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Abstract

When sample data are governed by an unknown sequence of independent but possibly

non-identical distributions, the data-generating process (DGP) in general cannot be perfectly

identified from the data. For making decisions facing such uncertainty, this paper presents

a novel approach by studying how the data can best be used to robustly improve decisions.

That is, no matter which DGP governs the uncertainty, one can make a better decision than

without using the data. I show that common inference methods, e.g., maximum likelihood and

Bayesian updating cannot achieve this goal. To address, I develop new updating rules that lead

to robustly better decisions either asymptotically almost surely or in finite sample with a pre-

specified probability. Especially, they are easy to implement as are given by simple extensions

of the standard statistical procedures in the case where the possible DGPs are all independent

and identically distributed. Finally, I show that the new updating rules also lead to more intu-

itive conclusions in existing economic models such as asset pricing under ambiguity.
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1 Introduction

In data-driven decisions, the extrapolation from sample data is often based on observable similar-

ities within a population. However in many settings, one also needs to take into account possible

unobserved heterogeneity across individuals in the population. For instance, online platforms such

as Netflix and Google rely on users’ feedback to make content recommendations. While they

can categorize the users according to their online activities and profiles, the users’ preferences are

usually also determined by their various offline activities that cannot be observed by those online

platforms. Physicians use conclusions from clinical trials to guide their medication decisions. But

effectiveness of the drugs can also depend on underlying health or genetic conditions that may

not be documented in those trials. In these setting, because the heterogeneity is unobservable, the

decision-maker (DM) can be uncertain about not only how the individuals might vary but also how

different individuals are going to be sampled from the population. As a result, she might worry

about the possibility that the sample data are more from one type of individuals, whereas future

draws that determine the payoff of decisions may be more of a different type.1 More precisely, she

might believe that the sample data and future uncertainty can potentially be governed by different

probability distributions.

To capture this concern, in this paper, I consider a decision environment where the underlying

data-generating process (DGP) is a sequence of independent but possibly non-identical distribu-

tions.2 Specifically, the DM observes sample data given by realizations of marginal distributions

of a DGP and then makes a decision whose payoff depends only on future realizations of the same

DGP. As the DGP can be a sequence of non-identical distributions, which captures the possible

heterogeneity across individuals, the sample data and future uncertainty indeed can be governed

by different probability distributions. In addition, because the heterogeneity is unobserved, the DM

will also face model uncertainty in the sense that she is uncertain about which probabilistic model3,

or DGP here, governs the underlying uncertainty. Suppose that the DM initially only knows there

is a set of possible DGPs and cannot for any probabilistic assessment over them. In other words,

the model uncertainty here is represented by the ambiguity over a set of DGPs.

Notice that, with non-identical distributions, the true DGP in general cannot be perfectly iden-

tified from the sample data. Nonetheless, learning from the data can potentially help the DM to

1For example, a well-documented problem in clinical trials is the fact that the population of clinical trial participants

is often different from the actual population of patients, because the former population responds to either medical or

financial incentives (Manski, 2013). When it comes to decisions, an article in Nature (Schork, 2015) finds that many

drugs that are prescribed based on traditional clinical trials help only between 1 in 25 and 1 in 4 of the people who

take them and sometimes can even be harmful.
2The independent here is more precisely conditional independence. Most of the results in this paper do not hinge

on this assumption and can be suitably generalized to allow for correlations.
3in the terminology of, e.g., Hansen (2014) and Marinacci (2015).
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refine her initial knowledge about the underlying uncertainty, which in turn may lead to a better

decision under the true DGP. Motivated by this intuition, I investigate the following novel ques-

tion: How can the DM use sample data to robustly improve her decisions? That is, no matter which

possible DGP governs the uncertainty, she can do better than without using the data. To answer

this question, I make two main contributions in this paper. First, I characterize a crucial property

for inference rules that is necessary and sufficient to guarantee the decisions to be robustly better.

Second, I develop novel and tractable inference (updating) rules that satisfy this crucial property

and thus lead to robustly better decisions. Importantly, I also show that common inference rules,

such as maximum likelihood and Bayesian updating, cannot achieve this goal. Instead, they can

almost surely lead to strictly worse decisions than simply ignoring the data.4

To be more precise, as the DM faces ambiguity over a set of DGPs, motivated by making

a robust decision, I suppose that the DM applies the maxmin expected-utility (MEU) criterion

(Gilboa and Schmeidler, 1989) to cope with the ambiguity. In other words, she does not know

which DGP is true and thus makes an optimal decision considering the worst possible one. In

the presence of sample data, the DM can choose to ignore the data and make a data-free decision

based only on her initial knowledge, i.e., optimal under the worst DGP among all those she initially

contemplates. On the other hand, she can also use the data to update the initial set of DGPs to a

potentially different updated set of DGPs. The data-driven decision is then formally defined as the

optimal decision under the worst-case DGP among only those in the updated set.

Given these two types of decisions, I study updating rules in terms of how to guarantee the

data-driven decisions to be better than the data-free decisions according to objective payoff, i.e.,

the expected utility under the true DGP that governs the future uncertainty. In other words, while

the DM makes decisions considering the worst-case, the quality of her decisions will be evaluated

against the ground truth. When an updating rule can guarantee improvement for all possible DGPs

in the initial set, the data-driven decisions are indeed robustly better than the data-free decisions.

In this paper, I formalize two achievable notions that the data-driven decisions robustly improve

upon the data-free decisions across decision problems. Specifically, in the first notion, I restrict

attention to basic decision problems, i.e., binary choices between an uncertain and a constant

prospect. For instance, the decisions of whether or not to recommend a piece of content, or to

prescribe a drug are both basic decision problems. The first main result of this paper, Theorem

4.2 shows that given an updated set of DGPs5, the data-driven decisions are objectively better than

the data-free decisions across all basic decision problems if and only if the updated set of DGPs

accommodates the true DGP. By definition, a set accommodates a DGP if the convex closure of

its marginals over future experiments contains those of the DGP. This results thus emphasizes that

4See Section 2 for an illustrative example.
5It is assumed to always be a subset of the initial set of DGPs.
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accommodating the true DGP is the only crucial property for an inference rule to satisfy in order

to robustly improve decisions over basic decision problems.

For general decision problems, i.e., choices among an arbitrary set of prospects, Theorem 4.4

shows that it is impossible to guarantee the data-driven decisions to be always better when the

updated set is a non-singleton set. This applies to the current setting as the true DGP may not be

perfectly identified. However, when the updated set accommodates the true DGP, Theorem 4.6

shows that the data-driven decision can still guarantee an objective improvement upon the data-

free certainty equivalent across all decision problems. The certainty equivalent is defined as the

expected utility under the worst DGP in the initial set. Thus, it is also the DM’s initial subjective

expectation from her data-free decision. Intuitively, this notion simply says that the DM would pre-

fer to receive the data and make a data-driven decision rather than take the certainty equivalent for

sure. This second notion of improvement, in addition, also characterizes accommodating the true

DGP. Thus, this paper establishes a three-way equivalence: the data-driven decision objectively

improves over data-free decision across all basic decision problems if and only if it objectively im-

proves over data-free certainty equivalent across all decision problems, if and only if the updated

set of DGPs accommodates the true DGP (Corollary 4.7).

Given this equivalence, I then study updating rules in terms of accommodating the truth (true

DGP). Through an illustrative example (Section 2), I first show that common updating rules such

as maximum likelihood and Bayesian updating that perform well in the case of i.i.d., can in fact

rule our the truth asymptotically almost surely in the presence of non-identical DGPs.6 Thus

by the previous result, they can lead to strictly worse decisions than without using the data. To

address such an issue, I first propose a new updating rule, average-then-update, and show that it

guarantees to accommodate the truth asymptotically almost surely (Theorem 5.4) also with non-

identical DGPs.

Furthermore, I study the case of finite sample by considering updating rules that guarantee

to accommodate the truth with a pre-specified probability or confidence level. By definition, the

updated sets are effectively consistent confidence regions of the true DGP. In the presence of non-

identical DGPs, constructing confidence regions can be computationally challenging. To this end,

the present paper proposes a tractable and easy-to-implement method. Specifically, given any

sample data, the proposed rule first applies standard statistical techniques to construct a confidence

region as if the DGPs are independent and identically distributed (i.i.d.). Then the updating rule

retains DGPs in the initial set whose average of sample marginals, i.e., the average mixture of

marginal distributions over the sample data, equals the marginal of an i.i.d. distribution in the

previous confidence region. Theorem 5.7 confirms that such an updating rule can guarantee the

6For Bayesian updating, this means that the posterior distribution asymptotically almost surely concentrates on

DGPs other than the truth.
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updated sets to accommodate the truth with at least the same confidence level as the i.i.d. distribu-

tions under any possible non-identical DGP in the initial set.

Finally, the decision framework studied in this paper is often applied to model economic prob-

lems such as dynamic portfolio choice, asset pricing, and social learning under model uncertainty

and under ambiguity. For those problems, the existing literature obtains conclusions primarily by

assuming that the DM applies full Bayesian updating.7 However, the asymptotic result under full

Bayesian updating is often hard to solve. In a commonly studied model of learning from Gaussian

signals with ambiguous variances, I show that applying the average-then-update rule reduces to a

simple and intuitive step. More importantly, applying the average-then-update rule also implies

that learning is significantly more effective than full Bayesian updating (Proposition 6.2). This

learning outcome proves to be more intuitive in such a model. In addition, I provide a more con-

crete illustration of both proposed updating rules in Section 6.2 by studying a Bernoulli model with

ambiguous nuisance parameters. There, I show that the updated sets have tractable expressions and

intuitive interpretations.

Outline. Section 1.1 reviews related literature. Section 2 provides an illustrative example to

demonstrate the issue with maximum likelihood and Bayesian updating. Section 3 introduces the

formal decision environment. Section 4 provides the characterization results that relate improving

decisions to accommodating the true DGP. Section 5 formalizes the notions of accommodating

the truth and provides the according updating rules. Section 6 presents two applications of the

proposed updating rules. Section 7 concludes.

1.1 Related Literature

This paper formulates and studies a statistical decision problem where the sample data is arbitrarily

drawn from a population of heterogeneous individuals. The independent but possibly non-identical

assumption is meant to capture the fact that not only the individuals are heterogeneous but also

the sampling procedure is arbitrary and unknown.8 This paper, therefore, contributes directly

to the literature on statistical decision theory pioneered by Wald (1950). Especially, the present

paper proposes a novel approach to this fundamental problem by considering whether or not data

robustly improve decisions. Thus more specifically, it follows the literature on robust statistical

decisions surveyed in Watson and Holmes (2016) and Hansen and Marinacci (2016). In addition,

by developing inference methods for making statistical decisions, this paper is also closely related

to papers in the econometrics literature. See Manski (2021) and Stoye (2012) for a survey to that

7Some may also refer to it as prior-by-prior updating.
8If the sampling is random, then the heterogeneity can be simply captured by an unobserved random variable with

identical distribution across individuals.
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strand of work.

This paper borrows techniques from the literature on decisions under ambiguity to model this

decision environment. Specifically, the environment studied in this paper is a direct generaliza-

tion of that used in Epstein and Schneider (2007). They assume the DM applies the maximum

likelihood updating rule. The present paper highlights possible concerns with this approach. In a

recent paper, Epstein, Kaido and Seo (2016) develop robust confidence regions when the possible

data-generating processes are belief functions. Belief functions impose restrictions on the possible

marginal distributions. In contrast, the environment studied in the present paper allows for arbitrary

marginal distributions. But the major conceptual difference from their paper, and other papers on

asymptotic learning under ambiguity, such as Marinacci (2002) and Marinacci and Massari (2019),

is that the present paper emphasizes the implications of learning for decision-making.

This paper also contributes to the literature on dynamic decisions under ambiguity by proposing

new updating rules for sets of distributions. See Gilboa and Marinacci (2013) and Cheng (2021)

for recent developments. The essential departure of the present paper from papers in this literature

is that it evaluates decisions according to an objective criterion, i.e., expected utility under the true

DGP. This new approach allows me to establish a characterization of accommodating the true DGP

property based on robustly improving decisions. This property is basically a generalized notion of

statistical consistency. Thus, the present paper, for the first time in this literature, introduces sta-

tistical consistency to dynamic decisions under ambiguity. The objective approach also resonates

with some recent papers that study misspecified learning according to objective criteria such as

He and Libgober (2020), Frick, Iijima and Ishii (2021), and references therein.

Finally, this paper develops useful techniques for making robust inferences in the presence of

independent but non-identical distributions. The updated set of DGPs is evidently a set-valued

identification objective, thus the idea here is related to the partial identification literature (Tamer,

2010; Canay and Shaikh, 2017; Molinari, 2020). However in partial identification, the underlying

DGPs are usually assumed to be only i.i.d.. Therefore, the inference results in this paper can

potentially be useful in generalizing the results there to allow for non-identical distributions. In

addition, this paper can also contribute to the literature on making inferences from clustered data

(Hansen and Lee, 2019) where the underlying distribution is often known to be non-identical.

2 Illustrative Example

In this section, I present an illustrative example to demonstrate how maximum likelihood and

Bayesian updating can asymptotically almost surely lead to strictly worse decisions. Then I will

briefly illustrate how using the average-then-update rule proposed in this paper can resolve this

problem.
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This example is given in the context of making content recommendation based on user feed-

back. Suppose Netflix has the option to recommend either a Standard movie or a Personalized

movie to some users. Given the recommended movie, each user responds by either a like or a dis-

like, which gives Netflix a payoff of 1 or 0, respectively. For simplicity, also denote these outcomes

by {1, 0}.

Suppose Netflix identifies a group of users with similar online behaviors and profiles, but is

uncertain about the outcomes of recommending either movie to those users. Thus for recommend-

ing a movie to those users, Netflix will face uncertainty over the state space given by the (possibly

infinite) product of the two possible outcomes, denoted by {1, 0}∞.

First, suppose there is no model uncertainty or ambiguity for recommending the Standard

movie. It is known to generate the outcome like (or 1) with the same probability of 1/2 inde-

pendently across all the users. Formally, the data-generating process (DGP) governing the uncer-

tainty associated with recommending the Standard movie is thus known and given by the i.i.d.

distribution with a marginal probability of observing a like equals 1/2. I denote it by (1/2)∞.

On the other hand, suppose Netflix is ambiguous about recommending the Personalized movie

and it only knows that there can be two different possibilities:

• Possibility I: The Personalized content is a good match with the users so that it induces each

user to like it independently with a probability of at least 0.6. However, due to unobservable

heterogeneity across the users, such as their offline activities, the specific probability of

observing a like from different users may not be the same. Given that the heterogeneous

users may interact with Netflix at any point in time, Netflix’s initial knowledge is therefore

represented by the following set of DGPs:

[0.6, 1]∞ ≡ {P ∈ ∆indep({1, 0}∞) : Pi ∈ [0.6, 1], ∀i},

where ∆indep({1, 0}∞) denotes the set of all probability distributions over {1, 0}∞ that are

independent across users, and Pi denotes the marginal probability of observing a like from

the i-th user under P . It is important to notice that this set includes all independent but non-

identical distributions whose marginal probabilities of 1 can be different across users but are

always between 0.6 and 1.

• Possibility II: The Personalized movie is a mismatch with the users. For simplicity, suppose

in this case it generates the outcome like with the same probability of 1/3 independently

across all the users. The DGP governing the uncertainty here is thus denoted by (1/3)∞.

Taking both possibilities into account, Netflix then considers that the union, [0.6, 1]∞∪{(1/3)∞},

gives the initial set of DGPs that represents the uncertainty associated with recommending the Per-

7



sonalized movie. Notice that the minimum expected payoff from recommending the Personalized

movie to a user is 1/3, strictly less than the expected payoff from recommending the Standard

movie (1/2). Thus, Netflix’s data-free decision will be to recommend the Standard movie to the

users.

Next, suppose Netflix observes historical outcomes from having recommended Personalized

movie to the users within this group. With the sample data, a common inference method is to look

at the likelihood of observing the data under different DGPs. Formally, applying the maximum

likelihood updating (Gilboa and Schmeidler, 1993) in this example is to retain only those DGPs in

the initial sets that maximizes the likelihood of observing the data.

Consider the case where the true DGP governing the Personalized movie is (1/3)∞, i.e. the

Personalized movie is a mismatch with the users. Then by the law of large numbers, almost surely,

Netflix will eventually observe some sample data with an empirical frequency of like close to 1/3.

The critical observation here is that the true DGP (1/3)∞ does not maximize the likelihood of

observing such data among all the possible DGPs in the initial set.

To be more specific, consider any sequence of realized outcomes with an empirical frequency

of like exactly equals 1/3. Given such a sequence, one can always find the DGP in the initial

set whose marginal probability of observing a like from a user is 1 if the realized outcome from

that user is a like. Similarly, its marginal probability of observing a like from a user is 0.6 if the

realized outcome is a dislike. Notice that such a DGP maximizes the likelihood of observing the

realized sequence among all the possible DGPs in the set [0.6, 1]∞. In addition, one can verify the

following inequality is true:

(1/3)1/3 × (2/3)2/3 < (1)1/3 × (0.4)2/3.

This inequality thus implies that the likelihood of observing this data under the true DGP (the

left-hand side) is strictly less than the likelihood under the DGP just described (the right-hand

side). Therefore, for any sample data with an empirical frequency of likes close to 1/3, maxi-

mum likelihood updating will rule out (1/3)∞ from the updated set. As a result, when the true

DGP is (1/3)∞, the updated sets under maximum likelihood updating will rule out the true DGP

asymptotically almost surely.9

Furthermore, notice that because all the possible DGPs are independent, data-driven decisions

are determined by data solely through the updated set of DGPs.10 When (1/3)∞ is ruled out from

the updated set, the minimum expected payoff from recommending the Personalized movie accord-

9While the present paper is, to the best of my knowledge, the first to make such an observation, it is intrinsically

related to the infamous incidental parameter problem with using maximum likelihood to make estimations discovered

by Neyman and Scott (1948). See Lancaster (2000) for a review.
10The conditional marginal distributions over the future realizations are always the same as the unconditional

marginal distributions.
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ing to the updated set is 0.6, strictly higher than recommending the Standard movie. Therefore,

the data-driven decision under maximum likelihood updating will asymptotically almost surely

be to recommend the Personalized movie when the true DGP is (1/3)∞. However, the responses

from future users are still governed by the true DGP. In other words, objective payoff from the

data-driven decision will be 1/3 from each user, strictly lower than what Netflix can get from sim-

ply ignoring the data and taking the data-free decision (1/2). The same conclusion also applies

more generally to updating rules that based on maximum likelihood, such as relative maximum

likelihood (Cheng, 2021) and likelihood-ratio updating (Epstein and Schneider, 2007).

More importantly, a similar observation also applies when Netflix applies Bayesian updating.

In order to apply Bayesian updating, Netflix needs to form a prior distribution over the initial set

of DGPs. Without loss of generality, when Netflix uses a uniform prior, under Bayesian updating,

the posterior probability of a DGP will then be proportional to the likelihood of observing the

realized data. Therefore, similar to the case of maximum likelihood, the posterior probability of

the true DGP will also be asymptotically driven to zero.11 Although Bayesian updating is known

to eventually almost surely concentrate on the true DGP when the underlying DGPs are all i.i.d.

(Miller, 2018), this observation implies that this nice property in general cannot be guaranteed

when the underlying DGPs can be non-identical.12

Finally, another commonly suggested updating rule for sets of distributions is full Bayesian

updating (Pires, 2002). By definition, under full Bayesian updating, the updated set will retain

every possible DGP.13 As a result, the data-driven decision is always the same as the data-free

decision. In other words, full Bayesian updating is equivalent to simply ignoring the data in this

example. This is also true in the general decision environment.

So far, I have shown that all the existing updating rules have undesirable features in terms of

using data to improve decisions. I will now illustrate how the proposed updating rule, average-

then-update, can asymptotically almost surely lead to strictly better decisions. The intuitive idea of

the average-then-update rule is that it retains all the DGPs in the initial set whose average of sample

marginals is close enough to the empirical distribution of the realized outcomes.14 For example,

when observe data with an empirical frequency of like equals 0.8, applying the average-then-update

rule will retain, for instance, the i.i.d. distribution (0.8)∞ and non-identical distribution (0.6×1)∞

whose marginals are 0.6 for the odd users and 1 for the even users.

11See Appendix A.1 for a detailed discussion on how this conclusion is obtained and also for a discussion about

what if Netflix instead uses a Bayesian decision criterion.
12Choi and Ramamoorthi (2008) talk about Bayesian consistency in the presence of independent but non-identical

distributions. Their necessary and sufficient condition does not hold in this example.
13Different from Bayesian updating, it does not require a prior distribution over the DGPs, but each DGP is the

“prior” that will be updated using Bayes’ rule conditional on the data received. Here, because of independence,

applying Bayes’ rule does not change the marginal distributions over the future events.
14The formal definition is that the sup norm distance is less than some pre-specified ǫ > 0.
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The key intuition for applying this updating rule in this example is the fact that, under any

independent but non-identical distribution, the empirical distribution converges to this average

almost surely. In turn, it ensures that the true DGP will be asymptotically almost surely preserved

in the updated set.

In terms of decisions, notice that when the true DGP is (1/3)∞, the data-driven decision un-

der the average-then-update rule will asymptotically almost surely be to recommend the Standard

movie. Thus, the objective payoff under the data-driven and data-free decisions will be the same.

On the other hand, if the true DGP belongs to [0.6, 1]∞, then asymptotically almost surely (1/3)∞

will be ruled out from the updated set, and the data-driven decision will be to recommend the Per-

sonalized movie. Notice that in this case, objective payoff from the data-driven decision will be

strictly higher than the data-free decision.

In summary, by applying the average-then-update rule, Netflix’s objective payoff from data-

driven decisions in this example will asymptotically almost surely be either the same or strictly

higher compared to its data-free decision. In other words, data indeed robustly improve decisions.

Next, this paper moves beyond this example by formalizing the general decision environment and

shows how this observation can be generalized.

3 Decision Environment

3.1 State Space, Data, and Decision Problems

The state space is given by a countably infinite sequence of random experiments. They are

ordered and indexed by the set N = {1, 2, · · · }. Each experiment yields an outcome in a finite

set S with generic outcome denoted by sj . Let Si denote the set of possible outcomes for the i-th

experiment, although Si = S for all i. The full state space is Ω = S∞. Let Σ denote the discrete

sigma-algebra on S and Σ∞ the corresponding product sigma-algebra on Ω.

For any sample size N ∈ N, let SN ≡ ∏N
i=1 Si denote the sample experiments. The sample

data ωN ∈ SN thus are simply given by realizations of the sample experiments. Similarly, let

SN ≡ ∏

∞

i=N+1 Si denote future experiments and they will only realize after the decision-maker

(DM) makes a decision. Similarly, I use ΣN and ΣN to denote the corresponding product sigma

algebras.

The DM makes a decision by choosing an act. An act, denoted byf : SN → [0, 1], is formally a

ΣN -measurable function that maps outcomes of future experiments to utilities represented by real

numbers in [0, 1]. Let FN denote the space of all such acts endowed with the product topology.

More specifically, the DM will face a decision problem DN , which is defined as a compact

subset of the acts, i.e., DN ⊆ FN . In other words, the DM’s decision is more formally the choice

10



from a given decision problem. Let DN denote the collection of all decision problems.

In addition, a special type of decision problem that will be important for the analysis of this

paper is the basic decision problem. It is defined as a decision problem consisting of only two

acts and one of them is constant, i.e., pays the same utility in all states. Let DN
b = {f, x} denote a

generic basic decision problem and let x ∈ [0, 1] denote the constant act. Similarly, let DN
b denote

the collection of all basic decision problems.

3.2 Data-Generating Process

The uncertainty over the experiments is governed by a data generating process (DGP), a sequence

of independent but possibly non-identical distributions over Ω. Let ∆indep(Ω) denote the set of all

countably additive probability measures over Ω that are independent across experiments. Let Pi

denote its marginal distribution over the i-th experiment Si. Furthermore, for any P , let PN and

PN denote its marginals over sample and future experiments, i.e. over SN and SN respectively.15

Then, by definition, for any P ∈ ∆indep(Ω), for all N , ωN , and E ∈ ΣN , if P (ωN) > 0 then

P (E|ωN) = PN(E). Equip ∆indep(Ω) with the weak* topology.

The DM’s initial knowledge about the underlying uncertainty is represented by an initial set,

which is a compact subset of ∆indep(Ω) denoted by P . Furthermore, assume that all the probability

measures in the initial set have full support.16 Let Pi, PN and PN denote the corresponding sets of

marginals. The following primitive assumption simply says that every possible DGP in the initial

set can be the true one that governs the underlying uncertainty.

Assumption 1. P is the set of all possible DGPs.

This assumption is a counterpart of the “grain of truth” assumption in the Bayesian learning

literature (Kalai and Lehrer, 1993). Although it is less demanding in the sense that it only requires

the DM to include the possible DGPs in the initial set but does not have to form any probabilistic

assessment. While every DGP in the initial set can be the true one governing the underlying

uncertainty, I will use P ∗ to denote the DGP that governs the data in context to distinguish it from

other DGPs in the initial set.

3.3 Decision Rules and Payoffs

Given a decision problem DN , the DM can make a data-free decision based only on her ini-

tial knowledge about the underlying uncertainty. Let c(DN) denote the DM’s data-free decision,

15To make a distinction, whenever referring to the marginal distribution over the N -th experiment, I will use Pi=N .
16All the results can be adjusted accordingly without the full-support assumption. Furthermore, it is a standard

assumption in updating sets of distributions because full Bayesian updating is rigorously defined and characterized

only when it holds.
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which represents her choice from DN according to the maxmin expected-utility (MEU) criterion

according to the initial set of DGPs. Formally,

c(DN) ≡ arg max
f∈DN

min
P∈P

∫

SN

f(ω)dPN(ω),

where c(DN) is always a singleton given by some arbitrary tie-breaking rule.

With sample data ωN , the DM can also use the data to update the initial set of DGPs to an

updated set of DGPs. Let P(ωN) ⊆ ∆indep(Ω) denote the updated set, which depends on only

the initial set P and data ωN . Importantly, it cannot depend on the specific decision problem. This

is the standard consequentialist property of an updating rule.17 Moreover, suppose the updated set

satisfies the following primitive assumption:

Assumption 2. P(ωN ) ⊆ P .

This assumption should be intuitive given Assumption 1. If the initial set always contains the

true DGP, then there is no reason to consider additional distributions in updating.

The data-driven decision is then defined as the MEU decision according to the updated set of

DGPs. Formally, let c(DN , ωN) represent the DM’s choice from DN conditional on ωN :

c(DN , ωN) ≡ arg max
f∈DN

min
P∈P(ωN )

∫

SN

f(ω)dPN(ω),

where c(DN , ωN) is also always a singleton given by any tie-breaking rule that satisfies the follow-

ing consistency assumption:

Assumption 3. If c(DN) also maximizes the minimum expected-utility according to the updated

set, then c(DN , ωN) = c(DN). Otherwise, the tie-breaking can be arbitrary.

This consistency assumption has a convenient implication: If the DM’s updated set coincides

with the initial set, then her data-driven and data-free decisions will always be the same. This

rules out the uninteresting complication that arises when the DM’s decisions are different purely

because of the tie-breaking rules.

The DM’s objective payoff from her decision will be determined by the true DGP that governs

the future experiments. To make the dependence of the true DGP more explicit, I use W (f, P ∗) to

denote objective payoff from act f when the true DGP is P ∗, i.e.,

W (f, P ∗) =

∫

SN

f(ω)dP ∗N(ω).

17For example, both maximum likelihood and Bayesian updating are consequentialist. For the exact definition and

an extensive discussion, see Hanany and Klibanoff (2007, 2009) and Siniscalchi (2009).
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For any decision problem DN , the DM’s objective payoffs from her data-free and her data-driven

decisions are then denoted by W (c(DN), P ∗) and W (c(DN , ωN), P
∗), respectively.

Because the decisions depend only on the future experiments and the DM applies the MEU

criterion, any set of DGPs will lead to the same decisions as the closed and convex hull of the

set of its marginals over future experiments. As a result, when talking about the relation between

DGPs and sets of DGPs, I will generalize the notion of containing accordingly. For any set, let co(·)
denote its closed and convex hull. Say that the updated set P(ωN) accommodates the DGP P ∗ if

P ∗N ∈ co(P(ωN )
N). Similarly, the updated set P(ωN ) refines the initial set P if co(P(ωN)

N ) $

co(PN ).

Finally, an additional comment about the definitions of the decision rules is that they are defined

as choices from DN but not from all the probability distributions over DN . This definition is, in

fact, more general because adding the probability distributions into DN would be another well-

defined decision problem. Thus, the current setup allows for richer decision patterns. All the

results in this paper can also be obtained using the other definition. Moreover, the current definition

can also be interpreted by the phenomenon that the DM does not believe her own randomization

can hedge against ambiguity as characterized in Saito (2015) and Ke and Zhang (2020).

4 Characterization Results

In this section, I study a “static” comparison of data-free and data-driven decisions by fixing some

true DGP P ∗ and sample data ωN . Specifically, given some updated set P(ωN ), the problem

simply reduces to the comparison between two MEU decisions, one under P and one under P(ωN),

according to the expected utility under some P ∗ ∈ P .

4.1 Basic Decision Problems

Recall in the illustrative example, Netflix faces a basic decision problem given by the choice be-

tween recommending a Standard movie (constant act) and a Personalized movie (ambiguous act).

For this specific decision problem, the illustrative example has shown that if the DM’s updated

set rules out the true DGP (maximum likelihood updating), then the data-driven decision will be

objectively worse than the data-free decision. In contrast, if the updated set contains the true DGP

(average-then-update), then the data-driven decision will be objectively better.

This subsection first investigates whether this observation can be generalized to across all basic

decision problems. To formalize this idea, consider the following definition.

Definition 4.1. Given an updated set P(ωN ), the data-driven decision objectively dominates the
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data-free decision across all basic decision problems under the DGP P ∗ if for all DN
b ∈ DN

b ,

W (c(DN
b , ωN), P

∗) ≥W (c(DN
b ), P

∗).

The dominance is strict if there exists DN
b such that the strict inequality holds.

When this definition holds, then the DM will be certain that in any basic decision problem,

her data-driven decision can always guarantee a higher objective payoff. Notice that while the

DM makes decisions considering the worst-case distribution, what this definition ensures is the

improvement under the true DGP, which is not necessarily the worst-case. The key to such an

improvement, as shown in the following theorem, is precisely that the updated set accommodates

the true DGP.

Theorem 4.2. Given an updated set P(ωN), the data-driven decision objectively dominates the

data-free decision across all basic decision problems under the DGP P ∗ if and only if P(ωN)

accommodates P ∗. Moreover, the dominance is strict if and only if the updated set P(ωN ) refines

the initial set P .

The proof of this theorem relies on the following observation. Whenever the data-free and

data-driven decisions are different for a basic decision problem, it needs to be the case that the

data-free decision chooses the constant act and the data-driven decision chooses the ambiguous

act. This is further implied by Assumption 2, i.e., P(ωN ) is always a subset of P . Then the “if”

direction is shown by noticing that objective payoff from the ambiguous act is weakly higher than

the minimum expected payoff under the updated set, which by presumption is also weakly higher

than the payoff from the constant act.

Intuitively, for a basic decision problem, choosing the ambiguous act over the constant act

reflects confidence in knowledge about the underlying uncertainty. As data necessarily enhance

such confidence (for the updated set is always a subset), accommodating the true DGP requires

the confidence to be enhanced towards a correct direction. In terms of decisions, this correct di-

rection further implies that choosing the ambiguous act in this case is always objectively profitable.

Remark. This characterization result crucially relies on the DM applies the maxmin expected-

utility criterion. Appendix A.2 presents an example where if the DM applies the minimax regret

criterion18, then even when the updated set accommodates the true DGP, objective payoff can still

be strictly higher from the data-free decision. This observation, on the other hand, provides a new

motivation for using the maxmin expected-utility criterion for making robust decisions.

18For the exact definition and reference, see Stoye (2011).
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4.2 General Decision Problems

While Theorem 4.2 provides a characterization for basic decision problems, it does not directly

provide any implication for non-basic decision problems. Given Theorem 4.2, one might be

tempted to come up with the following intuition: given the updated set is closer to the true DGP

than the initial set in the sense that it refines the initial set and also accommodates the true DGP, it

is intuitive that the maxmin decisions under the smaller set would be always better than under the

larger set. In this subsection, I will show that, however, such an intuition cannot be generalized to

across all decision problem.

Similarly, consider the following definition:

Definition 4.3. Given an updated set P(ωN ), the data-driven decision objectively dominates the

data-free decision across all decision problems under the DGP P ∗ if for all DN ∈ DN ,

W (c(DN , ωN), P
∗) ≥W (c(DN), P ∗).

The dominance is strict if there exists DN such that the strict inequality holds.

First notice that this definition is feasible when the true DGP is uniquely identified from data,

i.e., when P(ωN) = {P ∗}. In this case, the data-driven decision becomes the exact optimal

decision under P ∗, and therefore objective dominance across all decision problems holds.

In the current environment, however, the true DGP may only be partially identified from any

possible data. Because when the possible DGPs are independent but non-identically distributed,

observing only one realization from each experiment may not be sufficient to distinguish between

different DGPs. More importantly, even in a rare case where the DM can perfectly observe the

marginal distribution P ∗
N , there may still be multiple possible DGPs in the initial set that have

the same marginal over sample experiments but different marginals over the future.19 As a result,

the updated set may at best be a non-singleton set, and thus the true DGP can only be partially

identified.

Then in this case, objective dominance is meaningful only when it can hold under multiple

DGPs, because any one of them may be the one that governs future experiments. However, the

following theorem asserts that it is impossible if data ever changes decision (if data does not change

the decision at all, then it is trivially true with always equalities).

Theorem 4.4. Given an updated set P(ωN ), if it refines the initial set P , then objective dominance

across all decision problems can hold under at most one DGP (in terms of marginal over future

experiments).

19In the illustrative example, this is true when P ∗ ∈ [0.6, 1]∞.
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For an intuition of this theorem, I refer directly to the proof in Appendix B.2. This theorem

implies that, if the true DGP is only partially identified, then the DM can never use the data in a

way to guarantee her data-driven decisions to be objectively better across all decision problems

under multiple possible DGPs. Moreover, it also suggests that, even when the updated set is closer

to the true DGP than the initial set, there still exist decision problems in which the maxmin decision

is objectively better under the larger set.20 The previous intuition, therefore, applies to only basic

decision problems. As a result, for a non-basic decision problem, the data-driven and data-free

decisions may be incomparable according to the possible objective payoffs.

Although objectively incomparable, the DM can still evaluate whether or not she is subjectively

willing to take the data-driven decision instead of ignoring the data. Notice that by taking the data-

free decision, the DM guarantees herself a data-free certainty equivalent in any decision problem.

Specifically, no matter which possible DGP governs the uncertainty, objective payoff from her

data-free decision is always higher than the minimum expected utility across DGPs in the initial

set. This minimum is also the DM’s subjective expectation under the maxmin expected-utility

criterion. Therefore, the DM would be subjectively willing to take a data-driven decision only if

she knows that objective payoff from data-driven decisions would be greater than this certainty

equivalent.

The following definition formalizes this idea:

Definition 4.5. Given an updated set P(ωN), the data-driven decision objectively improves upon

the data-free certainty equivalent across all decision problems under the DGP P ∗ if for all DN ∈
DN ,

W (c(DN , ωN), P
∗) ≥ min

P∈P
W (c(DN), P ).

Notice that if such an improvement holds, whenever the DM is offered a choice between re-

ceiving the data or getting her data-free certainty equivalent, she will always prefer to receive the

data. In other words, data-driven decision is always acceptable. The next result shows that, in fact,

this notion of improvement is also necessary and sufficient to that the updated set accommodates

the true DGP.

Theorem 4.6. Given an updated set P(ωN), the data-driven decision objectively improves upon

the data-free certainty equivalent across all decision problems under the DGP P ∗ if and only if

P(ωN) accommodates P ∗.

To give a sketch of the proof, first observe that when the updated set accommodates the DGP

P ∗, objective payoff from the data-driven decision under P ∗ is always higher than the minimum

20See Lemma B.2 in Appendix B.2 for the precise statement and intuition.
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expected utility across all DGPs in the updated set. Then the conclusion is obtained by showing

that this minimum always dominates the data-free certainty equivalent.

Importantly, combining both Theorem 4.2 and Theorem 4.6 gives the whole picture of the

characterization result:

Corollary 4.7. Given an updated set P(ωN) and DGP P ∗, the followings are equivalent:

(i) P(ωN) accommodates P ∗.

(ii) The data-driven decision objectively dominates the data-free decision across all basic deci-

sion problems under P ∗.

(iii) The data-driven decision objectively improves upon the data-free certainty equivalent across

all decision problems under P ∗.

This result highlights the equivalence between the two different notions of improvement across

basic and across general decision problems: While the two notions are different both in the form

and in the domain where they apply, this characterization result asserts that any one of them always

implies the other.

In addition, it has been emphasized that when the updated set accommodates the true DGP, in

a non-basic decision problem, it is still possible that objective payoff is higher from the data-free

decision. However, when the data-free and data-driven decisions are different, it is impossible to

have the data-free decision to be objectively better under every DGP in the updated set.21 Thus,

when the updated set accommodates the true DGP, there will never be a decision problem in which

the DM finds data-free decision uniformly preferable, i.e., it is objectively better under all DGPs

in the updated set.

In summary, knowing the updated set accommodates the true DGP, for basic decision problems,

the data-driven decision is objectively better under all possible DGPs. When the decision problem

is non-basic, the data-driven decision first guarantees at least the data-free certainty equivalent;

furthermore, there always exists a possible DGP under which the data-driven decision is strictly

better than the data-free decision.

5 Updating Rules and Accommodating the Truth

The previous section shows that using data to robustly improve decisions is equivalent to accom-

modate the true data-generating process. This section turns to the study of updating rules in terms

of how to accommodate the truth (true DGP) based on sample data.

21Consider when the true DGP is the worst-case DGP in the updated set for the data-driven decision. The objective

payoff under the data-driven decision is then strictly higher than the data-free decision, because by Assumption 3, the

data-free decision is not optimal given this worst-case DGP.
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An updating rule is formally a mapping from the initial set P and sample data ωN to an up-

dated set P(ωN). When data is stochastically generated by some DGP, an updating rule determines

how often the updated sets, which become random sets, accommodate the DGP in probabilities.

One possible requirement is to let the updated sets accommodate the truth everywhere, i.e.,

under every possible DGP P ∗, the updated sets accommodate it for every possible sample data ωN .

A straightforward observation summarized by the following proposition is that it is true if and only

if the updated sets never refine the initial set.

Proposition 5.1. The updated sets accommodate the truth everywhere if and only if co(P(ωN)
N ) =

co(PN ) for all ωN .

This condition further implies the data-driven and data-free decisions are always the same. In

other words, it is possible only when the DM ignores the data or applies the full Bayesian updating.

Thus, accommodating the truth everywhere is too strong to be meaningful.

In the following, depending on whether or not the sample size can go to infinity, I consider two

weaker notions of accommodating the truth and provide new updating rules that guarantee these

notions.

5.1 Infinite Sample

When the sample size can increase unboundedly to infinity, the first notion of accommodating the

truth is given by an asymptotic sense. Consider the following definition.

Definition 5.2. The updated sets accommodate the truth asymptotically almost surely if for all

P ∗ ∈ P and for P ∗-almost every ω ∈ Ω, there exists N̄(ω) such that for all N ≥ N̄(ω), the

updated set P(ωN ) accommodates the DGP P ∗.

Intuitively, it says that under any possible DGP P ∗ in the initial set, when the sample size is

sufficiently large, the updated sets will almost surely accommodate the true DGP that generates the

data. Given the characterization result, this definition also implies that the data-driven decisions

will asymptotically almost surely be better than the data-free decisions. Recall from the illustrative

example, maximum likelihood updating is shown to violate this criterion, and thus leads to strictly

worse decisions almost surely.

In this paper, I propose a new updating rule, average-then-update, that can be shown to satisfy

this criterion in the current environment. Before providing the formal definition, some additional

notations are needed.

For sample data ωN , let Φ(ωN) ∈ ∆(S) denote the empirical distribution, i.e., for any out-

come sj ∈ S,

Φ(ωN)(sj) ≡ N−1
N
∑

i=1

I{ωi = sj}.
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For any P ∈ ∆indep(Ω) and for any N , the average of sample marginals, P̄N ∈ ∆(S), is

defined to be the distribution over S given by the average mixture of marginal distributions over

sample experiments, i.e.,

P̄N ≡ N−1
N
∑

i=1

Pi,

where for each i, Pi ∈ ∆(S) is the marginal distribution over the i-th experiment. For any p, q ∈
∆(S), let ρ(p, q) denote the sup-norm distance.22 The average-then-update rule is then formally

defined by the following.

Definition 5.3. The updated sets are given by average-then-update if for some pre-specified ǫ > 0

and for all ωN ,

P(ωN) = {P ∈ P : ρ(P̄N ,Φ(ωN)) < ǫ}.

The average-then-update rule is based on the simple heuristic of retaining a DGP if its average

of sample marginals is close enough to the empirical distribution. Such a heuristic is often used

when the possible DGPs are all i.i.d. for it corresponds to maximum likelihood updating in that

case. When the possible DGPs can be non-identical, while maximum likelihood updating turns out

to be no longer useful, the following theorem shows that this heuristic remains valid.

Theorem 5.4. The updated sets given by average-then-update with any ǫ > 0 accommodate the

truth asymptotically almost surely.

The key intuition of this theorem relies on Kolmogorov’s strong law of large numbers, which

further implies that under any sequence of independent but possibly non-identical distributions, the

empirical distribution converges to the average of sample marginals in the sup-norm almost surely.

This intuition also implies that the independence assumption is not crucial for this result. When

the possible DGPs might have correlations between experiments, as long as there is a version of

the strong law of large numbers that applies, the same conclusion will still hold.

Moreover, average-then-update rule can refine the initial set as shown in the illustrative ex-

ample. Therefore, it can also lead to strictly better data-driven decisions asymptotically almost

surely.

5.2 Finite Sample

When the sample size is only finite, the relevant criterion for accommodating the truth is with some

pre-specified probability or confidence level.

22As S is finite, the choice of distance is not essential.
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Definition 5.5. The updated sets accommodate the truth with an asymptotic level 1 − α if for all

P ∗ ∈ P ,

lim inf
N→∞

P ∗({ωN : P(ωN ) accommodates P ∗}) ≥ 1− α.

In terms of decisions, this definition implies that with any sample data, the data-driven decision

will be objectively better than the data-free decision with at least the asymptotic probability 1−α.

Given this definition, the updated sets are effectively consistent confidence regions of the true

DGP, although the coverage is in a weaker sense of accommodating.23 Thus finding an updating

rule that guarantees this criterion would be equivalent to constructing the corresponding confidence

regions. Constructing confidence regions is theoretically straightforward by exploiting the well-

known duality between confidence regions and hypothesis tests.

Specifically, for any possible DGP P ∈ P , one can use the sample data to test the following

null hypothesis

HP : P ∗ = P

versus the unrestricted alternative hypothesis P ∗ 6= P . Formally, the test will be defined by the

region of acceptance denoted by EN,α(P ) ⊆ SN . Namely, when the sample data ωN belongs to

the region of acceptance, then the null hypothesis will be accepted or not rejected by the data. In

addition, suppose the regions of acceptance satisfy the following condition:

lim inf
N→∞

P (Eα,N(P )) ≥ 1− α.

It simply says that the probability of accepting the null hypothesis when it is true will be asymp-

totically greater than 1− α.

Given any data ωN , let the updated set be the set of DGPs that are accepted by the data under

each one of the individual hypothesis tests:

P(ωN) = {P ∈ P : ωN ∈ Eα,N (P )}.

Then it is straightforward to show that such an updated set contains the true DGP and thus accom-

modates it with the asymptotic level 1− α.

As a result, constructing confidence regions simply boils down to finding the regions of accep-

tance for every possible DGP and every sample size. It is a manageable task when the possible

DGPs are all i.i.d. as it is the standard statistical procedure for constructing confidence regions.

More fundamentally, it is so because there are two convenient features for i.i.d. DGPs. By the

central limit theorem, the regions of acceptance can be constructed using the probability contours

of the corresponding multivariate Gaussian distributions. In the case of i.i.d., conveniently, the

23This difference is not important for the analysis that follows.
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mean vector and covariance matrix of the corresponding Gaussian distribution depend only on the

marginal distribution thus do not change with the sample size. Furthermore, as each i.i.d. distribu-

tion is uniquely determined by its marginal distribution, the number of tests is also fixed regardless

of the sample size.

Both of the convenient features no longer hold when the possible DGPs can be non-identically

distributed. First, in this case, both the mean vector and covariance matrix depend on all the

marginal distributions over the sample experiments. As a result, for every different sample size,

both need to be recalculated even for the same DGP. Moreover, non-identical DGP is determined by

every one of its marginal distributions. Thus, every additional realization can potentially increase

the number of possible DGPs that need to be tested by the data. Therefore, in the presence of

non-identical distributions, directly finding the regions of acceptance for every DGP may be too

complicated to be feasible.

To address this difficulty, I develop a novel and tractable method for constructing confidence

regions when the possible DGPs can be non-identical. Especially, it brings back the convenient

features in the case of i.i.d. and meanwhile guarantees the confidence regions to accommodate the

non-identical DGPs with at least the same asymptotic level as for i.i.d. DGPs.

Formally, for any p ∈ ∆(S), let p∞ denote the i.i.d. distribution over Ω with its marginal equals

p. Let EN,α(p
∞) denote the region of acceptance for p∞ that satisfies the following condition:24

lim inf
n→∞

p∞(EN,α(p
∞)) ≥ 1− α.

Recall that for any P ∈ ∆indep(Ω), P̄N ∈ ∆(S) denotes the average of sample marginals. Then

let EN,α((P̄N)
∞) denote the region of acceptance that satisfies the previous condition under the

i.i.d. distribution (P̄N)
∞. Then consider the following updating rule.

Definition 5.6. The updated sets are given by the robust i.i.d. statistical tests with an asymptotic

level 1− α if for all ωN ,

P(ωN) = {P ∈ P : ωN ∈ EN,α((P̄N)
∞)}.

More explicitly, the robust i.i.d. statistical tests are given by the following two steps:

1. For any sample data ωN , construct a confidence region as if the possible DGPs are all i.i.d..

2. For every DGP in the initial set, retain it in the updated set if its average of sample marginals

equals the marginal of an i.i.d. distribution in the previous confidence region.

24More precisely, suppose they are constructed by the normal approximation.
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Notice that the first step is simply the standard procedure of constructing confidence regions

when the DGPs are all i.i.d.. The essential departure from the case of i.i.d. is the second step

where it robustifies the confidence region obtained under the additional i.i.d. assumption by also

including the possible non-identical DGPs accordingly. Importantly, this robustification step is

given by a simple comparison. Thus it does not add much computational difficulty. In other words,

implementing the robust i.i.d. statistical tests is as tractable as conducting standard statistical

inferences with i.i.d. DGPs.

The following theorem shows that under any possible non-identical DGP, the robust i.i.d. statis-

tical tests can guarantee the updated sets to accommodate the truth with at least the same confidence

level as for the i.i.d. DGPs.

Theorem 5.7. The updated sets given by the robust i.i.d. statistical tests with an asymptotic level

1− α accommodate the truth with the same asymptotic level.

The proof of this theorem relies on a key observation: For any independent but non-identical

distribution P , let EN,α(P ) be constructed by the probability contour of the corresponding mul-

tivariate Gaussian distribution such that the following holds (provided it satisfies the central limit

theorem),

lim inf
N→∞

P (EN,α(P )) ≥ 1− α.

Moreover, let EN,α((P̄N)
∞) denote the probability contour of the multivariate Gaussian distri-

bution corresponding to the i.i.d. distribution (P̄N)
∞. The key observation is that for all P ∈

∆indep(Ω), for all N and α,

EN,α(P ) ⊆ EN,α((P̄N)
∞).

Notice the inclusion further implies that

P (EN,α(P )) ≤ P (EN,α((P̄N)
∞)).

It therefore leads to the conclusion that for testing the null hypothesis HP : P ∗ = P , if the region

of acceptance is given by EN,α((P̄N)
∞), then the probability of accepting P when it is true will be

at least greater than the probability when using EN,α(P ). The latter is furthermore asymptotically

greater than 1 − α by construction. Therefore, the confidence regions constructed by the robust

i.i.d. statistical tests can guarantee at least the same coverage probability for all non-identical

DGPs. Moreover, this lower bound is also tight as i.i.d. DGPs can be present.

The key relation, EN,α(P ) ⊆ EN,α((P̄N)
∞), is shown by deriving a result relating the average

covariance matrices of the two distributions, P and (P̄N)
∞. I show that for any N , subtracting

the average covariance matrix of PN from the average covariance matrix of (P̄N)
∞
N will always

result in a positive semidefinite matrix. This result generalizes a well-known result for binomial
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distributions to the case of multinomial distributions. This well-known result is that the average

variance of an i.i.d. binomial distribution is always weakly greater than the average variance of a

non-identical binomial distribution whose average mean equals the mean of the i.i.d. distribution

(Wang, 1993). This generalization, to the best of my knowledge, is firstly discovered in the present

paper.

Some additional remarks:

Remark 1. Notice that the updated sets given by the robust i.i.d. statistical tests are relatively

more conservative than those constructed directly. Specifically, it is more likely to accept HP when

P ∗ 6= P . In other words, the probability of type II error for each individual test is more significant.

On the one hand, such a drawback may not be an essential issue when the true DGP can only be

partially identified, and in particular, when robustness is a major concern. On the other hand, the

gain from using only the i.i.d. statistical tests is quite obvious.

Remark 2. It might also be a concern that finding the probability contours of the multivariate

Gaussian distributions when |S| is large can be difficult. An alternative option is to use Bonferroni’s

type of confidence region given by constructing confidence intervals for the probability of every

outcome sj with confidence level 1 − α/(d − 1). Then the intersection of all such confidence

intervals will be a confidence region with the confidence level 1− α. However, such a confidence

region is much more conservative than the one constructed using the multivariate distribution. In

this case, showing that Bonferroni’s type of confidence region constructed by i.i.d. distributions

guarantees at least the same coverage probability for non-identical distributions can be directly

implied by invoking the corresponding result in Wang (1993) for binomial distributions.

6 Applications

The decision framework studied in this paper where a decision-maker observes sample data and

makes decisions under model uncertainty is often used to model economic problems such as dy-

namic portfolio choice (Epstein and Schneider, 2007), asset pricing (Epstein and Schneider, 2008;

Illeditsch, 2011), and social learning (De Filippis, Guarino, Jehiel and Kitagawa, 2021; Chen, 2019),

among many others.

In those models, the existing papers often obtain conclusions by assuming that the DM applies

either maximum likelihood updating or full Bayesian updating. For maximum likelihood updating,

the present paper uncovers that it can lead to unreliable inferences and decisions. Thus the con-

clusions there may be misguided by this issue. Full Bayesian updating, on the other hand, might

be too conservative. Especially, it often implies that learning may be ineffective under ambiguity.

In this section, I show that this conclusion crucially hinges on the assumption of full Bayesian
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updating.

In the following, I will first study a specific but commonly studied model to show that learning

can be, in fact, very effective under ambiguity if applying the average-then-update rule. Second, I

will use a stylized example of Bernoulli models with ambiguous nuisance parameters to provide a

concrete illustration of both updating rules proposed in this paper. Importantly, both models also

highlight the tractability of the updating rules.

6.1 Gaussian Signals with Ambiguous Variances

Asymptotic results under full Bayesian updating is often very hard to solve and thus only known for

some specific models. The section considers one of those models. Specifically, it is a generalization

of the setting in Reshidi, Thereze and Zhang (2020), which, in turn, generalizes the model of asset

pricing under ambiguity studied in Epstein and Schneider (2008).

A DM aims to learn the state of the world θ ∈ Θ ≡ R by observing a countably infinite se-

quence of signals denoted by {xi}∞i=1. Each xi is a Gaussian random variable with mean θ and

variance σ2
i , and let gi(θ, σi) denote its probability density function. The sequence of random vari-

ables is mutually independent but every σi is only known to belong to the interval [σ, σ]. In other

words, the signals are given by a sequence of independent but possibly heterogeneous Gaussian

random variables.

For each state θ, let Pθ denote the set of all possible data-generating processes over the se-

quence of signals, i.e.,

Pθ =

{

∞
∏

i=1

gi(θ, σi) : σi ∈ [σ, σ], ∀i
}

.

The initial set of DGPs is thus given by

P = ∪θ∈ΘPθ.

For every N ∈ N, let x̂N ≡ (x̂1, x̂2, · · · , x̂N ) denote a sequence of signal realizations and let

P(x̂N ) denote the updated set of DGPs. Because the DM’s goal in this model is to learn the state

of the world, let Θ(x̂N ) denote the set of states that are compatible with the updated set of DGPs:

Θ(x̂N) ≡ {θ ∈ Θ : Pθ ∩ P(x̂N ) 6= ∅}.

In other words, as long as there exists a DGP that is compatible with the state θ in the updated set,

then the state θ will be considered possible.

First, notice that applying full Bayesian updating here is to simply retain all the possible DGPs.

It thus implies P(x̂N ) ≡ P and hence Θ(x̂N) ≡ Θ for all x̂N . In other words, directly applying
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full Bayesian updating is equivalent to completely ignoring the signals in this model.

In Reshidi, Thereze and Zhang (2020), they apply full Bayesian updating differently by further

assigning a prior distribution µ over the possible states of the world.25 Then applying full Bayesian

updating is to apply Bayes’ rule to update this prior distribution considering every possible DGP.

Specifically, for each θ let Pθ ∈ Pθ denote a specific DGP, the posterior probability µ(θ|x̂N) is

then given by

µ(θ|x̂N) = µ(θ)Pθ(x̂
N)

∫

Θ
µ(θ′)Pθ′(x̂N )dµ(θ′)

.

Full Bayesian updating thus leads to a set of posteriors over the states of the world. Their main

result (Theorem 1) shows that under any state θ and possible DGP, the set of posteriors converges

almost surely to a set of degenerate distributions over a non-singleton set of states denoted by

[m(θ), m(θ)]. In other words, applying full Bayesian updating by assigning a prior distribution

over the states still asymptotically almost surely leads to a fully ambiguous belief over a non-

vanishing set of possible states. In other words, ambiguity does not vanish.

For applying the average-then-update rule, because the goal in this model is to learn the state of

the world θ, instead of considering the empirical distribution of the realized signals, it is sufficient

to consider only their sample mean. In this case, the average-then-update rule can be applied in the

following way:

Definition 6.1. The updated sets of states are given by applying the average-then update rule if for

some pre-specified ǫ > 0 and for all x̂N ,

Θ(x̂N) =

{

θ ∈ Θ :

∣

∣

∣

∣

∣

N−1
N
∑

i=1

x̂i − θ

∣

∣

∣

∣

∣

< ǫ

}

.

By definition, the updated set of states retains a state if it is close enough to the sample mean.

Notice that the “average” is given by considering the average of the mean of the marginal distribu-

tions. In this simple case, the mean of the marginal distributions are all equal to θ. The following

proposition shows that applying average-then-update here can guarantee the updated sets of states

to contain the true state asymptotically almost surely under any possible DGP.

Proposition 6.2. For any θ∗ ∈ Θ and any DGP P ∗ ∈ Pθ∗ , the updated sets of states given by

applying the average-then-update rule with any ǫ > 0 contain the true state asymptotically almost

surely, i.e., for any ǫ > 0,

lim
N→∞

P ∗(θ∗ ∈ Θ(x̂N )) = 1.

25While they treat the prior distribution as an additional assumption, it can also be considered as a part of the

updating rule.
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Proof of Proposition 6.2. This proposition is proved by verifying Kolmogorov’s strong law of

large numbers holds, which then implies the sample mean converges almost surely to the aver-

age mean, which is θ∗ for any possible DGP under the state θ∗. See Appendix C.1 for the exact

definition and condition.

Because the conclusion holds for any ǫ > 0, one can then let the ǫ to be arbitrarily small so

that the updated set of states is arbitrarily precise. As a result, even under a sequence of Gaussian

signals with unknown and possibly heterogeneous variances, the true state can still be asymptot-

ically almost surely learned from the realized signals. This conclusion stands in clear contrast to

those obtained under full Bayesian updating. Therefore, learning can indeed be very effective even

under ambiguity.

More importantly, the use of average-then-update in this model is justified in terms of improv-

ing decisions by the characterization results provided in this paper. A common motivation for

applying full Bayesian updating is that the DM may concern about robustness and thus update

all the possible DGPs. The main finding in this paper shows that one does not need to be that

conservative and can still guarantee a robust improvement in decisions.

In an asset pricing model, consider that θ represents the dividend of an asset, and the Gaussian

signal xi represents intangible information such as news reports. When there is only one sig-

nal realization, and the representative agent applies full Bayesian updating, Epstein and Schneider

(2008) show that the equilibrium prices when the variance of xi is ambiguous are different from

those when the variance is precisely known. They further conclude that poor information quality,

i.e., ambiguity about variances of the signals, has an additional effect on the equilibrium prices for

assets in a financial market.

Proposition 6.2 implies that such an effect will eventually vanish when the number of signals

goes to infinity and the representative agent applies the average-then update rule.26 In this case,

the agent will asymptotically learn the true dividend. This is the same as when the agent precisely

knows the variances of the Gaussian signals. In other words, the prior ambiguity over the variances

of the signals will be eventually “swamped” by a sufficiently large number of observations. There-

fore the conclusion here implies that information quality per se does not have a persistent impact

on the equilibrium prices of the assets.

It is true that all the Gaussian signals have the same mean is a crucial driving force for the

asymptotic identification of the true state. Indeed, when there is also ambiguity about the mean of

the signals, it is straightforward to show that, under the average-then-update rule, the DM can still

asymptotically be ambiguous about a non-vanishing set of states. However, the essential takeaway

here is that, average-then-update provides a tractable tool for studying the asymptotic learning

26Instead, if the agent still applies full Bayesian updating, their result implies that such an effect will persist. See

Guidolin and Rinaldi (2013) for a summary.
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under such ambiguity. The asymptotic result under full Bayesian updating in this case, to the best

of my knowledge, is unknown in the literature.

Finally, the conclusion of Proposition 6.2 can also be obtained by applying the average-then-

update rule directly using the empirical distribution. Notice that because the random variable xi

takes value in an infinite set R, the conclusion cannot be directly implied by Theorem 5.4. Instead,

it can be shown by invoking a generalized Glivenko-Cantelli theorem for independent but non-

identically distributed random variables derived by Wellner (1981).

6.2 Bernoulli Models with Ambiguous Nuisance Parameters

To provide a more concrete illustration of both updating rules proposed in this paper, I consider

another stylized model proposed in Walley (1991). A similar model is used to model dynamic

portfolio choice under ambiguity in Epstein and Schneider (2007).

Let Ω = {1, 0}∞. It is convenient to consider a set of structural parameters denoted by Θ =

[0, 1]. Each structural parameter θ can be thought of as a rough estimate about the probability of

getting the outcome 1 from an experiment. However, the exact probability for each experiment will

be also determined by a nuisance parameter ψi ∈ [0, 1] that can be different across experiments.

Specifically, for any structural parameter θ, the probability of observing outcome 1 in the i-th

experiment is given by

(1− δ)θ + δψi

for some fixed δ ∈ [0, 1]. Hereafter, I use the probability of outcome 1 to denote a probability

distribution over {1, 0}.

Because each ψi is only known to be contained in the interval [0, 1], each structural parameter

θ is thus corresponding to a set of possible DGPs given by the following

Pθ = {P ∈ ∆indep(Ω) : Pi ∈ [(1− δ)θ, (1− δ)θ + δ], ∀i}.

The initial set of DGPs is therefore

P = ∪θ∈ΘPθ.

The learning goal in this model is to predict the realizations of future experiments. For any

DGP P , I use Pi=N+1 to denote the marginal distribution over the (N + 1)-th experiment. The

same notation is also used for sets of DGPs. Then the initial prediction about the (N + 1)-th

experiment is simply,

Pi=N+1 = [0, 1].

First, consider the DM’s asymptotic prediction using the average-then-update rule. For sim-
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plicity, I will ignore the pre-specified ǫ by taking it to be arbitrarily small. Then the updated set

will be given by the following:

P(ωN ) =

{

P ∈ P : N−1
N
∑

i=1

Pi = Φ(ωN )

}

.

For any θ ∈ Θ there exists P ∈ Pθ that satisfies the above equation if and only if

Φ(ωN ) ∈ [(1− δ)θ, (1− δ)θ + δ].

As a result, the updated set of structural parameters, defined by

Θ(ωN) ≡ {θ ∈ Θ : Pθ ∩ P(ωN) 6= ∅}

is then given by

Θ(ωN) =

[

max

{

Φ(ωN )− δ

1− δ
, 0

}

,min

{

Φ(ωN )

1− δ
, 1

}]

.

Notice the updated prediction is also completely determined by the updated set of structural pa-

rameters and given by

P(ωN)i=N+1 = [max {Φ(ωN)− δ, 0} ,min {Φ(ωN) + δ, 1}] .

Therefore, the asymptotic prediction for the future experiment under the average-then-update rule

is simply the δ “fattening” of the observed empirical frequency.

For a comparison, consider the asymptotic prediction under the maximum likelihood updating

which can be shown to be

PML(ωN)i=N+1 = [max {Φ(ωN)− (1− Φ(ωN ))δ, 0} ,min {Φ(ωN) + Φ(ωN )δ, 1}] .

Notice it is always a subinterval of the prediction under average-then-update. As a result, the

true marginal distribution governing the future experiment may not be covered by the asymptotic

prediction given by maximum likelihood updating. For example, when

θ =
Φ(ωN )− δ

1− δ
> 0

and ψi = 1 for all i from 1 to N . The empirical frequency also converges to Φ(ωN). However, if

ψN+1 = 0, then the true marginal distribution over the (N+1)-th experiment is (Φ(ωN)−δ) which

is not covered by the prediction under the maximum likelihood updating. Therefore, the resulting
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decisions can be strictly worse than simply ignoring the data, also confirming the observation in

the illustrative example.

Next, consider the finite-sample prediction with an asymptotic level 1 − α given by applying

the robust i.i.d. statistical tests. For any sample data ωN , the first step is to construct the confidence

interval as if the underlying DGPs are all i.i.d. binomial distributions. Specifically, the correspond-

ing confidence interval here is the Wilson Interval27. Let zα/2 denote the upper 100(α/2)% quantile

of the standard normal distribution. Let [W (ωN),W (ωN)] denote the Wilson Interval which has

the following closed-form expression:

W (ωN) =
NΦ(ωN ) + z2α/2/2

N + z2α/2
+
zα/2N

1/2

N + z2α/2

(

Φ(ωN)(1− Φ(ωN)) + z2α/2/(4N)
)1/2

,

W (ωN) =
NΦ(ωN ) + z2α/2/2

N + z2α/2
− zα/2N

1/2

N + z2α/2

(

Φ(ωN )(1− Φ(ωN)) + z2α/2/(4N)
)1/2

.

Given the i.i.d. confidence interval, the second step is to consider non-identical DGPs whose

average of sample marginals falls into this confidence interval. It can be shown that a structural

parameter θ is retained in the updated set if and only if

[(1− δ)θ, (1− δ)θ + δ] ∩ [W (ωN),W (ωN)] 6= ∅.

Thus the updated set is then given by

Θ(ωN) =

[

max

{

W (ωN)− δ

1− δ
, 0

}

,min

{

W (ωN)

1− δ
, 1

}]

.

Similarly, the updated prediction in this case is

P(ωN)i=N+1 =
[

max {W (ωN)− δ, 0} ,min
{

W (ωN) + δ, 1
}]

.

Notice that it is also simply the δ “fattening” of the Wilson Interval. Both the asymptotic and finite-

sample predictions under the proposed updating rules in this model have tractable expressions and

also intuitive interpretations.

27Different from the commonly used Wald Interval which uses the sample variance, Wilson Interval is constructed

by directly inverting the statistical tests, thus using the null variance. Wilson Interval has considerably better asymp-

totic performance than the Wald Interval. See Brown, Cai and DasGupta (2001) for an extensive discussion.
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7 Concluding Remarks

This paper emphasizes the role of statistical inference in making decisions facing a set of possible

distributions. It borrows and combines methodologies from two strands of literature, statistical

decision theory and dynamic decisions under ambiguity, and shows that sample data can robustly

and objectively improve such decisions if and only if the inference from data accommodates the

true DGP.

When there is limited knowledge about how sample data is drawn from a population of het-

erogeneous individuals, the decision-maker might contemplate a set of independent but possibly

non-identical distributions. In this case, this paper uncovers that common inference methods, such

as maximum likelihood and Bayesian updating often fail to accommodate the true DGP.

To address this problem, this paper develops two novel and tractable updating rules, average-

then-update and robust i.i.d. statistical tests. They are shown to guarantee the updated sets to ac-

commodate the true DGP and thus robustly improve decisions either asymptotically almost surely

or in finite sample with a pre-specified confidence level.

Finally, this paper also studies a general decision framework that can be easily adapted for

applications involving model uncertainty and ambiguity. The proposed updating rules prove to be

tractable tools for studying those problems. More importantly, applying the proposed updating

rules often leads to different conclusions from the existing models. Thus, it creates an avenue

for new research questions and findings. This paper explores two examples along this direction.

Formal development is left for future research.
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Appendix A Additional Discussions

A.1 The Illustrative Example

In this subsection, I will show that applying Bayesian updating in the illustrative example also

asymptotically almost surely leads to rule out the true DGP, i.e., assigns a vanishingly small pos-

terior probability to the true DGP.

For simplicity, suppose the DM’s prior distribution over the possible DGPs are supported on

the following set of DGPs: {0.6, 1}∞ ∪ {(1/3)∞} where

{0.6, 1}∞ ≡ {P ∈ ∆indep({1, 0}) : Pi ∈ {0.6, 1}, ∀i},

Then for each N , let {0.6, 1}N ∪ {(1/3)N} denote the set of possible marginals over the sample

experiments given the initial set. Notice that such a set is finite with a cardinality of (2N + 1) and

hence also changes with the sample size. Thus, for each sample data ωN , in order to apply Bayesian

updating, one needs to specify a prior distribution µN over the set of such marginals. Then applying

Bayesian updating conditioning on the data will lead to a posterior over such marginals.

Consider when the prior distribution µN is a uniform distribution, i.e. µN(PN) ≡ 1/(2N + 1)

for all P . Then the posterior probability of each marginal over sample experiments will be given

by

µN(PN |ωN) =
PN (ωN)µN(PN)

∑

P ′

N

P ′
N(ωN)µN(P

′
N)

=
PN(ωN)

∑

P ′

N

P ′
N(ωN)

.

Notice it is proportional to the likelihood of observing the sample data. Therefore when the true

DGP is (1/3)∞ and as N goes to infinity, the posterior probability of the true marginal will be

arbitrarily small compared to some other possible marginal in the set {0.6, 1}N . As a result, the

posterior probability of the true DGP under Bayesian updating will asymptotically almost surely

goes to zero.

One might notice that while the posterior asymptoticly almost surely rules out the true DGP,

the prior distribution also assigns a vanishingly small probability to the true DGP. This is not a

problem if the DM applies the maxmin expected-utility criterion for making the data-free decision.

However, if the DM chooses to apply the expected-utility criterion using the prior distribution, then

data-free and data-driven decisions are going to coincide in this example.

Consider the following example which further shows that under Bayesian updating, data can

still asymptotically almost surely lead to strictly worse decisions even under the expected-utility

criterion.
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Example. Let Ω = {1, 0}∞ and consider the following initial set of DGPs:

{0.4, 0.5}∞ ∪ {0.6, 1}∞.

To facilitate discussion, let

P1 = {0.4, 0.5}∞ and P2 = {0.6, 1}∞.

Suppose initially the DM considers a uniform distribution over all the possible DGPs. Thus for

each N , the prior distribution µN over the marginals over sample experiments is thus given by the

following:

µN(PN) = 1/2N+1.

Consider a decision problem DN = {f, x} where f depends only on the (N + 1)-th experiment

and pays 1 and 0 in state 1 and 0 respectively. x pays a constant payoff of 0.55. Notice that the

expected payoff from f under the prior distribution is

1

2
×
(

1

2
× 0.4 +

1

2
× 0.5

)

+
1

2
×

(

1

2
× 0.6 +

1

2
× 1

)

= 0.625 > 0.55.

The data-free decision according to the expected-utility criterion is thus to choose f over x.

Suppose the true DGP is (0.6)∞, thus asymptotically the DM almost surely observes sample

data with an empirical frequency of 1 close to 0.6. The observation here is that, the posterior

distribution given such data will eventually concentrate on the marginals in P1. Notice that the

average likelihood of observing any data under P1 is the same as the likelihood under the i.i.d.

distribution (0.45)∞. The same also applies to P2 and it is the same as (0.8)∞. Because 0.45 is

closer to 0.6 in terms of the Kullback-Leibler divergence, the well-known result by Berk (1966)

further implies the posterior distribution will eventually concentrate on (0.45)∞, i.e., the marginals

in P1.

According to such a posterior distribution, notice that the expected payoff of the act f will

be close to 0.45, strictly lower than the payoff from x. Thus the data-driven decision will be

choosing x, although it is strictly worse than the DM’s objective payoff from her data-free decision

of choosing f (0.6).

A.2 Minimax Regret Criterion

This subsection presents an example where the DM applies the minimax regret criterion.

Let Ω = {1, 0} and I use the probability of 1 to denote any probability distribution over Ω. Let

the initial set be P = [0, 1], i.e. the set of all possible probability distributions over Ω.
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Consider a basic decision problem Db = {f, x} where f pays 1 in state 1 and pays 0 in state

0 and x always pays 2/3. According to the initial set, the maximum regret from taking these two

actions are given by:

R(f) = max
P∈P

[P (1)(1− 1) + P (0)(2/3− 0)] = 2/3,

R(x) = max
P∈P

[P (1)(1− 2/3) + P (0)(2/3− 2/3)] = 1/3.

According to the minimax regret criterion, the data-free decision is thus to choose x. Next,

suppose the DM’s updated set is given by P ′ = [3/5, 1]. Then for the same basic decision problem,

one has

R′(f) = max
P∈P ′

[P (1)(1− 1) + P (0)(2/3− 0)] = 4/15,

R′(x) = max
P∈P ′

[P (1)(1− 2/3) + P (0)(2/3− 2/3)] = 1/3.

Therefore, the data-driven decision becomes to choose f . However, when P ∗ ∈ [3/5, 2/3] which

is contained in the updated set, objective payoff is higher from the data-free decision.
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Appendix B Proofs of Results in Section 4

As this section studies the static problem of comparing two MEU decisions, to simplify notations,

consider the following equivalent formulation of the problems in this section.

Let Ω be a state space and ∆(Ω) be the set of all the countably additive probability measures

over Ω endowed with the weak* topology. Let P be a closed and convex subset of ∆(Ω) and P ′ a

closed and convex subset of P . Fix any P ∗ ∈ P .

Let f : Ω → [0, 1] denote an act and F the set of all acts. A compact set D ⊆ F is a

decision problem. Let D denote the set of all decision problems. Let c(D) and c′(D) denote the

MEU decisions based on P and P ′. Let Db denote a basic decision problem and let Db be defined

analogously.

To see this is equivalent, one can let SN = Ω. The closed and convex hull of the marginals

over SN for the initial and updated sets are given by P and P ′ respectively. Because P and P ′ are

arbitrary, the additional independence requirement can always be satisfied.

B.1 Proof of Theorem 4.2

Under the simplified formulation, this theorem is equivalent to the following claim:

Claim. W (c′(Db), P
∗) ≥ W (c(Db), P

∗) for all Db ∈ Db if and only if P ∗ ∈ P ′. Moreover, the

strict inequality holds for some Db if and only if P ′ $ P .

To prove the claim, first consider the “if” direction.

IF. Consider any basic decision problem Db = {f, x}. Notice that if c(Db) = c′(Db), then the

conclusion holds trivially. Thus it suffices to consider Db where the two decisions differ.

Fix any such Db, because P ′ ⊆ P , it has to be the case that c(Db) = x and c′(Db) = f . Notice

that when f and x are indifferent under c(·), because of the tie-breaking assumption (Assumption

3), if c(Db) = f , then c′(Db) = f ; if c(Db) = x, then c′(Db) can be either x or f .

Given P ∗ ∈ P ′, for any act f in such Db one has,

∫

Ω

f(ω)dP ∗(ω) ≥ min
P∈P ′

∫

Ω

f(ω)dP (ω) > x,

where the second strict inequality is because c′(Db) = f and c(Db) = x. (If indifferent, then

c′(Db) = x.)

It thus implies

W (c′(Db), P
∗) > x = W (c(Db), P

∗)
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for all such Db ∈ Db.

ONLY IF. Consider the contrapositive statement. If P ∗ /∈ P ′, applying the strict separating

hyperplane theorem implies the existence of an act f and a constant act x such that

min
P∈P ′

∫

Ω

f(ω)dP > x >

∫

Ω

f(ω)dP ∗ ≥ min
P∈P

∫

Ω

f(ω)dP (ω).

Then for the basic decision problem Db = {f, x}, one has c(Db) = x and c′(Db) = f .

Moreover,

W (c′(Db), P
∗) < x = W (c(Db), P

∗).

Thus, the conclusion.

Finally, for the proof of the second statement of the claim, it can be routinely shown by applying

the strict separating hyperplane theorem. �

B.2 Proof of Theorem 4.4

This theorem is an implication of the following slightly more general theorem.

Theorem B.1. For any two DGPs P ∗ and P̂ ∗ with P ∗N 6= P̂ ∗N , objective dominance across all

decision problems holds simultaneously under both DGPs if and only if co(P(ωN)
N) = co(PN ).

Under the simplified formulation, this theorem is equivalent to the following claim:

Claim. Given P ∗ 6= P̂ ∗, W (c′(D), P ∗) ≥ W (c(D), P ∗) and W (c′(D), P̂ ∗) ≥ W (c(D), P̂ ∗) for

all D ∈ D if and only if P = P ′.

The proof of this claim relies on the following lemma:

Lemma B.2. W (c′(D), P ∗) ≥ W (c(D), P ∗) for all D ∈ D if and only if there exists α ∈ [0, 1]

such that P ′ = αP ∗ + (1− α)P .

Given this lemma, notice that if P ∗ 6= P̂ ∗, the only way for P ′ to satisfy the required relation

for both of them is when α = 0, i.e. P ′ = P . Therefore, this proves the claim. �

Proof of Lemma B.2. IF. The inequality is always true if c(D) = c′(D). Thus fix any decision

problem D where the two decisions are different, let f and f ′ denote c(D) and c′(D) respectively.

Given the tie-breaking assumption (Assumption 3), this is possible only when α 6= 0, thus hereafter

α > 0.
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By definition, one has

min
P∈P

∫

Ω

f(ω)dP (ω) ≥ min
P∈P

∫

Ω

f ′(ω)dP (ω), (B.1)

and

min
P∈P ′

∫

Ω

f ′(ω)dP (ω) ≥ min
P∈P ′

∫

Ω

f(ω)dP (ω). (B.2)

Plugging the premise condition to the inequality (B.2) to get,

α

∫

Ω

f ′(ω)dP ∗(ω)+(1−α)min
P∈P

∫

Ω

f ′(ω)dP (ω) ≥ α

∫

Ω

f(ω)dP ∗(ω)+(1−α)min
P∈P

∫

Ω

f(ω)dP (ω).

Rearranging terms to get,

α

[
∫

Ω

f ′(ω)dP ∗(ω)−
∫

Ω

f(ω)dP ∗(ω)

]

≥ (1−α)
[

min
P∈P

∫

Ω

f(ω)dP (ω)−min
P∈P

∫

Ω

f ′(ω)dP (ω)

]

≥ 0,

where the last inequality follows from inequality (B.1). As α > 0, one has,

W (c′(D), P ∗)−W (c(D), P ∗) ≥ 0.

ONLY IF. Consider the contrapositive statement: If there does not exist any α ∈ [0, 1] such

that the equation holds, then there exists D with W (c′(D), P ∗) < W (c(D), P ∗).

If P ∗ /∈ P ′, then the conclusion can be implied by Theorem 4.2. Consider the case where

P ∗ ∈ P ′. By assumption, there exists α ∈ [0, 1] such that

P ′ $ αP ∗ + (1− α)P,

and also some P ′ ∈ P ′ such that for all β > α,

P ′ /∈ βP ∗ + (1− β)P.

In other words, P ′ is tangent to αP ∗ + (1 − α)P at P ′. Thus, there exists an act f whose

minimum expectation among both P ′ and αP ∗ + (1 − α)P are all achieved at P ′. It therefore

implies that,

min
P∈P ′

W (f, P ) = min
P∈αP ∗+(1−α)P

W (f, P ) = αW (f, P ∗) + (1− α)min
P∈P

W (f, P ).

Next, because P ′ $ αP ∗ + (1 − α)P , by the strict separating hyperplane theorem, there also
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must exist an act g such that for some β > α,

αW (g, P ∗) + (1− α)min
P∈P

W (g, P ) < min
P∈P ′

W (g, P ) = βW (g, P ∗) + (1− β)min
P∈P

W (g, P )

where β > α follows by the fact that for such g, W (g, P ∗) > min
P∈P

W (g, P ).

Normalize f and g by taking mixtures with constant acts to get for some ǫ > 0 with 2ǫ < β−α,

min
P∈P

W (f, P ) = 1/2 > 1/2− ǫ = min
P∈P

W (g, P )

W (f, P ∗) = 1 > 1− ǫ = W (g, P ∗).

Then for the decision problemD = {f, g}. It is the case that c(D) = f and c′(D) = g. The second

claim follows from

min
P∈P ′

W (f, P ) = αW (f, P ∗) + (1− α)min
P∈P

W (f, P )

= α + (1− α)/2

< β(1− ǫ) + (1− β)(1/2− ǫ)

= βW (g, P ∗) + (1− β)min
P∈P

W (g, P2)

= min
P∈P ′

W (g, P )

where the strict inequality is equivalent to 2ǫ < β − α. But W (f, P ∗) > W (g, P ∗), i.e. the

conclusion.

B.3 Proof of Theorem 4.6

Similarly, this theorem is equivalent to the following claim:

Claim. W (c′(D), P ∗) ≥ min
P∈P

W (c(D), P ) for all D ∈ D if and only of P ∗ ∈ P ′.

First consider the “if” direction.

IF. If P ∗ ∈ P ′ ⊆ P , then for any D,

W (c′(D), P ∗) ≥ min
P∈P ′

W (c′(D), P )

≥ min
P∈P ′

W (c(D), P )

≥ min
P∈P

W (c(D), P )
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where the first inequality follows from P ∗ ∈ P ′, the second inequality follows from the fact that

c′(D) is optimal with respect to P ′, the third inequality follows from P ′ ⊆ P .

ONLY IF. Consider the contrapositive statement and notice that by Theorem 4.2, it further

implies the existence of a basic decision problem Db with

W (c′(Db), P
∗) < W (c(Db), P

∗) = min
P∈P

W (c(Db), P ),

where the equality follows from the fact that c(Db) = x in this case. Thus the conclusion. �

38



Appendix C Proofs of Results in Section 5

C.1 Proof of Theorem 5.4

The main argument is to show the possible DGPs satisfy the condition of Kolmogorov’s strong law

of large numbers. For reference, I provide the exact definition here.

Kolmogorov’s SLLN Let {Xi} be a sequence of independent random variables. Define YN =

N−1
∑N

i=1Xi and µ̄N = N−1
∑N

i=1 µi. If E[Xi] = µi and var(Xi) = σ2
i ,

lim
N→∞

N
∑

i=1

σ2
i

i2
<∞

then

YN − µ̄N → 0 a.s.

as N → ∞.

Fix any possible DGP P ∈ ∆indep(Ω). For any sj ∈ S, let Xi = I{ωi = sj}. Then Xi’s are

independent random variables with E[Xi] = Pi(sj) and var(Xi) = Pi(sj)(1 − Pi(sj)). To check

the condition for the SLLN holds,

lim
N→∞

N
∑

i=1

σ2
i

i2
= lim

N→∞

N
∑

i=1

Pi(sj)(1− Pi(sj))

i2

≤ lim
N→∞

N
∑

i=1

1

i2
=
π2

6
<∞.

Therefore, it implies that Φ(ωN )(sj)− P̄N(sj) → 0 almost surely for any sj ∈ S.

SLLN implies that for P -almost every ω and for any ǫ > 0, there exists N̄(ω, ǫ, sj) such that

for all N ≥ N̄(ω, ǫ, sj), |Φ(ωN)(sj)− P̄N(sj)| < ǫ.

By definition, for any ǫ > 0, the updated set given by the average-then-update rule can be

written as

P(ωN ) = {P ∈ P : ∩sj∈S|P̄N(sj)− Φ(ωN)(sj)| < ǫ}.

Let N̄(ω, ǫ) = max{N̄(ω, ǫ, sj} (it is finite as |S| is finite), and then SLLN implies that for all

N ≥ N̄(ω, ǫ), P ∈ P(ωN ). Thus, for any ǫ > 0, P(ωN) contains the truth, hence accommodates

the truth asymptotically. �
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C.2 Proof of Theorem 5.7

The proof of this theorem is established by the following two lemmas which will be proved later.

Lemma C.1. For anyP ∈ P , a central limit theorem holds so that the regions of acceptance can be

constructed by the probability contours of the corresponding multivariate Gaussian distributions.

Lemma C.2. For any P ∈ P and any N , let EN,α(P ) and EN,α((P̄N)
∞) be the two probability

contours of the corresponding Gaussian distributions such that (this is guaranteed by Lemma C.1),

lim inf
n→∞

P (EN,α(P )) ≥ 1− α

lim inf
n→∞

(P̄N)
∞(EN,α((P̄N)

∞)) ≥ 1− α

Then,

EN,α(P ) ⊆ EN,α((P̄N)
∞).

Proof of the Theorem. Lemma C.2 implies that for any P ∈ P and any N ,

P (EN,α(P )) ≤ P (EN,α((P̄N)
∞)).

By construction, the following is true,

lim inf
n→∞

P (EN,α(P )) ≥ 1− α.

Therefore, one can further derive,

lim inf
n→∞

P (EN,α((P̄N)
∞)) ≥ lim inf

n→∞
P (EN,α(P )) ≥ 1− α.

Finally, notice that

lim inf
n→∞

P ({ωN : PN ∈ co(P(ωn)N)}) ≥ lim inf
n→∞

P ({ωN : P ∈ P(ωn)})

= lim inf
n→∞

P (EN,α((P̄N)
∞))

≥ 1− α

Thus the conclusion. �

Before proving the two lemmas, some additional notations are needed.
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Recall that S is finite. Let S = {s1, · · · , sd} and for s = s1, · · · , sd−1, let es denote the unit

vector in the corresponding Euclidean space Rd−1.

I use Xi : Ω → Rd−1 to denote a (d − 1)-dimensional random vector such that Xi = eωi
if

ωi = s1, · · · , sd−1 and Xi = 0 if ωi = sd. For each P , let Pi denote the (d−1)-dimensional vector

such that the corresponding coordinates are given by Pi(s) for s = s1, · · · , sd−1.

If P is the underlying probability distribution, then the mean vector of Xi is given by µi = Pi.

Moreover, the covariance matrix Σi of the random vector Xi is given by

[Σi]kl =







Pi(sk)(1− Pi(sk)) if k = l

−Pi(sk)Pi(sl) if k 6= l

Notice that by the full-support assumption, the covariance matrix is always positive definite.

Let X̄N ≡ N−1
∑N

i=1Xi be the random vector given by the average of the sequence of random

vectors. Let µ̄N ≡ N−1
∑N

i=1µi and Σ̄N ≡ N−1
∑N

i=1Σi.

Proof of Lemma C.1. The proof is to show a multivariate central limit theorem (CLT) for in-

dependent but non-identically distributed random vectors holds for all possible DGP P ∈ P . The

proof is rather standard. I provide it here only for completeness. The reader should feel free to

skip this proof if can be convinced it is true.

Specifically, for any P ∈ P , want to show
√
n(X̄N − µ̄N)

D−→ N
(

0, Σ̄N

)

, the standard ar-

gument is given by combining the Liapounov’s CLT for Triangular arrays with the Cramer-Wold

device. The following definitions are taken from White (1984).

Liapounov’s CLT for Triangular Arrays. Let {ZNi} be a sequence of independent random

scalars with µNi ≡ E[ZNi], σ
2
Ni = var(ZNi), and E|ZNi − µNi|2+δ < ∆ < ∞ for some δ > 0

and all N and i. Define Z̄N ≡ N−1
∑N

i=1 ZNi, µ̄N ≡ N−1
∑N

i=1 µNi and σ̄2
N ≡ var(

√
NZ̄N) =

N−1
∑N

i=1 σ
2
Ni. If σ̄2

N > δ′ > 0 for all N sufficiently large, then

√
N(Z̄N − µ̄N)/σ̄N

D−→ N(0, 1).

Cramer-Wold device. Let {bN} be a sequence of random k × 1 vectors and suppose that for

any real k × 1 vector λ such that λ′λ = 1, λ′bN
D−→ λ′Z where Z is a k × 1 vector with joint

distribution function F . Then the limiting distribution of bN exists and equals F .

For any λ, consider the sequence of random variables given by Yi = λ′Xi. Then one has

E[Yi] = λ′µi and var(Yi) = λ′Σiλ.
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Then for ȲN = N−1
∑N

i=1 Yi, one has E[ȲN ] = λ′µ̄N and

var(
√
NȲN) = λ′Σ̄Nλ = λ′(Σ̄N

1/2
)′(Σ̄N

1/2
)λ.

The existence of Σ̄N

1/2
is guaranteed by the fact that Σ̄N is positive definite. Moreover, let it

be the positive square root of Σ̄N so that it is unique, symmetric and positive definite (Theorem

7.2.6 in Horn and Johnson (2012)).

Let ZNi = λ′Σ̄N

−1/2
Xi . Then one has E[Z̄N ] = λ′Σ̄N

−1/2
µ̄ and

var(
√
NZ̄N) = λ′(Σ̄N

−1/2
)′var(

√
NX̄N)Σ̄N

−1/2
λ

= λ′(Σ̄N

−1/2
)′(Σ̄N

1/2
)′(Σ̄N

1/2
)(Σ̄N

−1/2
)λ

= 1.

If the Liapounov’s CLT holds, then
√
N(Z̄N−E[Z̄N ])

D−→ N(0, 1). Applying the Cramer-Wold

device will imply the multivariate CLT.

Thus, it remains to show that the Liapounov condition holds for any P ∈ P and for any λ,

which is, for some δ > 0, there exists ∆ <∞ such that for any N and i,

E|ZNi|2+δ < ∆.

By Minkowski’s inequality,

E[|ZNi|2+δ] ≤
∑

j

λjE|(Σ̄N

−1/2
Xi)j|2+δ.

Notice that Xi is either 0 or ek. The RHS is strictly less than the following

(max
k,l

[Σ̄N

−1/2
]kl)

2+δ.

Since [Σ̄N

−1/2
] is symmetric and positive semidefinite, the largest entry must be on the diag-

onal. The trace of the matrix is equal to the sums of the eigenvalues. Both the diagonal elements

and eigenvalues are nonnegative due to positive definiteness (Corollay 7.1.5 in Horn and Johnson

(2012)). Thus, it suffices to show the eigenvalues of Σ̄N

−1/2
are bounded from above.

Moreover, as each eigenvalue of Σ̄N

−1/2
is the square root of the eigenvalue of Σ̄n

−1
. Thus,

one only needs to show the eigenvalues of Σ̄N

−1
are bounded from above, which is equivalent to

showing the eigenvalues of Σ̄N are bounded away from zero (Theorem 4.1.10 in Horn and Johnson

(2012)).
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For every Σi, the smallest eigenvalue is bounded below by minj Pi(sj) (Watson, 1996). Fur-

thermore, as each Σi is also symmetric and positive definite, the minimum eigenvalue of
∑n

i=1Σi

(n times the minimum eigenvalue of Σ̄N ) is greater than the sum of the minimum eigenvalues of

every Σi (Corollary 4.3.15 in Horn and Johnson (2012)).

Therefore, it suffices to have Pi(sj) be bounded away from zero for every i and j. By assump-

tion, P is compact thus minj,i Pi(sj) exists. By full-support assumption, the minimum is always

positive. �

Proof of Lemma C.2. For a (d−1)-dimensional random vectorX ∼ Nd−1(µ,Σ), the ellipsoidal

region given by the set of all vectors x satisfying the following has a probability of 1− α:

(x− µ)TΣ−1(x− µ) ≤ χ2
d−1(α),

where χ2
d−1(α) is the upper 100α% quantile for the chi-square distribution with d − 1 degrees of

freedom. By definition, the set of all such vectors is the probability contour of the multivariate

Gaussian distribution Nd−1(µ,Σ) with probability 1− α.

For any P ∈ ∆indep(Ω), let EN,α(P ) denote the probability contour of the multivariate Gaus-

sian distribution Nd−1(µN , Σ̄N ) with probability 1− α.

Let Σ̂N denote the covariance matrix of the i.i.d. distribution (P̄N)
∞. Then let EN,α((P̄N)

∞)

denote the corresponding probability contour for the multivariate Gaussian distributionNd−1(µN , Σ̂N).

Notice that for the two Gaussian distributions, their mean vectors are the same but their covariance

matrices are different.

To show that EN,α(P ) ⊆ EN,α((P̄N)
∞) for any N and α ∈ [0, 1], it suffices to show that for

any N , any constant c, and for all x,

(x− µ)T Σ̄N

−1
(x− µ) ≤ c⇒ (x− µ)T Σ̂N

−1
(x− µ) ≤ c,

which is further equivalent to

(x− µ)T Σ̄N

−1
(x− µ)− (x− µ)T Σ̂N

−1
(x− µ) ≥ 0.

In other words, for any x,

xT (Σ̄N

−1 − Σ̂N

−1
)x ≥ 0.

That is, the lemma is true if (Σ̄N

−1 − Σ̂N

−1
) is a positive semidefinite matrix. It is further

equivalent to, according to Corollary 7.7.4 in Horn and Johnson (2012), (Σ̂N−Σ̄N ) being positive

semidefinite.
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Next show that it is indeed the case. The two covariance matrices are given by

[Σ̂N ]kl =







P̄N(sk)(1− P̄N(sk)) if k = l

−P̄N (sk)P̄N (sl) if k 6= l

[Σ̄N ]kl =















N−1
N
∑

i=1

Pi(sk)(1− Pi(sk)) if k = l

−N−1
N
∑

i=1

Pi(sk)Pi(sl) if k 6= l

By algebra, one can show,

N [Σ̂N − Σ̄N ]kl =















N
∑

i=1

(Pi(sk)− P̄N(sk))
2 if k = l

N
∑

i=1

(Pi(sk)− P̄N(sk))(Pi(sl)− P̄N(sl)) if k 6= l

Notice that N [Σ̂N − Σ̄N ]kl is a Gram Matrix Gkl =< vk, vl > where the set of vectors are

given by:

[vk]i = Pi(sk)− P̄N(sk).

A Gram Matrix is always positive semidefinite (Theorem 7.2.10 in Horn and Johnson (2012)),

therefore Σ̂N − Σ̄N is positive semidefinite as desired. �
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