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Abstract

We study the role of correlation in matching, where multiple decision-makers are simultane-
ously facing selection problems from the same pool of candidates. We propose a model where
decision-makers have varying information on candidates from different socio-demographic groups
when evaluating and ranking them, thus leading to varying correlation of a candidate’s priority
scores. Such differential correlation arises, for example, when cost of information acquisition,
decision-maker preferences, or prevalence of selection criteria vary across socio-demographic
groups. We show that lower correlation for one of the groups worsens the outcome for all groups,
thus leading to efficiency loss. Moreover, the proportion of students from a given group remaining
unmatched is increasing in its own correlation level. This implies that it is advantageous to
belong to the low-correlation group. Finally, we extend results from the tie-breaking literature
to multiple priority classes and intermediate levels of correlation. Overall, our results point
to a previously overlooked systemic source of group inequalities in school, university, and job
admissions.
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1 Introduction

Outcome inequalities for different demographic or social groups are ubiquitous, for example, in
college admission, job assignment, or investment allocation. Arcidiacono et al. (2022) find that
Asian-American applicants have lower admission chances at Harvard than white applicants for
a similar academic record, Niessen-Ruenzi and Ruenzi (2019) find significantly lower inflows in
female-managed mutual funds than in male-managed mutual funds, and Bertrand and Mullainathan
(2004) find race-based discrimination in callback decisions by job advertisers. Consequently, the
sources of observed outcome inequalities remain the subject of frequent and continued controversy
and political debate. A common concern is that the causes of outcome inequalities in matching
markets are not well understood, making them difficult to address (Longhofer, 1995).

We study how different ranking correlation between different socio-demographic groups—differential
correlation – affects outcome inequality and efficiency in matching markets. Our findings point to
a before unacknowledged source of inequity between different groups that is specific to matching
markets and should be included in future assessments of, for example, school, university, and job
admissions. In particular, we find that differential correlation across groups leads to outcome inequal-
ities even when the rankings by each college are fair, i.e., all groups are represented in each college’s
ranking as they are in the total applicant population. The resulting inequity is a form of systemic
discrimination, i.e., discrimination that only arises through the interaction of decision-makers—via
the matching mechanism—and is not due to either intentional or non-intentional discrimination by
single decision-makers (cf. Pincus 1996; Feagin 2013; Bohren et al. 2022).

Differential correlation arises when different decision-makers—say colleges—use different infor-
mation on candidates from different (socio-demographic) groups—say students—when assigning
priority scores to rank and admit them. This might be the case for several reasons.

First, the cost of information acquisition may vary across groups and some information may
not be available at all for some groups. Consider decentralized college admissions to competitive
PhD programs and compare foreign and local candidates. Several U.S. programs virtually reserve
one seat for the best foreign candidate from a given foreign school based on test scores and—due
to the high cost—do not perform in-person interviews (e.g., Iran’s Sharif University of Technology
or India’s IIT). Consequently, the priorities of foreign candidates at different programs are highly
correlated. By contrast, for local candidates grades from undergraduate alone may not provide
sufficient information—also due to grade inflation—and universities rely on idiosyncratic signals,
such as reference letters, extracurricular activities, or interviews during campus visits (which are less
costly as only local travel is required). Consequently, the priorities of local students, while correlated,
are less correlated than for foreign students.

Second, differences in correlation may also arise if colleges are looking for different attributes in
candidates and proxies of these attributes are more or less correlated for different groups. Consider
two colleges, one admitting students for mathematics, the other admitting students for physics.
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Suppose that there are two groups; one group of students come from high schools where physics is
taught in a theoretical manner and the other group come from high schools where physics is taught
in an experimental manner and thus less mathematical. Consequently, the students from the former
group will exhibit higher correlation in their high school grades in mathematics and physics than
the students from the latter group.

Third, differences in correlation may also arise when colleges use selection criteria that are more
or less prevalent within different groups. Concretely, such criteria could include diversity with respect
to the current student body, sibling priority, or proximity. Notably, such criteria are also used in
centralized school choice mechanisms, as, for example, in Chile (Mello, 2022). Consequently, a group
for which the criteria are more prevalent will exhibit higher correlation than a group for which the
criteria are less prevalent.

The latter criteria—sibling priority and proximity—along others are commonly used to break
ties. This allows to make a mechanism more explainable and only use random tie-breaking for a
smaller number of students (for whom all criteria are the same). Such random tie-breaking has been
studied in school choice problems (Abdulkadiroğlu et al., 2015; Ashlagi et al., 2019; Arnosti, 2023).
When students have the same ranking at a given college a tie-breaking rule describes who should
receive priority. Two natural choices are that each college breaks ties independently or colleges
use a common order to break ties. Intuitively, the former leads to 0 correlation and the latter to
correlation 1 (among those students for whom tie-breaking is required). As we shall see, our work
also allows to extend the known theoretical results on tie-breaking to accommodate intermediate
correlation levels, as often present in practice.

1.1 Our contribution

We study the college-admissions problem, where multiple decision-makers select a subset of applicants
from an applicant pool with stability as the solution concept (Gale and Shapley, 1962; Azevedo
and Leshno, 2016). Concretely, suppose that an infinite population of students divided into groups
G1 . . . GK apply to colleges A and B. Groups represent, for example, protected attributes, such as
gender or race. Each college assigns a priority score to each student. A given student gets priority
scores WA at college A and WB at college B. We propose an original model for the distributions of
these scores, to study the correlation between the rankings made by the different colleges.

To formalize correlation and thus capture the vague notion of “a connection between two things
in which one thing changes as the other does",1 we leverage prior work on copulas and their relation
with classical notions via coherence. This allows us to model correlation without a specific functional
form and, in particular, nest classical notions as special cases, e.g., Spearman’s and Kendall’s
correlation indices. With this at hand, we assume that the correlation between priority scores at
different colleges depends on a candidate’s group—we call this feature differential correlation.

1Oxford Advanced Learner’s Dictionary, 2023
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How does differential correlation impact a stable matching’s efficiency, i.e., the number of students
getting their first choice and inequality, i.e., the difference between groups in their probability to
remain unmatched? To answer this question, we first consider comparative statics. We show that
efficiency is increasing in each group’s correlation level, i.e., increasing the correlation level of
any group increases the amount of students getting their first choice in all groups (Theorem 1).
Moreover, the proportion of students from a given group remaining unmatched is increasing in its
own correlation level and decreasing in the correlation level of all other groups (Corollary 1). This
implies that it is advantageous to belong to the low-correlation group. We then show that a given
efficiency level can be reached by a continuum of different correlation vectors, yielding different
levels of inequality, thus showing that efficiency differences cannot explain inequality (Proposition 3).
Finally, our results imply extensions of known results on tie-breaking (cf. Ashlagi et al. 2019, Ashlagi
and Nikzad 2020, and Arnosti 2023), in particular to multiple priority classes and intermediate levels
of correlation (Proposition 4).

1.2 Related literature

Matching. The college admission problem, i.e, how to assign prospective students to colleges given
each student’s preferences and colleges’ priorities over students and capacities such that the outcome
is stable, was introduced by Gale and Shapley (1962). A variant of this model where colleges do not
have priorities over students is commonly called the school choice problem, and has been investigated
in (Balinski and Sonmez 1999, Abdulkadiroğlu and Sönmez 2003, Abdulkadiroğlu 2005, Ergin and
Sönmez 2006, Yenmez 2013). The idea of considering a continuum of students and a finite number
of colleges has previously been exploited due to its analytical tractability (cf., Chade et al. 2014,
Abdulkadiroğlu et al. 2015, Azevedo and Leshno 2016, Arnosti 2022). We follow Azevedo and Leshno
(2016) who develop a supply and demand framework allowing to easily analyze the quality of a
matching and deriving comparative statics.

Matching with correlated types. We study matching in the presence of correlation between
the priority scores given by each college to a given student. A special case of this problem has been
studied for centralized school choice problems, where a lot of students have the same priority and
therefore ties are broken at random.2 Ashlagi et al. (2019); Ashlagi and Nikzad (2020), and Arnosti
(2023) compare the welfare of students in two settings: either one common lottery is used by all
colleges, or all colleges draw independent lotteries. In our model, this corresponds to correlation
1 or 0, respectively, and our results nest elements of these prior papers. Another line of work has
considered correlation between other features, e.g., correlation between students’ preferences and
colleges’ rankings. In this context, Brilliantova and Hosseini (2022) focus on one-to-one matching

2The implications of this feature on students’ welfare have been studied by Erdil and Ergin (2008); Abdulkadiroğlu
et al. (2009) and Abdulkadiroğlu et al. (2015).
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and identify a matching that does not favor one side over the other, while Che and Tercieux (2019)
and Leshno and Lo (2020) study the stability-efficiency trade-off by comparing Deferred Acceptance
and Top Trading Cycles (see Shapley and Scarf 1974), and how the magnitude of this trade-off
depends on the correlation between agents preferences and priorities. Considering a transferable
utility model, Gola (2021) studies how workers sort into two competing sectors (such that their
wages are maximized) and the impact of technological change. While their model and analysis is
quite distant to ours, it shares the use of copulas to model correlation and the necessary restriction
to two sectors, respectively colleges.

Fairness. The computer science literature on fairness in selection problems was initiated by
Kleinberg and Raghavan (2018) who study the effect of bias and the efficiency of affirmative action
policies.3 Emelianov et al. (2020, 2022) and Garg et al. (2021) study statistical discrimination.
Candidates have a latent quality, and a college or company they apply to only has access to a biased
and/or noisy estimator of this quality that varies dependent on their group—differential variance.
We depart from those models by considering several decision-makers instead of one—that is, we
consider the matching problem instead of the selection problem. Works on fairness in matching
have considered various affirmative action policies, including upper and lower quotas, to reduce
discrimination (Abdulkadiroğlu 2005; Kamada and Kojima 2015, 2023; Delacrétaz et al. 2023;
Krishnaa et al. 2022; Dur et al. 2020). These works, however, focus on finding stable matchings
under some constraints, accounting for different fairness notions. In contrast, we aim to explain
outcome inequalities that naturally occur in stable matchings without constraints.

All of the aforementioned works consider what is generally termed group fairness, that is, all
(relevant) groups should be treated similarly. By contrast, individual fairness posits that individuals
with similar characteristics should be treated similarly. In this latter spirit Karni et al. (2022) broke
new ground, showing that an individually fair ranking does not necessarily lead to an individually
fair matching. This conclusion can also be drawn from our results in the context of group fairness.
Devic et al. (2023) also consider individual fairness and adapt the classical notion to incorporate
agents’ preferences. In our language, they require that similar agents should be matched to a college
in a similar position in their respective preference list. Our work is concerned with group fairness,
but note that if the quality of applicants is similar in each group, and the notion of Devic et al.
(2023)’s individual fairness is fulfilled, then group inequalities are automatically mitigated. In this
sense, their notion is stricter.

Algorithmic monoculture. Finally, our work also contributes to a recent literature on algorithmic
monoculture, i.e., the fact that recommendations, choices, and preferences become homogeneous
with the rise of algorithmic curation and analysis. Kleinberg and Raghavan (2021) study the

3Recently, reducing outcome inequalities in ranking rather than in the final selection has been actively studied, cf.
Celis et al. (2020), Yang et al. (2021), andZehlike et al. (2022).
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utility of multiple decision-makers who use algorithms to evaluate candidates. They show that
decision-makers are sometimes better off each using a different, low-precision algorithm than all
using the same high-precision one. In empirical work, Bommasani et al. (2022) find that outcomes
are more homogeneous when models and training data sets are shared between decision-makers.
Through our theoretical analysis we thus shed light on the impact of algorithmic monoculture from
the candidates’ viewpoint.

1.3 Outline

The remainder of this paper is organized as follows. Section 2 introduces the model and the concept
of differential correlation. Section 3 introduces our welfare metrics and presents preliminary results.
Our main results are in Section 4. Finally, Section 5 concludes with a discussion on the generality of
our findings and future avenues of research.

2 Setup

We here introduce the college admission problem with a continuum of students, then formalize the
notion of correlation in Section 2.2, and introduce the supply and demand framework to identify
stable matching in Section 2.3. A table of notation is provided in Appendix A.1.1 for readers’
convenience.

2.1 Model

Let A and B be two colleges to which a continuum unit mass of students, S, is to be matched. The
mass of a subset of S is measured with a function η.4 Colleges have maximum capacities of the
mass of students they can admit, (αA, αB) := α ∈ (0, 1]2. The students are divided into K groups
G1, . . . , GK , with a fraction γj ∈ [0, 1] of students belonging to Gj , with

∑K
j=1 γj = 1. Define the

vector γ := (γj)j∈[K], using the notation [K] := {1, 2, . . . ,K}. We denote the group to which a
student s ∈ S belongs by G(s).

Students have strict preferences over colleges, and the amount of students preferring college A
might differ between groups: among group Gj , a share βj ∈ [0, 1] prefer college A to college B, the
remaining 1− βj prefer B. When student s prefers college A to college B, we write A ≻s B, and
vice versa. Note that βj is a share that is conditional on the group, and not a mass, for instance,
η({s ∈ Gj : A ≻s B}) = γjβj . We assume that all students prefer attending some college to
remaining unmatched. We write β := (βj)j∈[K] as we did for γ.

Each college assigns a priority score to each student, the higher the better. Each student s thus is
assigned a vector of priority scores (WA

s ,W
B
s ). This means that college C prefers s ∈ S to s′ if and

only if WC
s > WC

s′ . The (marginal) distribution of scores WC
s given by college C to students in Gj

4The formal definition of this measure is deferred to Appendix A.1.2.
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is described by a probability density function (pdf) fCj defined over the support ICj ⊆ R, assumed
to be an interval. Let Ij = IAj × IBj . We denote by ICj and ĪCj the lower and upper bounds of ICj .
These bounds might be finite or not. We define f := (fA1 , . . . , f

A
K , f

B
1 , . . . , f

B
K ), and denote by FCj

the cumulative distribution function (cdf) associated to fCj .

Differential correlation

Consider the joint distribution of the vectors (WA,WB). For each group Gj , the grade vectors of
students s ∈ Gj follow some distribution with pdf fj : Ij → R and cdf Fj . A joint distribution can
be characterized by its marginals, i.e., the distribution of each component of the vector, and the
shape of the joint distribution, captured by a coupling function, called copula. A copula is a cdf over
[0, 1]n, for some n, with uniform marginals. Sklar (1959)’s theorem states that any joint distribution
can be decomposed into (independent) marginals and a unique copula:

Sklar (1959, Theorems 1, 2, and 3) Let F be a n-dimensional cdf with marginal cdfs
F 1, ..., Fn. Then there exists a unique n-dimensional copula H : [0, 1]n → [0, 1] such that

F (x1, ..., xn) = H(F (x1), ..., F (xn)).

Conversely, for any n-dimensional copula H and for any set of n 1-dimensional cdfs F 1, ..., Fn,
F (x1, ..., xn) := H(F (x1), ..., F (xn)) is a n-dimensional cdf with marginals F 1, ..., Fn.

Each group Gj then has a joint distribution with joint pdf fj and cdf Fj , that can be represented
by its marginals FAj , F

B
j and a (unique) copula Hj . We assume that there exists a family of 2-

dimensional copulas (Hθ)θ∈Θ (Θ being an interval of R) and, for all j ∈ [K], there exists a parameter
θj ∈ Θ such that Hθj is the copula associated to Gj ’s distribution, i.e., Hθj = Hj . This assumption is
made without loss of generality, but some of our results will require additional assumptions regarding
the copula family. Denote by θ := (θj)j∈[K] the vector containing each group’s parameter. Notice
that each groups has a different θj , and thus a different joint distribution. With some foresight to
the explanations provided in Section 2.2, we call this feature of the model differential correlation.5

Finally, we assume that all the copulas in (Hθ)θ∈Θ have full support over [0, 1]2. We write fj,θj and
Fj,θj instead of fj and Fj as we will consider them as functions of θ.

Given a family of copulas (Hθ)θ∈Θ, we then refer to the tuple (γ, β, α, f , θ) as the college admission
problem. Note that we only assume that distributions admit a density and have full support, that
the distribution family is parameterized by a scalar, and that the marginals remain the same for any
θ. In Appendix A.2 we discuss implications of these assumptions and provide details of distributions
that satisfy them (i.e., Gaussian copulas, Archimedean copulas and examples thereof).

This model allows for each group to have different grade distributions at each college. Notice
that even though inside a given group the students preferring A have the same grade distribution as

5This is in spirit of the notion of differential variance studied in Emelianov et al. (2022) and Garg et al. (2021).
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students preferring B, this does not cause any loss of generality. Indeed, we can always split a given
group into two groups with different distributions.

2.2 Correlation and the coherence assumption

The proxy for correlation in our model will be the parameter θ, rather than some specific functional
form. We use a condition, namely coherence, on the family of distributions: whenever (fj,θ)θ∈Θ
is coherent, there exists a bijection between θj and classical measures of correlation. For details
on classical correlation measures, namely Pearson’s, Spearman’s, and Kendall’s correlation, see
Appendix A.3.

Assumption 1 (Coherence). We say that (Hθ)θ∈Θ is coherent if for all (x, y) ∈ I̊, Hθ(x, y) is
strictly increasing in θ on Θ, where I̊ is the interior of I.

The following lemma states that under coherence θ is naturally interpreted as a measure of
correlation.

Lemma 1. If (Hθ)θ∈Θ is coherent, and (X,Y ) are random variables drawn according to Hθ, then
∀(x, y) ∈ I̊, P(X < x, Y < y) and P(X > x, Y > y) are increasing in θ, while P(X < x, Y > y) and
P(X > x, Y < y) are decreasing in θ.

Intuitively, when X and Y are highly correlated, then if, for example, X is small then Y is likely
also small. The proof is provided in Appendix B.1.

Further supporting the choice of θ as our measure of correlation, we note that there is an
equivalence between θ and two classical, ordinal measures of correlation, namely Spearman’s
correlation, denoted ρ, and Kendall’s correlation, denoted τ .

Scarsini (1984, Theorems 4 and 5) If (Hθ)θ∈Θ is coherent, and (Xθ, Yθ) are random variables
drawn according to Hθ, then Spearman’s and Kendall’s correlation coefficients ρ(Xθ, Yθ) and τ(Xθ, Yθ)

are strictly increasing functions of θ.

The above results show that, under the coherence assumption, θ is a bijection of classical measures
of correlation. To illustrate the effect of θ on a coherent distribution family, Figure 1 shows draw from
Gaussian copulas, which are coherent, with different values of the covariance used as θ. When θ = 0

the variables are independent, when θ is positive the joint distribution gets closer to the diagonal
X = Y , and when θ is negative the joint distribution gets closer to the diagonal Y = −X, which
corresponds to the common idea of correlation as well as Spearman’s and Kendall’s correlations.
Since most of our results will be qualitative, they are stated using θ but would still be true if θ was
replaced by ρ or τ in the statement.

We finally introduce a technical assumption that will be required for some of our results, especially
when considering comparative statics in θ.
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Figure 1: Gaussian copula (i.e., bivariate Gaussian with marginals renormalized to uniform distri-
butions, cf. Appendix A.2) for five different correlation levels, θ. The shades of blue represent the
distribution density (darker means higher).

Assumption 2 (Differentiability). We say that (Hθ)θ∈Θ is differentiable if for all (x, y) ∈ I̊ and for
all θ ∈ Θ̊, hθ(x, y) is differentiable in θ.

The coherence and differentiability assumptions are not particularly restrictive, for instance the
Gaussian copula with covariance as the parameter verifies them, as well as Frenkel’s copula and
almost all example copulas mentioned in Appendix A.2.

2.3 The supply and demand framework

We now introduce the key elements of matching theory used throughout the paper. A matching µ is
a mapping associating a student to a college (or themselves if they are unmatched) and a college to
a subset of students. We use the common definition of stability: we say that a matching is stable if,
for any student s that would prefer college C to their current match, s has a lower score at C than
all the currently admitted students in that college. For the formal definitions of those notions and of
the deferred acceptance algorithm, see Appendix A.4.

A matching problem can be alternatively viewed through a supply and demand lens, where a
stable matching is a Walrasian equilibrium (Azevedo and Leshno 2016).

Definition 1 (Cutoffs and demand). If µ is a stable matching, define the cutoff at C ∈ {A,B}
as PC := inf{WC

s : µ(s) = C}. Given P = (PA, PB), we call the demand of student s, denoted
Ds(P) ∈ {A,B} ∪ {s}, the college they prefer among those where their score is above the cutoff, or
themselves if their score does not exceed the cutoff at any college. The aggregate demand at college
C is the mass of students demanding it: DC(P) = η({s : Ds(P) = C}.

The cutoff of a college represents the score above which a student who applies gets admitted.
Recall that Ij = IAj × IBj is the support of fj,θ, IAj and ĪAj the lower and upper bounds of IAj ,and
same for B. If PC = min

j∈[K]
ICj , then college C rejects no one, if PC = max

j∈[K]
ĪCj it accepts no one. The

supply associated to this demand is simply the capacity of each college.
Consider the equilibria of this problem:
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Definition 2 (Market clearing). The cutoff vector P is market clearing if for C ∈ {A,B}, DC(P) ≤
αC , with equality if PC > min

j∈[K]
ICj .

A cutoff vector is therefore market-clearing if it induces a demand that is equal to colleges’
capacities when they reach their capacity constraint, and lower for colleges that are not full. When
the constraint is reached at both colleges, i.e., when αA + αB < 1, the system

D(P) = α (1)

is called the market-clearing equation, and the market-clearing cutoffs PA and PB can be computed
by solving the system.

The following result from Azevedo and Leshno (2016) establishes the link between market-clearing
cutoffs and stable matchings:

Azevedo and Leshno (2016, Lemma 1)

1. If µ is a stable matching, the associated cutoff vector P is market-clearing;

2. If P is market-clearing, we define µ such that for all s ∈ S, µ(s) = Ds(P). Then µ is stable.

This allows to analyze stable matchings by studying the cutoffs of each college. Figure 2 illustrates
the link between the cutoffs and the matching: students who prefer A get admitted there if and only
if their score WA is higher than the cutoff PA. Otherwise, they get admitted to B if their score
WB is higher than PB, and stay unmatched if it is not. The situation is symmetric for students
preferring college B.

In the continuous college admissions problem the same authors show that there is a unique stable
matching.

Lemma 2 (Special case of Azevedo and Leshno 2016, Theorem 1). For any college admission
problem (γ, β, α, f , θ), there exists a unique stable matching.

Note that the original theorem specifies conditions on the distribution of students’ types, such
as being continuous and having full support, which hold in our definition of a college admission
problem. Unlike the finite case where typically several stable matchings exist, in the continuum
model the stable matching is unique and therefore no considerations regarding selection among the
set of stable matchings are necessary. From now on, we will therefore consider the cutoff vector P as
the one uniquely determined by the parameters of the problem and the market-clearing equation.
We shall say student s goes to college C to mean that they are matched to college C in the unique
stable matching.

Azevedo and Leshno (2016) further show that the stable matching varies continuously in the
parameters of the problem and that the set of stable matchings from a college admission problem
with a finite number of students converges to the unique stable matching of the continuum problem
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Figure 2: Illustration of the match of students depending on their preferences, priority scores, and
cutoffs. Students in the hashed area are matched to college A, those in the dotted area to college B,
and those in the white area remain unmatched.

with the same parameters. The latter result justifies the approximation of large finite instances by
their limit.6

3 Welfare metrics and preliminary results

In selection problems, inequalities between groups are measured by the proportion of admitted
candidates in each group. In a matching setting, the situation is more complex: on the one hand, one
group might have a higher proportion of unmatched students than the other, but on the other hand,
the proportion of students getting their first choice might also differ. If all students in a group get
their first choice and all students in the other get their second choice, the matching may be deemed
unfair. In this section, we define metrics that allow us to quantify the satisfaction of students from
each group.

Consider an individual’s likelihood of getting their first choice, second choice, or being rejected
from both colleges in a stable matching as a function of differential correlation.

Definition 3 (Welfare metrics). Under a stable matching µθ induced by differential correlation
parameters θ, define V Gj ,A

1 (θ) and V Gj ,B
1 (θ), as the proportion of students from each group-preference

6For a better approximation for instances with a small number of students, Arnosti (2022) proposes a related
framework.
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profile who get their first choice. Formally,

V
Gj ,A
1 (θ) :=

1

γjβj
η({s ∈ Gj : A ≻s B,µθ(s) = A}),

V
Gj ,A
2 (θ) :=

1

γjβj
η({s ∈ Gj : A ≻s B,µθ(s) = B}),

V
Gj ,A

∅ (θ) :=
1

γjβj
η({s ∈ Gj : A ≻s B,µθ(s) = ∅}).

The metrics for students preferring college B are defined similarly, by inverting the roles of A
and B and replacing βj by 1− βj in the equations.

Those metrics can be thought of in two ways: V Gj ,A
1 (θ), for instance, is the relative mass of

students getting their first choice among those in group Gj who prefer college A, or equivalently, it
is the probability of a randomly drawn student to get their first choice conditionally on belonging to
Gj and preferring A.7

We next provide expressions for these metrics for the unique (cf. Lemma 2) stable matching µθ
via its cutoffs, P.

Lemma 3. Let C ∈ {A,B} be a college, C be the other college, and Gj be a group. Let P be the
cutoffs associated to µθ, we have:

V
Gj ,C
1 (θ) = Pj(WC ≥ PC(θ)), (2)

V
Gj ,C
2 (θ) = Pj,θj (W

C < PC(θ),WC ≥ PC(θ)), (3)

V
Gj ,C

∅ (θ) = Pj,θj (W
C < PC(θ),WC < PC(θ)). (4)

The notation Pj,θj is used as shorthand for P(WA,WB)∼fj,θj
. Lemma 3 allows to compare

probabilities of admission of different types of students, and derive comparative statics with respect
to differential correlation. The proof is provided in Appendix B.2.

Regarding the probability of staying unmatched, we can derive a simple yet important result
(see Appendix B.3 for its proof).

Lemma 4. The probability that a student remains unmatched depends only on their group and is
independent of their preference. Moreover, the total mass of unmatched students is constant in any
group’s correlation level. Formally, let P be associated to µθ. Then, for j ∈ [K], V Gj ,A

∅ (θ) = V
Gj ,B

∅ (θ);
and η({s ∈ S : µθ(s) = ∅}) = max(0, 1− αA − αB) (which does not depend on θ).

With Lemma 4 at hand, we will use the notation V Gj

∅ , since these quantities do not depend on

7We condition over preferences because of the following observation: assume there are two groups, if students from
group G1 all prefer college A, but only half of the students from group G2 prefer A, and A has a low capacity and B
a large one. Then very few students from G1 will get their first choice while half of the students from G2 are likely to
get their first choice since it is a less demanded college. Thus students’ satisfaction might differ across groups only
due to their own preferences, and not because of differential correlation.
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the preference of students. For all the metrics we defined, when there is no ambiguity, we also omit
the dependence on θ and write V Gj ,C

i instead.
We now define two global metrics, i.e., metrics that are not conditioned on the groups and

preferences of student, namely efficiency and inequality:

Definition 4 (Efficiency and Inequality). Define the efficiency E(θ) of a matching as the proportion
of students getting their first choice, and the inequality LGi,Gj (θ) between two groups, i, j ∈ [K] as
the difference of the probability of staying unmatched between those two groups:

E(θ) = η
(
{s ∈ S : µθ(s) = C and C ≻s C̄}

)
=
∑
j∈[K]

γjβjV
Gj ,A
1 (θ) +

∑
j∈[K]

γj(1− βj)V
Gj ,B
1 (θ) (5)

LGi,Gj (θ) = |V Gi

∅ (θ)− V
Gj

∅ (θ)|. (6)

By Lemma 4 the mass of unmatched, and therefore matched, students is constant, and thus
matched students get either their first or second choice. Therefore, ceteris paribus, it is desirable to
maximize the mass of students getting their first choice E. Regarding inequality, we measure the
inequality between two groups by the difference in their proportions of unassigned students.

Proposition 1. If two groups have the same marginal distributions at some college C, then for
students whose first choice is college C the probability of getting this college is the same for students
of both groups. Formally, if fCj = fCℓ , then V

Gj ,C
1 = V Gℓ,C

1 .

The proof is provided in Appendix B.4. Proposition 1, albeit simple, is an important property of
the model. If two students prefer the same college, their probabilities of getting it only depend on
their respective groups’ marginals, and not on their correlation levels — so differential correlation
has no effect on this metric. Proposition 1 also justifies the choice of L as a measure of inequality:
the proportion of students getting their first choice is the same for two groups as long as they have
the same marginals, and differences only emerge in second choice admittance versus remaining
unmatched. Consequently, when the proportion of unmatched students is higher in one group than
the other, then the matching is unequal.8

The following result shows that if there is capacity excess, differential correlation does not affect
the stable matching.

Proposition 2. If capacity is not constrained, i.e., αA + αB ≥ 1, then correlation has no effect on
the stable matching. The cutoffs PA and PB are constant in θ, on then so are V Gj ,C

1 and V Gj ,C
2 for

all j and C. Moreover, V Gj

∅ = 0, therefore ∀i, j ∈ [K], LGi,Gj (θ) = 0.

The proof is provided in Appendix B.5, and more detail about this case can be found in Appendix
A.5.

8Another choice to measure inequality would be to compare the proportions of students getting their second choice
in each group, however Proposition 1 implies that this quantity is equal to L.
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4 Main results

This section contains our main results on the impact of differential correlation on the properties of
stable matchings. We consider college admission problems where γ, β and α are assumed constant,
and study the influence of differential correlation, θ, on the stable matching. Section 4.1 contains
general comparative statics and Section 4.2 studies tie-breaking.

4.1 Comparative statics

We first consider how the efficiency of the matching, i.e., the probability of getting one’s first choice,
varies when changing the correlation for one group.

Theorem 1. Suppose that (Hθ)θ∈Θ is coherent and differentiable, and that αA + αB < 1. Then for
all groups and all preferences the proportion of students getting their first choice is increasing in
all correlation parameters θj, j ∈ [K], and consequently so is the global efficiency E(θ). Formally,
suppose that θ ∈ (Θ̊)K . Then for any C ∈ {A,B}, for any j, ℓ ∈ [K], V Gj ,C

1 (θ) is differentiable and

dV
Gj ,C
1 (θ)

dθℓ
> 0.

The immediate consequence is that E(θ) is differentiable and for any j ∈ [K],

dE(θ)

dθj
> 0.

The proof relies on the following lemma:

Lemma 5. Suppose that θ ∈ (Θ̊)K . Then for any C ∈ {A,B}, PC(θ) is differentiable and

dPC(θ)

dθj
< 0 ∀j ∈ [K].

Proof sketch. The proof follows several steps. First, we rewrite the market-clearing Equation (1)
using Lemma 3. We obtain a system of two equations, where the variables are the cutoffs PA and
PB , parameterized by θ. We then apply the implicit function theorem to a mapping whose roots are
the solution of this system of equations. We next compute the partial derivatives. To characterize
the sign of the derivatives with respect to θ, we use the coherence assumption. Through analytical
derivations, we can conclude. The proof is provided in Appendix B.6. ■

Proof of Theorem 1. From Lemma 5, the cutoffs are decreasing in each θj . We can then conclude
that for any j ∈ [K] and for C ∈ {A,B},

dV
Gj ,C
1

dθj
=
d
∫∞
PC f

C
j (x) dx

dθj
=
d
∫∞
PC f

C
j (x) dx

dPC
· dP

C

dθj
> 0. ■
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Figure 3: Illustration of change in cutoffs. The distribution of group G1 is a bivariate Gaussian with
θ equal to the covariance: θ1 = 0 in the left-hand figure and θ′1 = 0.8 in the right-hand figure. PA is
represented as a vertical line and PB as an horizontal line. Both cutoffs decrease as θ1 increases. In
each sub-figure, the cutoffs corresponding to the current value of θ1 are represented as full lines and
the cutoffs corresponding to the other value of θ1 as dashed lines.

Theorem 1 implies that, if the correlation decreases for one of the groups, then all groups suffer
from a decrease in first-choice admittance. Conversely, increasing the correlation for one group leads
to an increase in first-choice admittance for all groups.

Intuitively, when the correlation increases, students’ score vectors accumulate close to the
diagonal, and therefore in the lower-left and upper-right quadrants, while the other two quadrants
are increasingly empty. This phenomenon is illustrated in Figure 3 with a bivariate Gaussian
distribution. If the cutoffs did not change, then the amount of unmatched students would increase.
As the capacities are assumed constant this would renter the resulting matching unstable. Therefore,
at least one of the cutoffs decreases and, in fact, Lemma 5 implies that both decrease. As a
consequence, the mass of matched students remains the same but more students get their first choice.

Remark 1. The formal statement of Theorem 1 excludes the extremities of Θ. This assumption is
made only to avoid the case where rankings are fully correlated, which would mean that f does not
have full support. However, since V A

1 and V B
1 are continuous in θ, they are increasing on the whole

interval Θ.

Theorem 1 allows us to derive the following corollary regarding a student’s probability of remaining
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unmatched.

Corollary 1. Suppose that (Hθ)θ∈Θ is coherent and differentiable, assume θ ∈ Θ̊K and αA+αB < 1.
Then the proportion of students from a given group remaining unmatched is increasing in its own
correlation level and decreasing in the correlation level of all other groups: for i, j ∈ [K], i ̸= j,

dV Gi

∅ (θ)

dθi
> 0 and

dV Gi

∅ (θ)

dθGj

< 0.

Moreover, the inequality between two groups is decreasing in the correlation level of the group with
lowest rate of unmatched students and increasing in the other group’s correlation level. Formally,
assume V Gi

∅ (θ) < V
Gj

∅ (θ). Then

dLGi,Gj (θ)

dθi
< 0 and

dLGi,Gj (θ)

dθj
> 0.

Proof sketch. The proof relies on Lemma 5 and leverages the fact that total capacity is constant to
derive the sign of the partial derivatives of the V∅ terms. The proof is provided in Appendix B.7.

■

Remark 2. As a consequence, for any two groups Gi, Gj, if θi ̸= θj then the matching almost surely
exhibits inequality for those groups (LGi,Gj (θ) > 0). In particular, this is true even when those groups
have the same marginals.

The probability of staying unmatched is different for students from different groups, even with
identical marginals. This is in contrast to Proposition 1. Different levels of correlation lead to an
unequal matching. This is the case as with identical marginals the proportion of students above
some cutoff is the same in every group, but for a group with high correlation, the set of students
above the cutoff is almost the same at each college, while for a group with low correlation those
sets are quite different at each college. Therefore, the set of matched students in group Gj , which is
{s ∈ Gj |WA

s ≥ PA}⋃{s ∈ Gj |WB
s ≥ PB}, is larger for groups with lower correlation. This result is

quite counter-intuitive: consider the point of view of some college C, which has identical marginals
for all groups. From C’s point of view, there is no difference between the groups, and the proportion
of students with WC

s ≥ PC is the same across all groups. However, Corollary 1 implies that the
groups with the lowest correlation levels are going to be overrepresented at C, and the groups with
the highest correlation underrepresented. College C then ends up with a set of student that could
be deemed “unfair" regarding demographic parity, while C’s ranking was in fact perfectly fair.

Corollary 1 helps understand the influence of correlation on inequality. When correlation levels
of two groups are equal and marginals are identical, there is no inequality. If marginals are different,
there is some “baseline" inequality that can be increased or decreased by changing the correlation
levels: to decrease the inequality one would need to increase the correlation of the group with
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the lowest proportion of unassigned student (therefore the better-off group) and/or decrease the
correlation of the worse-off group. Overall, even when colleges have fair rankings (identical marginals
across all groups), the matching might still exhibit inequality.

Theorem 1 and Corollary 1 study efficiency and inequality separately. The following proposition
describes their interaction. Concretely, different correlation vectors, θ, can lead to the same efficiency
E, while inducing different inequality levels between groups. This shows that the effect of differential
correlation cannot be solely explained via differences in efficiency.

Proposition 3. Suppose that (Hθ)θ∈Θ is coherent and differentiable, assume Θ, and αA + αB < 1.
Let θ = (θ1, . . . , θK), and Ê = E(θ).

1. There exist infinitely many correlation vectors achieving a given efficiency. Formally, the
set of vectors θ′ such that E(θ′) = Ê is a connected hypersurface of dimension K-1 (unless
θ = 0RK or (1, . . . , 1), in which case it is a singleton).

2. Fixing efficiency, correlation levels are substitutes. Formally, for any two groups Gi, Gj, there
exists an interval U := [θ, θ̄] ⊆ Θ and a differentiable and decreasing function ϕ : U → Θ such
that (θi ∈ U and θj = ϕ(θi)) =⇒ E(θ) = Ê. The boundaries of U are optimal/pessimal with
respect to the mass of unassigned students (V Gi

∅ , V
Gj

∅ ) for Gi respectively Gj and there is a
unique θ̂ ∈ U such that θ1 = θ̂, θj = ϕ(θ̂) minimizes inequality LGi,Gj (θ).

The proof is provided in Appendix B.8. Beyond the intuition that correlation favors efficiency,
Proposition 3 provides a precise insight to the relation between efficiency and inequality and the
trade-off between the two. The first part states that there is, in general, a continuum of correlation
vectors achieving the same level of efficiency. The second part considers the comparative statics
between two groups. Fixing the efficiency, correlation parameters behave as rival goods. As the
correlation increases for one groups it necessarily decreases for the other group.

Figure 4 illustrates this for two groups, G1, G2, with standard Gaussian marginals and the
parameter of the copula, θ, equal to the covariance. The left panel shows the efficiency and the right
panel shows the inequality as functions of θ1, θ2. In the left panel, the level lines show the decreasing
relation between θ1 and θ2 when E is kept constant. In the right panel, the inequality is minimized
along the diagonal where θ1 = θ2 and increases as the parameters become more disparate.

4.2 Tie-Breaking

Some recent papers have studied the impact of tie-breaking rules on school choice problems, which
has a strong link with correlation. In this section, we extend some of the prior results and discuss
the relation to the literature.

Assume there is only one group, and each school C has nC priority classes, i.e., there exists a
partition of S = QC1

⊔ · · ·⊔QCnC
such that for i, j ∈ {1, . . . , nC}, s ∈ QCi , s′ ∈ QCj , s has higher
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Figure 4: Variations of efficiency (E) and (L) for two groups (G1, G2) as a function of their respective
correlation parameters (θ1, θ2); with standard Gaussian marginals and copula with θ equal to the
covariance. Other parameters: αA = αB = 0.25, γ1 = γ2 = 0.5, β1 = β2 = 0.5. Left:The surface
represents the efficiency and the level lines indicate constant efficiency (also projected to the bottom
of the figure). Right: The surface represents the inequality.

priority than s′ at C if i < j. Students belonging to the same priority class at a school are assumed
to have the same priority at this school, but due to limited capacity the school might need to choose
between them. To achieve this, schools use a random ranking of students to which they refer each
time they need to choose between students from the same priority class; this random ranking is
called a tie-breaker.

A natural question that has been actively studied in recent years is whether there is a difference
in students’ welfare if schools use the same tie-breaker (called single tie-breaker, or STB), instead of
each producing an independent one (multiple tie-breakers, or MTB). Ashlagi et al. (2019); Ashlagi
and Nikzad (2020); Arnosti (2023) show — with slightly different models and assumptions (and
among other results) — that when the total capacity of schools is lower than the number of students,
then students are better off under STB than MTB. To ease the comparison, we restate their results
here in a simplified form. Given n students and m schools:

• Ashlagi et al. 2019, Main Theorem: Suppose that there is capacity shortage, students’ prefer-
ences are drawn uniformly at random and there is only one priority class (the whole ranking is
random), then for any k < m the fraction of students matched to one of their top k choices
approaches 0 under MTB but approaches a positive constant under STB.

• Ashlagi and Nikzad 2020, Theorem 3.2 : Suppose there is one slot per school, only one priority
class, and schools are divided into two tiers (top and bottom) with students’ preferences inside
a given tier drawn uniformly at random and a capacity shortage at top schools, then, with
high probability, STB stochastically Pareto-dominates MTB.

18



• Arnosti 2023, Theorem 2 : Suppose there is only one priority class and students only list l < m

schools in a uniform random order, then the number of students matched to their first choice
is greater under STB than under MTB.

Our model, compared to prior work on tie-breaking, allows to for any number of priority classes,
intermediate levels of correlation or even negative correlations, and several groups of students with
different tie-breaking rules. To this end, let (Hθ)θ∈Θ be a coherent and differentiable family of copulas
such that θ = 0 gives independent random variables, and θ = 1 gives fully correlated variables.
Define the θ-TB as the tie-breaker drawn according to Hθ. Thus, MTB corresponds to θ = 0 and
STB to θ = 1. Moreover, we can assume the existence of several groups with different θs.

Intermediate correlation levels can arise in tie-breaking if, for example, student characteristics
are introduced into rankings to break ties, e.g., sibling priority or distance to from home to school
(Correa et al., 2022). This is commonly done to render algorithms more deterministic and thus
understandable. Consider priority for students with lower distance to a school and suppose that
there are two villages with one school each. Then, ceteris paribus, a student who lives in one village
exhibits negative correlation between the grades at each of the two schools. On the other hand, a
student living in neither village may exhibit any level of correlation. Note that this example also
illustrates how negative correlation naturally arises.

Proposition 4. Let there be a continuum mass of students and assume that students prefer any
school over being unmatched. Let A,B be two schools with nA, nB priority classes, and constrained
capacities αA + αB < 1. Further suppose that students are divided into K groups, such that the
θj-TB is used for group Gj. Then:

1. The mass of students getting their first choice

• is non-decreasing in each θj,

• is almost surely strictly increasing in all θj, if all products of priority classes QAi ×QBj
contain a positive mass of students of each group,9 and

• is strictly increasing in each θj, if there is only one priority class.

2. The inequality between two groups, LGi,Gj (θ), is non-decreasing in the correlation θ of the
group with the lowest V∅, and non-increasing in the other group’s θ.

Proof. Proof sketch. We build a distribution family that encompasses the priorities of students at
each school taking into account priority classes as well as tie-breakers, such that MTB and STB
correspond to values of θ = 0 and θ = 1. The obtained distribution, while being complex, still
satisfies most of the assumptions required by our model, and with some adjustments we are able to
apply Theorem 1 and Corollary 1 and conclude. The proof is provided in Appendix B.9. ■

9More precisely, the set of vectors (γ, β, α) such that the mass of students getting their first choice is constant in
some θj has Lebesgue measure 0.
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This result shows that increasing the correlation of tie-breakers, for one or several groups,
increases the amount of students getting their first choice. Moreover, it also shows that a policy
maker able to change the correlation of tie-breakers for some groups can use it to mitigate the
inequalities between groups.

Proposition 4 is in some regards more restrictive than the results from the literature presented
above, because it only applies to two schools and assumes students prefer either school over being
unmatched. On the other hand, it is more general in that it applies to cases with several priority
classes and does not require students preferences to be uniform (in our model, we can have any
fraction β of students preferring school A). It also allows to have several groups with different
tie-breaking rules. Finally, Proposition 4 allows for intermediate tie-breaking rules interpolating
between MTB and STB, and also for negatively correlated tie-breaking rules.

5 Discussion

We have introduced a tractable model to study the impact of differential ranking correlation between
different groups and studied its effect on on outcome inequality and efficiency in matching markets.
Our framework is general in that it accommodates almost any grade distribution, any number of
groups with different distributions and different student preferences, and colleges of any capacity.

However, a limitation is our focus on two colleges, which we shall discuss here. First, our model
can be extended to any number of colleges; in particular copulas can be defined for any number of
variables and the coherence definition extends. Our welfare metrics also carry over and it would
be natural to also consider further metrics, e.g., the probability of getting one of the top k choices.
Turning to our results, Proposition 1 remains true. That is, whenever two groups have the same
marginal at some college, they have the same probability of getting this college as a first choice.
On the other hand, Proposition 2 does not hold anymore: for any pair of colleges whose joint
capacity is less than 1, correlation between their rankings will have an effect on the matching, even
if the total capacity is more than 1. The other results all rely on Lemma 5. We found, through
numerical experiments, that Lemma 5 generally does not extend beyond two colleges. See Figure 5
for a counterexample with four colleges, one group, standard Gaussian marginals at every college, a
Gaussian copula, and α = (0.05, 0.05, 0.2, 0.5). The cutoff PC of the third college is increasing for
high values of θ.

It follows that Theorem 1 also does not extend beyond two colleges as it entirely relies on Lemma
5. The other results (Corollary 1, and Propositions 3 and 4) may remain true, but different proof
techniques would be required. Our experiments suggest that the statement of Lemma 5 may still be
true for large classes of correlation, thus suggesting the possibility to extend our results under some
additional assumptions.

To conclude, we believe that there is ample scope to study themes that have already been
considered in the single decision-maker settings in the matching context. Our analysis suggests that
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Figure 5: Counterexample to the extension of Lemma 5 to more than two colleges: Four colleges,
one group, bivariate Gaussian distribution with correlation θ, and α = (0.05, 0.05, 0.2, 0.5). Note
that PC is not monotone decreasing.

in matching new phenomena arise and it is important to further understand them. In models where
decision-makers use noisy estimates of applicants’ latent quality, existing results about algorithmic
monoculture could be extended, providing a theoretical foundation to experimental results such as
those of Bommasani et al. (2022). Using the noise structure, interesting variations could be allowing
applicants to invest in accurate assessment, e.g., via acquiring certifications or doing in-person
interviews, or considering the effects of risk aversion. Other possible directions could include making
applications costly, or allowing applicants to not list all colleges in their preferences, and a more
thorough study of colleges’ utility.
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A Definitions and technical details

A.1 Definitions

A.1.1 Table of notation.

Table 1 provides a summary of the notation used throughout the paper.

A.1.2 Definition of the mass η.

Here we formally define the notion of mass for a subset of students. This section is self-contained and
is not necessary to understand the results of the paper; the notations introduced here are not used
elsewhere. We identify S to Σ := R2 × {G1, . . . , GK} × {A,B}. We partition Σ into several subsets:
ΣGj ,C := {s ∈ Σ : s = ((x, y), Gj , C), x, y ∈ R} is the subset of students belonging to group G and
preferring college C. Given a vector of parameters θ and priorities WA,WB distributed according to
fj,θj for Gj students, we say that a subset J ⊆ Σ is measurable if and only if {(WA

s ,W
B
s ) : s ∈ J} is

Borel-measurable in R2. We can partition J into subsets JGj ,C := J ∩ ΣGj ,C . On each ΣGj ,C we
define a measure ηGj ,C as follows: for J ⊆ Σ measurable,

ηGj ,A(JGj ,A) = γjβjPθj ((WA,WB) ∈ {(WA
s ,W

B
s ) : s ∈ JGj ,A}),

ηGj ,B(JGj ,B) = γj(1− βj)Pθj ((WA,WB) ∈ {(WA
s ,W

B
s ) : s ∈ JGj ,B}),

(7)
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Table 1: Notation

Agents:
A,B Colleges (generic: C)
s An arbitrary student
S Students set
G1, . . . GK Groups of students, partition of S
η Measure for student masses

Agents’ features:
αA, αB Colleges’ capacities (∈ (0, 1))
γj Mass of students in group Gj (∈ [0, 1])
βj Share of students in group Gj preferring college A (∈ [0, 1])

Priority scores:
WC
s Score at C of student s (generic: W )

fCj , F
C
j Marginal pdf and cdf of college C for group Gj

(Hθ)θ∈Θ , (hθ)θ∈Θ Copula family and associated pdfs, indexed by θ
θ Parameter for a copula family
fj,θj , Fj,θj Group Gj ’s score vectors’ joint pdf and cdf, Fj,θj = Hθj (F

A
j , F

B
j )

Θ Set of possible values for θ
ICj , Ij Support of fCj and fj,θj respectively. Ij = IAj × IBj
ICj , Ī

C
j Lower and upper bounds of ICj

Correlation:
r Pearson’s correlation
ρ Spearman’s correlation
τ Kendall’s correlation

Matching:
µ Matching
V
Gj ,C
1 Share of students of group Gj and preferring C who get their first choice
V
Gj ,C
2 Share of students of group Gj and preferring C who get their second

choice
V
Gj

∅ Share of students of group G who are unassigned
V1 Total mass of students getting their first choice
LGi,Gj (θ) Inequality between Gi and Gj , equal to |V Gi

∅ (θ)− V
Gj

∅ (θ)|

Let B(S) be the set of measurable subsets of S. We define over B(S) the probability measure
η : B(S) → [0, 1] such that for any measurable subset J of S,

η(J) =
∑
j∈[K]

ηGj ,A(JGj ,A) + ηGj ,B(JGj ,B). (8)
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This definition is consistent with the definition of the parameters, as it verifies η(Gj) = γj , η({s ∈
Gj : A ≻s B}) = γjβj and so on.

A.2 Discussion on distributional assumptions

We assume that distributions admit a density and have full support, and that they can be represented
using a copula family and marginals that remain the same for any θ, and that this copula is coherent
and differentiable. We here explain why these assumptions are not very restrictive by presenting
canonical examples of classical copulas satisfying our assumptions.

1. Gaussian copula: The Gaussian copula is obtained by composing the cdf Φθ of a bivariate

Gaussian with covariance matrix

(
1 θ

θ 1

)
and the univariate cdf ϕ of the standard Gaussian:

Hθ(x, y) = Φθ(ϕ(x), ϕ(y)). Here, the parameter θ controls the covariance.

2. Archimedean copulas : Archimedean copulas are a broad family of copulas, each element of this
family being itself a parametric family of copulas with parameter θ. The general formula is

Hθ(x, y) = ψ−1
θ (ψθ(x) + ψθ(y))

where ψθ : [0, 1] → R+ is a continuous strictly decreasing and convex function such that
ψθ(1) = 0. Examples include:

• Clayton: Hθ(x, y) =
(
max{x−θ + y−θ − 1; 0}

)−1/θ

• Frank: Hθ(x, y) = −1
θ log

(
1 + (exp(−θx)−1)(exp(−θy)−1)

exp(−θ)−1

)
• Gumbel: Hθ(x, y) = exp

(
−((− log(x))θ + (− log(y))θ)1/θ

)
The Gaussian copula, as well as Clayton’s, Frank’s, Gumbel’s and other Archimedean copulas,

all satisfy our coherence and differentiability assumptions.
The only assumption our model makes on the marginals is that they are continuous. This is not

particularly restrictive as long as there are no ties (see Section 4.2 for a treatment of ties).

A.3 Elements of correlation theory

In this section, we present common measures of correlation used in the literature, and some of their
properties.

Definition 5 (Common measures of correlation). Let (X,Y ) be two random variables with respective
cdfs FX , FY . Define:

1. Pearson’s correlation: assume X,Y have finite standard deviations σX and σY . Then rX,Y =
Cov(X,Y )
σXσY

.
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2. Spearman’s correlation: let rkX = FX(X) and rkY = FY (Y ). We can think of rkX as
describing the ranking of X inside a sample. Then Spearman’s correlation is ρX,Y = rrkX ,rkY .

3. Kendall’s correlation: let (X1, Y1) and (X2, Y2) be two independent pairs of random variables
with the same joint distribution as (X,Y ). Then Kendall’s correlation is

τX,Y = P [(X1 > X2 ∩ Y1 > Y2) ∪ (X1 < X2 ∩ Y1 < Y2)]−
P [(X1 > X2 ∩ Y1 < Y2) ∪ (X1 < X2 ∩ Y1 > Y2)] .

We use the same letter r for the covariance of the standard bivariate Gaussian and for Pearson’s
correlation as they are equal. Moreover, for this distribution simple expressions exist for the two
other correlation coefficients:

ρ =
6

π
arcsin(r/2), τ =

2

π
arcsin(r).

A correlation measure should be zero when variables are independent, and reach its maximaum
when the variables are totally dependent on each other. The following lemma provides these
properties for the measures we just introduced.

Lemma 6 (Scarsini 1984, Theorems 1, 4, and 5). Let X,Y be two real random variables.

1. rX,Y , ρX,Y , τX,Y ∈ [−1, 1].

2. ρX,Y = 1 if and only if Y = g(X) with g : R → R increasing. The same holds for τX,Y .
rX,Y = 1 if and only if the relation is affine.

3. If X and Y are independent, then rX,Y = ρX,Y = τX,Y = 0.

A.4 Stable matching

We now introduce some elements of matching theory used throughout the paper.
To define matching in a continuum context, we follow Azevedo and Leshno (2016).

Definition 6. A matching is an assignment of students to colleges, described by a mapping
µ : S ∪ {A,B} → 2S ∪ C ∪ S, with the following properties:

1. for all s ∈ S, µ(s) ∈ {A,B} ∪ {s};

2. for C ∈ {A,B}, µ(C) ⊆ S is measurable and η(µ(C)) ≤ αC ;

3. C = µ(s) if and only if s ∈ µ(C);

4. for C ∈ {A,B}, the set {s ∈ S : µ(s) ⪯s C} is open.
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The first three conditions are common to almost all definitions of matching in discrete or
continuous models. Condition (1) ensures that a student is either matched to a college or to
themselves, which means that they remain unmatched. Condition (2) ensures that colleges are
assigned to a subset of students that respects the capacity constraints. Condition (3) ensures that the
matching is consistent, i.e., if a student is matched to a college, then this college is also matched to
the student. Condition (4) was introduced by Azevedo and Leshno (2016) and is necessary to ensure
that there do not exist several stable matchings that only differ by a set of students of measure 0.

We next define the notions of blocking and stability.

Definition 7 (Stability). The pair (s, C) blocks a matching µ if s would prefer C to her current
match, and either C has remaining capacity or it admitted a student with a lower score than s;
formally, if µ(s) ≺s C and either η(µ(C)) < αC or ∃s′ ∈ µ(C) such that WC

s′ < WC
s . A matching is

stable if it is not blocked by any student-college pair.

To produce a stable matching, one can extend the classic deferred acceptance algorithm by Gale
and Shapley (1962) to the continuum model. This algorithm is described in Algorithm 1.

Algorithm 1 Deferred acceptance algorithm (DA)
First step: All students apply to their favorite college, they are temporarily accepted. If the mass
of students applying to college C is greater than its capacity αC , then C only keeps the αC best
while A positive mass of students are unmatched and have not yet been rejected from every
college do

Each student who has been rejected at the previous step proposes to her preferred college
among those which have not rejected them yet

Each college C keeps the best αC mass of students among those it had temporarily accepted
and those who just applied, and rejects the others
end while
End: If the mass of students that are either matched or rejected from every college is 1, the
algorithm stops. However it could happen that it takes an infinite number of steps to converge.

If the algorithm stops, the matching it outputs is stable; Abdulkadiroğlu et al. (2015) show that
even when the number of steps is infinite, the algorithm converges to a stable matching.

Remark 3. Note that stable matchings do not only result from centralized algorithms but are often
the result of a decentralized process (see, e.g., Roth and Vande Vate 1990).

A.5 Excess capacity

In the case where αA + αB ≥ 1, we can compute the steps of the deferred acceptance algorithm (see
Algorithm 1 in the Appendix). We consider three (partitioning) cases:

(1) There is not enough room in college A for all students preferring it to college B, i.e.,
∑
j
γjβj ≥ αA.

In this case, there is necessarily enough room in college B for all students preferring it, since
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αA + αB ≥ 1. Therefore, following the steps of DA, we find:

(i) At step one,
∑
j
γjβj students preferring A apply there and the best αA are temporarily

admitted, and
∑
j
γj(1−βj) students preferring B apply there and are all temporarily admitted.

(ii) At step two, the
∑
j
γjβj − αA students rejected from A apply to B, and are admitted since

there is enough room for them (considering the students previously admitted).

This results in the following probabilities of a student to get their first or second choice:

V
Gj ,A
1 = 1− FAj (PA), V

Gj ,B
1 = 1,

V
Gj ,A
2 = FAj (PA), V

Gj ,B
2 = 0,

PA =

∑
j

γjβj
(
1− FAj

)−1

(αA).

Finally, as every student is admitted somewhere, V Gj

∅ = 0.

(2) There is not enough room in college B for all students preferring it to A, i.e.,
∑
j
γj(1− βj) ≥ αB .

Symmetrically we get

V
Gj ,A
1 = 1, V

Gj ,B
1 = 1− FBj (PB),

V
Gj ,A
2 = 0, V

Gj ,B
2 = FBj (PB),

PB =

∑
j

γj(1− βj)
(
1− FBj

)−1

(αB), V
Gj

∅ = 0.

(3) There is enough room in each college to admit all students who prefer attending it, i.e.,
∑
j
γjβj ≤

αA and
∑
j
γj(1 − βj) ≤ αB. It follows that everyone gets their first choice: for j ∈ [K] and

C ∈ {A,B},

V
Gj ,C
1 = 1,

V
Gj ,C
2 = V

Gj

∅ = 0.
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B Omitted proofs

B.1 Proof of Lemma 1.

Since Hθ(x, y) = P(X < x, Y < y) by definition, then the first part of the lemma is just a rewriting
of the definition of coherence. For the second part, we have

P(X > x, Y > y) = P(Y > y)− P(X < x, Y > y)

= P(Y > y)− P(X < x) + P(X < x, Y < y)

and P(Y > y),P(X < x) are constant in θ (Hθ are copulas therefore they all have uniform marginals)
while P(X < x, Y < y) is increasing, so P(X > x, Y > y) is also increasing. Finally, we also get that

P(X > x, Y < y) = P(Y < y)− P(X < x, Y < y)

and
P(X < x, Y > y) = P(X < x)− P(X < x, Y < y)

and both are thus decreasing.

B.2 Proof of Lemma 3.

Consider student s ∈ Gj who prefers college A. By Lemma 1 from Azevedo and Leshno (2016) (cf.
Section 2.3), s is admitted to A if and only if s ∈ DA(P), i.e., if and only if their score at A is
greater than PA. Then by definition of η,

V
Gj ,A
1 (θ) =

η({s ∈ Gj : A ≻s B,µ(s) = A})
γjβj

= Pj,θj ((W
A,WB) ∈ [PA,+∞)×R) = Pj(WA > PA).

The same reasoning applies to V Gj ,B
1 if s prefers B, which proves (2).

The same student s is admitted to B if and only if s ∈ DB(P
A, PB), i.e., if and only if WB

s ≥ PB

and WA
s < PA. Then we have

V
Gj ,A
2 (θ) =

η({s ∈ Gj : A ≻s B,µ(s) = B})
γjβj

= Pj,θj ((W
A,WB) ∈ (−∞, PA)× [PB,+∞)).

The same reasoning applies to V Gj ,B
2 , which proves (3).

Student s remains unmatched if and only if WA
s < PA and WB

s < PB. Then we have

V
Gj ,A

∅ (θ) =
η({s ∈ Gj : A ≻s B,µ(s) = s})

γjβj
= Pj,θj ((W

A,WB) ∈ (−∞, PA)× (−∞, PB)).
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which proves (4).

B.3 Proof of Lemma 4

It is sufficient to notice that Equation (4) is symmetric in C and C̄ to obtain the first part of the
lemma. The second one follows from the fact that either there is excess capacity and everyone is
matched, or both colleges are full and the mass of matched students is the sum of the capacities.

Remark 4. The first part of Lemma 4 could also be derived from the strategy-proofness for students
of the student-proposing deferred acceptance algorithm (Roth, 1985). Indeed, the fact that students
cannot improve their outcome by modifying the order of their preferences implies that them being
unmatched or not does not depend on which college they reported to be their first choice.

B.4 Proof of Proposition 1

The result follows directly by applying (2) to both groups, and by observing that the integral in
(2) depends on θ only through the cutoff vector P. Therefore, if groups Gi and Gj have the same
marginal FCj at college C, then V Gi,C

1 = V
Gj ,C
1 .

B.5 Proof of Proposition 2

The value of V1 comes from Lemma 3. If αA + αB ≥ 1, then all students are admitted to some
college, therefore V Gj

∅ = 0 for all j. Moreover, either PA = min
j
IAj or PB = min

j
IBj , or both. Let us

suppose the former holds. Then

V
Gj ,A
1 = 1− FAj (min

j
IAj ) = 1

V
Gj ,A
2 = 0

and

V
Gj ,B
1 = 1− FBj (PB)

V
Gj ,B
2 = FBj (PB).

It remains to show that PB is constant in θ. Define

H : x ∈ R 7→
∑
j

γj(1− βj)
(
1− FBj (x)

)
.

Note that since all FBj are invertible H is invertible too. Since all students preferring A get it, the
market clearing equation for B becomes H(PB) = αB, i.e., PB = H−1(αB). From this relation
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it appears that PB is indeed constant in θ. The same reasoning applies if PA ≠ min
j
IAj and

PB = min
j
IBj .

B.6 Proof of Lemma 5.

Assume αA + αB < 1, and θ ∈ Θ̊K . Let PA, PB ∈ R be the cutoffs of colleges A and B.
By definition of the quantities V1 and V2, the market-clearing equation (1) can be written as

∑
j∈[K]

(
γjβjV

Gj ,A
1 + γj(1− βj)V

Gj ,B
2

)
= αA,∑

j∈[K]

(
γjβjV

Gj ,A
2 + γj(1− βj)V

Gj ,B
1

)
= αB.

Then, using Lemma 3, we can rewrite it as
∑
j∈[K]

(
γjβjPj(WA ≥ PA) + γj(1− βj)Pj,θj (W

A ≥ PA,WB < PB)
)

= αA,∑
j∈[K]

(
γjβjPj,θj (W

A < PA,WB ≥ PB) + γj(1− βj)Pj(WB ≥ PB)
)

= αB,

which is finally equivalent to

∑
j∈[K]

(
γjβj

∫ ∞

PA

fAj (x) dx+ γj(1− βj)

∫ ∞

PA

∫ PB

−∞
fj,θj (x, y) dxdy

)
= αA,

∑
j∈[K]

(
γjβj

∫ PA

−∞

∫ ∞

PB

fj,θj (x, y) dxdy + γj(1− βj)

∫ ∞

PB

fBj (x) dx

)
= αB.

(9)

We fix θ, and we want to study how the solution (PA, PB) of the above equation varies as a
function of θj for some j ∈ [K]. Let us define Z : R2 ×Θ → R2, (PA, PB, θj) 7→ (DA(P

A, PB) −
αA, DB(P

A, PB)− αB). (We will denote by Z1 and Z2 its two components.)

Z(PA, PB, θj) =

(
Z1

Z2

)
=


∑
j∈[K]

(
γjβj

∫ ∞

PA

fAj (x) dx+ γj(1− βj)

∫ ∞

PA

∫ PB

−∞
fj,θj (x, y) dxdy

)
− αA

∑
j∈[K]

(
γjβj

∫ PA

−∞

∫ ∞

PB

fj,θj (x, y) dxdy + γj(1− βj)

∫ ∞

PB

fBj (x) dx

)
− αB


(10)

Then for each θj ∈ Θ, (PA, PB) is the solution of the equation Z(PA, PB, θj) = (0, 0). In order to
show that PA and PB are decreasing in θj , we wish to apply the implicit function theorem. Let
PA, PB ∈ R and θj ∈ Θ such that Z(PA, PB, θj) = 0. Function Z is of class C1. We first verify
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that the partial Jacobian JZ,(PA,PB)(P
A, PB, θj) is invertible, where

JZ,(PA,PB)(P
A, PB, θj) =

 ∂Z1

∂PA
∂Z1

∂PB
∂Z2

∂PA
∂Z2

∂PB

 . (11)

To show that the determinant ∂Z1

∂PA
∂Z2

∂PB − ∂Z1

∂PB
∂Z2

∂PA ̸= 0, we will show that it is in fact strictly positive.
From (9), it is clear that Z1 is decreasing in PA and increasing in PB, and that Z2 is increasing in
PA and decreasing in PB. Therefore, to prove that ∂Z1

∂PA
∂Z2

∂PB − ∂Z1

∂PB
∂Z2

∂PA > 0, we only need to prove

that
∣∣∣ ∂Z1

∂PA

∣∣∣ > ∂Z2

∂PA and
∣∣∣ ∂Z2

∂PB

∣∣∣ > ∂Z1

∂PB .
By symmetry, we will only prove the first one. We can compute each term separately:

∂Z1

∂PA
=
∑
j∈[K]

(
γjβj

∂ Pj(WA ≥ PA)

∂PA
+ γj(1− βj)

∂ Pj,θj (WA ≥ PA,WB < PB)

∂PA

)
,

∂Z2

∂PA
=
∑
j∈[K]

γjβj
∂ Pj,θj (WA < PA,WB ≥ PB)

∂PA
.

All terms of Z1 are decreasing in PA and all terms of Z2 are increasing in PA, therefore we can
proceed term by term:∣∣∣∣γjβj ∂ Pj(WA ≥ PA)

∂PA

∣∣∣∣ = γjβj
∂ Pj(WA < PA)

∂PA
,

= γjβj

(
∂ Pj,θj (WA < PA,WB < PB)

∂PA
+
∂ Pj,θj (WA < PA,WB ≥ PB)

∂PA

)
,

(12)

> γjβj
∂ Pj,θj (WA < PA,WB ≥ PB)

∂PA
.

We conclude that
∣∣∣ ∂Z1

∂PA

∣∣∣ > ∂Z2

∂PA , and similarly
∣∣∣ ∂Z2

∂PB

∣∣∣ > ∂Z1

∂PB . Therefore the Jacobian in (11) has
positive determinant and is invertible.

By the implicit function theorem, there exists a neighborhood U of (PA, PB), a neighborhood V
of θj , and a function ψ : V → U such that for all (x, y) ∈ R2, θ ∈ Θ,

( (x, y, θ) ∈ U × V and Z(x, y, θ) = 0 ) ⇔ ( θ ∈ V and (x, y) = ψ(θ) ).
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In particular, (PA, PB) = ψ(θj), and we can compute the derivative of ψ:

Jψ(θj) = −JZ,(PA,PB)(P
A, PB, θj)

−1 JZ,θj (P
A, PB, θj),

=
−1

∂Z1

∂PA
∂Z2

∂PB − ∂Z1

∂PB
∂Z2

∂PA

 ∂Z2

∂PB
− ∂Z1

∂PB

− ∂Z2

∂PA
∂Z1

∂PA



∂Z1

∂θj
∂Z2

∂θj

 ,

=
−1

∂Z1

∂PA
∂Z2

∂PB − ∂Z1

∂PB
∂Z2

∂PA


∂Z2

∂PB
∂Z1

∂θj
− ∂Z1

∂PB
∂Z2

∂θj

− ∂Z2

∂PA
∂Z1

∂θj
+
∂Z1

∂PA
∂Z2

∂θj

 . (13)

We only need to know the sign of each term to conclude about the variations of ψ. We already know
the sign of the derivatives in PA and PB , so we only need those in θj . The terms of Z1 that depend
on θj are

∑
j∈[K]

γj(1− βj)Pj,θj (WA ≥ PA,WB < PB). By Lemma 1, Pθj (WA ≥ PA,WB < PB) is

decreasing in θj , and thus ∂Z1
∂θj

< 0. By the same argument, ∂Z2
∂θj

is also negative. (Note that here
the implicit functions theorem requires that we compute the partial derivatives of Z as if PA and
PB were not functions of θj .)

If we replace each term of the last line of Equation (13) by its signs, we get

− 1

+

(
c(−×−) − (+×−)

− (+×−) + (−×−)

)
=

(
c−
−

)
.

We conclude that ψ and therefore PA and PB are decreasing in θj .
Note that we require θj ∈ Θ̊ because if one of the θj is maximal, i.e., the distribution is fully

correlated ( WB is a deterministic function of WA), then the V1 metrics are not differentiable at
this point. However, they are continuous, therefore they are increasing on the whole interval Θ.
Moreover, if the distribution is not fully correlated when θ is maximal, then we can replace Θ̊ by Θ

in the statement of the lemma.

B.7 Proof of Corollary 1.

By Lemma 5, PA and PB are decreasing in both θ1 and θ2, thus for i ̸= j ∈ [K]:

dV
Gj

∅
∂θi

=
dPj,θj (WA < PA,WB < PB)

dθi

=

(
∂ Pj,θj (WA < PA,WB < PB)

dPA
,
∂ Pj,θj (WA < PA,WB < PB)

dPB

)
·
(
dPA

dθi
,
dPB

dθi

)T
< 0.

35



Since the total capacity (of the two colleges) is constant, the mass of unmatched student must also
be constant. Therefore, we have

γiV
Gi

∅ +
∑
j ̸=i

γjV
Gj

∅ = 1− αA − αB.

By differentiating this equation we get

γi
dV Gi

∅
dθi

+
∑
j ̸=i

γj
dV

Gj

∅
dθi

= 0

⇔
dV Gi

∅
dθi

= − 1

γi

∑
j ̸=i

γj
dV

Gj

∅
dθi

⇒
dV Gi

∅
dθi

> 0

which proves the first part of Corollary 1. Moreover, since L(Gi, Gj) = |V Gi

∅ − V
Gj

∅ |, assume
that V Gi

∅ < V
Gj

∅ , then L(Gi, Gj) = V
Gj

∅ − V Gi

∅ , and using the first part of the result we get that
dL(Gi,Gj)

dθi
< 0 and dL(Gi,Gj)

dθj
> 0, which proves the second part.

B.8 Proof of Proposition 3.

V1 is a convex combination of the first choice functions that are increasing in all θj . Moreover it is
continuous, and we assumed Θ to be an interval, so the set of possible values for V1 is an interval,
say [V min

1 , V max
1 ]. Fix V ∈ (V min

1 , V max
1 ), and consider the solutions of the equation V (θ) = V . By

continuity, this equation has a solution. The implicit function theorem applied to express some
θj (the choice of j does not matter) as a function ϕ of all the other elements of θ shows that the
solutions of V (θ) = V is a connected subset of ΘK , and also an hypersurface because the function ϕ
is monotonous in all θi (this comes from the fact that V1 is itself monotonous). This proves the first
part of the proposition.

Let us choose two groups Gi, Gj , and fix all θℓ for ℓ ̸= i, j. We apply the implicit function
theorem to express θj as a function of θi, which shows that there exists an interval U := [θ, θ̄] ⊆ Θ

and a differentiable function ϕ : U → Θ such that (θi ∈ U and θj = ϕ(θi)) =⇒ V1(θ) = V .
Since V (θ) is increasing in all arguments, ϕ is necessarily decreasing. If we keep θj = ϕ(θi), then
dV

Gi
∅
dθi

=
∂V

Gi
∅
∂θi

+
∂V

Gi
∅

∂θj
ϕ′(θi), which is positive by Corollary 1, so (θi, θj) = (θ, ϕ(θ) minimizes V Gi

∅ , and
(θi, θj) = (θ̄, ϕ(θ̄) maximizes it. The same reasoning shows that those two points respectively maximize
and minimize V Gj

∅ . Finally, since V Gi

∅ is increasing and V Gj

∅ decreasing, L(Gi, Gj) = |V Gi

∅ − V
Gj

∅ |
has a unique local (and therefore global) minimum.
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Figure 6: Illustration of the distribution fθ with three priority classes at A (30% of applicants in the
first class, 30% in the second, 40% in the third), two priority classes at B (40% in the first class,
60% in the second), and correlation θ = 0.5.

B.9 Proof of Proposition 4.

We start by building a distribution family that can represent both STB and MTB for two values of
the parameter. The priority classes are QA1 , . . . QAnA

and QB1 , . . . QBnB
, and we denote by κjC = η(QCj )

the mass of students inside class j of college C. Let a0 = 0, a1 = κ1A, a2 = κ1A + κ2A, . . . , anA = 1,
such that they form a partition of [0, 1] with the j-th segment having length κjA. Define b0, . . . , bnB

similarly. Finally, for any i ≤ nA, j ≤ nB, let κi,j = η(QAi ×QBj ) be the mass of students belonging
to class i for A and class j for B.

Let ϕθ be the pdf of the Gaussian copula with uniform marginals on [0, 1]2 and covariance θ. For
any θ ∈ [−1, 1], let fθ : [−1, 1]2 → R be defined as:

fθ(x, y) = κi,jϕθ(
x− ai−1

κiA
,
y − bj−1

κjB
) with ai−1 ≤ x ≤ ai, bj−1 ≤ y ≤ bj

Defined this way, fr is a pdf since it is non-negative and has integral 1. The marginals are
uniform and do not depend on θ. Moreover, the integral of fr over each rectangle QAi ×QBj is κi,j ,
and each rectangle contains a “copy” of the Gaussian copula adjusted to its dimensions. There is no
“spill” between classes: if student s is in a higher priority class at college C than student s′, then s
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will have a higher score with probability 1. If for all i, j, κi,j > 0, and θ /∈ {−1, 1}, then fθ has full
support. This distribution is depicted in Figure 6.

We can verify that this definition recovers MTB and STB: if θ = 0, if two students are in the
same priority class for a college, they have the same ex-ante probability of getting a seat there, and
if they also are in the same priority class for the other college (i.e., they are in the same rectangle
QAi ×QBj ), the result of this second tie-breaking is independent from the first one. When θ = 1, if
two students are in the same priority class for a college, have the same ex-ante probability of getting
a seat there, but if they also are in the same priority class for the other college (i.e., they are in the
same rectangle QAi ×QBj ), the winner of the tie-breaking is the same as for the first college since
scores inside the rectangle are perfectly correlated. In that case, the distribution does not have full
support but this is not an issue as explained in Remark 1. Therefore MTB is the case θ = 0 and
STB θ = 1.

Let us now prove the proposition:

1. • The family (fθ)θ∈[−1,1] is differentiable by differentiability of the Gaussian copula. It
is also coherent (except for the (x, y) such that x = ai or y = bj , i.e., on the sides of
rectangles, in which case the cdf is constant and not increasing). Therefore by applying
Theorem 1, E is either increasing or constant.

• Moreover, the case where it could be constant can only happen if there are several priority
classes, so if there is only one it is strictly increasing.

• Let us look into the multiple priority classes case.Suppose that ∃θ ∈ Θ such that
PA(θ) ̸= ai and PB(θ) ̸= bj for all i, j. We can then apply Theorem 1, and deduce that
V A
1 and V B

1 are increasing in all θj . If there exists no such θ, it implies that PA, PB are
constant in θ and so are V A

1 and V B
1 . However, as any perturbation of either γ, βorα

would change the cutoffs, and resolve the issue, the set of problematic values of (γ, β, α)
has Lebesgue measure 0.

2. Finally, Corollary 1 can be applied with the same adjustments, which gives the fourth point.
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