throughput of Tdirect = 5 and a net revenue of Rdirect = 1 · w1 + 4 · w2 − Q∗cp = 125 per unit of
time. Since c = cp this net revenue is also the total payoff for all drivers combined.
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In comparison to strict FIFO dispatching, the direct FIFO mechanism substantially improves
driver earnings, trip throughput, and the net revenue of the platform. The mechanism is, however,
not fair because even when all drivers are non-strategic and accept all dispatches from the platform,
a driver closer to the head of the queue may still receive trips to certain destinations at a lower
rate than drivers further down the queue. Take the Midway airport as an example. A driver who
has waited long enough in the queue will never receive a trip back to downtown Chicago again—
as we can see from Figure 1b, all high-earning trips direct FIFO dispatches to her will be heading
to the suburbs. This renders the direct FIFO mechanism ill-suited for practice.

4 The Randomized FIFO Mechanism

In this section, we introduce a family of randomized FIFO mechanisms, which achieve optimal equi-
librium throughput and revenue without using unfair dispatch rules— when drivers are straight-
forward and accept all dispatches, a driver closer to the head of the queue receives trip dispatches
to every destination at a (weakly) higher rate than any driver further down the queue.

To demonstrate the effectiveness of randomization for aligning incentives, we first analyze the
steady state Nash equilibrium under random dispatching, where every trip request is simply dis-
patched to drivers in the queue uniformly at random.15

Definition 6 (Nash equilibrium in steady state). A strategy σ∗ forms a Nash equilibrium among
drivers in steady state under a mechanism if there exists a queue length Q∗ ≥ 0 such that

(i) for any feasible strategy σ and any position in the queue q ∈ [0, Q∗],

π(q,Q∗, σ∗, σ∗) ≥ π(q,Q∗, σ, σ∗), (12)

(ii) when all drivers adopt strategy σ∗, the steady state queue length is Q∗.

Proposition 2 (Optimality of random dispatching). In Nash equilibrium in steady sate, dispatch-
ing every trip to all drivers in the queue uniformly at random achieves the first best trip throughput
and the second best net revenue. When cp = 0, the equilibrium net revenue is also the first best.

See Appendix A.3 for the proof of this result. Briefly, we show that under random dispatching,
every driver in the queue is willing to accept a trip to location i∗ (the lowest earning trip accepted
in equilibrium under direct FIFO) despite the fact that the drivers may still receive higher-earning
trips later. This is different from the outcome under strict FIFO, because in comparison to the
driver at the head of the queue under strict FIFO, a driver who declines a dispatch under random
dispatching will need to wait for a much longer time to receive her next dispatch.

This additional waiting time introduced by randomization increases drivers’ costs of cherry-
picking, and allows random dispatching to align incentives without deprioritizing drivers at the
head of the queue when dispatching trips to any location. Naively randomizing among all drivers
in the queue, however, introduces substantial uncertainty in drivers’ waiting times. This contributes
to the variability in drivers’ total payoffs, on top of the variability in the net earnings from trips.
This is in stark contrast to direct FIFO, which matches lower-earning trips with drivers who have
waited less time in the queue, thereby reducing the variation in drivers’ total payoffs.

15For simplicity of analysis, we work in this section with Nash equilibrium in steady state because drivers’ equilib-
rium strategy depends on the length of the queue when dispatches are randomized.
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Figure 4: Illustration of a randomized FIFO mechanism.

The randomized FIFO mechanisms we now introduce make proper use of drivers’ waiting times
in the queue in both ways. By gradually sending declined trips down the queue in a randomized
manner, a randomized FIFO mechanism aligns incentives, and also guarantees that drivers in earlier
segments in the queue (who have incurred higher waiting costs) will take trips with higher earnings.

Definition 7 (Randomized FIFO). A randomized FIFO mechanism is specified by m ≥ 1 bins
in the queue ([

¯
b(1), b̄(1)], [

¯
b(2), b̄(2)], . . . , [

¯
b(m), b̄(m)]). For the kth time a trip is dispatched, the

mechanism dispatches the trip to a driver in the kth bin [
¯
b(k), b̄(k)] uniformly at random.

See Figure 4 for an illustration. Intuitively, all rider requests are first dispatched to drivers in
the first bin [

¯
b(1), b̄(1)] uniformly at random. If a dispatch is declined, the mechanism will then

dispatch the trip to a random driver in the next bin.
With a rider patience level of P , each trip may be dispatched a maximum of P times before

the rider cancels her request. Recall that i∗ as defined in (1) is the lowest-earning trip that is
(partially) completed under the first best outcome. Given any economy, let (L(1),L(2), . . . ,L(m))
for some m ≤ min{i∗, P} be an ordered partition of the top i∗ destinations {1, 2, . . . , i∗} ⊆ L, i.e.

(i) (collectively exhaustive)
⋃m
k=1 L(k) = {1, 2, . . . , i∗}, and for each k = 1, . . . ,m, L(k) 6= ∅,

(ii) (mutually exclusive) for all k1, k2 ≤ m s.t. k1 6= k2, L(k1) ∩ L(k2) = ∅,

(iii) (monotone) for all k1, k2 ≤ m s.t. k1 < k2, we have i < j for all i ∈ L(k1) and all j ∈ L(k2).

Condition (iii) requires that trips in an earlier partition have higher earnings than those in a later
partition. Given an economy and any ordered partition (L(1), . . . ,L(m)) of the top i∗ destinations,
we construct a corresponding set of m bins in the queue ([

¯
b(1), b̄(1)], . . . , [

¯
b(m), b̄(m)]) as follows:

¯
b(k) ,

∑
i∈∪k′<kL(k

′)

(
wi − min

i′∈L(k)
{wi′}

)
µi/c, (13)

b̄(k) ,
∑

i∈∪k′≤kL(k
′)

(
wi − min

i′∈L(k)
{wi′}

)
µi/c. (14)

In Lemma 4 in Appendix A.4 we show that
¯
b(1) = 0, b̄(k) ≥

¯
b(k) ≥ 0 for each k ≤ m, and

¯
b(k+1) ≥ b̄(k) for all k ≤ m− 1. This guarantees that the bins start from the head of the queue, are
well defined, and do not overlap with each other.

We now present the main result of this paper, that the family of randomized FIFO mechanisms
constructed in this way achieves the optimal steady state outcome in Nash equilibrium.

Theorem 3 (Optimality of randomized FIFO). For any economy and any ordered partition of the
top i∗ destinations (L(1), . . . ,L(m)) with m ≤ min{i∗, P}, a randomized FIFO mechanism corre-
sponding to (13) and (14) achieves the first best trip throughput and the second best net revenue in
Nash equilibrium in steady state. When cp = 0, the net revenue is also the first best.
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We provide the proof of this theorem in Appendix A.4. Briefly, let Q∗ denote the steady state
equilibrium queue length under the direct FIFO mechanism. We first show that under a randomized
FIFO mechanism, it is a Nash equilibrium in steady state that (i) all drivers in the kth bin in the
queue accept all and only trips in the top k partitions ∪kk′=1L(k′) (with potential randomization over
trips to location i∗), (ii) after joining the queue, no driver leaves the queue without a rider trip, or
rejoins the queue at its tail, (iii) drivers join the queue with probability min{1,

∑
i∈L µi/λ} upon

arrival, and (iv) the length of the queue remains constant at Q∗. Under this equilibrium outcome,
all trips that are completed under the first best are also completed, so that the randomized FIFO
and direct FIFO mechanisms complete the same set of trips in steady sate. The queue lengths
being the same then implies that randomized FIFO also achieves the optimal net revenue, given
the optimality of the direct FIFO mechanism we have established in Theorem 2.

More formally, let π∗(q) , π(q,Q∗, σ∗, σ∗) be the continuation payoff of a driver at position
q ∈ [0, Q∗] in the queue, when the queue length is Q∗ and when all drivers adopt the equilibrium
strategy described above (which we denote as σ∗). We show that π∗(q) is non-negative, piece-wise
linear, and monotonically non-increasing in q. Moreover, π∗(q) = mini∈L(k){wi} for all q ∈ [

¯
b(k), b̄(k)]

for each k ≤ m, i.e. the continuation earning of any driver in the kth bin is equal to the net earning
of the lowest earning trip in the kth partition. This allows us to prove by induction on k that σ∗

forms a Nash equilibrium. The non-negativity and monotonicity of π∗(q) imply that the randomized
FIFO mechanism is individually rational and envy free in Nash equilibrium in steady state.

We now demonstrate via the following example that the randomized FIFO mechanism substan-
tially reduces the variability in drivers’ earnings in comparison to dispatching every request to all
drivers in the queue uniformly at random.

Example 2. Consider an economy with three destinations L = {1, 2, 3}, rider arrival rates µ1 = 1,
µ2 = 6, µ3 = 3, and net earnings from trips w1 = 75, w2 = 25, w3 = 15. The opportunity costs
per minute are c = cp = 1/3, and drivers arrive at a rate of λ = 8 per minute. Moreover, assume
for simplicity that riders have a patience level of P = 2, i.e. each trip can be dispatched only twice
before riders cancel their requests.

Strict FIFO dispatching. Trips to locations 2 and 3 cannot reach drivers in the queue who are
willing to accept them. Tstrict = 1 as a result. Moreover, Rstrict = 0 since queue is long enough that
drivers get a payoff of zero regardless of whether they had joined the queue, and when cp = c the
platform’s net revenue is equal to the total payoff of all drivers.

Random dispatching. When the length of the queue is Q∗ = 360, it is an equilibrium for drivers
to accept all trips to locations 1 and 2, and randomize on trips to location 3. In steady state, all
location 1 and 2 trips, and a third of location 3 trips are completed. The throughput is Trand = 8,
and the platform achieves a net revenue of Rrand = 120 per minute. The average waiting time in
the queue is Q∗/Trand = 45 minutes, and the drivers get an average total payoff of 15. However,
due to the high level of variability in (i) a driver’s waiting time for a trip, and (ii) the net earnings
from the trip a driver may accept, the variance of drivers’ total payoffs is 500 (see Appendix B.4
for the computation of the equilibrium outcome and earning variance).

Randomized FIFO. Consider a randomized FIFO mechanism corresponding to the ordered partition
(L(1),L(2)) = ({1}, {2, 3}). The corresponding bins are given by

¯
b(1) = b̄(1) = 0,

¯
b(2) = 180, and

b̄(2) = 360. All trips are first sent to drivers in [
¯
b(1), b̄(1)] = {0}, i.e. the head of the queue. In

equilibrium, drivers at the head of the queue accept only trips to location 1.The remaining trips to
locations 2 and 3 will then be randomly dispatched to drivers at positions 180 to 360 in the queue.

In equilibrium, the length of the queue is Q∗ = 360. Compared to random dispatching, the
randomized FIFO mechanism achieves the same trip throughput, net revenue, average driver wait-
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ing time, and average driver payoff. In contrast, the variance of the total payoffs of the drivers is
reduced from 500 to 75 (see Appendix B.5 for more details). By matching higher earning trips with
drivers in earlier bins who have incurred a higher waiting cost, the randomized FIFO mechanism
is able to substantially reduces the variability in drivers’ total payoffs.

A higher patience level of riders increases the number of times a trip can be dispatched before the
rider cancels her request. This allows the randomized FIFO mechanisms to use a larger number of
bins and better match higher-earning trips with drivers who have waited longer in the queue. When
riders are sufficiently patient, the randomized FIFO mechanism is able to achieve zero variance in
drivers’ total payoffs. Consider an economy where riders’ patience level is higher than the number
of trip types completed in equilibrium, i.e. when P ≥ i∗. The randomized FIFO mechanism
corresponding to m = i∗ partitions has a single trip in each partition, and offers a trip to the driver
at position nk in the queue if it is the kth time that the trip is dispatched. In equilibrium, trips to
each location k ≤ i∗ are accepted by the drivers at nk, and the equilibrium outcome is the same as
that under direct FIFO, where all drivers have the same total payoff.

4.1 Discussion

In real-life systems with the richness of a ridesharing platform, there typically exist multiple notions
of fairness. In the context of the airport queues, a platform could be perceived as not treating drivers
fairly if some drivers receive much more lucrative trips than others after waiting a similar amount
of time, or if drivers who arrived later in time have higher priority for trips to certain destinations.

Under the randomized FIFO mechanisms, the small variance in drivers’ total payoffs and the
envy-freeness of the equilibrium outcome (which guarantees that no driver would want to swap
positions with any other driver who joined the queue later in time) can both be considered as
fairness properties for the equilibrium outcome (see Avi-Itzhak and Levy [2004], Platz and Østerdal
[2017], and Wierman [2011]). The direct FIFO mechanism achieves zero earning variance in theory,
but severely violates what is typically required of a fair dispatch rule since even when all drivers are
straightforward and accept every dispatch, drivers closer to the head of the queue may still receive
trips to certain destinations at a lower rate than drivers further down the queue.

Under a randomized FIFO mechanism, trips are only dispatched to drivers closest to the head of
the queue when all drivers are straightforward. With strategic drivers, in equilibrium, it is possible
for drivers in later bins to receive certain low-earning trips at a higher rate than drivers in an earlier
bin, after these trips are first dispatched to and declined by drivers in the earlier bins.16 As we have
seen from the analysis of strict FIFO dispatching, improving efficiency and average driver earnings
does require that lower-earning trips be quickly dispatched to drivers further down the queue who
are willing to accept them, before riders’ patience runs out.17

In addition to the optimality of revenue and throughput, the proof of Theorem 2 also establishes
that no mechanism can achieve a better total payoff for drivers, if drivers are provided trip details
upfront as well as the flexibility to freely decline any dispatches. It is tempting to think that
a mechanism that imposes penalties could easily achieve a better outcome. However, the same
proof also implies that even if a mechanism is allowed to move drivers to the tail of the queue for

16There may also be segments in the queue where the drivers do not receive any dispatches under the randomized
FIFO mechanisms. It is possible for b̄(k−1) <

¯
b(k), meaning that a driver who have just moved past the kth bin may

need to wait for some time before she reaches the k − 1th bin, and in the mean time will not receive any dispatches.
The existence of such segments in between bins is to guarantee that a driver who is about to reach

¯
b(k) is not getting

a continuation payoff that is too high such that the driver will decline the lower-earning trips in L(k).
17The trade-off between efficiency and fairness has been discussed in various contexts [Su and Zenios, 2004, 2006]. In

our setting, the very limited rider patience leads to substantially higher efficiency loss under strict FIFO dispatching.
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declining trip dispatches, no such mechanism can achieve a better throughput, revenue, or driver
payoff.18 Intuitively, all trips that are accepted under the first best outcome are also accepted
under randomized FIFO. The only inefficiency arises because drivers strategically wait for better
trips, which leads to a higher-than-necessary amount of driver supply being “tied-up” at the queue
in equilibrium. Reducing the length of the queue lowers the opportunity cost for the platform, but
also decreases drivers’ cost of being moved to the tail of the queue at the same time. This renders
such penalties less effective. All things considered, the randomized FIFO mechanisms achieve a
desirable balance between flexibility, efficiency, fairness and variability in drivers’ earnings.

5 Simulation Results

In this section, we present counterfactual simulation results for the Chicago O’Hare International
Airport. As we vary the level of driver supply or rider patience, we compare various mechanisms
and benchmarks in the equilibrium net revenue, trip throughput, queue length, and drivers’ average
waiting time, average earnings, and earning variance. Additional simulations for O’Hare and for
the Chicago Midway International Airport are provided in Appendix D.

To estimate the distribution of trips and the net earnings from trips by destination, we make
use of trip-level data from ridesharing platforms (including Uber and Lyft) made public by the City
of Chicago.19 The dataset provides the fare for each trip (rounded to the nearest $2.50), the origin
and destination of each trip on the Census Tract level, as well as the timestamps at the beginning
and the end of each trip (rounded to the nearest 15 minutes). There are a total of 801 census tracts
within the City of Chicago, which we consider as the set of destinations.20

From November 1, 2018 to March 11, 2020, there are a total of 4.53 million trips originating from
O’Hare (see Figure 11 in Appendix D.1). The number of trips by destination census tract is as shown
in Figure 5a, and the average trip fare by destination is shown in Figure 1a in Section 1. Without
driver identifiers, we are unable to estimate the average hourly earnings of a driver in Chicago. We
assume throughout this section that the opportunity cost of a driver is c = 1/3, representing the
scenario that an average driver driving in the city makes $20 per hour.21 Combining the average
fare, average trip duration (see Figure 13a), and the opportunity cost, we estimate the net earnings

18Su and Zenios [2004] suggest that a mechanism could impose penalties such that patients who decline an
organ offer would expect a decrease in their priority position. In today’s ridesharing platforms, Uber and Lyft
drivers may lose their positions in line and move back to the tail of the queue after declining (multiple) trip
dispatches. See https://help.lyft.com/hc/en-us/articles/115012922787-Receiving-Airport-FIFO-pickup-
requests and https://www.uber.com/us/en/drive/san-francisco/airports/san-francisco-international/, ac-
cessed 09/27/2020. Such penalties can improve the outcome under strict FIFO dispatching.

19https://data.cityofchicago.org/Transportation/Transportation-Network-Providers-Trips/m6dm-c72p,
accessed December 12, 2020. This dataset contains all trips in Chicago from November 2018 onward, but we use
data up to mid March of 2020, before the COVID-19 pandemic substantially changed the dynamics of the market.
During this time of consideration, drivers in Chicago do not have trip destinations up front.

20https://data.cityofchicago.org/Facilities-Geographic-Boundaries/Boundaries-Census-Tracts-2010/
5jrd-6zik, accessed September 14, 2020. The destination census tracts are not available for trips ending outside
of the City of Chicago, and may also be hidden due to privacy considerations when trips are sparse. Overall,
42.6% of trips originating from O’Hare do not have a destination census tract, thus we cannot take these trips into
consideration for our simulations. We do not expect any qualitative change in the simulation results if trips to all
destinations are included. In fact, incorporating the long trips to the suburbs with very high earnings (which are
currently missing) will likely lead to a worse outcome under strict FIFO dispatching, since these trips provide strong
incentives for drivers at the head of the queue to wait and cherry-pick.

21The simulation results are not sensitive to the choice of c. A proposal from Uber in 2019 (see https://p2a.co/
H9gttWA, accessed September 14, 2020) discussed ensuring drivers are paid an average of $21 per hour while on trip,
the earnings per hour online could be currently slightly lower, depending on the average utilization level.

19

https://help.lyft.com/hc/en-us/articles/115012922787-Receiving-Airport-FIFO-pickup-requests
https://help.lyft.com/hc/en-us/articles/115012922787-Receiving-Airport-FIFO-pickup-requests
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(a) Trip count by destination. (b) Net earnings by destination.

Figure 5: Trip volume and estimated net earnings (assuming c = 1/3) by destination Census Tract
in Chicago, for trips originating from the Chicago O’Hare International Airport.

by trip destination as shown in Figure 5b.22

Throughout this section, we fix the total arrival rate of riders at
∑

i∈L µi = 12 per minute.
This is roughly equal to the rate of completed trips during early evening hours on weekdays (see
Figure 12 in Appendix D.1 for the average number of completed trips by hour-of-week). We assume
that the platform’s opportunity cost of drivers’ time is cp = c = 1/3 per minute, which corresponds
to the scenario where the gap between the first best and the second best net revenue (which is
achieved by the mechanisms we propose) is the largest. Finally, the randomized FIFO mechanism
we evaluate in this section corresponds to an ordered partition of the set of completed trips into at
most P subsets, each containing (approximately) the same number of destinations.

Varying Driver Supply. We first compare the different mechanisms and benchmarks as the
arrival rate of drivers λ varies from zero to twenty percent over the total rider arrival rate. We
fix the rider patience level at P = 12, representing the scenario where each driver decline takes
10 seconds on average, and where riders are willing to wait for 2 minutes for a match. Figure 6
presents the steady state net revenue, trip throughput, and queue length achieved in equilibrium.

When the arrival rate of drivers is very low, the outcome under direct FIFO, randomized FIFO,
strict FIFO and random dispatching coincide, and all mechanisms achieve a net revenue very close
to that under the first best outcome. This is because all drivers are able to accept trips with high
earnings, and do not spend much time lining up in the queue. As the arrival rate of drivers increases,
the length of the queue increases, and so does the gap between the first best and the second best
net revenue (which is achieved by direct FIFO, randomized FIFO, and random dispatching).

In contrast to the other mechanisms, the trip throughput under strict FIFO dispatching quickly
plateaus despite the increasing driver supply, since rider requests for lower earning trips cannot reach
drivers in the queue who are willing to accept them. These trips become unfulfilled, and at the
same time, some drivers will have to deadhead back to the city without a rider. As a result, the net
revenue under strict FIFO (which is equal to the total payoff of all drivers combined when cp = c)

22See Appendix C.1 for more details. Note that without driver identifiers, we are not able to appropriately estimate
the continuation payoff of drivers after arriving at different destinations. As a result, the net earnings used in our
simulations incorporate only payments from the immediate trip, effectively assuming that there is no heterogeneity
in the continuation earnings from different locations onward.
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(a) Net revenue.
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(b) Trip throughput.
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(c) Equilibrium queue length.

Figure 6: Equilibrium net revenue, trip throughput, and length of the queue in steady state, as the
arrival rate of drivers varies. Chicago O’Hare.
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(a) Average waiting time.

0 5 10 15

Driver Arrival Rate 

0

10

20

30

40

50

A
v
e

 D
ri
v
e

r 
E

a
rn

in
g

s

First Best

Direct FIFO

Rand. FIFO

Strict FIFO

Random

(b) Average driver payoff.

0 5 10 15

Driver Arrival Rate 

0

5

10

15

20

S
D

 D
ri
v
e
r 

E
a

rn
in

g
s

First Best

Direct FIFO

Rand. FIFO

Strict FIFO

Random

(c) SD of driver payoffs.

Figure 7: Drivers’ average waiting times, average payoff, and the standard deviation (SD) in drivers’
payoff in equilibrium in steady state, as the arrival rate of drivers varies. Chicago O’Hare.

drops to zero— drivers will continue to join the queue until the queue is so long that joining is no
better than leaving without a rider, thus in equilibrium all drivers get a zero total payoff.

Once the queue is over-supplied, i.e. when the driver arrival rate exceeds the total rider demand,
the net revenue under all mechanisms drop to zero. This is inevitable, since no driver is willing to
leave the airport without a rider as long as joining the queue and wait leads to a strictly positive
payoff, but some driver has to deadhead in steady state. Nevertheless, we can see from Figure 7a
that the average waiting time under randomized FIFO is still shorter than that under strict FIFO
dispatching despite the longer queue length, since the trip throughout is substantially higher.

In Figures 7b and 7c, we compare the average payoff (i.e. the net earnings from trips minus the
waiting costs) of all drivers who arrived at the airport, and also the standard deviation of drivers’
payoffs. As expected, random dispatching introduces substantial uncertainty in drivers’ payoffs. In
contrast, by matching higher-earning trips with drivers who have waited longer in the queue, the
randomized FIFO mechanism achieves a much smaller variance in drivers’ payoffs, in comparison
to random dispatching as well as the first best outcome.

Varying Rider Patience. Fixing the arrival rate of drivers at λ = 10, we compare the equilib-
rium, steady state outcomes under different mechanisms when riders’ patience level increases from
P = 1 to P = 120. Figure 8 shows the net revenue, trip throughput, and the length of the queue,
and Figure 9 shows drivers’ average waiting times in queue, drivers’ average payoff after arriving
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(a) Net revenue.
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(b) Trip throughput.
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(c) Equilibrium queue length.

Figure 8: Equilibrium net revenue, trip throughput, and length of the queue in steady state, as
riders’ patience level varies. Chicago O’Hare.
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(a) Average waiting time.
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(b) Average driver payoff.
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(c) SD of driver payoffs.

Figure 9: Drivers’ average waiting times, average payoff, and the standard deviation (SD) in drivers’
payoff in equilibrium in steady state, as riders’ patience level varies. Chicago O’Hare.

at the queue, and the standard deviation of drivers’ payoffs.
The equilibrium outcomes under the direct FIFO mechanism and random dispatching are not

affected by riders’ patience level. Both mechanisms achieve the first best trip throughput, a high net
revenue for the platform, and a low waiting time for the drivers. The randomized FIFO mechanism
achieves the same throughput, revenue, and average driver waiting time. Moreover, we see from
Figure 9c that (i) the variance in drivers’ total payoffs is substantially lower than that under random
dispatching, and (ii) this variance diminishes rapidly as riders’ patience level increases. Intuitively,
riders’ patience level P determines the number of times a trip can be dispatched, hence the number
of bins a randomized FIFO mechanism may employ. As P increases, the mechanism is able to
better match trips with higher earnings with drivers who have waiting longer in the queue.

Strict FIFO dispatching, on the other hand, performs poorly. As the patience level increases,
trips to more destinations can reach drivers in the queue who are willing to accept them, thus
the throughput increases. The net revenue and the average driver payoff remain at zero, however,
because drivers continue to join the queue until the payoff from joining is no better than that from
leaving without a rider. Once P exceeded 100, strict FIFO is finally able to dispatch all drivers
that arrive at the airport, achieving the second best net revenue. This level of rider patience is not
practical, however, since even when each driver decline takes only 10 seconds, P > 100 requires
that riders wait for over fifteen minutes to get matched to a driver.
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6 Conclusion

We study the dispatching of trips to drivers in a queue, where some trips are necessarily more
lucrative than the others due to operational constraints. We propose a family of randomized
FIFO mechanisms, which send declined trips gradually down the queue in a randomized manner,
and achieve in equilibrium the highest possible revenue and throughput under any mechanism
that is transparent and flexible. Extensive counterfactual simulations demonstrate substantial
improvements of throughput and revenue in comparison to the status quo strict FIFO dispatching,
highlighting the effectiveness of using drivers’ waiting times in the queue to align incentives, improve
efficiency and reliability, and reduce the variability in driver earnings.

From a technical perspective, our setting generalizes existing work in the literature by modeling
rider impatience and endogenizing drivers’ decisions to join, leave, or re-join the platform. The
randomized FIFO mechanisms we propose are also appealing for practice since drivers are provided
trip destination and earnings information upfront, as well as the flexibility to freely accept or decline
any dispatches. Even when a mechanism is allowed to impose penalties such that drivers would lose
their position in the queue after declining a dispatch (i.e., moving back to the tail of the queue),
no such mechanism can achieve a higher better throughput, revenue, or total driver earnings. All
things considered, the randomized FIFO mechanism achieves a desirable balance between efficiency,
flexibility, fairness and variability in driver earnings.
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Appendix
Appendix A provides proofs omitted from the body of the paper. We derive the equilibrium outcome
under various mechanisms and benchmarks in Appendix B. Additional examples and discussions
are provided in Appendix C, and we include in Appendix D detailed description of the data from
the City of Chicago as well as additional simulation results.

A Proofs

A.1 Equilibrium Outcome Under Strict FIFO

Before formally stating and proving the equilibrium outcome under strict FIFO dispatching, we
first provide the following result on necessary conditions of best-response strategies.

Recall from Section 3.1 that given a mechanism, π(q,Q, σ, σ′) denotes the expected continuation
payoff (net earnings from trip minus waiting costs) of a driver at position q ≥ 0 in the queue, when
the length of the queue is Q ≥ q, when this driver adopts strategy σ, and when every other driver
employs strategy σ′. Moreover, under a strategy σ = (α, β, γ), α(q,Q, i), β(q,Q) and γ(q,Q) denote
the probability for a driver to (i) accept a trip to location i ∈ L, (ii) re-joins the queue at the tail,
and (iii) leave the queue without a rider, when the length of the queue is Q ≥ 0 and when the
driver is at some position q ∈ [0, Q].

Lemma 2. Fix a strategy σ∗ adopted by the rest of the drivers. σ = (α, β, γ) is a best-response
strategy only if for any queue length Q ≥ 0 and at any position in the queue q ≤ Q,

(i) the driver accepts (or declines) with probability one trips for which the net earnings is strictly
above (or below) the continuation payoff, i.e. for all i ∈ L, wi > π(q,Q, σ, σ∗)⇒ α(q,Q, i) = 1,
and wi < π(q,Q, σ, σ∗)⇒ α(q,Q, i) = 0,

(ii) the driver rejoins at the tail of the queue with probability one (or zero) if the continuation
payoff at the tail of the queue is strictly higher (or lower), i.e. π(q,Q, σ, σ∗) < π(Q,Q, σ, σ∗)⇒
β(q,Q) = 1 and π(q,Q, σ, σ∗) > π(Q,Q, σ, σ∗)⇒ β(q,Q) = 0, and

(iii) the driver leaves the queue without a rider trip with probability one (or zero) if the con-
tinuation payoff is strictly negative (or positive), i.e. π(q,Q, σ, σ∗) < 0 ⇒ γ(q,Q) = 1 and
π(q,Q, σ, σ∗) > 0⇒ γ(q,Q) = 0.

When the length of the queue is Q, a driver at location q who is dispatched a trip to location
i ∈ L faces the decision of whether to accept the trip and get a continuation payoff of wi, or to
decline the trip and remain in the queue. The continuation payoff from remaining in the queue given
strategy σ is π(q,Q, σ, σ∗), thus a best response must satisfy condition (i) in Lemma 2. Similarly,
it is easy to see that a violation of either condition (ii) or (iii) leads to a useful deviation that
improves the driver’s payoff, contradicting the assumption that σ is a best-response strategy.

Condition (i) also implies that an optimal acceptance strategy α must have a cut-off structure,
such that for any Q ≥ 0 and any q ∈ [0, Q], α(q,Q, i) > 0 for location i ∈ L implies α(q,Q, j) = 1
for all j < i, since trips to these destinations have higher net earnings.

Recall that n1 , 0, and observe that for each i ≥ 2, ni as defined in (5) can be rewritten as:

ni ,
i−1∑
j=1

(
wj − wj+1

c

j∑
k=1

µk

)
=

i−1∑
j=1

wj − wi
c

µj . (15)
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Similarly, Q̄ as defined in (11) can be rewritten as:

Q̄ , n` +
w`
c

∑̀
i=1

µi =
∑
i∈L

wiµi/c, (16)

and it is straightforward to see that ni ≤ Q̄ for all i ∈ L. We now formally state and prove
Lemma 1, on the equilibrium outcome of strict FIFO dispatching when riders have infinite patience
and never cancel their trip requests.

Lemma 1 (SPE under strict FIFO with infinite rider patience). Assume that riders are infinitely
patient. Under strict FIFO dispatching, it is a subgame-perfect equilibrium for drivers to:23

• accept trips to each location i ∈ L if and only if the driver is at position q ≥ ni in the queue, and

• join the queue if and only if the length of the queue is weakly below Q̄, and never leave the queue
or move to the tail after joining.

Proof. Let σ∗ = (α∗, β∗, γ∗) be the strategy specified by the lemma, i.e. for any queue length Q ≥ 0
and any position in the queue q ∈ [0, Q],

α∗(q,Q, i) =1{q ≥ ni},
β∗(q,Q) =0,

γ∗(q,Q) =1{q > Q̄}.

Here, 1{·} is the indicator function. γ∗(q,Q) = 1{q > Q̄} means that the driver will leave (or not
join) the queue if and only if the driver’s position is (or will be) later than Q̄. What we need to
show is that starting from any queue length Q ≥ 0, assuming that the rest of the drivers all adopt
strategy σ∗, it is a best response for a driver at any position q ∈ [0, Q] in the queue to also employ
strategy σ∗. We prove this by induction on (segments of) positions in the queue, starting from the
head of the queue.

The base case. First, consider the driver at the head of the queue (i.e. at position q = 0). The
(infinitesimal) driver does not have to wait any time for a dispatch to location 1. The continuation
payoff for the driver at q = 0 under σ∗ is therefore

π(0, Q, σ∗, σ∗) = w1. (17)

This is the highest net earnings a driver may get from any trip, thus no other strategy may achieve
a higher payoff, and σ∗ is a best response for the driver at the head of the queue.

The induction step. Now assume that for some i ≥ 2, it is a best response for drivers at positions
q ≤ ni−1 in the queue to employ strategy σ∗, and that a driver’s optimal continuation payoff
starting from position q = ni−1 onward is π(ni−1, Q, σ

∗, σ∗) = wi−1 for any Q ≥ ni−1. We prove
the induction step by showing that:

(i) σ∗ is a best response for a driver at any position q ∈ (ni−1, ni] in the queue, and

(ii) the optimal continuation payoff from position ni onward is π(ni, Q, σ
∗, σ∗) = wi.

23Note that the strategy prescribed by this lemma is a particular SPE. There exist other strategies that may form
an SPE among the drivers, depending on how drivers break ties between alternatives with equal continuation payoffs.
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We first compute the continuation payoff for drivers at positions (ni−1, ni] in the queue, assuming
that all drivers adopt strategy σ∗. First, consider a driver at some position q ∈ (ni−1, ni). Under
σ∗, the driver accepts trips to locations j < i, does not leave the queue without a rider trip, or
move to the tail of the queue. When all drivers adopt σ∗, trips to locations 1 through i − 1 are
accepted by drivers at or ahead of ni−1, thus the driver at q will not accept any trip she receives
from the platform. By Little’s Law, a driver at q will wait (q − ni−1)/

∑
j≤i−1 µj units of time

before she reaches position ni−1 in the queue. By the induction assumption, the driver gets an
optimal continuation payoff of wi−1 starting from ni−1. As a result, for any q ∈ (ni−1, ni),

π(q,Q, σ∗, σ∗) = π(ni−1, Q, σ
∗, σ∗)− c(q − ni−1)/

∑
j≤i−1

µj = wi−1 − c(q − ni−1)/
∑
j≤i−1

µj .

Now consider a driver at position q = ni in the queue. If the driver is dispatched and accepts a
trip to location i, she gets wi. If not, the driver moves forward in the queue and her continuation
payoff is again

lim
q→ni−

π(q,Q, σ∗, σ∗) = wi−1 − c(ni − ni−1)/
∑
j≤i−1

µj = wi.

Combining the two cases, we know

π(q,Q, σ∗, σ∗) = wi−1 − c(q − ni−1)/
∑
j≤i−1

µj , ∀q ∈ (ni−1, ni], (18)

and we have π(q,Q, σ∗, σ∗) > wi when q < ni and π(ni, Q, σ
∗, σ∗) = wi.

We now prove that σ∗ is a best response for drivers at (ni−1, ni] in the queue. Assume towards a
contradiction, that there exists some strategy σ, and some q ∈ (ni−1, ni], such that π(q,Q, σ, σ∗) >
π(q,Q, σ∗, σ∗) for some Q ≥ q. Note that the driver does not get dispatched any trip with net
earnings higher than wi until the driver reaches position ni−1 in the queue. Consider the following
two scenarios:

• If the driver left the queue (with or without a rider) under σ before she reaches ni−1, the driver’s
payoff is upper-bounded by wi ≤ π(q,Q, σ, σ∗).

• When the driver did reach ni−1 under σ, her optimal continuation payoff from ni−1 onward is
wi−1 given the induction assumption. Moreover, the driver will incur a waiting cost of at least
c(q − ni−1)/

∑
j≤i−1 µj before reaching ni−1 thus driver’s continuation payoff starting from q is

again upper bounded by π(q,Q, σ∗, σ∗).

Combining the two cases, we know that π(q,Q, σ, σ∗) > π(q,Q, σ∗, σ∗) is not achievable for any
q ∈ (ni−1, ni] under any strategy σ, thus σ∗ is a best response. This completes the proof of the
induction step.

End of the queue. What we have proved by induction is that σ∗ is a best response for any driver at
positions q ∈ [0, n`] in the queue, and that the optimal continuation payoff from n` onward under
any strategy is w`. Now consider drivers at positions q ∈ (n`, Q̄] in the queue. Following σ∗ implies
waiting until reaching n` in the queue, thus the continuation payoff is:

π(q,Q, σ∗, σ∗) = w` − c(q − n`)/
∑
j≤`

µj ≥ w` − c(Q̄− n`)/
∑
j≤`

µj = 0, ∀q ∈ (n`, Q̄]. (19)
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An argument very similar to the proof of the induction step shows that regardless of whether a
driver reached n` in the queue or not, achieving continuation payoff higher than π(q,Q, σ∗, σ∗)
is not possible and σ∗ is a best response. Moreover, π(Q̄, Q̄, σ∗, σ∗) = 0 holds, thus it is a best
response to leave (or not join) the queue when at position q > Q̄ (or when the length of the queue
is longer than Q̄). This completes the proof of this lemma.

A.2 Incentive Compatibility and Optimality of Direct FIFO

In this section, we provide proofs for the incentive compatibility and optimality of the direct FIFO
mechanism.

Theorem 1 (Incentive compatibility of direct FIFO). It is a subgame-perfect equilibrium for drivers
to accept all dispatches from the direct FIFO mechanism, and to join the queue if and only if the
length of the queue is at most

Q̄ , n` +
w`
c

∑
i∈L

µi. (11)

Moreover, the equilibrium outcome is individually rational and envy-free.

Proof. Let σ∗ denote the strategy of (i) always accepting trip dispatches from the direct FIFO
mechanism, (ii) join the queue if and only if the length of the queue is Q ≤ Q̄, and (iii) once in the
queue, never leave the queue without a rider or move to the tail of the queue.

To establish the incentive compatibility of the direct FIFO mechanism, we need to show that
starting from any queue length Q ≥ 0, and assuming the rest of the drivers all adopt strategy σ∗,
it is a best response for a driver to also employ strategy σ∗. This can be established using a very
similar (and in fact, slightly simpler) argument as in the proof of Lemma 1. We do not repeat the
same arguments here but refer the readers to Appendix A.1, where we established the SPE under
strict FIFO (assuming infinite rider patience) by induction on segments of the queue.

It is also straightforward to show that the equilibrium continuation payoff under direct FIFO is
also identical to that under strict FIFO dispatching where riders are infinitely patient. Combining
equations (17), (18) and (19), we have the following expression for the equilibrium continuation
payoff of a driver at position q ∈ [0, Q] in the queue for any queue length Q ≥ 0 under the direct
FIFO mechanism:

π(q,Q, σ∗, σ∗) =


w1, if q = 0,
wi−1 − c(q − ni−1)/

∑
j≤i−1 µj , if q ∈ (ni−1, ni], ∀i ≥ 2,

w` − c(q − n`)/
∑

j∈L µj , if q ∈ (n`, Q̄],

0, if q > Q̄.

(20)

For any q ≤ Q̄, π(q,Q, σ∗, σ∗) is non-negative, continuous, and monotonically decreasing in q, thus
the direct FIFO mechanism is individually rational and envy-free (i.e., no drivers envies the other
drivers in positions behind her in the queue).

Also observe that there is no randomness at all in a driver’s continuation payoff starting from
any position in the queue, since at each point ni, the driver gets precisely wi regardless of whether
the driver accepted a trip to location i and left, or if the driver moved forward in the queue. As
a result, the individual rationality and envy-freeness properties also hold ex post. This completes
the proof of the theorem.

Theorem 2 (Optimality of direct FIFO). For every economy, the direct FIFO mechanism achieves
in SPE the first best trip throughput. Moreover, the equilibrium outcome achieves the first best net
revenue when cp = 0, and the second best net revenue when cp ∈ (0, c].
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Proof. Let σ∗ denote the equilibrium strategy of accepting all dispatches from the direct FIFO
mechanism, and joining the queue if and only if the length of the queue is at most Q̄ (see Theorem 1).
We prove the optimality of the direct FIFO mechanism with the following three steps:

Step 1. Establish the steady state outcome when all drivers adopt strategy σ∗, and prove that the
same set of trips that are completed under the first best outcome are also completed under
direct FIFO.

Step 2. Show that in equilibrium, no transparent and flexible mechanism is able to achieve a higher
total payoff than that under direct FIFO for all drivers who arrive at the queue.

Step 3. Complete the proof that no mechanism is able to achieve a better net revenue.

We start from Step 1.

Step 1. We first establish the steady state equilibrium outcome under the direct FIFO mechanism.
There are two cases, depending on whether the platform is over or under-supplied.

Step 1.1: λ >
∑

i∈L µi. We first show that in the over-supplied case, when all drivers adopt strategy
σ∗, Q∗ = Q̄ is a steady-state queue length. To prove this, first observe that with Q∗ = Q̄ ≥ ni for
all i ∈ L, all rider trips are accepted. The rate at which drivers are dispatched from the queue is∑

i∈L µi < λ, thus drivers effectively join the queue with probability
∑

i∈L µi/λ and the length of
the queue remains constant at Q∗ = Q̄. Observe that the total payoff achieved by all drivers who
arrive at the queue is zero, because a driver gets a zero payoff regardless of whether she join the
queue upon arrival, or left immediately without joining.

We also show that Q∗ = Q̄ is the unique steady queue length, by proving that starting from
any queue length Q 6= Q̄, the length of the queue will converge to Q̄ within a finite amount of time.
First, we know from (20) that the equilibrium continuation payoff of a driver at any position q < Q̄
in the queue is strictly positive. If the length of the queue Q is strictly shorter than Q̄, a driver
strictly prefers to join the queue upon arrival, and drivers join the queue at a rate of λ under σ∗.
This cannot be the steady state outcome, since the rate at which drivers are dispatched from the
queue is at most

∑
i∈L µi < λ, and even lower when Q < n`. As a result, the queue length will grow

at a rate of at least λ−
∑

i∈L µi, whenever Q < Q̄. Moreover, any queue length Q > Q̄ cannot be
an steady sate either, since (20) implies that the drivers at positions q > Q̄ have strictly negative
continuation payoffs, thus will leave the queue immediately.

Step 1.2: λ ≤
∑

i∈L µi. Recall that when a platform is not over-supplied, i∗ ∈ L as defined in
(1) denotes the lowest-earning (i.e. highest index) trip that is (partially) completed under the first
best outcome, when the λ units of drivers are dispatched to destinations in decreasing order of wi.

We first show that Q∗ = ni∗ is a steady state equilibrium queue length. When the length of
the queue is ni∗ , all trips to locations i < i∗ will be dispatched and accepted by drivers in the
queue.

∑
i<i∗ µi out of the λ drivers move forward in the queue upon arrival, and the remaining

λ −
∑

i<i∗ µi drivers leave the queue immediately with trips to location i∗ that are dispatched to
the tail of the queue Q∗ = ni∗ . In this way, rate at which drivers join the queue is the same as the
rate at which drivers are dispatched from the queue, and the length of the queue remains at ni∗ .

Observe that the set of trips completed in steady state under direct FIFO is the same as those
completed under the first best outcome. Moreover, a driver gets a payoff of wi∗ regardless of
whether the driver accepted a trip to location i∗ immediately after arrival. As a result, the total
payoff of all drivers is λwi∗ per unit of time.

We also show that Q∗ = ni∗ is the unique steady state queue length for all non-degenerate
economies, meaning that λ 6=

∑i
j=1 µj for any i ∈ L. Consider the following two scenarios:
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• When the length of the queue is Q < ni∗ , trips to locations j ≥ i∗ are not dispatched under
the direct FIFO mechanism. The excess drivers, however, will still join the queue under σ∗ (at
Q < Q̄, the payoff from joining is strictly positive). As a result, the length of the queue will grow
at a rate at least λ−

∑
j<i∗ µ>0j, as long as it is strictly below ni∗ .

• When Q > ni∗ , all trips to locations j ≤ i∗ are dispatched and accepted under direct FIFO. As a
result, the length of the queue will decrease at a rate of

∑
j≤i∗ µj−λ when λ <

∑
j≤i∗ µj , until it

reaches Q = ni∗ . In the degenerate case where λ =
∑

j≤i∗ µj , any queue length between ni∗ and
ni∗+1 may be a steady state queue length, and we break ties in favor of shorter queues under the
direct FIFO mechanism.

Combining the two settings in Step 1.1 and 1.2, we know that the same set of trips that are
completed under the first best outcome are also completed under direct FIFO. This implies that
the direct FIFO mechanism achieves in equilibrium the first best steady state trip throughput of
Tdirect = min{

∑
i∈L µi, λ}. Moreover, when cp = 0, the outcome under direct FIFO also achieves

the first best revenue, since the total net earnings from trips is the same as that under the first
best, and drivers’ lining up in the queue is not costly for the platform.

Step 2. We now prove that it is not possible to improve the total payoff of all drivers who had
arrived at the queue, when drivers have access to trip destinations upfront and have the option
to decline trips and to re-join the queue at the tail at any point of time. Again we discuss the
under-supplied and the over-supplied cases separately.

Step 2.1: λ >
∑

i∈L µi. We need to prove that in equilibrium, under any mechanism that is
transparent and flexible, drivers cannot get a strictly positive average payoff after arriving at the
queue. To show this, consider a mechanism M that is flexible and transparent. It cannot be a
steady state equilibrium underM for every driver to leave the queue with a rider trip. As a result,
some driver must willingly leave without a rider, and the net payoff of such drivers is non-positive.

Assume towards a contradiction that M achieves a strictly positive average driver payoff, and
let σ′ and Q′ denote the equilibrium strategy under M, and the steady state queue length under
M, respectively. The expected continuation payoff of a driver who joined the queue at the tail must
be strictly positive: πM(Q′, Q′, σ′, σ′) > 0. This is because the drivers who did not join the queue
upon arrival (if any) have zero net earnings thus if πM(Q′, Q′, σ′, σ′) ≤ 0, the average payoff of all
drivers who arrived at the queue will be non-positive. πM(Q′, Q′, σ′, σ′) > 0, however, contradicts
the assumption that the outcome forms an equilibrium. In this case, no driver will be willing to
leave the queue without a rider trip, since it is a useful deviation to join the queue at the tail and
get a strictly positive payoff.

Step 2.2: λ ≤
∑

i∈L µi. As we’ve shown in Step 1.2, in this case drivers have an average payoff
of wi∗ after arriving at the queue, where i∗ is the lowest earning trip that is (partially) completed
in equilibrium. What we need to prove is that under any mechanism M that does not penalize
drivers for declining dispatches or rejoining the queue at the tail, the average payoff of a driver who
arrived at the queue cannot exceed wi∗ .

First, by definition of i∗, it cannot be a steady state equilibrium underM for every driver who
arrive at the virtual queue to leave the queue with a rider trip to a location j < i∗. As a result,
some driver must leave with a trip to some location j ≥ i∗, or leave without a rider. In both cases,
the driver’s continuation payoff after accepting a trip or leaving the queue is upper bounded by
wi∗ . This cannot form an equilibrium when πM(Q′, Q′, σ′, σ′) > wi∗ (since a driver is better off
re-joining the queue at the tail instead, therefore πM(Q′, Q′, σ′, σ′) ≤ wi∗ must hold.

This completes the proof of Step 2.
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Step 3. We now prove that no mechanism can achieve a higher net revenue in equilibrium than
that under the direct FIFO mechanism. The case of cp = 0 was already discussed in Step 1. The
case where cp = c is also straightforward, since in this case the net revenue of the platform is equal
to the total net payoff of all drivers combined (see discussions in Section 3), thus Step 2 implies
that no mechanism can achieve a higher net revenue.

What is left to prove is the case where cp ∈ (0, c). Consider an alternative mechanism M, and
let {µ̃i}i∈L be the rate at which mechanismM completes trips to each destination in equilibrium in
steady state. We are going to prove that the net revenue underM is optimized when the outcome
underM is the same as that under direct FIFO, and we again discuss the over and under-supplied
cases separately.

Step 3.1: λ >
∑

i∈L µi. Given Step 2, drivers get a total payoff of zero under M. Assuming that
the equilibrium queue length is Q∗M, we have:∑

i∈L
µ̃iwi − cQ∗M = 0. (21)

The platform, however, may still get a non-zero net revenue

RM =
∑
i∈L

µ̃iwi − cpQ∗M = (c− cp)Q∗M ≥ 0,

and it is straightforward to see that RM is optimized when Q∗M is the maximized. With (21),
Q∗M =

∑
i∈L µ̃iwi/c is maximized when µ̃i = µi for all i ∈ L. This is the same outcome as that

under the direct FIFO mechanism, thus no mechanism can achieve a better net revenue.

Step 3.2: λ ≤
∑

i∈L µi. In this case, drivers get an average payoff of wi∗ under direct FIFO, and

the equilibrium queue length is Q∗direct = ni∗ . Let TM ,
∑

i∈L µ̃i denote the trip throughput
under mechanism M, and let u∗M be the average equilibrium payoff of drivers achieved under M.
Consider the following two cases:

• TM < λ, in which case not all drivers receive rider trips in equilibrium under M. An argument
very similar to that in Step 2 shows that in this case, the average payoff of a driver who joined
the queue upon arrival must be zero, thus u∗M = 0. Similar to the over-suppllied setting, we have∑

i∈L
µ̃iwi − cQ∗M = 0,

which implies

RM =
∑
i∈L

µ̃iwi − cpQ∗M = (c− cp)Q∗M.

RM is again optimized when Q∗M is the longest. For any fixed throughput TM =
∑

i∈L µ̃i < λ,
the queue length Q∗M =

∑
i∈L µ̃iwi/c is maximized when the TM units of drivers are dispatched

to trips in decreasing order of wi, and this implies that the net revenue RM = (c − cp)Q∗M is
upper bounded by:

RM ≤(c− cp)

(∑
i<i∗

µiwi/c+ (λ−
∑
i<i∗

µi)wi∗/c

)

=
∑
i<i∗

µiwi + (λ−
∑
i<i∗

µi)wi∗ −
cp
c

(∑
i<i∗

µiwi + (λ−
∑
i<i∗

µi)wi∗

)
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This is weakly below the net revenue under direct FIFO, which can be written as:

Rdirect =
∑
i<i∗

µiwi + (λ−
∑
i<i∗

µi)wi∗ − cpni∗

=
∑
i<i∗

µiwi + (λ−
∑
i<i∗

µi)wi∗ −
cp
c

(∑
i<i∗

µi(wi − wi∗) + (λ−
∑
i<i∗

µi)(wi∗ − wi∗)

)
.

• Consider now the case where TM = λ. Drivers’ getting an average payoff of u∗M implies:∑
i∈L

µ̃iwi − cQ∗M = λu∗M. (22)

For each i ∈ L, denote ∆i , (wi − wi∗)/c. The equilibrium queue length can be written as:

Q∗M =
1

c

(∑
i∈L

µ̃iwi −
∑
i∈L

µ̃iu
∗
M

)
=
∑
i∈L

µ̃i (∆i + (wi∗ − u∗M)/c) . (23)

The net revenue under M is therefore of the form:

RM =
∑
i∈L

µ̃iwi − cpQ∗M =
∑
i∈L

µ̃i (wi − cp∆i)− λ(wi∗ − u∗M)cp/c. (24)

For the first term in (24), wi − cp∆i = wi − (wi − wi∗)cp/c = wi(1 − cp/c) + wi∗cp/c is higher
for smaller i with higher wi. The second term −λ(wi∗ − u∗M)cp/c is non-positive given Step 2,
therefore achieves its maximum when u∗M = wi∗ . Putting the two parts together, we know that
RM is optimized when when µ̃i is maximized for smallest i ∈ L first (until we have

∑
i∈L µ̃i = λ),

in which case the average payoff achieves u∗M = wi∗ . This is, again, the same outcome as that
under direct FIFO.

This completes the proof of Step 3, and concludes the proof of the optimality of direct FIFO.

A.3 Optimality of Random Dispatching

Before proving the optimality of random dispatching, we first provide the following lemma on the
best response strategy of a driver in a stationary environment.

Lemma 3. Consider a driver in a stationary environment, where she receives trip offers to each
location i ∈ L at a rate of ηi ≥ 0. The highest achievable net payoff from any feasible strategy is
max {maxj∈L ρj , 0}, where

ρj ,

(
j∑
i=1

wiηi − c

)/ j∑
i=1

ηi. (25)

Moreover, j∗ is a maximizer of ρj if and only if ρj∗ ≤ wj∗ and ρj∗ ≥ wj∗+1.

Proof. Lemma 2 implies that any best response strategy on acceptance in this setting must have
a cutoff structure, meaning that if the driver accepts a trip to some location j ∈ L with non-zero
probability, then she must accept any trip to locations i < j with probability 1. Moreover, the
driver will decide to leave the queue only if the expected continuation payoff from the optimal
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acceptance strategy is non-positive. We now show that the highest achievable net payoff under any
best-response strategy is this stationary environment is max{maxj∈L ρj , 0}.

Consider for now a deterministic strategy such that the driver stays in the queue, and accepts
all trips to locations 1 through j if offered. We denote this strategy as σj . The average net earnings

the driver gets from the an average trip she accepts is
∑j

i=1wiηi/
∑j

i=1 ηi, and in expectation, the

driver will wait 1/
∑j

i=1 ηi units of time to receive a trip dispatch she will accept. Therefore, the
expected net payoff (i.e. the net earnings from trip a driver accepts minus her expected waiting
cost) under strategy σj is

j∑
i=1

wiηi

/ j∑
i=1

ηi − c
/ j∑

i=1

ηi =

(
j∑
i=1

wiηi − c

)/ j∑
i=1

ηi = ρj .

Among all deterministic strategies such that the driver does not leave, the highest achievable net
payoff is therefore maxj∈L ρj .

The cutoff structure proved by Lemma 2 also implies that the only potentially useful random-
ization in a driver’s acceptance strategy is on the lowest earning trip that is accepted. Consider a
strategy where the driver accepts all trips to locations 1 through j− 1, but accepts location j trips
with probability θ ∈ [0, 1]. The expected net payoff in this setting is:(

j−1∑
i=1

wiηi + wjθηj − c

)/(
j−1∑
i=1

ηi + θηj

)
=

(
ρj−1

j−1∑
i=1

ηi + wjθηj

)/(
j−1∑
i=1

ηi + θηj

)
.

This is a weighted average of ρj−1 and wj , thus can be optimized at θ = 0 (or θ = 1) if ρj−1 ≥ wj
(or if ρj−1 ≤ wj). Therefore, for a driver who does not choose to immediately leave the queue,
the highest achievable net payoff can be achieved by a deterministic acceptance strategy, and
the optimal payoff under any acceptance strategy is equal to maxj∈L ρj . When this payoff is
negative, the driver is better off leaving the queue instead of waiting for any trip dispatches. As
a result, a driver’s highest possible payoff a driver may achieve in this stationary environment is
max {maxj∈L ρj , 0}.

What is left to show is that j∗ is a maximizer of ρj if and only ρj∗ ≤ wj∗ and ρj∗ ≥ wj∗+1. To
prove this, first observe that for any j > 1, ρj is a weighted average of ρj−1 and wj :

ρj =

(
ρj−1

j−1∑
i=1

ηi + wjηj

)/ j∑
i=1

ηi. (26)

This implies (i) when ρj ≥ ρj−1, it must be the case that wj ≥ ρj ≥ ρj−1, and (ii) ρj ≥ ρj+1 ⇒
ρj ≥ wj+1. Therefore, if j∗ is a maximizer of ρj , we must have ρj∗ ≥ ρj∗−1 ⇒ wj∗ ≥ ρj∗ , and
ρj∗ ≥ ρj∗+1 ⇒ ρj∗ ≥ wj∗+1.

On the other hand, if ρj∗ ≤ wj∗ and ρj∗ ≥ wj∗+1 both hold, we now prove that j∗ must be a
maximizer of ρj . Denote ĵ ∈ L as the first location for which ρj > wj+1, i.e.

ĵ , min{j ∈ L | ρj > wj+1}. (27)

We first claim that ρj must be monotonically non-decreasing when j ≤ ĵ, i.e. for all j < ĵ,
ρj ≤ ρj+1. This is because for any j < ĵ, ρj ≤ wj+1 holds by definition of ĵ, thus by (26) we have
ρj ≤ ρj+1. Moreover, given (26) and the fact that wj is monotonically decreasing, we can prove
by a simple induction (ρĵ > wĵ+1 ⇒ ρĵ > ρĵ+1 > wĵ+1 > wĵ+2 and so on) that (i) ρj must be
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monotonically decreasing for all j ≥ ĵ, i.e. ∀j ≥ ĵ, ρj ≥ ρj+1, and (ii) ρj > wj+1 for all j ≥ ĵ.
Combining the two cases, we know that ĵ is a maximizer of ρj .

For j∗, we know from (26) that ρj∗ ≤ wj∗ ⇒ wj∗ ≥ ρj∗ ≥ ρj∗−1, therefore j∗ − 1 < ĵ. Given
ρj∗ ≥ wj∗+1, consider the two possible scenarios.

• If ρj∗ > wj∗+1, we must have j∗ ≥ ĵ, thus j∗ = ĵ holds and j∗ is a maximizer of ρj .

• If ρj∗ = wj∗+1, we have j∗ < ĵ. Moreover, (26) implies ρj∗+1 = ρj∗ = wj∗+1 > wj∗+2, which
means j∗+1 ≥ ĵ. As a result, j∗ = ĵ−1, and j∗ is still a maximizer of ρj because ρj∗ = ρj∗+1 = ρĵ .

This completes the proof of this lemma.

With Lemma 3 at hand, we now prove the result on the equilibrium outcome under a mechanism
that dispatches every trip request to all drivers in the queue, uniformly at random.

Proposition 2 (Optimality of random dispatching). In Nash equilibrium in steady sate, dispatch-
ing every trip to all drivers in the queue uniformly at random achieves the first best trip throughput
and the second best net revenue. When cp = 0, the equilibrium net revenue is also the first best.

Proof. We prove this result by showing that the equilibrium outcome under random dispatching
has the same queue length Q∗ as that under direct FIFO, and that the same set of trips that are
completed under direct FIFO is also completed under random dispatching. Theorem 2 then implies
the same optimality results for random dispatching.

We discuss the over-supplied and under-supplied settings separately.

Case 1: λ >
∑

i∈L µi. When the platform is over-supplied, we have proved in Theorem 2 that all
rider trips are completed under direct FIFO, and that the equilibrium queue length is Q∗ = Q̄ (as
defined in (11)). We now prove that under random dispatching, when the queue length is Q̄, it is
a Nash equilibrium for drivers to (i) join the queue with probability

∑
i∈L µi/λ upon arrival, (ii)

accept all trip dispatches while in the queue, and (iii) never move to the tail of the queue or leave
the queue after joining.

More formally, we prove that the strategy σ∗ = (α∗, β∗, γ∗) defined as follows forms a Nash
equilibrium among the drivers when the queue length is Q̄:

α∗(q, Q̄, i) = 1, ∀i ∈ L, ∀q ∈ [0, Q̄],

β∗(q, Q̄) = 0, ∀q ∈ [0, Q̄],

γ∗(q, Q̄) =

{
0, if q < Q̄
1−

∑
i∈L µi/λ, if q = Q̄.

When all drivers adopt strategy σ∗, the length of the queue remains at Q̄, since the numbers of
drivers who join the queue and who are dispatched from the queue are both

∑
i∈L µi per unit of

time. All rider trips are completed, implying the same steady state revenue and trip throughput
as those under direct FIFO.

We now prove that σ∗ forms a Nash equilibrium among the drivers under random dispatching
when the queue length is Q̄. First, observe that when the queue length is Q̄ and when the rest of
the driver adopts σ∗, (i) each rider trip is dispatched once since the probability of declines is zero,
and (ii) a driver’s position in the queue has no impact on the rate at which she receives dispatches
to each destination. This is therefore a stationary setting we have analyzed in Lemma 3. For a
driver anywhere in the queue, the rate at which she receives dispatches to each location i ∈ L is:

ηi = µi/Q̄.
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Recall from (16) that Q̄ can be rewritten as Q̄ =
(∑`

i=1wiµi

)
/c. Therefore, the expected

payoff ρj from accepting only trips to locations 1 through j (as defined in (25)) is of the form:

ρj =

(
j∑
i=1

wiηi − c

)/ j∑
i=1

ηi =

(
j∑
i=1

wiµi − cQ̄

)/ j∑
i=1

µi =

(
j∑
i=1

wiµi −
∑̀
i=1

wiµi

)/ j∑
i=1

µi.

This implies ρ` = 0, and ρj < 0 for all j < `. By Lemma 3, we know that the best acceptance
strategy is to accept all dispatches, which is aligned with α∗. This also implies that when all drivers
adopt σ∗, the continuation payoff of a driver anywhere in the queue is π(q, Q̄, σ∗, σ∗) = ρ` = 0.

The drivers’ being indifferent towards being in the queue and leaving the queue means that there
is no useful deviation from joining the queue with probability

∑
i∈L µi/λ (hence the probability

of not joining the queue is γ∗(Q̄, Q̄) = 1 −
∑

i∈L µi/λ). Moreover, re-joining the queue at the tail
is not useful since a driver’s position in the queue has no impact on the rate at which the driver
receives trip dispatches. This completes the proof that σ∗ forms a Nash equilibrium among the
drivers, thus concludes the discussion for Case 1, the over-supplied setting.

Case 2: λ ≤
∑

i∈L µi. In the case without excess drivers, i∗ as defined in (1) denotes the index of the
lowest-earning trip that is (partially) completed in equilibrium under the direct FIFO mechanism
and the first best. We know from Theorem 2 that the equilibrium queue length under direct FIFO
is Q∗ = ni∗ , and the drivers complete all trips to locations j < i∗, and in each unit of time the
drivers also complete λ−

∑i∗−1
i=1 µi out of the µi∗ trips to location i∗.

We now prove that random dispatching achieves the same equilibrium outcome (queue length
and set of trips completed). Fix the length of the queue at Q∗ = ni∗ , and consider the strategy
σ∗ = (α∗, β∗, γ∗) such that for all q ∈ [0, Q̄],

α∗(q, Q̄, i) =


1, if i < i∗,

1−
(

1− (λ−
∑i∗−1

i=1 µi)/µi∗
)1/P

, if i = i∗,

0, if i < i∗,

(28)

β∗(q, Q̄) = 0, (29)

γ∗(q, Q̄) = 0. (30)

For simplicity of notation, let θi∗ , 1 −
(

1− (λ−
∑i∗−1

i=1 µi)/µi∗
)1/P

. When every driver adopts

strategy σ∗, each trip to locations i < i∗ is dispatched once, the trip to location i∗ is dispatched∑P
k=1(1− θi∗)(k−1)θi∗k+ (1− θi∗)PP = (1− (1− θi∗)P )/θi∗ times, and each trip to locations i > i∗

is dispatched P times. Given the queue length Q∗ = ni∗ , the rate at which a driver anywhere in
the queue receives trip dispatches to each location is:

ηi =


µi/ni∗ , if i < i∗,
µi(1− (1− θi∗)P )/(θi∗ni∗), if i = i∗,
µiP/ni∗ , if i > i∗.

As we observed in (15), ni∗ =
∑i∗−1

i=1 (wi − wi∗)µi/c. For each j < i∗, the expected payoff from
accepting only the top j trips can be written as:

ρj =

(
j∑
i=1

wiµi − cni∗
)/ j∑

i=1

µi =

(
j∑
i=1

wiµi −
i∗−1∑
i=1

(wi − wi∗)µi

)/ j∑
i=1

µi.
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This implies that:

ρi∗−1 =

(
i∗−1∑
i=1

wiµi −
i∗−1∑
i=1

(wi − wi∗)µi

)/ i∗−1∑
i=1

µi = wi∗ .

We know from (26) that ρi∗ = wi∗ must hold as well since ρi∗ is a weighted average of ρi∗−1

and wi∗ .Moreover, since wi is strictly decreasing in i, we have ρi∗−1 < wi∗−1. Applying Lemma 3,
we know that the highest possible expected payoff a driver may receive in this stationary setting
is wi∗ , and this can be achieved by accepting all trips to location i < i∗, and accepting trips to
location i∗ with any probability in [0, 1]. α∗ is therefore an optimal acceptance strategy. It is also
straightforward to see that no strategy that involves not joining the queue the queue, and moving
to the tail of the queue, or leave the queue without a rider trip, could achieve a higher expected
payoff than wi∗ , thus σ∗ forms a Nash equilibrium when the queue length is Q∗ = ni∗ .

What is left to prove is that the length of the queue remains at Q∗ = ni∗ when all drivers
adopt σ∗. To show this, we prove that the rate at which drivers are dispatched from the queue
is equal to λ, the rate at which drivers join the queue. First, all trips to locations i ≤ i∗ − 1 are
accepted, so we only need to prove that λ −

∑i∗−1
i=1 µi drivers accept trips to location i∗ per unit

of time. For trips to location i∗, each time a trip is dispatched, it is not accepted with probability
(1− (λ−

∑i∗−1
i=1 µi)/µi∗)

1/P . Thus the probability for the trip to be unfulfilled after P dispatches is

1− (λ−
∑i∗−1

i=1 µi)/µi∗ . This implies that the probability for a trip to location i∗ to be completed

is (λ−
∑i∗−1

i=1 µi)/µi∗ , so that λ−
∑i∗−1

i=1 µi drivers accept trips to location i∗ per unit of time. This
completes the proof of the under-supplied case, and concludes the proof of this proposition.

A.4 Optimality of Randomized FIFO

In this section, we prove the optimality of the randomized FIFO mechanisms. We first provide
the following lemma, which shows that the bins constructed as in (13) and (14) given any ordered
partition are well-defined and not overlapping.

Lemma 4. For any ordered partition (L(1),L(2), . . . ,L(m)) of the top i∗ destinations {1, 2, . . . , i∗},
the corresponding set of bins satisfies:

(i) 0 ≤
¯
b(k) ≤ b̄(k) for each k = 1, . . . ,m, and b̄(k) =

¯
b(k) if |L(k)| = 1,

(ii) b̄(k−1) <
¯
b(k) for all k = 2, 3, . . . ,m.

Proof. For part (i), b̄(1) ≥
¯
b(1) = 0 trivially holds. For all k = 2, 3, . . . ,m, we have

b̄(k) −
¯
b(k)

=
1

c

 ∑
i∈∪k′≤kL(k

′)

(wi − min
i′∈L(k)

{wi′})µi

− 1

c

 ∑
i∈∪k′<kL(k

′)

(
wi − min

i′∈L(k)
{wi′}

)
µi


=

1

c

 ∑
i∈L(k)

(
wi − min

i′∈L(k)
{wi′}

)
µi

 ≥ 0.

Note that when L(k) contains a single location,
¯
b(k) = b̄(k) holds, meaning that for the kth time

each trip is dispatched, the trip will be offered to the driver at position q =
¯
b(k) in the queue. This

completes the proof of part (i).
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For part (ii), first observe that for any k > 1, mini∈L(k−1){wi} > mini∈L(k){wi}, since the
partition is ordered thus wi > wj for all i ∈ L(k−1) and all j ∈ L(k). As a result,

b̄(k−1) =
1

c

 ∑
i∈∪k′<kL(k

′)

(
wi − min

i′∈L(k−1)
{wi′}

)
µi

 <
1

c

 ∑
i∈∪k′<kL(k

′)

(
wi − min

i′∈L(k)
{wi′}

)
µi

 =
¯
b(k).

This completes the proof of this lemma.

We now prove the main result of our paper on the optimality of randomized FIFO.

Theorem 3 (Optimality of randomized FIFO). For any economy and any ordered partition of the
top i∗ destinations (L(1), . . . ,L(m)) with m ≤ min{i∗, P}, a randomized FIFO mechanism corre-
sponding to (13) and (14) achieves the first best trip throughput and the second best net revenue in
Nash equilibrium in steady state. When cp = 0, the net revenue is also the first best.

Proof. We first show that given a randomized FIFO mechanism corresponding to an ordered parti-
tion of the top i∗ locations, under the Nash equilibrium in steady state, (i) the length of the queue
is equal to the equilibrium queue length under the direct FIFO mechanism, and (ii) the same set
of trips completed under direct FIFO are also completed. Theorem 2 then implies that the equi-
librium outcome under randomized FIFO is optimal. We also establish individual rationality and
envy-freeness under randomized FIFO by showing that a driver’s continuation payoff as a function
of the driver’s position in the queue is non-negative and monotonically non-increasing.

Recall that i∗ (defined in (1)) is the index of the lowest-earning trip that is (partially) completed
in equilibrium under direct FIFO. We discuss the following cases:

Case 1. The total number of bins m = min{i∗, P} = 1, in which case all trips are dispatched to
drivers in the first bin. There are again two scenarios:

Case 1.1 i∗ = 1, and in which case only trips to location 1 are (partially) completed under
the direct FIFO mechanism.

Case 1.2 i∗ > 1, but P = 1, meaning that riders are impatient, and will cancel their trip
request after any driver decline.

Case 2. The number of bins m = min{i∗, P} > 1 , in which case trips may be dispatched multiple
times, and we establish the equilibrium result by induction.

Case 1.1: m = i∗ = 1. In this case, there is a single partition under randomized FIFO: L(1) = {1},
and we have

¯
b(1) = b̄(1) = 0. As a result, all trips are dispatched (only once) to the driver at the

head of the queue. Recall that no driver will decline a trip to location 1, since there is no other
trip with better earnings that the driver would like to wait for. Consider two cases:

• When λ ≤ µ1, it is straightforward to verify that (i) the length of the queue is zero, and (ii) all
drivers accept a trip to location 1 immediately upon arrival, forms a Nash equilibrium among
drivers in steady state. This is the same outcome as that under direct FIFO.

• When λ > µ1 but i∗ = 1, the number of locations must be ` = 1, and all trips are accepted at
the head of the queue. The equilibrium outcome is again the same as that under direct FIFO,
where it is also the case that all trips are dispatched to and accepted by the driver at the head of
the queue. In steady state, drivers join the queue with probability µ1/λ, all trips are completed,
and the length of the queue is Q∗ = µ1w1/c = Q̄ (at which point a driver is indifferent toward
joining the queue and leaving without a rider trip).
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Combining the two cases, we know that when i∗ = 1, randomized FIFO achieves the same optimal
outcome achieved by direct FIFO in equilibrium. Every driver gets a payoff of w1 when λ ≤ µ1,
and when λ > µ1, the continuation payoff decreases linearly in the driver’s position in the queue at
takes value zero at Q̄. The equilibrium outcome is, therefore, individually rational and envy-free.

Case 1.2: i∗ > 1, m = P = 1. With P = 1, riders cancel their trip requests after a single driver
decline, and all trips are dispatched by the randomized FIFO mechanism to the first (and only)
bin of drivers uniformly at random. L(1) = {1, . . . , i∗, and the first bin is given by

¯
b(1) = 0 and

b̄(1) = ni∗ > 0. There are two cases, depending on whether the queue is under or over-supplied.

Case 1.2.1: λ ≤
∑

i∈L µi. Assume that the length of the queue is Q∗ = ni∗ . Under the randomized

FIFO mechanism, all trips are randomly dispatched to drivers in [
¯
b(1), b̄(1)] = [0, ni∗ ], i.e. all drivers

in the queue. This is the same scenario as the under-supplied setting under random dispatching,
which we analyzed in Case 2 in the proof of Proposition 2. It is straightforward to verify that the
same strategy (specified by (28), (29) and (30)) forms a Nash equilibrium in steady state under
randomized FIFO, and the equilibrium queue length remains constant at Q∗ = ni∗ . We refer the
readers to the proof of Proposition 2, and do not repeat the same arguments here. Drivers at any
position q ∈ [0, Q∗] in the queue has the same continuation payoff wi∗ ≥ 0, thus the equilibrium
outcome is individually rational and envy-free.

Case 1.2.2: λ >
∑

i∈L µi. When the queue is over-supplied, all trips are completed under direct
FIFO, and i∗ = `. The randomized FIFO mechanism dispatches each trip once (since P = 1) to
drivers in [

¯
b(1), b̄(1)] = [0, n`] uniformly at random.24 Consider the strategy σ∗ = (α∗, β∗, γ∗):

α∗(q, Q̄, i) = 1, ∀i ∈ L, ∀q ∈ [0, Q̄]

β∗(q, Q̄) = 0,∀q ∈ [0, Q̄]

γ∗(q, Q̄) =

{
0, if q < Q̄,
1−

∑
i∈L µi/λ, if q = Q̄.

Here, γ∗(Q̄, Q̄) = 1 −
∑

i∈L µi/λ means that the drivers join the queue at the tail q = Q̄ with
probability

∑
i∈L µi/λ. It is clear that when σ∗ is adopted by all drivers, the length of the queue

remains at Q̄. We now prove that with Q∗ = Q̄, it is a Nash equilibrium for all drivers to adopt
strategy σ∗. In other words, when the length of the queue is Q̄ and when σ∗ is adopted by the rest
of the drivers, σ∗ is a best response strategy for a driver at any q ∈ [0, Q̄]

Let us first consider a driver at some position q ∈ [0, n`] in the queue. If the driver does not
leave the queue or move to the tail of the queue, this again is a stationary environment analyzed
in Lemma 3. When every other driver adopts σ∗, every trip is dispatched only once, thus the
rate at which a driver receives trip dispatches to each location i ∈ L is ηi = µi/n`. Since n` =∑`−1

i=1(wi−w`)µi/c =
∑`

i=1(wi−w`)µi/c (see (15)), a driver’s expected payoff from accepting only
the top j trips ρj can therefore be rewritten as:

ρj =

(
j∑
i=1

wiµi − cn`

)/ j∑
i=1

µi =

(
j∑
i=1

wiµi −
∑̀
i=1

(wi − w`)µi

)/ j∑
i=1

µi

=

 ∑̀
i=j+1

(w` − wi)µi + w`

j∑
i=1

µi

/ j∑
i=1

µi = w` +

 ∑̀
i=j+1

(w` − wi)µi

/ j∑
i=1

µi.

24The equilibrium queue length is Q∗ = Q̄ > b̄(1), as a result, drivers at positions q ∈ (b̄(1), Q̄] do not receive
any dispatches under randomized FIFO. This is, therefore, a different setting from the over-supplied setting under
random dispatching (Case 1 of Proposition 2), where trips are dispatched to all drivers in the queue at random.
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Since w` − wi ≤ 0 for all i ∈ L, ρj is maximized at j = `, and we also have ρ` = w`. Lemma 3
implies that σ∗, i.e. accepting all trips, is the optimal acceptance strategy for a driver at q ∈ [0, b̄(1)].
Under σ∗, the continuation payoff is of the form:

π(q, Q̄, σ∗, σ∗) = ρ` = w`, ∀q ∈ [0, n`]. (31)

Since w` ≥ 0, there is no incentive for a driver to leave the queue without a rider trip, hence there
is no useful deviation from γ(q, Q̄) = 0. To see why moving to the tail of the queue is not a useful
deviation either, observe that a driver will not receive any trip dispatch until she moves back to
position b̄(1) = n` in the queue. Once the driver moves here (after incurring a non-negative waiting
cost), the driver is in the exact same position as she is before, achieving an optimal payoff of w`
when accepting all trips from the platform. This completes the proof that σ∗ is a best response for
a driver at some q ∈ [0, b̄(1)] in the queue, when σ∗ is adopted by the rest of the drivers.

Now consider any driver at some position q ∈ (n`, Q̄] in the queue. The driver will not receive
any trip dispatches until she reaches position n` in the queue, thus there is no useful deviation from
the acceptance strategy σ∗. From b̄(1) onward, the driver gets an optimal continuation payoff of w`
as we have shown above. As a result, the driver’s continuation payoff under σ∗ is of the form:

π(q, Q̄, σ∗, σ∗) = w` − c(q − n`)/
∑
i∈L

µi, ∀q ∈ (b̄(1), Q̄]. (32)

We can verify that π(q, Q̄, σ∗, σ∗) > 0 for all q < Q̄ and that π(q, Q̄, σ∗, σ∗) = 0. Leaving the
queue without a rider (and get zero) is therefore not a useful deviation. Moreover, at Q̄ the drivers
are indifferent towards being in the queue or leaving without a rider, thus a randomized joining
decision is a best response. Individual rationality and envy-freeness both hold, since π(q, Q̄, σ∗, σ∗)
is non-negative and monotonically non-increasing for all q ∈ Q̄. This completes Case 1.2.

Case 2: m > 1. In this case we prove by induction on k (the index of bins, starting from the
first bin) that in Nash equilibrium given the steady state queue length Q∗, drivers in the kth bin
accept all dispatches for trips in the first k partitions ∪kk′=1L(k′), and decline all lower earning
trips in ∪k′>kL(k′). We then establish individual rationality and envy-freeness by checking that the
continuation payoff is non-negative and monotonically non-increasing.

Before analyzing the base case of the induction, we first provide some notations. Denote j(k) ∈ L
and j̄(k) ∈ L as the lowest and highest indices of trips in the kth partition L(k):

j(k) , min{i ∈ L|i ∈ L(k)}, (33)

j̄(k) , max{i ∈ L|i ∈ L(k)}. (34)

We know that a trip to location j(k) (or j̄(k)) is the highest (or lowest) paying trip in L(k). Let
Q∗ denote the equilibrium queue length under direct FIFO, i.e. Q∗ = ni∗ when λ ≤

∑
i∈L µj , and

Q∗ = Q̄ when λ >
∑

i∈L µj . Let σ∗ = (α∗, β∗, γ∗) be a strategy given by:

• accepting all trips in the top k partitions while in the kth bin in the queue, and randomize only
on trips to location i∗ while in the last bin:

α∗(q,Q∗, i) =

{
1{i ∈ ∪kk′=1L(k′)}, if q ∈ [

¯
b(k), b̄(k)] for some k ≤ m, and i 6= i∗,

min{(λ−
∑

i<i∗ µi), µi∗}/µi∗ , if q ∈ [
¯
b(m), b̄(m)] and i = i∗,

(35)
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• never move to the tail of the queue:

β∗(q,Q∗) = 0, ∀q ∈ [0, Q∗], (36)

• never leave the queue without a trip after joining the queue, and join the queue with probability
min{

∑
i∈L µi/λ, 1}, i.e.

γ∗(q,Q∗) =

{
0, if q < Q∗,
1−min{

∑
i∈L µi/λ, 1}, if q = Q∗.

(37)

We now prove by induction that σ∗ forms a Nash equilibrium among the drivers in steady state
with queue length Q∗.

Step 1: the base case with k = 1. We first prove that when the length of the queue is Q∗ and when
every other driver adopts strategy σ∗, it is a best response for any driver in the first bin [

¯
b(1), b̄(1)]

to also adopt strategy σ∗.
The first bin consists of the top b̄(1) drivers at the head of the queue. When L(1) = {1},

b̄(1) =
¯
b(1) = 0, thus all trips are first dispatched to the driver at the head of the queue. In this

case, it is clear that accepting only trips to location 1 is the best response for a driver at q = 0, and
this is aligned with σ∗. Now consider the case where |L(1)| > 1, such that b̄(1) > 0. With m > 1,
the equilibrium length of the queue Q∗ is above b̄(1), thus the first bin is “full”. For a driver at any
position q ∈ [0, b̄(1)], the rate at which she receives dispatches to each location i ∈ L is

η
(1)
i = µi/b̄

(1).

Note that the rates {η(1)
i }i∈L are independent to both the strategies adopted by the rest of the

drivers in the first bin, and also the strategies employed by all drivers later in the queue.
We first prove that if a driver does not leave the queue or move to the tail of the queue, then

there is no useful deviation from α∗(q,Q∗, i) = 1{i ∈ L(1)}, i.e. accepting all trips in L(1). This is a
stationary setting that we have analyzed in Lemma 3. Given (14), we know that b̄(1) is of the form:
b̄(1) = 1

c

(∑
i∈L(1)(wi −mini′∈L(1){wi′})µi

)
. The utility for a driver in the first bin from accepting

only the top j̄(1) trips (as defined in (25)) can therefore be written as:

ρ
(1)

j̄(1)
=

 ∑
i∈L(1)

wiη
(1)
i − c

/ ∑
i∈L(1)

η
(1)
i =

 ∑
i∈L(1)

wiµi − cb̄(1)

/ ∑
i∈L(1)

µ
(1)
i

=

 ∑
i∈L(1)

wi −

 ∑
i∈L(1)

(
wi − min

i′∈L(1)
{wi′}

)
µi

/ ∑
i∈L(1)

µ
(1)
i

= min
i∈L(1)

{wi}.

This implies ρ
(1)

j̄(1)
≤ wi for all i ∈ L(1), and ρ

(1)

j̄(1)
> wi for all i /∈ L(1) (recall that the partitions

are ordered). Lemma 3 then implies that an optimal acceptance strategy is to accept all trips to
locations 1 through j̄(1), and this is aligned with σ∗. Lemma 3 also implies that the continuation
payoff of any driver in the first bin given strategy σ∗ is:

π(q,Q∗, σ∗, σ∗) = min
i∈L(1)

{wi}, ∀q ∈ [0, b̄(1)]. (38)
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Since mini∈L(1){wi} ≥ 0, deviating from γ∗(q,Q∗) = 0 and leaving the is not a useful deviation.
Moreover, by moving to the tail of the queue, a driver will not receive any trip with net earnings
higher than mini∈L(1){wi}, if the driver does not move all the way back to the first bin again. Once
a driver is back to the first bin (after incurring some non-negative waiting costs), the driver is

in the exact same situation as before moving to the tail, receiving trips again at rates {η(1)
i }i∈L.

Deviating from β∗(q,Q∗) = 0 is therefore not a useful strategy either. This implies that σ∗ is a
best response for drivers in the first bin, and completes the proof of the base case with k = 1.

Step 2: induction step for 1 < k < m. Assume that when the length of the queue is Q∗, and when
every other driver adopts strategy σ∗, it is a best response for a driver at any position q ∈ [0, b̄(k−1)]
to adopt strategy σ∗. We now prove in this induction step, that it is also a best response for any
driver at positions q ∈ (b̄(k−1), b̄(k)] to adopt strategy σ∗.

We take the following steps in proving this result:

Step 2.1 Under strategy σ∗, the equilibrium continuation payoff π(q,Q∗, σ∗, σ∗) is linearly decreas-
ing in q when q ∈ [b̄(k−1),

¯
b(k)], and constant for q ∈ [

¯
b(k), b̄(k)]:

π(q,Q∗, σ∗, σ∗) =


min

i∈L(k−1)
{wi} − c

(
q − b̄(k−1)

)/ ∑
i∈∪k−1

k′=1
L(k′)

µi, if q ∈ [b̄(k−1),
¯
b(k)],

min
i∈L(k)

{wi}, if q ∈ [
¯
b(k), b̄(k)].

(39)

Step 2.2 Under any feasible strategy σ = (α, β, γ) such that the driver does not leave the queue or
move to the tail of the queue (i.e. if β(q,Q∗) = γ(q,Q∗) = 0 for all q ∈ [b̄(k−1), b̄(k)]), the
continuation payoff cannot exceed that under σ∗:

π(q,Q∗, σ, σ∗) ≤ π(q,Q∗, σ∗, σ∗), ∀q ∈ [b̄(k−1), b̄(k)].

Step 2.3 σ∗ is a best response for drivers at positions q ∈ [b̄(k−1), b̄(k)] in the queue.

Step 2.1 implies that for any driver at some q ∈ [
¯
b(k), b̄(k)], it cannot be a useful deviation from

σ∗ to accept any trip in later bins ∪k′>kL(k′) since the driver gets π(q,Q∗, σ∗, σ∗) ≥ mini∈L(k) wi >
maxi∈∪k′>kL(k

′) wi from following strategy σ∗. Moreover, all best-response strategies must have

γ(q,Q∗) = 0 for all q ∈ [b̄(k−1), b̄(k)], because mini∈L(k){wi} > 0 thus leaving the queue and getting
zero cannot be a useful deviation.

With Step 2.2, we know that across all feasible strategies where the driver does not move to
the tail of the queue, σ∗ is a best strategy for drivers at any q ∈ [b̄(k−1), b̄(k)]. With 2.1 and 2.2, we
prove the final step, that even when we consider all feasible strategies where people may move to
the tail of the queue, there is still no strategy that results in a higher payoff than σ∗.

We start from Step 2.1.

Step 2.1. We prove (39) in this step. First, we show that under σ∗, the continuation payoff of
drivers satisfy π(b̄(k−1), Q∗, σ∗, σ∗) = mini∈L(k−1) wi, and π(

¯
b(k), Q∗, σ∗, σ∗) = π(b̄(k), Q∗, σ∗, σ∗) =

mini∈L(k) wi. For simplicity of notation, denote the continuation payoff under strategy σ∗ given the
equilibrium queue length Q∗ as:

π∗(q) , π(q,Q∗, σ∗, σ∗). (40)
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Moreover, denote the total trip volume and average net earnings for a given subset of partitions as:

sk1:k2 ,
∑

i∈∪k2
k′=k1

L(k′)

µi, (41)

w̄k1:k2 ,
∑

i∈∪k2
k′=k1

L(k′)

wiµi

/ ∑
i∈∪k2

k′=k1
L(k′)

µi =
∑

i∈∪k2
k′=k1

L(k′)

wiµi

/
sk1:k2 . (42)

Consider now a driver who had just reached the position position b̄(k−1) in the queue. Under
σ∗, a driver at [0, b̄(k−1)] in the queue only accept trips in the top k − 1 partitions ∪k′≤k−1L(k′).
When all drivers adopt the same strategy σ∗, a priori there is no difference in the waiting times or
earnings from trips of any driver who are at b̄(k−1) in the queue. The average net earnings a driver
at q = b̄(k−1) will get from the trip she will accept in the future is therefore w̄1:k−1. By Little’s
Law, the average amount of time the driver spends waiting in the queue is b̄(k−1)/s1:k−1. Thus the
average continuation payoff for the driver at q =

¯
b(k) is:

π∗(b̄(k−1)) = w̄1:k−1 − cb̄(k−1)/s1:k−1.

Given b̄(k) as defined in (14), we know:

π∗(b̄(k−1)) = w̄1:k−1 −

 ∑
i∈∪k′<kL(k

′)

µi

(
wi − min

i′∈L(k−1)
{wi′}

)/s1:k−1 = min
i∈L(k−1)

{wi}. (43)

Similarly, by reasoning about the net earnings an average driver gets from an average trip, and
the average waiting cost a driver incurs, we can show that π(

¯
b(k), Q∗, σ∗, σ∗) = π(b̄(k), Q∗, σ∗, σ∗) =

mini∈L(k) wi. Under σ∗, drivers at some position q ∈ (b̄(k−1),
¯
b(k)) will wait for (q −

¯
b(k−1))/s1:k−1

units of time before reaching b̄(k−1) in the queue, therefore her continuation payoff is of the form:

π∗(q) = min
i∈L(k−1)

{wi} − c
(
q − b̄(k−1)

)/
s1:k−1, if q ∈ [

¯
b(k−1),

¯
b(k)). (44)

It is straightforward to verify that π∗ is left continuous at
¯
b(k):

lim
q→

¯
b(k)−

π∗(q) = min
i∈L(k−1)

{wi} − c
(
¯
b(k) − b̄(k−1)

)/
s1:k−1 = min

i∈L(k)
{wi}.

What is left to prove for Step 2.1 is that π∗(q) remains constant where q ∈ [
¯
b(k), b̄(k)]. This

is trivial when |L(k)| = 1, in which case b̄(k) =
¯
b(k). Therefore, we now consider the case where

|L(k)| > 1 such that b̄(k) >
¯
b(k). When all drivers adopt strategy σ∗, all trips in the first k − 1

partitions ∪k−1
k′=1L

(k′) are accepted before reaching the kth bin. For a driver in the kth bin, the rate
at which she receives trip dispatches to each location i ∈ L is therefore:

η
(k)
i =

{
0, if i ∈ ∪k−1

k′=1L
(k′)

µi/(b̄
(k) −

¯
b(k)), if i ∈ ∪k′≥kL(k′) (45)

Note that the rates {η(k)
i }i∈L are independent to the strategies taken by drivers in later bins of the

queue. With a slight abuse of notation, let

η(k) ,
∑
i∈L(k)

η
(k)
i
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be the total rate at which drivers in the kth bin receives trips in L(k).
Fix an arbitrary point in time and call it time t = 0, and consider a driver who is at position

b̄(k) at time t = 0. Let g(t) be the position of the driver in the queue, if the driver has not yet
accepted a trip and leave the queue. We know g(0) = b̄(k). Before the driver reaches position

¯
b(k)

in the queue, we know that in the next dt units of time, when every other driver adopts strategy
σ∗, there are s1:k−1dt drivers who are dispatched from queue positions earlier than

¯
b(k), and there

are dtsk:k(g(t)−
¯
b(k))/(b̄(k)−

¯
b(k)) drivers who are dispatched from the kth bin, ahead of this driver.

As a result, the time derivative of the driver’s queue position satisfies

dg(t)

dt
= −s1:k−1 − sk:k

g(t)−
¯
b(k)

b̄(k) −
¯
b(k)

, (46)

i.e. the driver moves forward in the queue at a rate of s1:k−1 +sk:k(g(t)−
¯
b(k))/(b̄(k)−

¯
b(k)) positions

per unit of time. Since s1:k−1 > 0, we know that the driver will reach
¯
b(k) within finite time.

π∗(g(t)) denotes continuation payoff of this driver as a function of time. For a driver at some
position g(t) ∈ (

¯
b(k), b̄(k)] at time t, the probability for the driver to be dispatched a trip she will

accept under σ∗ in the next dt units of time is η(k)dt. If the driver is not dispatched, she moves
forward in the queue to position g(t+ dt) after incurring a cost of cdt. If the driver is dispatched,
she takes a trip with an average net earnings of w̄k:k after incurring a waiting cost in the order of
cO(dt). Therefore, the driver’s continuation payoff as a function of time t can be written as:

π∗(g(t)) = (1− η(k)dt)(π∗(g(t+ dt))− cdt) + η(k)dt(w̄k:k − cO(dt)) (47)

Reorganizing (47), and taking the limit as dt→ 0, we have

dπ∗(g(t))

dt
= c+ η(k) (π∗(g(t))− w̄k:k) = η(k)

(
π∗(g(t))−

(
w̄k:k − c/η(k)

))
, (48)

and this implies

π∗(g(t)) = w̄k:k − c/η(k) + Ceη
(k)t, (49)

where C is some constant. Given that g(0) = b̄(k) and π(b̄(k)) = mini∈L(k){wi}, we have:

π∗(g(0)) = min
i∈L(k)

{wi} = w̄k:k − c/η(k) + C.

Given (13) and (14), the size of the kth bin is:

b̄(k) −
¯
b(k) =

1

c

∑
i∈L(k)

(wi − min
i′∈L(k)

{wi′})µi. (50)

w̄k:k − c/η(k) therefore satisfies

w̄k:k − c/η(k) =

 ∑
i∈L(k)

wiµi − c(b̄(k) −
¯
b(k))

/sk:k = min
i∈L(k)

{wi}.

As a result, C = 0 must hold, meaning that π∗(q) remains constant with respect to t for all t such
that g(t) ≤ b̄(k) and g(t) ≥

¯
b(k). This completes the proof that π∗(q) = w̄k:k−c/η(k) = mini∈L(k){wi}

for all q ∈ (
¯
b(k), b̄(k)].
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This completes the proof of Step 2.1. What we know from this step and Lemma 2 is that for any
driver at some q ∈ [

¯
b(k), b̄(k)], it cannot be a useful deviation from σ∗ to accept any trip in later bins

∪k′>kL(k′) since the driver gets π(q,Q∗, σ∗, σ∗) ≥ mini∈L(k) wi > maxi∈∪k′>kL(k
′) wi from following

strategy σ∗. Moreover, all best-response strategies must have γ(q,Q∗) = 0 for all q ∈ [b̄(k−1), b̄(k)],
because mini∈L(k){wi} ≥ 0 thus leaving the queue and getting zero cannot be a useful deviation.

Step 2.2. We now prove that under any feasible strategy σ = (α, β, γ) such that the driver does
not leave the queue or move to the tail of the queue (i.e. if β(q,Q∗) = γ(q,Q∗) = 0 for all
q ∈ [b̄(k−1), b̄(k)]), for any position q ∈ [b̄(k−1), b̄(k)],

π(q,Q∗, σ, σ∗) ≤ π(q,Q∗, σ∗, σ∗). (51)

First, (51) is straightforward to establish for q ∈ [b̄(k−1),
¯
b(k)), since for a driver who does not

leave or move to the tail of the queue, the driver will wait in line until she reaches position b̄(k−1) in
the queue, and this is aligned with σ∗. Once a driver is at b̄(k−1), the best strategy moving forward
is σ∗ (by induction assumption). As a result, it is impossible to achieve a better continuation payoff
than that under σ∗.

Now consider q ∈ [
¯
b(k), b̄(k)], and there are two cases depending on whether |L(k)| = 1. When

|L(k)| = 1, Lemma 4 implies that b̄(k) =
¯
b(k), thus all trips in ∪k′≥kL(k′) are dispatched to the

driver at position
¯
b(k) in the queue. Under σ∗, a driver at q =

¯
b(k) gets a continuation payoff of

wi where i ∈ L(k) is the only trip in the kth partition, regardless of whether the driver accepts a
trip or moved forward in the queue. An argument very similar to the proof of the induction step
of Lemma 1 shows no alternative strategy may achieve a higher continuation payoff.

What is left to study in the case where |L(k)| > 1 and b̄(k) −
¯
b(k) > 0. Assume towards a

contradiction that there exists some q ∈ (
¯
b(k), b̄(k)] such that π(q,Q∗, σ, σ∗) > π(q,Q∗, σ∗, σ∗) =

mini∈L(k) wi. We introduce the following notation:

• If the driver did not accept any trip dispatches under σ before reaching position
¯
b(k) in the queue,

denote the time it takes for the driver to move from q to
¯
b(k) as κ(q).

• Denote the probability for the driver to be dispatched a trip she is willing to accept under σ
before the driver reaches

¯
b(k) (i.e. within the next κ(q) units of time, given strategy σ) as ξ(κ(q)).

• Conditioning on a driver’s receiving a trip within the κ(q) units of time while following strategy
σ, let ω(κ(q)) be the driver’s expected payoff, which includes both the net earnings from the trip
the driver accepts and the waiting cost the driver incurs.

The driver’s continuation payoff at position q under strategy σ can therefore be written as:

π(q,Q∗, σ, σ∗) =ξ(κ(q))ω(κ(q)) + (1− ξ(κ(q)))
(
π(

¯
b(k), Q∗, σ, σ∗)− cκ(q)

)
. (52)

π(
¯
b(k), Q∗, σ, σ∗) shows up in the second term because if a driver did not accept a dispatch before

time κ(q) had passed (starting from the time of her being at position q), the driver has now reached

¯
b(k). We have just argued that this continuation payoff is bounded by π(

¯
b(k), Q∗, σ, σ∗) ≤ π∗(

¯
b(k)) =

mini∈L(k) wi. When ξ(κ(q)) = 0, π(q,Q∗, σ, σ∗) ≤ mini∈L(k) wi trivially holds. When ξ(κ(q)) > 0,
combining (52) and the assumption that π(q,Q∗, σ, σ∗) > mini∈L(k) wi, we get

ω(κ(q)) > min
i∈L(k)

{wi}+ (1− ξ(κ(q))) · cκ(q)/ξ(κ(q)). (53)

Observe that in the first κ(q) units of time, the driver receives trip dispatches at rates {η(k)
i }i∈L.

Now consider a stationary setting that we analyzed in Lemma 3, where a driver always receives
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trip dispatches at rates {η(k)
i }i∈L.25 If the driver employs strategy σ (restricted to the first κ(q)

units of time starting from position q in the queue) in this stationary setting, the driver’s expected
utility, which we denote as π̂(σ), can be written as:

π̂(σ) =ξ(κ(q))ω(κ(q)) + (1− ξ(κ(q)))(π̂(σ)− cκ(q)).

Intuitively, if the driver gets dispatched in the first κ(q) units of time given strategy σ, she gets
an expected payoff of ω(κ(q)), and this happens with probability ξ(κ(q)). If the driver is not
dispatched in the first κ(q) units of time, the driver’s continuation payoff starting from that point
of time onward is again π̂(σ). Reorganizing this expression, and applying (53), we get:

ξ(κ(q))π̂(σ) =ξ(κ(q))ω(κ(q))− (1− ξ(κ(q)))cκ(q)

>ξ(κ(q)) min
i∈L(k)

{wi}+ (1− ξ(κ(q))) · cκ(q)− (1− ξ(κ(q)))cκ(q)

=ξ(κ(q)) min
i∈L(k)

{wi}.

This implies π̂(σ) > mini∈L(k){wi}, meaning that there exists a strategy for a driver to get a
continuation payoff strictly above mini∈L(k){wi} in the stationary setting where the driver always

receives trip dispatches at rate {η(k)
i }i∈L given by (45). We now prove that this is not possible, and

as a result we have a contradiction.
Given (45) and (50), for a driver who receives trip dispatches at rates {η(k)

i }i∈L, the expected
utility from accepting top j trips (as defined in (25)) for some j ≥ j(k) can be rewritten as:

ρ
(k)
j =

∑
i≤j

wiη
(k)
i − c

/∑
i≤j

η
(k)
i =

 j∑
i=j(k)

wiµi − c(b̄(k) −
¯
b(k))

/ j∑
i=j(k)

µi (54)

=

 j∑
i=j(k)

wiµi −

 ∑
i∈L(k)

(wi − min
i′∈L(k)

{wi′})µi


/ j∑

i=j(k)

µi. (55)

Recall that j(k) and j̄(k) are the lower-index and highest-index trips in L(k), respectively. When

j ≤ j̄(k),

ρ
(k)
j = min

i′∈L(k)
{wi′} −

 j̄(k)∑
i=j+1

(wi − min
i′∈L(k)

{wi′})µi

/ j∑
i=j(k)

µi ≤ min
i′∈L(k)

{wi′}.

When j ≥ j̄(k), we also have:

ρ
(k)
j =

 j∑
i=j(k+1)

wiµi + min
i′∈L(k)

{wi′}
∑
i∈L(k)

µi

/ j∑
i=j(k)

µi ≤ min
i′∈L(k)

{wi′}.

As a result, ρ
(k)
j is optimized at j = j̄(k), taking value mini∈L(k){wi}. Lemma 3 then implies that a

driver in such a stationary setting cannot achieve a utility strictly higher than mini∈L(k){wi}. This
completes the proof of Step 2.2.

25In other words, we allow the driver to remain in the kth bin forever, instead of forcing her to move past
¯
b(k).
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Step 2.3. We now complete the induction step by proving that σ∗ is a best response for drivers at
any position q ∈ [b̄(k−1), b̄(k)] in the queue. We prove this by contradiction. Assume that there exists
a strategy σ such that π(q,Q∗, σ, σ∗) > π∗(q) for some q̂ ∈ [b̄(k−1), b̄(k)]. We show a contradiction
with the following steps.

(i) We first argue that it is without loss of generality to restrict our analysis to strategies such that
the driver does not leave the queue, i.e. σ = (α, β, γ) for which γ(q,Q∗) = 0, ∀q ∈ [b̄(k−1), b̄(k)].
This is because if we have a strategy σ where the driver leaves with a non-zero probability at
some q ∈ [b̄(k−1), b̄(k)], we may construct an alternative strategy where instead of leaving the
queue at q, the driver stays in the queue and follows σ∗ from then on. Step 2.1 implies that this
is an improvement, since the driver gets a continuation payoff of π∗(q) ≥ mini∈L(k){wi} > 0
instead of 0. Thus we get an alternative strategy that improves over σ∗, and also satisfies
γ(q,Q∗) = 0 for all q ∈ [b̄(k−1), b̄(k)]. This contradicts Step 2.2.

(ii) We now prove that the continuation payoff at the tail of the queue under σ must satisfy
π(Q∗, Q∗, σ, σ∗) > mini∈L(k){wi}. First, there must exist some q̃ ∈ [b̄(k−1), b̄(k)] such that
β(q̃, Q∗) > 0. Otherwise, given (i), σ is a strategy such that γ(q,Q∗) = β(q,Q∗) = 0 for
all q ∈ [b̄(k−1), b̄(k)], and we have proved in Step 2.2 that among all such strategies, σ∗ is a
best response. Assuming now towards a contradiction, that π(Q∗, Q∗, σ, σ∗) ≤ mini∈L(k){wi}.
π∗(q) ≥ mini∈L(k){wi} (from Step 2.1) implies that it is a (weak) improvement if instead of
moving to the tail of the queue, the driver remains in the queue and adopts σ∗ from then
on. This, again, is a strategy with γ(q,Q∗) = β(q,Q∗) = 0 for all q ∈ [b̄(k−1), b̄(k)], thereby
contradicting Step 2.2.

(iii) With π(Q∗, Q∗, σ, σ∗) > mini∈L(k){wi}, we claim that

π(b̄(k), Q∗, σ, σ∗) > π(Q∗, Q∗, σ, σ∗) > min
i∈L(k)

{wi}. (56)

First, observe that a driver at the tail of the queue q = Q∗ will not receive any trip with net
earnings weakly above mini∈L(k){wi} until the driver reaches position b̄(k) in the queue. In
the scenarios where the driver is dispatched under σ before reaching b̄(k), the driver’s payoff is
strictly below mini∈L(k){wi}. π(Q∗, Q∗, σ, σ∗) is a weighted average of (I) the payoff the driver
gets from being dispatched before reaching b̄(k), and (II) the continuation payoff after reaching
b̄(k) π(b̄(k), Q∗, σ, σ∗), minus the waiting cost a driver incurs before reaching b̄(k). Therefore,
we must have π(b̄(k), Q∗, σ, σ∗) > π(Q∗, Q∗, σ, σ∗) in order for π(Q∗, Q∗, σ, σ∗) > mini∈L(k){wi}
to hold.

(iv) It is without loss of generality to assume that there exists q̃ ∈ [b̄(k−1), b̄(k)] such that β(q̃, Q∗) =
1, i.e. the driver always moves back to the tail of the queue at q̃. First, observe that
π(q̃, Q∗, σ, σ∗) ≤ π(Q∗, Q∗, σ, σ∗) must hold for some q̃ ∈ [b̄(k−1), b̄(k)]— otherwise, reducing
β(q,Q∗) to zero for all q ∈ [b̄(k−1), b̄(k)] is a weak improvement, again contradicting Step 2.2.
Now, increasing β(q̃, Q∗) to 1 for one such q̃ ∈ [b̄(k−1), b̄(k)] will be a weak improvement over
σ, thus in this way, we’ve constructed a strategy that achieves a better continuation payoff
than σ∗ at some point, with q̃ ∈ [b̄(k−1), b̄(k)] for some β(q̃, Q∗) = 1.

(v) Now consider an alternative setting, where the driver follow strategy σ, except that the driver
always moves back to b̄(k) instead of the tail of the queue, whenever the driver is prescribed
to move to the tail of the queue under σ.26 Denote this new strategy as σ′. (56) implies that

26This is not allowed under randomized FIFO— we construct this scenario for the purpose of this proof only.
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this will be an improvement, such that the continuation payoff under this new setting, which
we denote as π̂, must also satisfy π̂(b̄(k), Q∗, σ′, σ∗) > mini∈L(k){wi}.
This is, however, not possible. Observe that in this alternative setting, under σ′, the driver at
b̄(k) will either accept a trip and leave the queue before reaching q̃ ∈ [b̄(k−1),

¯
b(k)], or move back

to b̄(k) before reaching q̃ or at q̃. As a result, the driver will either be receiving trip dispatches

at rates {η(k)
i }i∈L defined in (45) (when the driver is at some position in [

¯
b(k), b̄(k)]), or not

receive any trip dispatches at all (when the driver is in [b̄(k−1),
¯
b(k))). The driver’s payoff is

therefore upper bounded by the scenario where she is in a stationary setting, always receiving

trip dispatches at rates {η(k)
i }i∈L, but we have proved in Step 2.2 that the highest achievable

expected payoff in this setting is mini∈L(k){wi}.
This is a contradiction, and concludes the proof of the induction step, that σ∗ is a best
response for a driver at any position [b̄(k−1), b̄(k)] in the queue.

Step 3: The last bin k = m and beyond. Given Steps 1 and 2, we know that σ∗ is a best response
for a driver at any position q ≤ b̄(m−1) in the queue. What is left to prove that σ∗ is also a best
response for any driver at q ∈ (b̄(m−1), Q∗] in the queue.

First, with the same arguments as in Step 2.1, we can show that

π(q,Q∗, σ∗, σ∗) = min
i∈L(m−1)

{wi} − c(q − b̄(m−1))/s1:m−1, if q ∈ [b̄(m−1),
¯
b(m)], (57)

and that

π(
¯
b(m), Q∗, σ∗, σ∗) = π(b̄(m), Q∗, σ∗, σ∗) = min

i∈L(m)
{wi} = wi∗ . (58)

In the case where |L(m)| = 1, i.e. when L(m) = {i∗}, Lemma 4 implies that b̄(m) =
¯
b(m) = ni∗ .

Under σ∗, all trips to locations j < i∗ are accepted by drivers in the top m − 1 bins, and all
trips to locations j ≥ i∗ are dispatched (for the last time) to drivers at position ni∗ in the queue,
where drivers accept only trips to location i∗. The equilibrium queue length is Q∗ = ni∗ when
λ ≤

∑
i∈L µi. When λ >

∑
i∈L µi, the equilibrium queue length is Q∗ = Q̄, and π∗(q) decreases

linearly in q when q ≥ ni∗ = n`, with π∗(Q̄) = 0 at the tail of the queue. Using the same arguments
as those in the proof of Lemma 1, we can show that when the length of the queue is Q∗ and when
the rest of the drivers adopt σ∗, it is also a best response for a driver at any q ∈ [b̄(m−1), Q∗] to
adopt σ∗. We do not repeat the same reasoning here.

What is left to analyze is the case where |L(m)| > 1, in which case b̄(m) −
¯
b(m) > 0. When all

drivers adopt strategy σ∗, for any driver in the last bin [
¯
b(m), b̄(m)], the rates at which the driver

receives trip dispatches to each location are given by

η
(m)
i =

{
0, if i ∈ ∪m−1

k′=1L
(k′),

µi/(b̄
(m) −

¯
b(m)), if i ∈ L(m).

(59)

Applying Lemma 3 in the same way as we did in Step 2.2 above, we can show that for a driver in

a stationary setting, where the driver always receives trips to all locations at rates {η(m)
i }i∈L, the

highest expected payoff a driver may get is mini∈L(m){wi} = wi∗ .

We prove that under σ∗, π∗(q) = wi∗ holds for all q ∈ [
¯
b(m), b̄(m)]. Denote µ̃i∗ , min{µi∗ , λ −∑

j<i∗ µj}. Under σ∗, a driver in the last bin accepts trip dispatches to location i∗ with probability
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µ̃i∗/µi∗ (see (35)). As a result, for a driver at position q ∈ [
¯
b(m), b̄(m)] in the queue, under σ∗, the

total rate at which the driver receives and accepts trip dispatches is

η̃(m) ,
∑

i∈L(m), i<i∗

η
(m)
i + µ̃i∗/(b̄

(m) −
¯
b(m)).

Consider now a driver who is at position b̄(m) at time t = 0, and denote the driver’s position
as a function of time t as g(t). The same argument as in the proof of Step 2.1 implies that for all
t such that g(t) ∈ [

¯
b(m), b̄(m)] the derivative of the continuation payoff π∗(g(t)) with respect to t is

of the form:

dπ∗(g(t))

dt
=η̃(m)

π∗(g(t))−

 ∑
i∈L(m),i<i∗

wiµi + wi∗ µ̃i∗

/ ∑
i∈L(m),i<i∗

µi + µ̃i∗

− c/η̃(k)

 .

It is straightforward to verify that ∑
i∈L(m),i<i∗

wiµi + wi∗ µ̃i∗

/ ∑
i∈L(m),i<i∗

µi + µ̃i∗

− c/η̃(m)

 = wi∗ , (60)

thus solving dπ∗(g(t))
dq = η̃(m) (π∗(g(t))− wi∗) with boundary condition π∗(g(t)) = wi∗ , we know that

π∗(g(t)) = wi∗ holds for all t such that g(t) ∈ [
¯
b(m), b̄(m)].

Regarding the tail of the queue: in the under-supplied scenario where λ ≤
∑

i∈L µi, the equi-

librium queue length is Q∗ = b̄(m) = ni∗ , thus there is no more driver in the queue beyond b̄(m). In
the over-supplied scenario with λ >

∑
i∈L µi, i

∗ = ` and b̄(m) = n`, and we have:

π∗(q) = w` − c(q − n`)
/∑

i∈L
µi, ∀q ∈ [n`, Q̄]. (61)

Assume that the queue length is Q∗ and the rest of the drivers adopt strategy σ∗. To prove that
σ∗ is a best-response for drivers in [b̄(m−1), b̄(m)] i.e. π∗(q) ≥ π(q,Q∗, σ, σ∗) for all q ∈ [b̄(m−1), b̄(m)]
and any feasible strategies σ, we use arguments very similar to those in Steps 2.2 and 2.3, and
therefore do not repeat the details here. Intuitively, if σ∗ is not a best response, we are able to
construct a strategy under which a driver gets a payoff strictly higher than mini∈L(m){wi} = wi∗ in

the stationary setting where the river always receives trips to all locations at rates {η(m)
i }i∈L. This

is not possible, as we have discussed above.
This establishes that the highest continuation payoff a driver at q = b̄(m) may get under any

strategy is π∗(b̄(m)). To show that σ∗ is also a best response for any driver at q ∈ [b̄(m), Q̄] in the
setting with λ >

∑
i∈L µi, the same arguments used in the proof of Lemma 1 applies, thus we again

refer the readers to Appendix A.1.

This completes the proof for Case 2, m > 1, and establishes that when the length of the queue is
Q∗, strategy σ∗ forms a Nash equilibrium in steady state among the drivers. As we have discussed
earlier, this equilibrium outcome is optimal for trip throughput and the platform’s net revenue,
since it has the same queue length and completes the same set of trips as the equilibrium outcome
under direct FIFO (which is optimal - see Theorem 2). Combining the three steps of Case 2, we
also see that the continuation payoff π∗(q) is non-negative and monotonically non-increasing in q.
As a result, the equilibrium outcome of Case 2 is also individually rational and envy-free.

This completes the proof of this theorem.
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B Equilibrium Outcome Under Various Mechanisms

In this section, we derive the steady state equilibrium outcome under various benchmarks and
mechanisms that we discussed in this paper. For each mechanism, (the first best, strict FIFO, direct
FIFO, random dispatching, and randomized FIFO), we compute the equilibrium trip throughput,
net revenue, average driver payoff, length of the queue, the minimum and maximum waiting times
in the queue, and the variance in drivers’ total payoffs.

Recall that i∗ as defined in (1) is the lowest earning trip that is (partially) completed under
the first best outcome, and that µ̃i∗ , min{µi∗ , λ−

∑i∗−1
i=1 µj} denotes the amount of type i∗ jobs

fulfilled per unit of time in steady state. Moreover, for any i ∈ L, τi,i+1 denotes the amount of
time a driver is willing to wait for a trip to location i, assuming that the driver has the option to
immediately accept a trip to location i+ 1: τi,i+1 = (wi − wi+1)/c.

B.1 The First Best

We first derive the steady state first best outcome as discussed in Section 2, which dispatches
available drivers (upon arrival) to destinations in decreasing order of wi, until either all drivers are
dispatched, or all riders are picked up.

• Trip throughput: TFB = min{λ,
∑

i∈L µi}.

• Net revenue: RFB =
∑i∗−1

i=1 wiµi + wi∗ µ̃i∗ .

• The average payoff of each driver who arrived at the queue: uFB = RFB/λ, since no driver incurs
any waiting cost, and RFB is equal to the total payoff achieved by all drivers per unit of time.

• The first best outcome maintains an empty driver queue, therefore the queue length, the minimum
and maximum waiting time of any driver, and the average driver waiting time are all zero.

• Since drivers are either dispatched a random trip or asked to leave the queue without waiting
any time in the queue, the variance in drivers’ payoffs can be computed as follows:

- When the platform is under-supplied, i.e. λ ≤
∑

i∈L µi, every driver gets dispatched a trip
to some location i ≤ i∗. The variance in drivers’ payoffs is therefore the variance of the net
earnings of the completed trips:

Var (UFB) =
1

λ

(
i∗−1∑
i=1

µi(wi − uFB)2 + µ̃i∗(wi∗ − uFB)2

)
.

- When the platform is over-supplied, there are µj drivers per unit of time each getting a payoff
of wj , and the rest of the drivers all get zero since they leave the airport a rider trip. Therefore,

Var (UFB) =
1

λ

(∑
i∈L

µi(wi − uFB)2 + (λ−
∑
i∈L

µi)(0− uFB)2

)
.

B.2 Equilibrium Outcome under Direct FIFO

As we have proved in the paper, the direct FIFO mechanism has the same trip throughput as the
first best throughput, and zero variance in drivers’ earnings. Moreover:
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• As we have shown in Theorem 2, the steady state equilibrium queue length is Q∗direct = Q̄ if
λ >

∑
i∈L µi, and Q∗direct = ni∗ , otherwise.

• Net revenue:

- When λ >
∑

i∈L µi, all trips are completed, thus Rdirect =
∑

i∈L µiwi −Q∗directcp.

- When λ ≤
∑

i∈L µi, we have Rdirect =
∑i∗−1

i=1 µiwi + µ̃i∗wi∗ −Q∗directcp.

• The average driver payoff in equilibrium is u∗direct = 0 if λ >
∑

i∈L µi, and u∗direct = wi∗ otherwise.

• Regarding the maximum, minimum, and average waiting times in queue:

- When λ ≤
∑

i∈L µi, the minimum waiting time for a trip (in this case, a trip to location
i∗) would be zero. The maximum waiting time (which would be for a trip to location 1) is∑i∗−1

i=1 τi,i+1 = (w1−w− i∗)/c. The average waiting time for a driver who arrived at the queue
is Q∗direct/λ, and the average waiting time for a driver who joined the queue is the same.

- When the queue is λ >
∑

i∈L µi, the minimum amount of time the driver needs to wait in the
queue for a trip (which would be for a trip to location `) is w`/c. The maximum waiting time
is w1/c. The average waiting time for a driver who arrived at the airport is Q∗direct/λ, and the
average waiting time for a driver who joined the queue Q∗direct/

∑
i∈L µi.

B.3 Equilibrium Outcome under Strict FIFO Dispatching

Under strict FIFO, when P ≥ ni∗ , all trips that are completed under direct FIFO will be able
to reach a driver who is willing to accept them under strict FIFO. As a result, the equilibrium
outcome will be identical to that under direct FIFO.

When P < ni∗ , some trips that are completed under direct FIFO will not be completed under
strict FIFO, thus there exists excess drivers who need to leave the queue without a rider trip. Let
i∗(P ) be the lowest earning trip with ni ≤ P , the equilibrium outcome is as follows:

• Trip throughput: Tstrict =
∑i∗(P )

i=1 µi.

• The average payoff of drivers is thereby also u∗strict = 0, since drivers will join the queue until
when they are indifferent between joining the queue and leaving without a rider.

• Drivers will be willing to wait wi∗(P )/c units of time for a trip to location i∗(P ), thus the total

length of the queue would be Q∗strict = ni∗(P ) + Tstrictwi∗(P )/c, which is equal to
∑i∗(P )

i=1 µiwi/c.

• Net revenue: Rstrict =
∑i∗(P )

i=1 µiwi −Q∗strictcp.

• wi∗(P )/c is the minimum amount of time a driver has to wait for any trip, and the maximum
waiting time (which would be for a trip to location 1) is w1/c.

• On average, the total amount of time spent by all drivers on waiting is Q∗ units of time, per
unit of time. Therefore, the average waiting time for a driver who joined the virtual queue is
Q∗/Tstrict, and the average waiting time for a driver who arrived at the origin is Q∗/λ.

• Every driver gets a zero net payoff, thus the variance in drivers’ earnings is also zero.
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B.4 Equilibrium Outcome under Random Dispatching

As we have proved in Proposition 2, random dispatching achieves the same equilibrium trip through-
put, net revenue, and queue length as those under the direct FIFO mechanism. As a result, drivers
also have the same average payoff and average waiting time. Given the fact that dispatching is
random, theoretically drivers might not have to wait any time for a trip dispatch, and there is also
no upper bound on a driver’s waiting time in the queue.

What is left to compute is the variance in drivers’ total payoff. We discuss the over-supplied
and the under-supplied settings separately.

Over-supplied. With λ >
∑

i∈L µi, the average net earnings from a completed trip is w̄ ,∑
i∈Lwiµi

/∑
i∈L µi. The average waiting time of a driver who joined the queue is w̄/c, since in

equilibrium drivers are indifferent towards whether to join the queue.
Note that (i) a driver’s waiting time in the queue is independent to the driver’s net earnings

from the trip she accepts, and (ii) whether a driver gets dispatched in memoryless, thus a driver’s
waiting time is exponentially distributed, with mean w̄/c. The variance in drivers’ waiting times
is therefore (w̄/c)2, thus the variance in drivers waiting costs is w̄2.

In steady state,
∑

i∈L µi drivers join the queue per unit of time. The rest of the drivers do not
join the queue thus get 0, which is equal to the average payoff of all drivers. The total variance in
the payoff of a driver who arrived at the airport is therefore:(

w̄2 +
∑
i∈L

(wi − w̄)2µi

/∑
i∈L

µi

)∑
i∈L

µi/λ.

Under-supplied. Consider now the case when the queue is not over-supplied, and the lowest-
earning trips that’s completed is i∗. In equilibrium, µ̃i∗ units of trips to location i∗ are completed
in each unit of time. The average net earnings of the trip completed by each driver

w̄ =

(
i∗∑
i=1

wiµi + µ̃i∗wi∗

)/
λ,

and the variance in drivers’ net earnings from trips is(
i∗−1∑
i=1

(wi − w̄)2µi + (wi∗ − wi∗)2µ̃i∗

)/
λ.

The average waiting time for a driver is Q∗/T = (w̄ − wi∗)/c, and the distribution of waiting
times is exponential. Therefore, the variance in drivers waiting costs is (cQ∗/T )2 = (w̄−wi∗)2, and
the total variance in drivers’ payoff is:

(w̄ − wi∗)2 +

i∗−1∑
i=1

(wi − w̄)2µi

/
λ.

B.5 Equilibrium Outcome under Randomized FIFO

As we have proved in Theorem 3, the randomized FIFO mechanisms achieve the same equilibrium
trip throughput, net revenue, and queue length as those under the direct FIFO mechanism. As
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a result, drivers also have the same average payoff and average waiting time in the queue. With
randomization in dispatching, it is generally possible for drivers to wait zero or infinite units of
time for a dispatch, although there exist special cases where the minimum and maximum waiting
times in the queue are non-zero or finite.

We now derive the minimum and maximum waiting times, and the variance in drivers’ payoffs.
We discuss the same set of cases as analyzed in the proof of Theorem 3 in Appendix A.4.

Case 1.1: m = i∗ = 1. As we have proved in Appendix A.4, the outcome under randomized
FIFO in this case is identical to that under the direct FIFO mechanism.

Case 1.2: i∗ > 1, m = P = 1. As we’ve discussed in Appendix A.4, the outcome under
randomized FIFO in this case will be identical to that under random dispatching, when the queue
is not over supplied, i.e. when λ ≤

∑
i∈L µi.

What is left to discuss in the over-supplied case with λ >
∑

i∈L µi. In this case, every trip is
randomly dispatched to drivers at positions [0, n`] in the queue, and no driver declines any dispatches
in equilibrium. With this randomization, the maximum waiting time for a driver in the queue can
be infinite, but the minimum time a driver has to wait for a trip would be (Q̄−n`)/

∑
i∈L µi = w`/c,

since a driver does not receive any dispatch until she has moved from the tail of the queue Q∗ = Q̄
to position n` in the queue.

For a driver who joined the queue, the variance in her earnings from the trip she completes is∑
i∈L(wi − w̄)2µi

/∑
i∈L µi, where w̄ =

∑
i∈Lwiµi

/∑
i∈L µi is the average net earnings from a

rider trip. Once a driver had reached n` in the queue, the additional time she has to wait for a trip
is exponentially distributed with mean (w̄ − w`)/c. As a result, for a driver who joined the queue,
the variance in her waiting cost is (w̄ −w`)2, and the overall variance of all drivers who arrived at
the queue is: (

(w̄ − w`)2 +
∑
i∈L

(wi − w̄)2µi

/∑
i∈L

µi

)∑
i∈L

µi/λ.

Case 2: m > 1. We now consider the case where there are multiple bins under randomized FIFO.
No driver receives any dispatch until the driver reaches b̄(m). Since b̄(m) = ni∗ , the minimum

amount of time any driver has to wait for a trip is equal to (Q∗rand − ni∗)/Trand, which is equal to
0 if the queue is not over-supplied, and is equal to (Q̄ − n`)/

∑
i∈L µi otherwise. What is left to

compute is drivers’ maximum waiting time in queue, and the variance in drivers’ total payoffs.

Recall that U∗ = U(Q∗, Q∗, σ∗, σ∗) is the random variable representing the payoff of all drivers
who arrived at the queue, and that u∗ , E [U∗] = π∗(Q∗). From Theorem 3, the average payoff of
all drivers who arrived at the queue is the same as that under direct FIFO, i.e. u∗ = wi∗ when the
queue is not oversupplied, and u∗ = 0, otherwise.

Let U (k) represent the (equilibrium, steady state) total payoff of a driver who is dispatched from
the kth bin, and let U (0) = 0 denote the payoff of drivers who did not join the queue (if any). We
know that

• U∗ takes value U (0) with probably ψ(0) , max{λ−
∑

i∈L µi, 0}/λ.

• U∗ takes value U (k) with probability ψ(k) , sk:k/λ =
∑

i∈L(k) µi/λ for each k = 1, . . . ,m−1, and

• U∗ takes value U (m) with probability ψ(m) , min{λ− s1:m−1, sm:m}/λ.
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The overall variance in drivers’ total payoff Var (U∗) can be written as:

E
[
(U∗ − u∗)2

]
=

m∑
k=0

ψ(k)E
[(
U (k) − u∗

)2
]

=
m∑
k=0

ψ(k)

(
Var

(
U (k)

)
+
(
E
[
U (k)

]
− u∗

)2
)
.

E
[
U (0)

]
= Var

(
U (0)

)
= 0. We now compute E

[
U (k)

]
and Var

(
U (k)

)
for each k ≥ 1.

The last bin: k = m. When |L(m)| = 1, L(m) = {i∗} and
¯
b(m) = b̄(m) = ni∗ . In this case, there

is no variance in the payoffs of all drivers who are dispatched from the last bin: Var
(
U (m)

)
= 0.

Moreover, drivers dispatched from the last bin gets the average payoff of all drivers: E
[
U (m)

]
= u∗.

Now consider the setting where |L(m)| > 1. Recall that µ̃i∗ , min{µi∗ , λ −
∑

j<i∗ µj} is the
unit of location i∗ trip completed per unit of time in steady state. The rate at which drivers are
dispatched from the last bin is:

s̃m:m ,
∑

i∈L(m), i<i∗

µi + µ̃i∗

and the average net earnings from a trip accepted by a driver dispatched from the last bin is:

w̄(m) ,

 ∑
i∈L(m), i<i∗

wiµi + wi∗ µ̃i∗

/s̃m:m.

U (m) is equal to the earning from the trip the driver (who is dispatched from the last bin)
completes, minus the total waiting costs the driver incurred. The expected net earnings from trip
is w̄(m). For the expected waiting cost, note that once a driver reached b̄(m), the driver’s additional
waiting time for a dispatch should be exponentially distributed, truncated at the time the driver
reaches

¯
b(m). The parameter of this exponential distribution is η̃(m) , s̃m:m/(b̄

(m) −
¯
b(m)), and

by the time the driver reaches
¯
b(m), s̃m:m out of the Trand = min{λ,

∑
i∈L µi} drivers who reached

position b̄(m) in the queue are dispatched. Denote

ζ(m) , s̃m:m/Trand

as the fraction of drivers who are dispatched in the last bin (out of all of the drivers who joined the
queue), and denote ∆(m) as the time it takes for a driver to move from b̄(m) to

¯
b(m) in the queue if

the driver is not dispatched before reaching
¯
b(m), we know:

1− e−∆(m)η̃(m)
= ζ(m) ⇒ ∆(m) = − log(1− ζ(m))/η̃(m). (62)

Denote ν(m) , ∆(m) +(Q∗− b̄(m))/Trand, we know that ν(m) is the time it takes for a driver to move
from the tail of the queue to the lower bound of the last bin

¯
b(m), if the driver is not dispatched

before reaching
¯
b(m).

For a trip for a driver who is dispatched from the last bin, the average waiting time the driver
spends in the last bin is therefore:∫ ∆(m)

0
t · η̃(m)e−η̃

(m)tdt =
1

η̃(m)
(1 + (1/ζ(m) − 1) log((1− ζ(m))). (63)

Let κ(m) be the random variable representing the total waiting time of a driver who is dispatched
from the last bin, we know that

E
[
κ(m)

]
= (Q∗ − b̄(m))/Trand +

1

η̃(m)
(1 + (1/ζ(m) − 1) log((1− ζ(m))),
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and with this we can compute E
[
U (m)

]
= w̄(m) − cE

[
κ(m)

]
.

What is left to compute is Var
(
U (m)

)
. For a driver who is dispatched from the last bin, the

earning from the trip the driver receives is independent to the time at which the driver receives the
trip. As a result, the variance Var

(
U (m)

)
should be the sum of the variance in trip earnings and

the variance in the waiting costs. The former is equal to: ∑
i∈L(m), i<i∗

(wi − w̄(m))2µi + (wi∗ − w̄(m))µ̃i∗

/s̃m:m,

and the latter is of the form:

c2

∫ ∆(m)

0

(
t− 1

η̃(m)
(1 + (1/ζ(m) − 1) log((1− ζ(m)))

)2

η̃(m)e−η̃
(m)tdt

=

(
c

η̃(m)ζ(m)

)2(
(ζ(m))2 + (−1 + ζ(m))

(
log(1− ζ(m))

)2
)
.

A middle bin. Now consider each k = m − 1,m − 2, . . . , 2. When |L(k)| = 1, there is no variance
in the payoffs of drivers who are dispatched from the kth bin: Var

(
U (k)

)
= 0. It takes the driver

a total of ν(k+1) + (
¯
b(k+1) − b̄(k))/s1:k units of time to move from the tail of the queue to b̄(k), and

once the driver gets to b̄(k), the driver receives w̄k:k, which is equal to the net earnings from the
only trip in L(k). Therefore, E

[
U (k)

]
= w̄k:k − c

(
ν(k+1) + (

¯
b(k+1) − b̄(k))/s1:k

)
.

For the case where |L(k)| > 1, recall that η(k) , sk:k/(b̄
(k) −

¯
b(k)), and denote:

ζ(k) , sk:k/s1:k.

With the same argument as those for the last bin, the time it takes a driver to move from b̄(k) to

¯
b(k) (if the driver is not dispatched before reaching

¯
b(k)) is

∆(k) , − log(1− ζ(k))/η(k).

This implies that the total waiting time for a driver to reach
¯
b(k) (if the driver is not dispatched

before then) is ν(k) , ν(k+1) + (
¯
b(k+1) − b̄(k))/s1:k + ∆(k).

The expected time a driver waits in the kth bin, if the driver is dispatched from the kth bin, is
of the form: ∫ ∆(k)

0
t · η(k)e−η

(k)tdt =
1

η(k)
(1 + (1/ζ(k) − 1) log((1− ζ(k))).

thus the expected payoff of a driver who is dispatched in the kth bin is:

E
[
U (k)

]
= w̄k:k − c

(
ν(k+1) + (

¯
b(k+1) − b̄(k))/s1:k +

1

η(k)
(1 + (1/ζ(k) − 1) log((1− ζ(k)))

)
.

The variance Var
(
U (k)

)
is similarly consisted of two parts. The variance from the net earnings

from a trip a driver accepts in the kth bin is∑
i∈L(k)

(wi − w̄(k))2µi/sk:k,
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and the variance of drivers’ waiting costs is:

c2

∫ ∆(k)

0

(
t− 1

η(k)
(1 + (1/ζ(k) − 1) log((1− ζ(k)))

)2

η(k)e−η
(k)tdt

=

(
c

η(k)ζ(k)

)2(
(ζ(k))2 + (−1 + ζ(k))

(
log(1− ζ(k))

)2
)
.

The first bin. When |L(1)| = 1, Var
(
U (1)

)
= 0. The total waiting time for a driver to reach

b̄(1) = 0 is ν(2) +
¯
b(2)/µ1, thus the expected payoff of a driver dispatched from the first bin is

E
[
U (1)

]
= w1−c

(
ν(2) +

¯
b(2)/µ1

)
. Moreover, in this case, the maximum waiting time for any driver

who have joined the queue is ν(2) +
¯
b(2)/µ1.

When |L(1)| > 1, the waiting time a driver may spend waiting in the queue is unbounded.
Once a driver reached b̄(1), the driver’s waiting time for a trip is exponentially distributed with
parameter η(1) , s1:1/(b̄

(1) −
¯
b(1)). The expected waiting time in the first bin is 1/η(1), thus the

expected payoff of a driver who is dispatched from the first bin is

E
[
U (1)

]
= w̄1:1 − c

(
1/η(1) + ν(2) + (

¯
b(2) − b̄(1))/s1:1

)
,

and Var
(
U (1)

)
, the variance of the earnings of a driver who is dispatched from the first bin is:

Var
(
U (1)

)
=
∑
i∈L(1)

(wi − w̄1:1)2µi/s1:1 + (c/η(1))2.

C Additional Discussion and Examples

C.1 Net Earnings from Prices and Distances

For each location i ∈ L, the net earnings wi from a trip to location i represents the total payoff of
a driver who completed a trip to location i, minus the total payoff to a driver who left the queue
without a rider (in this way, the net earnings of a driver who left the queue without a rider is
normalized to be zero). The net earnings incorporate payments from the immediate trip, as well as
drivers’ continuation earnings after arriving at different destinations (which are affected by market
conditions at the destinations).

Assuming that drivers get the same continuation earnings from every destination onward, we
now illustrate how net earnings of trips can be derived from the prices and distances of trips to
different destinations. For each destination i ∈ L, let δi > 0 denote the amount of time (e.g.
minutes) it takes for a driver to complete a trip to destination i, which includes time it takes for
a driver to pick up the rider. pi > 0 denotes the effective earnings rate from a trip to location
i ∈ L, meaning that the total payment to a driver for a trip to location i is piδi. The earnings rates
are induced by the time and distance rates the platform pays the drivers, and may vary across
destinations due to differences in trip lengths and traffic conditions, etc. For drivers who decides
to relocate without a rider and drive elsewhere, δ > 0 is the minimum relocation distance, i.e. the
amount of time a driver needs to spend driving from the airport in order to start making an average
earnings rate of c.

A driver who accepts a trip from the virtual queue to some location i ∈ L will make pi per unit
of time for δi periods, followed by making c per period after arriving at location i. A driver who
relocates back to the city without a rider makes 0 for the first δ periods, and then starts to earn c
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time
A trip to location i

δi periods

pi per period c per period

time
Relocation w/o a rider

δ periods

0 per period c per period

Figure 10: The timeline of a trip to location i (above) and relocation without a rider (below).

per period. See Figure 10. The additional earnings from a trip to location i, relative to that from
relocating without a rider (and then driving in the city), is the net earnings from this trip. For
each location i ∈ L, the net earnings wi is of the form:

wi = δipi − (δ · 0 + (δi − δ)c) = δi(pi − c) + δc. (64)

C.2 Additional Examples

Example 3 shows that a randomized FIFO mechanism may not achieve the second best outcome,
if some trips with lower earnings than wi∗ are included in the ordered partition of destinations.

Example 3 (Last bin w/ trips to location i ≥ i∗). Consider an economy with three destinations,
where µ1 = 1, w1 = 100, µ2 = 2, w2 = 40, and µ3 = 5, w3 = 10. The arrival rate of drivers is
λ = 2, and that the opportunity cost for drivers’ time is c = 1. Under the first best outcome, one
unit of trips to location 1 and one unit of trips to location 2 are completed per unit of time. With
i∗ = 2, the average net payoff of drivers under the second best outcome would be wi∗ = w2 = 40,
and the equilibrium, steady state queue length is Q∗ = ni∗ = µ1(w1 − w2)/c = 60.

Assume that riders have a patience level of P = 2. The appropriate construction of randomized
FIFO corresponds to the ordered partition L(1) = {1} and L(2) = {2}. Now consider a randomized
FIFO mechanism associated with the ordered partition L(1) = {1} and L(2) = {2, 3}. Constructing
the bins according to (13) and (14), we have

¯
b(1) = b̄(1) = 0 and

¯
b(2) =

1

c
µ1(w1 − w3) = 90.

Note that
¯
b(2) is higher than the equilibrium queue length Q∗ under the second best outcome. We

now show that the randomized FIFO mechanism constructed in this way will not achieve the second
best as long as cp > 0. For a driver in the first bin, i.e. at the head of the queue, the driver is only
willing to accept a trip to location 1. When the queue is shorter than

¯
b(2), trips to location 2 or 3

will not be dispatched again by the randomized FIFO mechanism after being rejected by the driver
at the head of the queue, thus all but location 1 trips become unfulfilled. But when the queue is
longer than

¯
b(2), we will not be achieving our second best outcome either, since the total waiting

costs incurred by the drivers will be higher than that under the second best outcome, even when
we are completing the same set of trips.
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Figure 11: Total number of trips per day from the Chicago O’Hare International Airport.

D Additional Simulations

We include in this section descriptions of the dataset made public by the City of Chicago, additional
simulation results for O’Hare that are omitted from Section 5 of the paper, as well as simulation
results for the Chicago Midway International airport.

D.1 Chicago O’Hare International Airport

D.1.1 Trip Volume by Day and Hour-of-Week

We first provide the volume of trips originating from Chicago O’Hare, and the average duration
and earning rates by destination. Figure 11 shows the number of trips that originate from the
O’Hare airport on each day, from November 1, 2018 to mid March, 2020. We can see strong weekly
patterns, seasonality patterns (e.g. low trip volume during Christmas through New Year), and also
the sharp decline in trip volume after the onset of the COVID-19 pandemic.

The average number of trips originating from O’Hare during each hour-of-week is as shown in
Figure 12. Here, the 0th hour-of-week corresponds to midnight - 1am on Mondays, and the 1st

hour-of-week corresponds to 1am - 2am on Mondays, and so on. We can see that the number of
trips originating from the airport peaks during early evenings, averaging around 12 trips per minute
during the weekdays, and reaches a maximum of over 15 trips per minute on Thursday. Note that
these are completed trips, thus the rider request rates are strictly higher.

Figure 13 illustrates the average duration and the average earning rates (trip fare divided by
trip duration) for trips ending in each census tract. We can see that longer trips take more time
on average, and trips ending closer to major highways have better earnings rates.

D.1.2 Counterfactual Simulations

We now provide additional results for O’Hare that are omitted from the body of the paper.

Varying Driver Supply As the arrival rate of driver varies, Figure 14 presents the minimum
and maximum waiting times for drivers who joined the queue in equilibrium in steady state. For
strict FIFO, and direct FIFO, the minimum waiting time is the time a driver needs to wait in the
queue for the lowest earning trip that is completed in equilibrium. Under randomized FIFO, the
minimum waiting time is the time it takes for a driver to move from the tail of the queue to the last
bin (i.e. position

¯
b(m) in the queue). When the queue is not over-supplied, the minimum waiting
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Figure 12: Average number of trips from the O’Hare International Airport, by hour-of-week. The
gray stripes indicate the morning rush hours (7am - 9am) and the green stripes indicate the evening
rush hours (5pm - 7pm).

(a) Average trip duration. (b) Average fare per minute.

Figure 13: Average trip duration (in minutes) and the average fare per minute by destination
Census Tract in Chicago, for trips originating from the Chicago O’Hare International Airport.

times under direct FIFO and randomized FIFO are both zero. Under strict FIFO and direct FIFO,
the maximum waiting time is the time a driver needs to wait in the queue for a trip to location 1,
the highest earning trip. Under random dispatching or randomized FIFO with |L(1)| > 1, there is
no upper bound on how long a driver may need to wait in the queue.

Varying Rider Patience Figure 15 presents the minimum and maximum waiting times for
drivers who joined the queue as we vary the patience level of riders. Under strict FIFO, the
minimum waiting time decreases very slowly as riders’ patience level increases, despite the fact
that the minimum waiting time for a trip under every other mechanism is zero.

D.2 Chicago Midway International Airport

In this section, we present simulation results for the Chicago Midway International airport. Fig-
ures 16 and 17 plot the daily number of trips originating from Midway and the average number of
of trips by hour-of-week. The weekly and seasonality patterns are similar to what we observed for
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(a) Minimum waiting time.
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(b) Maximum waiting time.

Figure 14: The minimum and maximum waiting time for drivers who join the queue, in equilibrium
in steady state, as the arrival rate of drivers varies. Chicago O’Hare.
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(a) Minimum waiting time.
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(b) Maximum waiting time.

Figure 15: The minimum and maximum waiting time for drivers who join the queue, in equilibrium
in steady state, as the patience level of the riders varies. Chicago O’Hare.

Figure 16: Total number of trips per day from the Chicago Midway International Airport.

O’Hare. Figure 18 shows the total trip count by destination census tract, and the estimated net
earnings by destination assuming that drivers’ opportunity cost is c = 1/3 per minute.
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Figure 17: Average number of trips from the Midway International Airport, by hour-of-week.

(a) Trip count by destination. (b) Net earnings by destination.

Figure 18: Trip volume and net earnings (assuming c = 1/3) by destination Census Tract in
Chicago, for trips originating from the Chicago Midway International Airport.
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(a) Net revenue.
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(b) Trip throughput.
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(c) Equilibrium queue length.

Figure 19: Equilibrium net revenue, trip throughput, and length of the queue in steady state, as
the arrival rate of drivers varies. Chicago Midway.
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(a) Average waiting time.
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(b) Average driver payoff.
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(c) SD of driver payoffs.

Figure 20: Drivers’ average waiting times, total payoff, and the standard deviation (SD) in drivers’
total payoff in equilibrium in steady state, as the arrival rate of drivers varies. Chicago Midway.
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(a) Minimum waiting time.
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(b) Maximum waiting time.

Figure 21: The minimum and maximum waiting time for drivers who join the queue, in equilibrium
in steady state, as the arrival rate of drivers varies. Chicago Midway.

Varying Driver Supply We now compare the equilibrium, steady state outcome under various
mechanisms and benchmarks, as we vary the arrival rate of drivers from 0 to 6 drivers per minute.
We fix the total arrival rate of riders at

∑
i∈L µi = 5, and the rider patience level at P = 12.

See Figures 19, 20 and 21. The observations here are aligned with those for the O’Hare airport
presented in Section 5.
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(a) Net revenue.
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(b) Trip throughput.
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(c) Equilibrium queue length.

Figure 22: Equilibrium net revenue, trip throughput, and length of the queue in steady state, as
the rider patience level varies. Chicago Midway.
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(a) Average waiting time.
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(b) Average driver payoff.
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(c) SD of driver payoffs.

Figure 23: Drivers’ average waiting times, total payoff, and the standard deviation (SD) in drivers’
total payoff in equilibrium in steady state, as the rider patience level varies. Chicago Midway.
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(a) Minimum waiting time.
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(b) Maximum waiting time.

Figure 24: The minimum and maximum waiting time for drivers who join the queue, in equilibrium
in steady state, as the patience level of the riders varies. Chicago Midway.

Varying Rider Patience Fixing the arrival rate of drivers at λ = 4, Figures 22, 23 and 24 com-
pare the equilibrium outcome under various mechanisms and benchmarks as we vary the patience
level of the riders. The observations are, again, fully aligned with those for the O’Hare airport
presented in Section 5 of the paper.
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