
The Value of Excess Supply in Spatial Matching
Markets∗

Mohammad Akbarpour,† Yeganeh Alimohammadi,‡

Shengwu Li,§ Amin Saberi¶

April 8, 2021

Abstract

We study dynamic matching in a spatial setting. Drivers are distributed at random
on some interval. Riders arrive in some (possibly adversarial) order at randomly drawn
points. The platform observes the location of the drivers, and can match newly arrived
riders immediately, or can wait for more riders to arrive. Unmatched riders incur a
waiting cost c per period. The platform can match riders and drivers, irrevocably. The
cost of matching a driver to a rider is equal to the distance between them. We quantify
the value of slightly increasing supply. We prove that when there are (1 + ε) drivers
per rider (for any ε > 0), the cost of matching returned by a simple greedy algorithm
which pairs each arriving rider to the closest available driver is O(log3(n)), where n
is the number of riders. On the other hand, with equal number of drivers and riders,
even the ex post optimal matching does not have a cost less than Θ(

√
n). Our results

shed light on the important role of (small) excess supply in spatial matching markets.

Keywords: Matching, spatial, dynamic, ride-sharing, random walk.

JEL Code: D47.

∗We thank Nick Arnosti, Itai Ashlagi, Yash Kanoria, David Kreps, Paul Milgrom, and several seminar
participants for helpful comments.

†Graduate School of Business, Stanford University. mohamwad@stanford.edu
‡Department of Management Science and Engineering, Stanford University. yeganeh@stanford.edu
§Department of Economics, Harvard University. shengwu_li@fas.harvard.edu
¶Department of Management Science and Engineering, Stanford University. saberi@stanford.edu

ar
X

iv
:2

10
4.

03
21

9v
1

 [
cs

.D
S]

 7
 A

pr
 2

02
1

mohamwad@stanford.edu
yeganeh@stanford.edu
shengwu_li@fas.harvard.edu
saberi@stanford.edu

1 Introduction

In many real-world settings, we want to provide services when they are requested, by assign-

ing nearby service providers. Examples of such ‘spatial’ matching problems include assigning

drivers to riders in ride-hailing, assigning ambulances to medical emergencies, or (more fig-

uratively) assigning workers to tasks that require varying skillsets. These situations can be

described as dynamic spatial matching problems. They have two key features. First, requests

arrive over time, and we are required to fulfil each request when it is made. Second, each

request (‘rider’) and each provider (‘driver’) has a geographic location, and nearby drivers

are better than distant drivers.

One natural approach to spatial matching problems is to first balance supply and demand,

and then to optimize the matching between drivers and riders. The cost of hiring excess

drivers is immediate and concrete, whereas the potential benefits are subtle and may depend

on the matching algorithm. Moreover, in some jurisdictions, ride-hailing platforms face a

penalty for having excess drivers, because they are required to pay higher wages when the

utilization rate is low.1

In our model, n ‘drivers’ are uniformly distributed on the interval [0, `], and n ‘riders’

arrive over time, also uniformly distributed. At any time, the platform match some driver to

some rider, which removes both from the system. Each unmatched rider accrues a waiting

cost c per unit time. We start by assuming that the platform is obliged to serve all riders, and

wants to minimize the total cost, i.e. the total distance between riders and their matched

drivers plus any waiting costs.

In this model, the optimal policy is potentially complex. It depends on the locations of all

the remaining drivers and riders, the arrival process of riders, and also on what the platform

knows about the future. Hence, as a tractable benchmark, suppose that the platform can

perfectly predict the positions and the arrival times of the riders, and matches drivers to

riders in such a way as to minimize the ex post total cost. This “omniscient” matching

algorithm performs at least as well as any feasible algorithm. In particular, all drivers are

present at the beginning, and the omniscient algorithm knows the optimal ex post matching.

Thus, the omniscient algorithm matches every rider upon arrival and pays no waiting costs.

To quantify the potential gains from excess supply, we compare the performance of the

omniscient algorithm in balanced and unbalanced markets. First, we prove that in a balanced

market, with n riders and n drivers, the expected cost of this omniscient algorithm is Θ(`
√
n).

1New York City Considers New Pay Rules for Uber Drivers, The New York Times, July 2 2018 and
Seattle Passes Minimum Pay Rate for Uber and Lyft Drivers, The New York Times, September 29 2020.

1

Next, we consider an unbalanced market, with n riders and n(1 + ε) drivers, for any positive

constant ε. We show that for any ε > 0, adding εn drivers causes the expected cost of the

omniscient algorithm to fall from Θ(`
√
n) to O(`). Hence, unbalancedness can potentially

generate stark reductions in cost; the total cost of the matching in an unbalanced market

does not even rise with the market size n.

The omniscient benchmark is tractable but unrealistic. What if the platform cannot see

the future or has limited computational power? How much of the gain from increasing supply

can we realistically achieve? Consider the following greedy algorithm: Match each arriving

rider to the nearest available driver. The greedy algorithm does not exploit (and does not

require) information about future arrivals, and it does not take into account the positions

of any drivers except the nearest. Moreover, suppose riders arrive in an adversarial order.

We prove that the greedy algorithm with n(1 + ε) drivers has an expected matching cost

of O(` log3(n)). It substantially outperforms the expected cost of the omniscient algorithm

with n drivers, and closes most of the gap to the omniscient algorithm with n(1 + ε) drivers.

Next we investigate whether the difficulty of the balanced-market problem is caused by

the requirement that the platform serve all riders, even those who are far away. We study

a relaxed problem, in which the platform faces a balanced market but can leave a rider

unmatched for a penalty ν, which may depend on the market size n. Of course, the problem

is trivial without a lower bound for ν. For instance, if ν < `n−
1
2 , then for large n, the

platform prefers matching no riders to matching every rider. Therefore, suppose instead

that ν ≥ `n−
1
2
+δ for some positive constant δ. We prove that the expected cost of the

omniscient algorithm is Ω(`nδ). Hence, giving the platform the option to forego matching

distant riders still leads to costs that are at least polynomial in n.

After presenting our theoretical results, we use simulations to investigate whether similar

findings hold for small numbers of drivers and riders. To do so, we pose the following

question: For a fixed number of riders n, how many excess drivers are needed in order for

the greedy algorithm to beat the balanced-market omniscient algorithm? We find that for

n = 25, having 1 excess driver and greedily matching riders has a lower total distance cost

than the omniscient algorithm. For n = 100, 4 excess drivers are enough, and for n = 1000,

and 13 excess drivers are enough.

Taken together, our results shed light on the importance of excess supply in spatial match-

ing markets. Various real-world matching platforms have adopted policies with the goal of

balancing supply and demand. For instance, Uber asserts in an explanatory video about

2

surge pricing that “the main focus is trying to bring balance to the marketplace.”2 Similarly,

Lyft states, “Dynamic pricing is the main technology that allows us to maintain market

balance in real-time.”3 Our results suggest that these maxims should not be taken too liter-

ally. Instead of exactly balancing supply and demand, mild excess supply can substantially

improve performance, and even simple matching algorithms can realize these gains.

1.1 Related work

Online matching has a long history in theoretical computer science with many gems. Karp

et al. 1990 introduced the online bipartite matching problem. More than a decade later, and

motivated by applications in online advertising, Mehta et al. 2005 formulated the AdWords

problem which has been studied extensively in its own right by Devanur et al. 2013, Manshadi

et al. 2012, Goel and Mehta 2008, Mahdian et al. 2007, Huang et al. 2020. There is also

a surge of interest in online matching in economics. In particular, Akbarpour et al. 2020a

studied a dynamic matching problem on stochastic networks, where agents arrive and depart

over time and quantified the value of liquidity in such markets. Baccara et al. 2020 studied

optimal dynamic matching and thickness in a two-sided model. Moreover, online matching

models have been applied to multiple domains, including kidney exchange [Ünver 2010,

Ashlagi et al. 2013, Anderson et al. 2015, Ashlagi et al. 2019, Akbarpour et al. 2020b],

housing markets [Leshno 2019, Bloch and Houy 2012, Arnosti and Shi 2019], and ride-sharing

[Özkan and Ward 2020, Liu et al. 2019, Castillo 2020].

Online matching is also studied on metric spaces when the placement of the nodes and

their arrivals are adversarial and the matching algorithm is deterministic in Khuller et al.

1994, Kalyanasundaram and Pruhs 1993, Antoniadis et al. 2015, or randomized in Meyerson

et al. 2006, Bansal et al. 2007, Nayyar and Raghvendra 2017, as well as the case where the

arrival and the position of the nodes are chosen from a known distribution by Gupta et al.

2019. These results do not compare directly with the analysis of the current paper as they

aim to find algorithms with the smallest competitive ratio, while we directly bound the cost

of optimum matching as well as the cost of the solution of a particular (greedy) algorithm.

In fact, from the point of view of competitive analysis, it was shown by Kalyanasundaram

and Pruhs 1991; 1993 that greedy can perform exponentially poorly in the worst case, and

by Gairing and Klimm 2019 it cannot perform better than Ω(n0.292) with random arrivals.

2https://www.uber.com/us/en/marketplace/pricing/surge-pricing/, accessed March 25 2021.
3https://eng.lyft.com/dynamic-pricing-to-sustain-marketplace-balance-1d23a8d1be90,

accessed March 25 2021.

3

https://www.uber.com/us/en/marketplace/pricing/surge-pricing/
https://eng.lyft.com/dynamic-pricing-to-sustain-marketplace-balance-1d23a8d1be90

Tong et al. 2016 studied greedy in an experimental point of view and observed that greedy

performs better than most of the known algorithms. The result of our study will give

theoretical support to this observation.

The most relevant line of studies from a technical perspective is the (empirical) optimal

transport problem. There, the expected cost of the ex post optimal matching is studied in

Euclidean spaces with uniform random points by Monvel and Martin 2002, Holroyd et al.

2020, Ajtai et al. 1984, Ambrosio et al. 2016, and Poisson point processes by Holroyd et al.

2020, Hoffman et al. 2006. Also, Frieze et al. 1990 study non-bipartite matching of 2n uniform

random points on [0, 1] and show that the cost of greedy is Θ(log(n)). The above results

consider settings that correspond to balanced markets. To the best of our knowledge, our

work is the first to give a constant bound on the ex-post optimal matching when the market

is unbalanced.

Spatial models are used for studying ride-hailing and ride-sharing applications. In partic-

ular, Bimpikis et al. 2017, used such models to study spatial price discrimination and Besbes

et al. 2019 for price optimization and its effect on demand and supply.

Finally, our results are reminiscent of the effects of the imbalance between two sides of

the market in stable marriage problem with random preference Ashlagi et al. 2017, Pittel

2019, Kanoria et al. 2020 and metric preferences Abadi and Prabhakar 2017, except that we

are interested in cost efficiency of matching rather than its stability. Also, tangential to our

result is the work by Bulow and Klemperer 1996 on the effect of extra bidders in auctions.

2 Model and Main Results

2.1 Spatial setting and matching algorithms

Time passes in discrete periods. Let R = {r1, . . . , rn} and D = {d1, . . . , dm} be two sets of

points chosen independently and uniformly at random on [0, `], where ` can be a function

of n and m. We call R the set of riders and D the set of drivers. The uniform distribution

is not essential for our results; in Section 2.4 we show our main results will not change if

the location of drivers and riders is drawn from any distribution with appropriate continuity

properties. Throughout the paper we assume m ≥ n. We say we are in a balanced market

when m = n, and in an unbalanced market when m > n.

At t = 0, platform observes the positions of the drivers. Then, an adversary, which knows

all the positions of riders and drivers and the entire state of the matching algorithm, chooses

4

riders one by one and reveals their positions to the algorithm at times t = 1 to t = n. Our

main results continue to hold for stochastic arrivals (from a known or unknown distribution).

A matching M is a set of ordered pairs (r, d) such that r ∈ R and d ∈ D, and each rider

or driver belongs to at most one pair in M . A matching algorithm takes as input the state

of the system at time t (the location of all drivers, as well as riders who have arrived so

far) and produces as output a (possibly empty) matching between drivers and riders who

are in the market at time t. Each unmatched rider incurs a waiting cost c per unit of time.

Matches are irrevocable.

The distance cost of matching a rider at position r with a driver at position d is equal

to |r− d|. The cost of a matching algorithm ALG, cost(ALG), is equal to the sum over the

distance costs of all the pairs plus any waiting cost that riders incur. The goal is to choose

a matching to minimize the total cost.

We consider three matching algorithms:

• The optimal matching algorithm, knowing that the order of arrivals is adverserial, it

takes as input the current location of all remaining drivers and the location of the

newly arrived rider, and outputs a driver to be matched with the new rider. This

algorithm is complex.

• The omniscient algorithm is a theoretical benchmark that performs better than opti-

mal. It captures the idea that the planner can engage in acquiring costly information

about the location of future riders’ arrivals. This algorithm knows the locations and

arrival times of all the riders in advance and matches them optimally when they arrive.

• The greedy matching algorithm matches each rider to the closest driver.

We denote the cost of omniscient and greedy algorithms by cost(OMN) and cost(Greedy),

respectively.

A few remarks about these algorithms worth pointing out. First, for a fixed set of riders

and drivers, the omniscient algorithm has a lower cost than the optimal algorithm, which

itself has a lower cost than the greedy.

Secondly, while the optimal algorithm is generally complex, the omniscient algorithm is

5

more tractable. In fact, cost(OMN) is the solution to the following integer program:

minimize
n∑
i=1

m∑
j=1

x(i,j)|ri − dj|

s.t.
n∑
j=1

x(i,j) = 1,∀ri ∈ R,

n∑
i=1

x(i,j) ≤ 1,∀dj ∈ D,

x(i,j) ∈ {0, 1}.

(2.1)

Importantly, the omniscient algorithm is “detail-free” in the sense that its performance

is independent of waiting cost c and whether the arrival process of riders is random or

adversarial. The reason is that the omniscient algorithm knows the optimal ex post matching,

and as such matches each rider immediately upon arrival to its optimal ex post driver; as

such, it incurs no waiting cost and performs equally well for any arrival process.

Similarly, the greedy algorithm incurs no waiting cost and thus its performance is inde-

pendent of c. Nevertheless, unlike the omniscient, this algorithm is näıve and makes mistakes

both ex post and ex ante. This is because greedy algorithm ignores that there are external-

ities involved with removing a driver in the system. Figure 1 illustrates a simple example

in which greedy makes an ex post mistake. Here, black circles are the drivers and r1 arrives

before r2. Greedy matches r1 to the driver on the right, whereas the omniscient matches r1

to the driver on the left, making r1 slightly worse off and r2 much better off.

Note that in the example of Figure 1, a realistic matching algorithm could in principle

wait for one period so that r2 arrives, and then choose the same matching as the omniscient.

The total distance cost of such “patient” algorithm is same as the omniscient, but the

algorithm incurs a waiting cost c because rider r1 is forced to wait for one period.4

r1 r2

Figure 1: Greedy algorithm can perform much worse than the omniscient algorithm. Here,
dark circles are drivers and white nodes are riders. r1 arrives before r2. Greedy matches r1
to the right driver and r2 to the left, which is an ex post mistake.

Finally, the greedy algorithm has a ‘decentralized’ interpretation. Suppose there is no

4This is essentially the idea behind the algorithm used by Uber: https://www.uber.com/us/en/

marketplace/matching/

6

https://www.uber.com/us/en/marketplace/matching/
https://www.uber.com/us/en/marketplace/matching/

central planner, riders arrive at the market one by one, and choose a driver to maximize

their own utility. Since we assumed drivers are homogeneous except for their locations, a

new rider will pick the closest driver, which is precisely what the greedy algorithm would do.

As such, our analysis of the greedy algorithm is in effect analyzing a decentralized setting

with selfish agents.

2.2 Sophisticated matching algorithms and the value of extra drivers

To quantify the value of raising the supply, we first compare the performance of omniscient

matching algorithm in a balanced market to the performance of the omniscient algorithm in

an unbalanced market—when there are n riders and m ≥ n(1 + ε) drivers.

We prove that the cost of the omniscient matching in the balanced market is Θ(`
√
n),

whereas if the market is unbalanced then the cost is O(`). More precisely, we prove the

following theorem:

Theorem 2.1. Let R = {r1, . . . , rn} and D = {d1, . . . , dm} be two sets random points drawn

independently from a uniform distribution on [0, `]. Then

1. In a balanced market, there exists C > 0 such that for all n ≥ 1

E[cost(OMN)] ≥ C`
√
n.

2. In an unbalanced market where m ≥ (1 + ε)n, for some ε > 0. Then, there exists some

Cε > 0 such that for all n ≥ 4ε−1

E[cost(OMN)] ≤ Cε`.

The expectation in both parts is over the randomness of R and D on the interval [0, `].

Hence, when we have access to computational power and perfect prediction of future

arrivals, unbalancedness can generate stark reduction in costs: the cost in an unbalanced

market is independent of n, whereas in a balanced market the cost grows at rate
√
n.

2.3 The greedy matching algorithm and the value of extra drivers

Omniscient algorithm is practically infeasible, since it can predict the entire future demand

and has limited computational power. One may wonder whether increasing supply is highly

7

valuable only for omniscient. Putting differently, how much of the gain from increasing supply

can we realistically achieve? To answer this question, we consider the greedy algorithm. This

algorithm does not exploit (and does not require) information about future arrivals, and it

does not take into account the positions of any driver except the nearest; it ignores the

global ‘network’ structure of the system. In the following theorem, we prove that the greedy

algorithm with (1 + ε)n drivers has an expected matching cost of O(` log3(n)).

Theorem 2.2. Consider an unbalanced market where m ≥ (1 + ε)n, for some ε > 0. Then,

there exists some Cε > 0 such that for large enough n

E[cost(Greedy)] ≤ Cε` log3(n),

where the expectation is over the randomness of R and D on the interval [0, `].

This result shows that the näıve greedy algorithm with n(1 + ε)) drivers performs much

better than the omniscient algorithm with n drivers, and not much worse than the omniscient

algorithm with n(1+ε)) drivers. Importantly, the bound for the greedy algorithm holds even

if riders arrive in an adversarial order.

2.4 Matching for other distributions

So far we have assumed that riders and drivers are uniformly distributed, but our results

yield corollaries for other distributions.

Suppose that riders and drivers are distributed independently and identically on the unit

interval, with cumulative distribution function F : [0, 1] → [0, 1], satisfying F (0) = 0 and

F (1) = 1. Given a random variable x with CDF F , the random variable F (x) is uniformly

distributed on [0, 1]. Let us define the normalized distance cost of matching rider ri and

driver dj as |F (ri)−F (dj)|, and let costF (·) be the total cost of an algorithm when distance

is measured with normalized cost.

Corollary 2.3. If F is Lipschitz-continuous, then in a balanced market, there exists C > 0

such that for all n ≥ 1

E[cost(OMN)] ≥ C
√
n.

Proof. Let OMNF be the omniscient algorithm that minimizes the ex post normalized cost.

By Theorem 2.1, there exists C ′ > 0 such that for all n ≥ 1,

C ′
√
n ≤ E[costF (OMNF)] ≤ E[costF (OMN)] (2.2)

8

Let α be the Lipschitz constant of F . For any pair (ri, dj), we have |F (ri)−F (dj)| ≤ α|ri−dj|.
Hence,

E[costF (OMN)] ≤ αE[cost(OMN)]. (2.3)

Combining Equations 2.2 and 2.3 completes the proof.

Let the normalized location of rider ri be F (ri), and similarly for drivers. Let GreedyF

be the Greedy algorithm but with the normalized locations as inputs.

Corollary 2.4. If F−1 is Lipschitz continuous, then for any an unbalanced market where

m ≥ (1 + ε)n, for some ε > 0, there exists some Cε > 0 such that for large enough n

E[cost(GreedyF)] ≤ Cε log3(n).

Proof. Let α be the Lipschitz constant of F−1. For any pair (ri, dj), we have

|ri − dj| = |F−1(F (ri))− F−1(F (dj)| ≤ α|F (ri)− F (dj)|.

Hence, we have that

E[cost(GreedyF)] ≤ αE[costF (GreedyF)]. (2.4)

Moreover, by Theorem 2.2, there exists C ′ε > 0 such that

E[costF (GreedyF)] ≤ C ′ε log3(n). (2.5)

Combining Equations 2.4 and 2.5 completes the proof.

2.5 What if we can ignore some (far away) riders?

Finally, we investigate whether the difficulty of the balanced-market problem is caused by

the requirement that the platform serves all riders, even those who are far away. We study

a relaxed problem, in which the platform can leave a rider unmatched at a penalty ν. We

allow ν to depend on the market size n. First note that without a lower bound for ν, the

problem is trivial. For instance, if ν = `
n
, the the platform will choose to match no rider, and

pay a cost n `
n

= `. In fact, for any ν < `
n1/2 and for large n, the platform prefers matching

no riders to matching every rider. To exclude such trivial cases, we assume instead that

ν ≥ `
n1/2−δ for some δ > 0. With this, the cost of the optimal matching is given by the

9

following integer programming:

minimize
n∑
i=1

m∑
j=1

x(i,j)|ri − dj|+
n∑
i=1

ν(1−
m∑
j=1

x(i,j))

s.t.
n∑
j=1

x(i,j) ≤ 1,∀ri ∈ R

n∑
i=1

x(i,j) ≤ 1,∀dj ∈ D,

x(i,j) ∈ {0, 1}.

(2.6)

Here for each rider ri, the value of (1−
∑m

j=1 xij) shows whether this rider is matched or not.

We call M∗, the matching corresponding to the solution of (2.6), as the minimum match-

ing with penalty. The next theorem then proves that the expected cost of the omniscient

matching is Ω(nδ).

Theorem 2.5. Given integers n ≥ 0 and `, let R = {r1, . . . , rn} and D = {d1, . . . , dn} be

two sets random points drawn independently from a uniform distribution on [0, `]. Then for

M∗, the minimum cost matching with penalty,

1. If ν ≥ ` then there exist C1, C2 > 0 such that for all n ≥ 1

C1`
√
n ≥ E[cost(M∗)] ≥ C2`

√
n.

2. If ν ≥ `
n1/2−δ for some δ > 0 then there exists a constant C > 0 such that for large

enough n we have

E[cost(M∗)] ≥ C`nδ.

The expectation in both parts is over the randomness of R and D on the interval [0, `].

Hence, giving the platform the option to forego matching distant riders still leads to costs

that are at least polynomial in n.

Note that by setting ν = ` the cost of the minimum matching with and without penalty

are the same, because the penalty of not matching a rider is more than the cost of matching

to some driver within distance `.

10

2.6 Experiments

One may suspect that our theoretical results hold only in the limit as n gets very large,

and wonders whether they continue to hold in small markets. To address this issue, we run

simulations and compare omniscient and greedy matching algorithms. In particular, we ask:

in a unit interval and for a given number of riders, how many extra drivers are needed for

the greedy to beat the omniscient algorithm?

Figure 2 depicts, for a given number of drivers, the percentage of extra drivers required

by the greedy to beat the omniscient in the balanced market. As it is clear, the percentage is

decreasing as the market gets larger, but it is small even for small markets. For instance, for

n = 25, having 1 excess driver and greedily matching riders has a lower total distance cost

than the omniscient algorithm. For n = 100, 4 excess drivers are enough, and for n = 1000,

and 13 excess drivers are enough.

Figure 2: Additional percentage of drivers required for greedy to outperform omniscient.

3 The Unbalanced Market with More Drivers

This section is on the analysis of the unbalanced market. The key tool is to represent a

sequence of drivers and riders with a random walk, as discussed in Section 3.1. Then in

Section 3.2 we describe the relation of the cost of omniscient algorithm and the random walk

to prove Theorem 2.1 Part 2. Finally, Section 3.3 is on the analysis of the greedy algorithm

and the proof of Theorem 2.2.

11

3.1 A random walk representation

By representing the sequence of riders and drivers with a random walk, we show that it is

possible to divide [0, `] into m − n + 1 (random) sub-intervals, which we refer to as slices,

such that:

i There are more drivers than riders in each slice.

ii The total number of riders and drivers in each slice decays exponentially fast.

Given the sets of riders R = {r1, . . . , rn} and drivers D = {d1, . . . dm}, consider the walk

W : [0, `]→ Z, such that W (0) = 0 and for each y > x,

W (y)−W (x) = |D ∩ [x, y]| − |R ∩ [x, y]|. (3.1)

Define the exit time γi, as the last time the walk hits i, i.e.,

γi = sup
t≥0
{t : W (t)−W (0) ≤ i}. (3.2)

Observe that W (`)−W (0) = m− n. So, there are in total m− n+ 1 exit times for each i ∈
{0, 1, . . . ,m−n}, where γm−n = `. Consider the set of slices [0, γ0], [γ0, γ1], . . . , [γm−n−1, γm−n].

By definition, in each slice [γi−1, γi], the number of drivers is one more than the number of

riders, and hence condition i is satisfied. So, it remains to prove condition ii.

We say W hops up at x if x ∈ D and hops down if x ∈ R. Let the random variable HT

show the number of hops in [0, T],

HT = |{x ≤ T : x ∈ R or x ∈ D}|. (3.3)

Also, define

Ĥ0 = Hγ0 ,

Ĥi = Hγi −Hγi−1
− 1, for 0 ≤ i ≤ m− n+ 1.

(3.4)

For condition ii, we need to study the distribution of Ĥis, since there are Ĥi
2

riders and Ĥi
2

+1

drivers in [γi−1, γi].

Consider a random walk that independently at each step hops up with probability m
n+m

=
1+ε
2+ε

or down with probability 1
2+ε

. For such a walk, it is known that the number of hops

between two consecutive exit times are independent and their expected values are bounded

12

by a constant Bertoin and Doney 1996, Janson 1986. In our case, eventhough the probability

of hopping up and down changes over time for the walk W , it is still possible to find the

distribution of Ĥis and upper bound them.

Lemma 3.1. Let R and D be as in Theorem 2.1, and let Ĥi be defined as in (3.4). Then

1. For i = 0

P(Ĥ0 = 2k) =
m− n

m+ n− 2k

(
2k
k

)(
m+n−2k
n−k

)(
m+n
n

) .

2. For i ≥ 1

P(Ĥi = 2k) =

(
2k
k

)
k + 1

(
m+n−2k
n−k

)(
m+n
n

) ,

3. If m ≥ (1 + ε)n, and n ≥ 4ε−1 then for small enough ε > 0, there exists some C > 0

such that for all i ≥ 1 and k ≤ n,

P(Ĥi = 2k) ≤ C

k
√
k

(1− ε2

18
)k,

and for i = 0,

P(Ĥ0 = 2k) ≤ C√
k

(1− ε2

18
)k.

Proof. We begin by proving Part 1. The first step is to represents the hops on the walk W

with a lattice path, P , from (0, 0) to (n+m,m− n). Starting from P = (0, 0) on the lattice

and x = 0 on the interval [0, `], keep increasing x and updating P on the lattice as follows.

Whenever there is a hop up (x ∈ D) add (1, 1) to the current position P , and whenever

there is a hop down (x ∈ R) add (1,−1) to P (see Figure 3a and Figure 3b). Note that

if there are hu hop ups and hd hop downs in [0, h] then when x = h the lattice path is at

P = (hu+hd, hu−hd). In particular, at the end of the process x = ` and P = (n+m,m−n).

By counting the corresponding lattice paths, we find the distribution of Ĥ0. Observe

that there are equal number of drivers and riders in [0, γ0]. So, if Ĥ0 = 2k, then the first

part of P is from (0, 0) to (2k, 0), and as a result, it can be formed in
(
2k
k

)
different ways.

Since for all x ≥ γ0 we have W (x) −W (γ0) > 0, the second part of the lattice path, which

is from (2k, 0) to (m+ n,m− n), should not touch level zero, where by level i we mean the

line y = i on the plane. By Kern and Walter 1978, the number of such lattice paths from

13

τ0 γ0

Figure 3.A: The walk W hops up with
any driver (dark node) and hops down
with any rider (white node). Also, com-
pare the last exit time γ0 with the first
return time τ0 (see (3.2) and (4.1)).

Figure 3.B: The lattice path P moves
↗ with any driver (dark node) and it
moves ↘ with any rider (white node).
Note the lattice path is identified with
ordering of riders and drivers and not
their exact location.

(0, 0) to (a+ b, a− b) (with a ≥ b) is

a− b
a+ b

(
a+ b

b

)
. (3.5)

In our case a = m − k and b = n − k, and there are m−n
m+n−2k

(
m+n−2k
n−k

)
ways to complete the

path from (2k, 0) to (m + n,m − n) such that it never touches level zero. Since the total

number of paths is
(
m+n
n

)
, we get

P(Ĥ0 = 2k) =
m− n

m+ n− 2k

(
m+ n− 2k

n− k

) (
2k
k

)(
m+n
n

) .
Likewise, we use a path counting argument to find the probability of the event Ĥi = 2k

for Part 2. Divide the lattice path P into three parts corresponding to the intervals [0, γi−1],

[γi−1, γi] and [γi, `]. The first path, P0, starts at (0, 0) and ends at oi−1 = (Hγi−1
, i− 1). The

reason is that the interval [0, γi−1] contains Hγi−1
total hops, and by the exit time γi−1 we

see i − 1 more hop ups than hop downs. Recall that if Ĥi = 2k, then there are k + 1 hop

ups and k hop downs in [γi−1, γi]. Therefore, the second path, P1, starts at oi−1 and ends at

oi = oi−1 + (2k + 1, 1). Finally, P2 is from oi to (m+ n,m− n). Since γi is the ith exit time,

the lattice path P1 never crosses level i. So, by plugging in a = k + 1 and b = k in (3.5), we

see that the number of such paths from oi−1 to oi is
(2k+1

k)
k+1

.

Next, we contract P1 and count the number of paths P0 and P2 together. Let P.(oi−1, oi)

be the lattice path formed by removing P1 from P , and instead starting the path P2 at the

14

point oi−1. Then P.(oi−1, oi) is a path from o = (0, 0) to f = (m + n − 2k − 1,m − n − 1).

Now, given any path Q from o to f , we claim that there is a unique way to insert the path

P1 back into Q such that P1 corresponds to the hops between (i − 1)th and ith exit times.

In fact, find the last intersection of Q with level i − 1, and let Q0 and Q1 be the part of Q

before and after the intersection, respectively. Since we want P1 to correspond to the hops

between (i − 1)th and ith exit times, it needs to appear right after Q1. So, add back P1 at

the intersection, i.e., consider the path P ′ that starts with Q0 and then continues with P1

and Q1, in this order. Recall that Q1 starts at level i−1 in Q and it never crosses level i−1.

Therefore, the part of P ′ after P1, never crosses level i. Hence, P1 corresponds to the hops

between levels i− 1 and i in P ′.

As a result of the above arguments, if we fix P1, then there is a one to one correspondence

between paths from (0, 0) to (m+n−2k−1,m−n−1) and paths from (0, 0) to (n+m,m−n)

such that P1 appears between levels (i− 1)th and ith. Therefore,

P(Hi = 2k) =

(
2k
k

)
k + 1

(
m+n−2k−1

n−k

)(
m+n
n

) .

It remains to prove Part 3. By Stirling’s approximation, there exists constants C > C ′ > 0

such that for all k, we have C ′ 2
2k
√
k
≤
(
2k
k

)
≤ C 22k√

k
. So, we bound the following

22k

(
m+n−2k
n−k

)(
m+n
n

) =
m− k

m+ n− 2k

k∏
i=1

(1− m− n− 1

m+ n− 2k + 2i− 1
)(1 +

m− n
m+ n− 2k + 2i

)

≤
k∏
i=1

(1− (m− n− 1)(m− n)

2(m+ n− 2k + 2i− 1)(m+ n− 2k + 2i)
),

where in the last inequality we used the fact that (m− n− 1)2 ≥ 4(n− k + i). Recall that

m− n ≥ εn. Then for any i and ε < 1,

m− n− 1

m+ n− 2k + 2i− 1

m− n
m+ n− 2k + 2i

≥ (m− n)2

(m+ n)2
≥ ε2

18
.

Combining this with the previous inequalities,

22k

(
m+n−2k
n−k

)(
m+n
n

) ≤ (1− ε2

18
)k. (3.6)

15

Therefore, by Part 2, for i ≥ 1,

P(Hi = 2k) =

(
2k
k

)
k + 1

(
m+n−2k
n−k

)(
m+n
n

) ≤ C√
k(k + 1)

(1− ε2

18
)k,

and by Part 1, for i = 0,

P(H0 = 2k) =

(
2k

k

)
m− n

m+ n− 2k

(
m+n−2k
n−k

)(
m+n
n

) ≤ C√
k

(1− ε2

18
)k.

We would like to point out that a weaker version of the above lemma could be proved

without path counting, and instead using Chernoff bound and the negative association of a

random permutation of hop ups and hop downs. However, the Chernoff bound argument

leads to a poly-logarithmic bound (in terms of n) and will not allow us to give a constant

upper bound on the cost of omniscient. In Section 3.2, we directly use the distribution of Ĥi

as stated to give a constant bound.

Next, as a corollary of Lemma 3.1, we show that the number of hops in each slice is with

high probability O(log(n)). In Section Section 3.3, we will use this observation to bound the

cost of the greedy algorithm.

Corollary 3.2. Let R and D be as in Theorem 2.1, where for some ε > 0 we have m ≥
(1 + ε)n. Recall the definition of Ĥi from (3.4). Then there exists some α > 0 such that

P(max
0≤i≤m−n+1

Ĥi ≥ α log n) ≤ 1

n
.

Proof. By Part 3 of Lemma 3.1 there exists some C > 0 such that for any i ≥ 0

P(Ĥi ≥ α log n) ≤
∑

k≥α logn

C√
k

(1− ε2

18
)k.

Let α = d −3
ln(1−ε2/18)e, then

P(Ĥi ≥ α log n) ≤
∑

k≥α logn

C√
k
ek ln(1−ε

2/18)

≤
∑

k≥α logn

1√
k
e−3 ln(n) ≤

∑
k≥α logn

n−3 ≤ n−2.

16

Now by a union bound we get the result.

Finally, we want to point out that the walk representation has been studied before by

Holroyd 2011, Holroyd et al. 2020 for matching Poisson point processes in metric spaces,

however, their result is on Poisson processes with the same intensity (equivalent to balanced

markets). Our belief is that this technique has its novelty that has not been used to a great

extent in the literature.

3.2 Analysis of the omniscient algorithm

In order to bound the cost of omniscient, first, recall the definition of γi from (3.2) and the

fact that each slice [γi, γi+1] contains more drivers than riders. A simple upper bound on

the cost of omniscient can be obtained by pairing all riders and driver within the same slice.

Define

τ̂0 = γ0,

τ̂i = γi − γi−1, for 0 ≤ i ≤ m− n+ 1.
(3.7)

Then the cost of matching riders and drivers in the same slice is at most
∑m−n+1

i=0 Ĥiτ̂i, which

we will prove in the next result is bounded by a constant factor of the length of the interval.

Lemma 3.3. Let R and D be as in Theorem 2.1. Let τ̂i and Ĥi be defined as in (3.7) and

(3.4). If m ≥ (1 + ε)n for some ε > 0, then there exists Cε > 0 such that

E
[m−n+1∑

i=0

Ĥiτ̂i

]
≤ Cε`.

Proof. Given j ≥ i, it is a well-known fact that the distance between ith and jth order

statistics of n+m independent uniform samples on [0, 1] is distributed as Beta(j− i, n+m+

1− (j − i)) with mean j−i
m+n+1

(e.g., see Pitman 1999). Note that τ̂i is the distance between

H th
γi−1

and H th
γi

order statistics. Since the length of a segment between consecutive hops does

not depend on whether it is a hop up or a hop down, we can condition on the number of

hops in [γi−1, γi] to find the expected length of τ̂i. Therefore,

E[τ̂i|Ĥi = 2k] = E[τ̂i|Hγi −Hγi−1
= 2k + 1] =

(2k + 1)`

m+ n+ 1
,

where the factor ` comes from scaling the interval [0, 1] to [0, `].

17

With this observation and Part 3 of Lemma 3.1, for i ≥ 1 we get,

E[Ĥiτ̂i] =
n∑
k=0

2kP(Ĥi = 2k)E[τi|Ĥi = 2k]

=
n∑
k=0

2k(2k + 1)`

n+m+ 1
P(Ĥi = 2k)

≤ C`

n+m+ 1

n∑
k=0

√
k(1− ε2

18
)k.

Similarly, for i = 0,

E[Ĥ0τ̂0] ≤
C`

n+m+ 1

n∑
k=0

k(1− ε2

18
)k.

For any q ∈ (0, 1), it is known that
∑∞

k=1 k(1 − q)k = 1−q
q2

. Therefore, for some C ′ > 0 and

all i ≥ 0 we get

E[Ĥiτ̂i] ≤
C`

n+m+ 1

n∑
k=0

k(1− ε2

18
)k

≤ ε−4C ′`

n+m+ 1
.

As a result,
m−n+1∑
i=0

E[Ĥiτ̂i] ≤ C ′ε−4`.

Now, we are ready to finish the proof of Part 2 of Theorem 2.1.

Proof of Theorem 2.1, Part 2. Given an instance of R and D, construct the walk W as in

(3.1). Recall the definition of γi from (3.2) and slices [0, γ0], [γ0, γ1], . . . , [γm−n−1, γm−n]. By

definition, there are 1 + Ĥi/2 drivers and Ĥi/2 riders in the slice [γi−1, γi] for i ≥ 1. Also,

there are equal number of riders and drivers in [0, γ0]. Therefore, there exists a matching

Mγ such that for each pair (r, d) ∈Mγ both r and d appear in the same slice. Then

cost(Mγ) ≤
m−n∑
i=0

Ĥi(γi − γi−1).

18

As a result, if OMN is the minimum cost matching,

E[cost(OMN)] ≤ E[cost(Mγ)]

≤ E[
m−n∑
i=0

Ĥi(γi − γi−1)].

Now, by Lemma 3.3 we get the desired result.

3.3 Analysis of greedy

We continue with studying the unbalanced market, where the position of riders are revealed

in an online fashion. We formalize the online matching model and then give an upper bound

on the cost of the greedy algorithm.

In the adversarial online matching model, initially, the algorithm has access to the set of

drivers D. At each step, an adversary, with full information of the state of the algorithm,

chooses a rider r ∈ R and passes its location to the algorithm. The algorithm has one

chance to match r, irrevocably. The most straightforward way to match riders, as stated in

Algorithm 1, is greedy: match the arriving rider to the closest unmatched driver.

ALGORITHM 1: Greedy

Input: D = {d1, . . . , dm}.
M = ∅
while a new rider r arrives do

d∗= the closest unmatched driver to r
M = M ∪ (r, d∗)

end
return M

The rest of the section is on the proof of Theorem 2.2. Our proof is based on showing

a stronger result: with high probability, greedy matches each rider to one of the O(log2(n))

closest drivers. The following observation shows that such a driver will not be too far.

Proposition 3.4. Given a set of uniform random points d(1) ≤ d(2) ≤ . . . ≤ d(m) on [0, `],

then

P(max
1≤i≤m

(d(i) − d(i−1)) ≥ 2
` log(m)

m
) ≤ 1

m
.

Proof. We prove it for ` = 1, then scaling all the points by ` gives the desired statement. For

simplicity, let d(0) = 0 and d(m+1) = 1. For order statistics of m standard uniform random

19

points, it is known that d(i) − d(i−1) ∼ Beta(1,m) (see e.g., Pitman 1999). Then for each

m+ 1 ≥ i ≥ 1

P(d(i) − d(i−1) ≥ t) ≤ (1− t)m.

Therefore, by a union bound

P(max
i

(d(i) − d(i−1)) ≥ 2
log(m)

m
) ≤ m(1− 2

log(m)

m
)m ≤ 1

m
.

Proof of Theorem 2.2. Recall the definition of γi from (3.2), which partition the interval [0, `]

into slices Γ = {[0, γ0], [γ0, γ1], . . . , [γm−n−1, γm−n]}. The main idea of the proof is to show

that any rider is matched to a driver within O(log n) slices away from it.

By Corollary 3.2, we know there exists some α > 0 such that P(max0≤i≤m−n+1 Ĥi ≥
α log n) ≤ 1

n
, where Ĥi was defined in (3.4). Define the event

A1 = {R ∪D : max
0≤i≤m−n+1

Ĥi ≤ α log n},

which indicates that each slice contains at most α log(n) drivers. Also, let

A2 = {D : max
1≤i≤m

(d(i) − d(i−1)) ≤
2` log(n)

n
n},

where d(1) ≤ . . . ≤ d(m) is the order statistic of the set of drivers D. Let MG be the matching

returned by greedy. We claim that it is sufficient to only consider instances of R∪D satisfying

both A1 and A2, and prove that

|{S ∈ Γ : S ∩ I(r,d) 6= ∅}| ≤ 2α log(n) + 4, for each pair (r, d) ∈MG, (3.8)

where I(r,d) =
(

min(r, d),max(r, d)
)

is the open sub-interval covered by the pair (r, d).

To see why proving (3.8) is enough, note that A1 and (3.8) imply that each rider r ∈ R
is matched to one of the α log(n)(2α log(n) + 4) closest drivers to it. Also, since A2 holds,

we get the following bound for any matched pair (r, d) ∈MG,

|d− r| ≤ 4α`(α logn +2)
log2(n)

n
.

Therefore, when A1 and A2 hold, there exists a constant α′ > 0 such that the size of the

20

matching is bounded by α′` log3(n). Now, by Proposition 3.4 and Corollary 3.2, we know

both events A1 and A2 happen with probability at least 1 − 2
n
. Using this and the trivial

upper bound of `n on the size of matching, we get

E[cost(MG)] ≤ E[cost(MG) | A1,A2]P(A1,A2) + `n(1− P(A1,A2))

≤ α′` log3(n) + 2`,

which proves the statement of the theorem.

It remains to prove (3.8), when both events A1 and A2 hold. Start with m+1 components

C = {[0, d(1)], [d(1), d(2)], . . . , [d(m), `]}. Consider the following procedure to update C with a

run of the algorithm. As greedy matches a rider r to a driver d, update C by merging all the

components that have an overlap with I(r,d). Note that greedy does not leave an unmatched

driver in I(r,d). So, at each step we know that in each component of C all the drivers except

possibly the left-most and the right-most ones are matched to some rider. Let Cf be the

final set after greedy stops (see Figure 4).

Note that for any pair (r, d) ∈ MG, I(r,d) is a subset of some component in Cf . So in

order to prove (3.8), it is enough to show that each component of Cf has overlap with at

most 2α log(n) + 4 slices.

Let K = d2α log(n) + 5e. Assume to the contrary that there exists I ∈ Cf and some

i ≥ 0 such that I overlaps with K slices [γi, γi+1], [γi+1, γi+2], . . . , [γi+K−1, γi+K]. As we noted

earlier, all components in Cf must have at most two unmatched drivers. But we show this

is not possible for I. By construction of Cf , the component I contains the middle slices

[γi+j, γi+j+1] for all 1 ≤ j ≤ K − 2, and it may partially overlaps with the left-most and the

right-most slices, [γi, γi+1] and [γi+K−1, γi+K] without containing them. By the definition of

γj, the number of drivers in each slice is one more than the number of riders (except possibly

the first slice). So, in total, there are at least K − 2 additional drivers in the middle slices

of I. Since A1 holds, there are at most 2α log(n) riders in the left-most and the right-most

21

r3 r2 r1 r5 r4

Figure 4: An instance of riders (white nodes) and drivers (dark nodes), where the riders
arrive in the order r1, r2, . . . , r5. Compare the matching returned by greedy (curved lines)
and the components of Cf (red intervals), as constructed in the proof of Theorem 2.2.

slices. So,

|{D ∩ I}| − |{R ∩ I}| ≥ −|{R ∩ [γi, γi+1]}|

+
K∑
j=1

(
|{D ∩ [γi+j, γi+j+1]}| − |{R ∩ [γi+j, γi+j+1]}|

)
− |{R ∩ [γi+K , γi+K+1]}|

≥ −2α log(n) +K

≥ 3,

which implies that there must be at least 3 unmatched drivers in I, a contradiction. There-

fore, each I ∈ Cf has overlap with at most 2α log(n) + 4 slices, and our claim (3.8) is

proved.

4 The Balanced Market

We proceed to analyze the balanced market, by taking a closer look on the combinatorial

structure of the spatial matchings in Section 4.1. We show that there exists an optimal

matching such that the interval between any matched pairs r and d contains equal number

of riders and drivers. As a consequence of this observation, lower bounding on the cost of

a pair reduces to lower bounding the first return time of the walk W , which was defined in

(3.1). Section 4.2 studies this idea and analyzes the walk when m − n is sub-linear in n.

Combining the results, Section 4.3 is on the proof of Theorem 2.5.

4.1 Matching structure

Given a matching M , for any pair (r, d) in M , let I(r,d) =
(

min(r, d),max(r, d)
)

be the

interval covered by the pair. We say e1 is oriented to the right if r1 < d1 and oriented to the

22

left otherwise. Two pairs e1 = (r1, d1) and e2 = (r2, d2) overlap if Ie1∩Ie2 6= ∅. The following

observation states that in any optimal matching all the overlapping pairs are oriented in the

same direction.

Proposition 4.1. Given sets of points R and D on [0, `], let M be a minimum matching

with penalties on R and D (a solutions of (2.6)). Let e1, e2 ∈ M be two overlapping pairs.

Then e1 is oriented to the right if and only if e2 is oriented to the right.

Proof. Assume to the contrary that, there are two overlapping pairs e1 = (r1, d1) and e2 =

(r2, d2) in M such that e1 is oriented to the right and e2 is oriented to the left. It is easy

to check that, deleting e1 and e2 and adding the pairs (r1, d2) and (r2, d1) to M results in a

matching with a smaller cost.

Following the terminology of Holroyd et al. 2020, the overlapping pairs, e1 and e2, are

called nested if either Ie1 ⊂ Ie2 or Ie2 ⊂ Ie1 . Otherwise, we call the overlapping pairs

entwined. A matching M is nested, if all its overlapping pairs are nested. The following

result shows that it is possible to make any matching nested without changing the cost. We

will use this result in the proof of Theorem 2.5, to make the optimal matching with penalties

a nested optimal matching.

Proposition 4.2. Given R and D, the position of riders and drivers in [0, `], let M be any

matching between R and D. Then there exists a nested matching M ′ such that costR,D(M) =

costR,D(M ′).

Proof. Given a matching M , we construct a nested matching from M with the same cost

sequentially. Let SM be the set of the pairs in M which are entwined with at least another

pair, i.e.,

SM = {e ∈M : ∃e′ ∈M such that e and e′ are entwined.}

Next, we describe a procedure that at each step either the size of SM decreases, or its size

stays the same but the length of the largest interval corresponding to a pair in SM increases.

Let e1 be a pair with the largest |Ie1| among all the pairs in SM . Since e1 ∈ SM , there

exists a pair e2 = (r2, d2) such that e1 and e2 are entwined. By Proposition 4.1, we know

that e1 and e2 must be in the same direction. Without loss of generality, assume that they

are oriented to the right and also that r1 ≤ r2. As a result, r1 ≤ r2 ≤ d1 ≤ d2, and

cost({e1, e2}) = |d2 − r2|+ |d1 − r1| = (d2 − r1) + (d1 − r2).

23

Consider the nested pairs e′1 = (r1, d2) and e′2 = (r2, d1). Note that cost({e1, e2}) =

cost({e′1, e′2}). Let M ′ = (M − {e1, e2}) ∪ {e′1, e′2}. So, by swapping the pairs e1 and e2

with e′1 and e′2 the cost of matching does not change, cost(M ′) = cost(M). Moreover,

|SM ′| ≤ |SM |, because any pair that is entwined with e′1 or e′2 is also entwined with either

e1 and e2. Furthermore, |Ie′1| > |Ie1|. So, after swapping the pairs either |SM ′ | < |SM | or if

|SM ′| = |SM | then the length of the largest interval in SM ′ is larger than |Ie′1 |. Each of these

events can happen only for a finite number of times. Therefore, the procedure described

above terminates after some time. This implies that the set SM ′ becomes empty, and all the

overlapping pairs will be nested.

4.2 The walk on an (almost) balanced market

We continue to study the balanced market by translating matching cost into properties of

the walk W , defined in (3.1). Let M∗ be a nested optimal matching with penalties, which

exists by Proposition 4.2. Since the matching is nested, for any pair (r, d) ∈M∗, there must

be equal number of drivers and riders in I(r,d). So, we have W (r) = W (d). To analyze the

distance between the points r and d, we need the following definition. For x ∈ [0, `], define

the return time as the first time that the walk returns to W (x) after at least one hop,

τx = inf
t>x
{t : W (t) = W (x), and Ht 6= Hx}, (4.1)

where HT was defined in (3.3).

Compare the definition of τ0 to the exit time γ0, as defined in (3.2) (see Figure 3a). While

γ0 gave us an upper bound on the cost of matching, τ0 will give us a lower bound. In fact,

for any right oriented pair (r, d) ∈M∗, since W (r) = W (d) we must have that |d− r| ≥ τr.

In matching with penalties, we have the option to skip matching the rider r by paying

the cost ν. So, the following result analyzes τ0 ∧ ν, where x ∧ y = min(x, y). The idea is to

first give a lower bound on the number of hops Hτ0 , and then deduce a lower bound on τ0.

Lemma 4.3. Let R = {r1, . . . , rn} and D = {d1, . . . , dm} be two sets of random points drawn

independently from a uniform distribution on [0, `], where for some constant c > 0, we have

0 ≤ m − n ≤ cn1/2. Also, let τ0 be as in (4.1), and ν ≥ `
n1/2−δ for some δ ∈ (0, 1/2]. Then

there exists some constant C > 0 such that for large enough n

E[τ0 ∧ ν] ≥ C`n
δ
2
− 3

4 .

24

Proof. To prove the lemma, we start with bounding the number of hops in [0, τ0]. In fact,

for any 1 ≤ k ≤ min(n
2
, mn
5(m−n)2), we claim there exists a constant C > 0 such that,

P[Hτ0 = 2k] ≥ C

k
√
k
. (4.2)

Consider the lattice path P , constructed fromW as in Lemma 3.1. Assume thatHτ0 = 2k.

Then the first part of P is a path from (0, 0) to (2k, 0) that does not touch the x-axis except

at the end-points. Such paths can either always stay above or below the x-axis, which implies

the number of them is
2(2k

k)
k+1

. Then by adding any path from (2k, 0) to (m+ n− 2k,m− n)

we get a lattice path with 2k hops before the first return to zero. Therefore,

P(Hτ0 = 2k) = 2

(
2k
k

)(
n+m−2k
n−k

)
(k + 1)

(
n+m
n

)
= 2

(
2k
k

)
(k + 1)

k−1∏
i=0

(n− i)(m− i)
(n+m− 2i)(n+m− 2i− 1)

≥ 22k

(k + 1)
√
πk

k−1∏
i=0

1

4

(
1− m− n

n− i
m− n
m− i

)
where the last inequality is by Stirling’s approximation and the following observation

(n− i)(m− i)
(n+m− 2i)(n+m− 2i− 1)

≥ 1

(2 + m−n
n−i)(2− m−n

m−i)

≥ 1

4
(1− m− n

n− i
m− n
m− i

).

Using the inequality m−n
n−i

m−n
m−i ≤

m−n
n−k

m−n
m−k , we get,

P(Hτ0 = 2k) ≥ 2

(k + 1)
√
πk

(
1− m− n

n− k
m− n
m− k

)k
.

Note that if k ≤ min(n
2
, 1
5

nm
(m−n)2) then

(
1− m− n

n− k
m− n
m− k

)k ≥ 1− km− n
n− k

m− n
m− k

≥ 1− 4k
(m− n)2

mn
≥ 1

5
.

25

As a result, there exits a constant C > 0 such that for any k ≥ 1

P(Hτ0 = 2k) ≥ C

k
√
k
,

which proves (4.2).

Now, going back to the walk W , one can write

E[τ0 ∧ ν] =
∞∑
k=0

P(Hτ0 = 2k)E[τ0 ∧ ν|Hτ0 = 2k]. (4.3)

Let `i be the position of the ith hop on [0, `]. Then

E[τ0 ∧ ν|Hτ0 = 2k] = E[`2k ∧ ν|Hτ0 = 2k] = E[`2k ∧ ν],

where the second equality holds because the length of a hop does not depend on whether it is

a hop up or a hop down. On the other hand, since the kth order statistic of n+m independent

uniform samples on [0, 1] is distributed as Beta(k, n+m+1−k), using Chebyshev’s inequality

for k ≤ ν(n+m)
4`

and ν ≥ `/n1/2−δ we get

P(`2k ≥ ν) ≤
k`2

(n+m+1)2

k`2

(n+m+1)2
+ (ν − 2k`

n+m+1
)2

≤ 4k`2

ν2(n+m+ 1)2
≤ 4k

n2δ(n+m+ 1)
.

(4.4)

Let us denote |x|+ = max(0, x). Then using the above arguments for k ≤ n1/2+δ

4
≤ ν(n+m)

4`
,

E[`2k ∧ ν] = E[`2k]− E|`2k − ν|+

≥ 2k`

n+m+ 1
− |`− ν|+P(`2k ≥ ν)

≥ k`

n+m+ 1
(2− 4

n2δ
),

where the first inequality is by the fact that |`2k − ν| ≤ (`− ν), and the second inequality is

by (4.4). Since δ > 0, there exists a constant α > 0 such that 2− 4
n2δ > α for large enough

26

n. Combining the previous inequality with (4.2) and (4.3)

E[τ0 ∧ ν] ≥ α

nδ+1/2

4∑
k=0

P(Hτ0 = 2k)
k`

n+m+ 1

≥ α`

n+m+ 1

min(n
2
, nm
5(n−m)2

,n
δ+1/2

4
)∑

k=1

C√
k

≥ C ′`min(
1√
n
,

1

m− n
, n

δ
2
− 3

4),

where C ′ does not depend on n, `. Now, using the condition that m− n ≤ cn1/2 we get the

result.

4.3 Lower bound on the cost of matching

This section is on the proof of Theorem 2.5. First, note that when ν ≥ `, we get a lower

cost to match any riders with some rider than to pay the cost `. So, Part 1 of Theorem 2.5

is equivalent to Part 1 of Theorem 2.1. So, we only give a proof for Theorem 2.5. Note also

that, the lower bound in Part 1 is a special case of Part 2 when δ = 1
2
. However, we give a

separate proof by observing that in the balanced market the cost of the optimal matching

(without any penalties) is equal to the area below the walk W , that has been studied in Arie

1993.

Proof of Theorem 2.5, Part 1. Given the set of riders R = {r1, . . . , rn} and drivers D =

{d1, . . . , dn} in the interval [0, `], let

r(1) ≤ r(2) ≤ · · · ≤ r(n), d(1) ≤ d(2) ≤ · · · ≤ d(n),

be the order statistics of the sets R and D. We claim that pairing r(i) to d(i) is the minimum

cost matching. Given this claim, by Proposition 2 in Arie 1993 and Stirling’s approximation,

E[cost(M∗)] = E[
n∑
i=1

|r(i) − d(i)|] =
n22n−1

(2n+ 1)
(
2n
n

)` ∼ `
√
πn

4
,

which is the desired result.

Let M∗ be the matching returned by omniscient. Assume that i is the first index which

r(i) is not matched to d(i) by omniscient. So, there exits some j > i that e1 = (r(i), d(j)) ∈M∗.

27

Since the market is balanced and i is the first index that (r(i), d(i)) 6∈ M∗, there must exist

some index j′ > i such that e2 = (r(j′), d(i)) ∈M∗. Therefore, e1 and e2 are overlapping pairs,

and we can swap them as in Proposition 4.2 without increasing the cost of matching. As a

result of the swap r(i) is matched to d(i), and we can continue repeating this procedure.

Proof of Theorem 2.5, Part 2. Again, let

r(1) ≤ r(2) ≤ · · · ≤ r(n), d(1) ≤ d(2) ≤ · · · ≤ d(n),

be the order statistics of the sets R and D. Next we give a lower bound on E[cost(M∗)], where

M∗ is a nested optimal matching with penalties, which we know it exists by Proposition 4.2.

Let e = (r, d) be a matched pair in M∗. Since there is no unmatched rider or driver in Ie

and M∗ is nested, there must be equal number of riders and drivers in Ie. So, if a rider at

position r is matched to driver on its right then |Ir,M∗(r)| = τr, where τr is defined (4.1). We

claim that for n
3
≤ i ≤ 2n

3
, there is a positive probability that r(i) is either matched to a

driver on its right or it is not matched at all. For that purpose we show that there exists

some constant α > 0 such that P(−4
√
n ≤ Wr(i) ≤ −3

√
n) ≥ α. To prove the claim, again

we use lattice path presentation of the walk W , and we get

P(−4
√
n ≤ Wr(i) ≤ −3

√
n) =

4
√
n∑

k=3
√
n

(
2i+k
i

)(
2n−2i−k
n−i

)(
2n
n

)
≥ C

4
√
n∑

k=3
√
n

√
n√

(2i+ k)(2n− 2i− k)
e−

k2

n

≥ C

4
√
n∑

k=3
√
n

√
n√

(4n
3

)2 − k2
e−16 ≥ C ′

3

4
,

(4.5)

where C ′ is independent from n and the second inequality is from equation (5.41) in Spencer

2014. If r(k) is in a left oriented pair, then by Wr(k) ≤ −3
√
n, there must exists at least

3
√
n unmatched riders on the left of r(k). The reason is non of them can match to a driver

on the right of r(k) by Proposition 4.1. The cost of the unmatched riders in that case is

at least 3ν
√
n ≥ nδ`. So, we need to consider the events that r(k) is either unmatched or

matched to driver on its right. In this case, cost of matching r(k), denoted by cost(r(k)), is at

least min(ν, τr(k)). Let the event Lr(k) indicate whether r(k) is in a left-oriented pair. Then

28

combining this observation with (4.5),

E[cost(M∗))] ≥
2n
3∑

i=n
3

E[cost(r(k))]

≥ C ′

2n
3∑

i=n
3

E
[
cost(r(k)) | −4

√
n ≤ Wr(k) ≤ −3

√
n
]

≥ C ′

2n
3∑

i=n
3

(
`nδP(Lr(k)) + E

[
cost(r(k)) | −4

√
n ≤ Wr(k) ≤ −3

√
n, Lr(k)

](
1− P(Lr(k))

))

Now, in the case |Wr(k)| ≤ 4
√
n we can apply Lemma 4.3 to get

E[cost(M∗))] ≥ C ′

2n
3∑

i=n
3

min
(
`nδ,E

[
τr(k) ∧ ν | −4

√
n ≤ Wr(k) ≤ −3

√
n
])

≥ C ′′min
(
`nδ, `n

1
4
+ δ

2

)
≥ C ′′`nδ,

which is the desired result.

References

H. K. Abadi and B. Prabhakar. Stable matchings in metric spaces: Modeling real-world

preferences using proximity. ArXiv, abs/1710.05262, 2017.

M. Ajtai, J. Komlós, and G. Tusnády. On optimal matchings. Combinatorica, 4:259–264,

1984.

M. Akbarpour, S. Li, and S. Oveis Gharan. Thickness and information in dynamic matching

markets. Journal of Political Economy, 128(3):783–815, 2020a. doi: 10.1086/704761. URL

https://doi.org/10.1086/704761.

Mohammad Akbarpour, Julien Combe, Yinghua He, Victor Hiller, Robert Shimer, and

Olivier Tercieux. Unpaired kidney exchange: Overcoming double coincidence of wants

without money. In Proceedings of the 21st ACM Conference on Economics and Computa-

tion, pages 465–466, 2020b.

29

https://doi.org/10.1086/704761

L. Ambrosio, F. Stra, and D. Trevisan. A pde approach to a 2-dimensional matching problem.

Probability Theory and Related Fields, 173:433–477, 2016.

R. Anderson, I. Ashlagi, D. Gamarnik, and Y. Kanoria. A dynamic model of barter exchange.

In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms

(SODA), page 1925–1933, USA, 2015. Society for Industrial and Applied Mathematics.

A. Antoniadis, N. Barcelo, M. Nugent, K. Pruhs, and M. Scquizzato. A o(n)-competitive

deterministic algorithm for online matching on a line. In Approximation and Online Al-

gorithms, pages 11–22, Cham, 2015. Springer International Publishing. ISBN 978-3-319-

18263-6.

H. Arie. Random walk and the area below its path. Mathematics of Operations Research,

1993.

Nick Arnosti and Peng Shi. How (not) to allocate affordable housing. In AEA Papers and

Proceedings, volume 109, pages 204–08, 2019.

I. Ashlagi, P. Jaillet, and V. Manshadi. Kidney exchange in dynamic sparse heterogenous

pools. In Proceedings of the 2013 ACM Conference on Economics and Computation (EC),

page 25–26, New York, NY, USA, 2013. ISBN 9781450319621. doi: 10.1145/2492002.

2482565. URL https://doi.org/10.1145/2492002.2482565.

I. Ashlagi, Y. Kanoria, and J. D. Leshno. Unbalanced random matching markets: The stark

effect of competition. Journal of Political Economy, 125(1):69–98, 2017. doi: 10.1086/

689869. URL https://doi.org/10.1086/689869.

Itai Ashlagi, Afshin Nikzad, and Philipp Strack. Matching in dynamic imbalanced markets.

Available at SSRN 3251632, 2019.

M. Baccara, S. Lee, and L. Yariv. Optimal dynamic matching. Theoretical Economics, 15(3):

1221–1278, 2020. doi: https://doi.org/10.3982/TE3740. URL https://onlinelibrary.

wiley.com/doi/abs/10.3982/TE3740.

N. Bansal, N. Buchbinder, A. Gupta, and J. (Seffi) Naor. An o(log2k)-competitive algo-

rithm for metric bipartite matching. In Algorithms – ESA 2007, pages 522–533, Berlin,

Heidelberg, 2007. Springer Berlin Heidelberg. ISBN 978-3-540-75520-3.

J. Bertoin and R. A. Doney. Some asymptotic results for transient random walks. Advances

in Applied Probability, 28(1):207–226, 1996. doi: 10.2307/1427918.

30

https://doi.org/10.1145/2492002.2482565
https://doi.org/10.1086/689869
https://onlinelibrary.wiley.com/doi/abs/10.3982/TE3740
https://onlinelibrary.wiley.com/doi/abs/10.3982/TE3740

O. Besbes, F. Castro, and I. Lobel. Surge pricing and its spatial supply response. Operations

Research eJournal, 2019.

K. Bimpikis, O. Candogan, and D. Saban. Spatial pricing in ride-sharing networks. In Pro-

ceedings of the 12th Workshop on the Economics of Networks, Systems and Computation,

NetEcon, 2017. ISBN 9781450350891.

F. Bloch and N. Houy. Optimal assignment of durable objects to successive agents.

Economic Theory, 51(1):13–33, 09 2012. URL https://search.proquest.com/

scholarly-journals/optimal-assignment-durable-objects-successive/docview/

1037281422/se-2?accountid=14026. Springer-Verlag.

Jeremy Bulow and Paul Klemperer. Auctions versus negotiations. The American Economic

Review, 86(1):180–194, 1996. ISSN 00028282. URL http://www.jstor.org/stable/

2118262.

Juan Camilo Castillo. Who benefits from surge pricing? Available at SSRN 3245533, 2020.

N. Devanur, K. Jain, and R. Kleinberg. Randomized primal-dual analysis of ranking for

online bipartite matching. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Sym-

posium on Discrete Algorithms (SODA), page 101–107, USA, 2013. Society for Industrial

and Applied Mathematics. ISBN 9781611972511.

A. Frieze, C. McDiarmid, and B. Reed. Greedy matching on the line. SIAM Journal of

Computation, 19(4):666–672, June 1990. ISSN 0097-5397. doi: 10.1137/0219045. URL

https://doi.org/10.1137/0219045.

M. Gairing and M. Klimm. Greedy metric minimum online matchings with random arrivals.

Operations Research Letters, 47(2):88–91, 2019. ISSN 0167-6377. doi: https://doi.org/10.

1016/j.orl.2019.01.002. URL https://www.sciencedirect.com/science/article/pii/

S0167637718305066.

G. Goel and A. Mehta. Online budgeted matching in random input models with applications

to adwords. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms,

pages 982–991, 01 2008. doi: 10.1145/1347082.1347189.

A. Gupta, G. Guruganesh, B. Peng, and D. Wajc. Stochastic online metric matching. ArXiv,

abs/1904.09284, 2019.

31

https://search.proquest.com/scholarly-journals/optimal-assignment-durable-objects-successive/docview/1037281422/se-2?accountid=14026
https://search.proquest.com/scholarly-journals/optimal-assignment-durable-objects-successive/docview/1037281422/se-2?accountid=14026
https://search.proquest.com/scholarly-journals/optimal-assignment-durable-objects-successive/docview/1037281422/se-2?accountid=14026
http://www.jstor.org/stable/2118262
http://www.jstor.org/stable/2118262
https://doi.org/10.1137/0219045
https://www.sciencedirect.com/science/article/pii/S0167637718305066
https://www.sciencedirect.com/science/article/pii/S0167637718305066

C. Hoffman, A. Holroyd, and Y. Peres. A stable marriage of poisson and lebesgue. Annals

of Probability, 34(4):1241–1272, 07 2006. doi: 10.1214/009117906000000098. URL https:

//doi.org/10.1214/009117906000000098.

A. E. Holroyd. Geometric properties of poisson matchings. Probability Theory and Related

Fields, 150:511–527, 2011.

A. E. Holroyd, S. Janson, and J. Wästlund. Minimal matchings of point processes, 2020.

Z. Huang, Q. Zhang, and Y. Zhang. Adwords in a panorama. In 2020 IEEE 61st Annual

Symposium on Foundations of Computer Science (FOCS), pages 1416–1426, Los Alamitos,

CA, USA, nov 2020. IEEE Computer Society. doi: 10.1109/FOCS46700.2020.00133. URL

https://doi.ieeecomputersociety.org/10.1109/FOCS46700.2020.00133.

S. Janson. Moments for first-passage and last-exit times, the minimum, and related quantities

for random walks with positive drift. Advances in Applied Probability, 18(4):865–879, 1986.

ISSN 00018678. URL http://www.jstor.org/stable/1427253.

B. Kalyanasundaram and K. Pruhs. On-line weighted matching. In Proceedings of the second

annual ACM-SIAM symposium on Discrete algorithms (SODA), pages 234–240, 1991.

B. Kalyanasundaram and K. Pruhs. Online weighted matching. Journal of Algorithms, 14

(3):478–488, 1993.

Yash Kanoria, Seungki Min, and Pengyu Qian. Which random matching markets exhibit a

stark effect of competition?, 2020.

R. M. Karp, U. V. Vazirani, and V. V. Vazirani. An optimal algorithm for on-line bipartite

matching. In Proceedings of the Twenty-Second Annual ACM Symposium on Theory of

Computing (STOC), page 352–358, New York, NY, USA, 1990. Association for Computing

Machinery. ISBN 0897913612. doi: 10.1145/100216.100262. URL https://doi.org/10.

1145/100216.100262.

M. Kern and S. Walter. Ballot theorem and lattice path crossings. The Canadian Journal of

Statistics / La Revue Canadienne de Statistique, 6(1):87–90, 1978. ISSN 03195724. URL

http://www.jstor.org/stable/3314829.

S. Khuller, S. G. Mitchell, and V. V. Vazirani. On-line algorithms for weighted bi-

partite matching and stable marriages. Theoretical Computer Science, 127(2):255–267,

32

https://doi.org/10.1214/009117906000000098
https://doi.org/10.1214/009117906000000098
https://doi.ieeecomputersociety.org/10.1109/FOCS46700.2020.00133
http://www.jstor.org/stable/1427253
https://doi.org/10.1145/100216.100262
https://doi.org/10.1145/100216.100262
http://www.jstor.org/stable/3314829

1994. ISSN 0304-3975. doi: https://doi.org/10.1016/0304-3975(94)90042-6. URL https:

//www.sciencedirect.com/science/article/pii/0304397594900426.

J. D. Leshno. Dynamic matching in overloaded waiting lists. Game Theory and Bargaining

Theory eJournal, 2019.

Tracy Liu, Zhixi Wan, and Chenyu Yang. The efficiency of a dynamic decentralized two-sided

matching market. Available at SSRN 3339394, 2019.

M. Mahdian, H. Nazerzadeh, and A. Saberi. Allocating online advertisement space with

unreliable estimates. In Proceedings of the 8th ACM Conference on Electronic Commerce

(EC), page 288–294, New York, NY, USA, 2007. Association for Computing Machinery.

ISBN 9781595936530. doi: 10.1145/1250910.1250952. URL https://doi.org/10.1145/

1250910.1250952.

V. Manshadi, S. Oveis Gharan, and A. Saberi. Online stochastic matching: Online actions

based on offline statistics. Mathematics of Operations Research, 37(4):559–573, 2012. ISSN

0364765X, 15265471. URL http://www.jstor.org/stable/23358636.

A. Mehta, A. Saberi, U. Vazirani, and V. Vazirani. Adwords and generalized online matching.

46th Annual IEEE Symposium on Foundations of Computer Science (FOCS), 54(5):22–es,

October 2005. ISSN 0004-5411. doi: 10.1145/1284320.1284321. URL https://doi.org/

10.1145/1284320.1284321.

A. Meyerson, A. Nanavati, and Laura J. Poplawski. Randomized online algorithms for

minimum metric bipartite matching. In Proceedings of the Seventeenth Annual ACM-

SIAM Symposium on Discrete Algorithms (SODA), 2006.

J. B. D. Monvel and O. Martin. Almost sure convergence of the minimum bipartite matching

functional in euclidean space. Combinatorica, 22:523–530, 2002.

K. Nayyar and S. Raghvendra. An input sensitive online algorithm for the metric bipartite

matching problem. In 2017 IEEE 58th Annual Symposium on Foundations of Computer

Science (FOCS), pages 505–515, 2017. doi: 10.1109/FOCS.2017.53.

E. Özkan and A. Ward. Dynamic matching for real-time ride sharing. Stochastic Systems,

10(1):29–70, 2020. doi: 10.1287/stsy.2019.0037. URL https://doi.org/10.1287/stsy.

2019.0037.

33

https://www.sciencedirect.com/science/article/pii/0304397594900426
https://www.sciencedirect.com/science/article/pii/0304397594900426
https://doi.org/10.1145/1250910.1250952
https://doi.org/10.1145/1250910.1250952
http://www.jstor.org/stable/23358636
https://doi.org/10.1145/1284320.1284321
https://doi.org/10.1145/1284320.1284321
https://doi.org/10.1287/stsy.2019.0037
https://doi.org/10.1287/stsy.2019.0037

J. Pitman. Probability. Springer Texts in Statistics. Springer New York, 1999. ISBN

9780387979748.

B. Pittel. On likely solutions of the stable matching problem with unequal numbers of men

and women. Mathematics of Operations Research, 44(1):122–146, 2019. doi: 10.1287/

moor.2017.0917. URL https://doi.org/10.1287/moor.2017.0917.

J. Spencer. Asymptopia. American Mathematical Society, 2014.

Y. Tong, J. She, B. Ding, L. Chen, T. Wo, and K. Xu. Online minimum matching in

real-time spatial data: Experiments and analysis. Proc. VLDB Endow., 9(12):1053–1064,

August 2016. ISSN 2150-8097. doi: 10.14778/2994509.2994523. URL https://doi.org/

10.14778/2994509.2994523.

U. Ünver. Dynamic kidney exchange. The Review of Economic Studies, 77(1):372–414, 2010.

34

https://doi.org/10.1287/moor.2017.0917
https://doi.org/10.14778/2994509.2994523
https://doi.org/10.14778/2994509.2994523

	1 Introduction
	1.1 Related work

	2 Model and Main Results
	2.1 Spatial setting and matching algorithms
	2.2 Sophisticated matching algorithms and the value of extra drivers
	2.3 The greedy matching algorithm and the value of extra drivers
	2.4 Matching for other distributions
	2.5 What if we can ignore some (far away) riders?
	2.6 Experiments

	3 The Unbalanced Market with More Drivers
	3.1 A random walk representation
	3.2 Analysis of the omniscient algorithm
	3.3 Analysis of greedy

	4 The Balanced Market
	4.1 Matching structure
	4.2 The walk on an (almost) balanced market
	4.3 Lower bound on the cost of matching

