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Release planning —deciding what features to implement in upcoming releases of a software system— is a
critical activity in iterative software development. Many release planning methods exist but most ignore the
inevitable uncertainty in estimating software development effort and business value. The paper’s objective
is to study whether analysing uncertainty during release planning generates better release plans than if
uncertainty is ignored. To study this question, we have developed a novel release planning method under
uncertainty, called BEARS, that models uncertainty using Bayesian probability distributions and recommends
release plans that maximise expected net present value and expected punctuality. We then compare release
plans recommended by BEARS to those recommended by methods that ignore uncertainty on 32 release
planning problems. The experiment shows that BEARS recommends release plans with higher expected net
present value and expected punctuality than methods that ignore uncertainty, thereby indicating the harmful
effects of ignoring uncertainty during release planning. These results highlight the importance of eliciting and
analysing uncertainty in software effort and value estimations and call for increased research in these areas.
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1 INTRODUCTION

Iterative software development processes are widely recommended when requirements are un-
certain and a project is subject to significant risks [12, 37]. Instead of delivering all features at
once, the software is delivered over multiple releases where each release adds or modifies features
based on lessons learnt from earlier releases. By feature, here, we mean both functional features
and quality improvements (e.g. better performance). Since not all features are delivered at once,
an essential activity of iterative development consists in prioritizing what features to deliver in
upcoming releases. This activity, known as release planning, is critical to deliver early business
value, to manage stakeholders’ expectations, to control risks, and to organise software development
activities [61].

Many release planning methods exist (see [5, 68] for surveys). These methods involve evaluating
candidate features against a set of criteria relevant to the project stakeholders. Commonly used
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criteria include development effort measured in person-days or story points, and business value
measured in abstract value points (e.g. a number from 0 to 9) or in monetary units (e.g. in $).
Different methods propose different sets of criteria, different ways to elicit scores from stakeholders,
and different mathematical models that combine the elicited scores into some overall metrics that
inform the release planning decisions.

Empirical studies in industrial contexts have shown the benefits of systematic release planning
methods over unstructured, ad-hoc release planning [4, 45, 51]. By introducing structure to the
decision process, these methods mitigate common difficulties of release planning such as the lack of
clarity about objectives and candidate features, the late identification of feature dependencies, the
difficulty of engaging key stakeholders in the decision process, and the uncontrolled interference
of power, politics and self-serving interests. The studies also showed that introducing a structured
process reduces the time and effort involved in making decisions.

So far, however, no research has compared structured release planning methods against each
other. Would different methods applied in the same context recommend the same release plans?
If not, do some methods recommend better release plans than others? The paper’s objective is
to study whether methods that analyse uncertainty would recommend better release plans than
methods that ignore uncertainty.

Most release planning methods ignore the inevitable uncertainty of software development effort
and value. They evaluate candidate release plans as if all features will be delivered on time according
to plan. In reality, some features will take longer to develop than predicted and, once released, may
deliver more or less business value than expected. Ignoring such uncertainty can lead to inaccurate,
overoptimistic, and inconsistent evaluation of candidate release plans, which in turn can lead to
misinformed and possibly inadequate release planning decisions.

A few methods have been proposed to analyse uncertainty during release planning (e.g. [10, 46,
49, 58, 63]). However, no evidence exists that release plans recommended by these methods are
better, or even just different, than release plans recommended by methods that ignore uncertainty.
Without such evidence, the added complexity of analysing uncertainty cannot be justified and
methods that analyse uncertainty are unlikely to be adopted.

Another limitation of previous release planning methods under uncertainty is their implicit
assumption that all features planned for a release will be delivered in that release. If development
takes longer than anticipated, they assume that the release date will be postponed until all features
planned for the release are ready to be delivered. The methods analyse uncertainty about release
dates and costs under that assumption. We call this assumption the fixed-scope assumption because
it treats release plans as fixed-scope contracts. This assumption rarely holds in practice. Surveys
indicate that most organisations use a fixed-date release cycle where future releases are scheduled
to occur at fixed dates separated by regular time intervals (e.g. every 3 months) [45]. In this context,
if development tasks take longer than anticipated, features that are not ready for their planned
release date will be postponed to future releases or possibly cancelled. Existing release planning
methods that assume fixed-scope releases are inadequate in this context because they are designed
to analyse uncertainty about release dates (which is irrelevant in this context) and are unable to
analyse uncertainty about the releases’ content.

To study release planning in a context relevant to industrial practice, we have developed a novel
release planning method, called BEARS, that analyses uncertainty in the context of fixed-date
release cycles. BEARS is an acronym for Bayesian Economic Analysis of Release Scenarios. It is also
a nod to “Waltzing with Bears”, the title of a seminal book on managing uncertainty in software
projects [18]. BEARS is a Bayesian approach in the sense that it uses Bayesian probability (i.e.
probability representing someone’s degree of belief about an uncertain proposition [56]) to model
the release planners’ uncertainty about the development effort and business value of candidate
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Analysing Uncertainty in Release Planning 1:3

features. In this paper, we rely on the elicitation of such uncertainty from human experts rather than
inferring them from a range of inputs using Bayesian Networks (a topic for future work). BEARS is
an economic approach in the sense that it compares release plans’ value using the financial concept
of net present value. BEARS is supported by a tool that takes as input Bayesian probabilities of the
effort and value of individual features and generates as output a set of Pareto-optimal release plans
that maximize expected net present value (a common financial metric for comparing cash flows)
and expected punctuality (the expected percentage of features delivered on time). Release planners
(the persons responsible for release planning ) will then select their preferred release plan from the
recommended Pareto-optimal set.

To study the impact of analysing uncertainty on release planning decisions, we have applied
BEARS to 32 release planning problems and compared the release plans recommended by BEARS
to release plans recommended by methods that ignore uncertainty. The experiment shows that
methods that ignore uncertainty recommend release plans that have lower expected net present
value and lower expected punctuality than those recommended by BEARS. In our experiment, in
97% of cases, all release plans shortlisted by methods that ignore uncertainty have strictly lower
expected net present value and expected punctuality than the release plans shortlisted by BEARS.
On average, BEARS increases the hypervolume of the shortlisted release plans by 18% — this
roughly means that release planners have a choice of release plans that is 18% superior in terms
of expected net present value and expected punctuality (the hypervolume metric will be defined
more precisely later). These numbers are specific to our 32 release planning problems and the
conditions of our controlled experiment. Since our controlled experiment is designed to minimize
differences between the application of BEARS and methods that ignore uncertainty, the differences
in practice may be much larger. More importantly, BEARS enables informed discussions about
tradeoffs between expected value and expected punctuality that are impossible when uncertainty
is ignored. The BEARS tool and all data needed to replicate our experiments are available from the
paper’s repository 1.

2 ILLUSTRATIVE EXAMPLE

Throughout the paper, we illustrate release planning with an example based on a real local govern-
ment project. The project aims to develop online services for local residents and businesses for
various tasks such as paying local taxes, reporting missed rubbish collection, managing parking
permits, and submitting and responding to planning applications. Many residents and businesses
would prefer to perform such transactions online instead of over the phone or by visiting offices
when possible. For the local government, each online interaction is much cheaper than the equiva-
lent interaction over the phone or in person. The local government has identified 15 individual
services that could be delivered online but its Information System group has limited resources and
is only able to develop a few features supporting these services every quarter. Different stakehold-
ers disagree about which features should be developed first. The project manager and software
development team need to prepare a release plan that will organise the development work so that
it provides the most value to the local government and its residents. As for most release planning
problems, substantial uncertainty exist about the value and development time of each online feature.

3 RELEASE PLANNING: BACKGROUND & STATE-OF-THE-ART

This section provides a guided tour of important concepts and methods of software release planning.
Unlike previous surveys [5, 68], it emphasises the mathematical optimisation models at the heart
of release planning methods and discusses the assumptions and limitations of these models. The

!https://github.com/olawole/BEARS
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models described here provide foundations for the new model in Section 4. They will also be used
in the experiment in Section 5.

Release planning involves planning several months ahead and is performed on coarse-grained
work items such as features and epics rather than fine-grained work items such as user stories
and small development tasks [38, 61]. In agile development, release planning is followed by more
frequent sprint planning activities [38]. A sprint is a smaller development period (e.g. 2 weeks)
within a longer release period (e.g. 3 months). Sprint planning focus on the next sprint only.
Release planning in contrast usually involves planning multiple releases. In the academic literature,
the activity studied in this paper is sometimes referred to as strategic release planning and sprint
planning as operational release planning [2, 68]. The first is concerned with assigning coarse-grained
work items to future releases, the second with assigning fine-grained work items to developers for
the next short development period.

3.1 Product Backlog and Release Plans

Release planning takes as input a backlog of work items to be scheduled for future releases and
generates as output a release plan specifying what items are scheduled for what future releases.
Definition (Product Backlog): A product backlog is

e a set WI of work items that are candidates for future releases; and
e arelation «<—C WI x WI defining a precedence relation between work items, i.e. w; < w;
means that w; must be delivered before or at the same time as w;.

In some release planning methods, backlog items are called requirements [9, 26], in others they
are called features [19, 38, 61]. In this paper, we will follow the terminology of the Incremental
Funding Method where work items are either features or architectural elements [19]. Features are
functional or quality improvement that deliver value to stakeholders; architectural elements are
software elements that do not in themselves deliver value to stakeholders but are prerequisites to
the development of features.

In addition to the precedence relation, the product backlog may include other types of dependen-
cies between work items such as coupling, exclusion, and weak precedence [61, 72]. We will not
use these additional dependencies in this paper; all techniques described in the paper can however
be extended to handle these additional dependency types (the required changes will be discussed
in Section 4.3).

As an example, Figure 1 shows a fragment of the product backlog for our local government
project. The full backlog, available in BEARS’s online repository, is composed of 15 features, 5
architectural elements, and 23 precedence links.

The main output of release planning is a release plan.

Definition (Release Plan): Given a product backlog < WI <>, a release plan is a partial
function p : WI — [1..H] that maps work items to future releases. The number H € N* of releases
in the plan is called the planning horizon. For a work item w, p(w) = i means that w is planned to
be delivered in the i" next release. A release plan is a partial function because not all work items in
the backlog need to be planned for some future release. Release plans must satisfy the precedence
constraints: if w; < w; then p(w;) < p(w;).

3.2 Managing Capacity Constraints

Release planning must ensure that for each release period the required development effort does not
exceed the development team’s capacity. To model this constraint, the product backlog is extended
with the following information:

e effort(w) € N* denoting the estimated effort required to deliver each w € WI,
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Fig. 1. Part of the product backlog for the local government project

e capacity(i) € N* denoting the estimated team capacity in each release period i € [1..H].

Effort and capacity estimates are provided by the development team and release planners. Tech-
niques to support such estimations include planning poker [15] and formal estimation models [33].
Effort and capacity must be expressed in the same unit, for example in person-days or story points.
Story points are popular in lean and agile software development. They denote abstract scores on a
ratio scale (e.g. a score between 0 and 100) that denote the relative effort needed to deliver a work
item in comparison to other work items (e.g. an item worth 50 story points is expected to require 5
times the effort of an item worth 10 story points). Effort estimation in person-days denote, as the
name implies, the estimated number of person-days required to deliver an item.

Release plans must satisfy the constraint that for each release period, the development effort
does not exceed the team capacity, i.e. for all i € [1..H]:

effort(w) < capacity(i) (1)
{weWI | p(w)=i}

Constraints on other resources such as personnel, equipments, and capital can be modelled in the
same way by specifying the resource requirements for each work item and the resource capacity
during each period [61].

A well-known problem in managing capacity constraints is the difficulty of predicting develop-
ment effort: effort estimates are often optimistic and ignore the inevitable uncertainty of software
development tasks [32]. Ignoring such uncertainty, or at least not describing it explicitly, prevents
release planners from analysing the likelihood and impacts of late deliveries.

One proposed approach to deal with this problem consists in assigning a risk level to each work
item, e.g. on a scale from 0 to 5, and to tolerate a maximal level of risk in each iteration, e.g. at most
10 risk units per iteration [61]. In other words, risk is treated as a limited resource and managed
using a capacity constraint. This approach however provides only a limited form of uncertainty
analysis: the likelihood and impacts of late deliveries remain ambiguous and unquantified.

Other release planning methods address this problem by estimating effort as probability distribu-
tions. For example, effort uncertainty can be modelled using triangular distributions defined by
the most optimistic, most likely and most pessimistic effort estimates [41, 42, 46, 63]. It has also
been modelled using lognormal distributions [49]. Given these probability distributions, the above
methods aim to maximise the probability that the next release is delivered within budget [41, 42] or
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by its planned date [46, 49]. These methods, however, are limited to analysing a single next release
(i.e. their planning horizon H is limited to 1). Another method, dealing with multiple releases, aims
to maximize the probability that all planned releases are delivered on time [63]. However, all these
methods assume that a new release is delivered only when all features planned for that release
have been completed. As mentioned in introduction, this fixed-scope assumption is unrealistic
and inadequate for reasoning about uncertainty in the context of fixed-date release cycles most
commonly used in industry.

3.3 Optimizing Value Points

Software systems are built to deliver value to their stakeholders [11]. To help release planners
identify which release plans are likely to deliver most value, many release planning methods rely on
assigning value points to release plans. In these methods, value points are abstract scores denoting
relative value on a ratio scale (e.g. between 0 and 100); they do not correspond to concrete observable
quantities (e.g. financial gain, number of users of the online services).

The product backlog is extended such that each work item w has a value point score, noted
valuePoints(w), denoting the relative value of w in comparison to other work items. The ‘Business
Value’ attribute used in project management systems such as JIRA or Azure DevOps are typical
example of such value points. Value points are provided by release planners, product owners or
project stakeholders.

The values points of a release i in a plan p is the sum of the value points for all work items
planned for that release:

valuePoints(p, i) = Z valuePoints(w) (2)
{weWI | p(w)=i}
The value points of release plan p is the weighted sum of the value points in each release:

H
valuePoints(p) = Z weight(i) X valuePoints(p, i) (3)
i=1
where weight(i) denotes the weight given to value points in release i. The release weights, to
be specified by the release planners, denote the relative importance of value points delivered in
earlier releases over those delivered in later releases. Formally, the weights define marginal rates of
substitution between value points in different releases. For example, if the first three releases have
weights of 10, 5 and 1, respectively then according to Equation 3, a single value point delivered in
the first release has the same value as 2 value points delivered in the second release, and the same
value as 10 value points delivered in the third.
The release planning method EVOLVE-II extends this model by deriving a work item’s value
point from the assessment of multiple criteria by multiple stakeholders [61]:

valuePoints(w) = Z weight(c) X Z(weight(x) X score(w, x,¢)) (4)
ceC xX€S
where
e Cis a set of criteria and weight(c) is the weight of criteria c;
e S is a set of stakeholders and weight(x) the weight of stakeholder x;
e score(w, x, c) denotes the score assigned by stakeholder x to work item w for criteria c.
For example, Table 1 illustrates how value points for three features in our motivating example
would be elicited using EVOLVE-IL. The two criteria of interests are ‘Frequency’ denoting how
often a service is used and ‘Savings’ denoting how much savings would be made by delivering this
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Table 1. Eliciting value points in EVOLVE Il

Work Item Frequency Savings ValuePoints
Residents Staff Residents Staff

A: view council tax bills 5 4 2 6 4

B: apply for council tax reduction 7 5 3 8 5

C: pay council tax 5 5 6 9 7

Stakeholders Weights: Residents = 0.6, Staff = 0.4
Criteria Weights: Frequency = 0.3, Savings = 0.7

feature. The two stakeholders groups are the local council residents and staff. Each stakeholders
group is asked to score each work item against each criteria on a scale from 0 to 9. The work items’
value points are then computed according to Equation 4.

Optimisation algorithms can then be used to shortlist a small set of release plans that maximize
value points (Eq. 3) subject to satisfying the capacity constraints (Eq. 1). Release planners can then
inspect the shortlisted plans and select their preferred one. A natural shortlisting strategy is to
select the top n release plans that satisfy the capacity constraints, for example with n = 10. A
variant, used by EVOLVE-I], is to apply heuristics to increase diversity among the selected release
plans while keeping the selected plans within a given bound of the best plan [61, 62].

Surveys have counted at least 22 variants of EVOLVE (16 up to 2010 [68] and an additional 6
up to 2016 [5]). Most variants amounts to pre-selecting the criteria C to be used in Equation 4.
Examples of such criteria include ‘Urgency’, ‘Risk’, ‘Stakeholder satisfaction’, ‘Competitiveness’, and
‘Cost of delay’. All such criteria are evaluated as abstract scores and aggregated through weighted
sums, although some variants use more complex formulae. One noteworthy extension consists
in evaluating release plans from the perspective of each stakeholder group separately in order to
analyse conflicts and fairness in the release planning process [23].

An important but often overlooked limitation of evaluating value points is the difficulty of
eliciting scores and weights that accurately reflect the stakeholders’ true preferences. In Equations 3
and 4, the weights and scores correspond to marginal rates of substitution. Eliciting such rates of
substitution is far from trivial and one can question whether the elicited numbers (such as those in
Table 1) accurately reflect the stakeholders’ and release planners’ true preferences. With inaccurate
inputs, the evaluation and ranking of release plans may also be inaccurate.

3.4 Optimizing Net Present Value

An alternative to optimising value points is to optimise financial metrics such as net present value
and return on investment [14, 19, 20, 69]. The Incremental Funding Method (IFM) is the first method
to use such economic approach [19, 20]. It requires release planners to estimate the projected cash
flow of each work item, cashFlow(w) : [1..L] — R where L is the investment horizon (L > H), i.e.
the period over which the total value of release plans is measured, and cashFlow(w, i) denotes the
projected cost or revenue of w during the i* period after the start of its development. For example,
cashFlow(w) = [-2000, 1000, 1000, 1000, 1000] means that developing w will cost $2,000 during one
period and once released will generate $1,000 per period for the next four periods.

In the IFM, value is more easily defined over development plans than release plans. A development
plan is a partial function p : WI — [1..H]| that maps work items to the period in which their
development starts. A development plan’s cash flow is a function cashFlow(p) : [1..L] — R
computed from the work items’ projected cash flow such that cashFlow(p, i) is the sum of all work
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items’ costs and revenues taking into account when their development started. The Net Present
Value (NPV) of a development plan p is then defined as:

L

cashFlow(p, i)
A = 3
where r is the discount rate. NPV is a standard financial metric to compare cash flows taking into
account the time value of money at a given discount rate. The discount rate allows one to take into
account that $100 dollars today are worth more than $100 dollars in a year. Note that the discount
rate plays a similar role as the release weights in the previous section; it allows one to compare
values delivered at different times.

Instead of including capacity constraints as defined in Section 3.2, the IFM assumes the devel-
opment team can only work on a bounded number of work items per period (e.g. at most 2 work
items per period). This assumption is admittedly too strong and unrealistic in many situations. The
IFM uses heuristics to search for development plans that optimise NPV. The output of the IFM is a
single development plan that has optimal or near optimal NPV. Release planners can use this plan
as baseline to explore alternatives and select some preferred release plan.

Extensions to the IFM include improved algorithms for identifying optimal development se-
quences [3], analysis of cash flows uncertainty [10, 58], and analysis of competitors’ behaviours
using game theory [48]. The IFM extensions dealing with cash flow uncertainty ignore uncertainty
about development time and assume fixed-scope releases. They also assume a single work item
can be worked on at a time. The new release planning method in Section 4 will address these
limitations.

Arguments against such economic analysis are the inaccuracy of most cost and revenue pro-
jections and their tendency to overlook important but not easily quantifiable values, for example
stakeholders’ satisfaction and other human, social and environmental values. An advantage over
optimizing value points, however, is that economic values can often be derived from observable
factors. For example, in our local government project, the economic value of a feature can be
evaluated by estimating how many phone interactions per months will be saved by introducing the
feature and multiplying it by the average cost of a phone interaction. We argue such evaluation is
more credible (or at least less arbitrary) than the weighted sum of scores between 1 and 9 in Table 1.
Values that at first may seem hard to quantify, such as the residents satisfaction in our example,
can also often be related to observable factors (e.g. residents’ praises and complaints about the
council’s services) and measured in economic terms by eliciting stakeholders’ willingness-to-pay
for such values [29]. Such economic analysis are nevertheless fraught with uncertainty. The next
section presents a novel release planning method that takes such uncertainty into account.

()

4 RELEASE PLANNING WITH BEARS
BEARS supports release planning under uncertainty in the context of fixed-date release cycles. The
main input to BEARS is a product backlog where each work item w has the following attributes:

e cffort(w): a real-valued probability distribution denoting the release planners’ subjective
uncertainty about the number of person-days required to deliver w;

e value(w): a real-valued probability distribution denoting the release planners’ subjective
uncertainty about the value in monetary units brought about by w in each period after it is
delivered.

BEARS also requires release planners to specify the following additional parameters:

e the planning horizon H € N* and the team capacity, noted capacity(i), in each period
i€[1.H];
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e the investment horizon L € N* and the discount rate r € R used to compute net present
values;

e and, optionally, the budget B allocated to development team for the next H iterations. This
budget is involved in the computation of net present value. If no budget is specified, B = 0.

Given these inputs and parameters, BEARS evaluates candidate release plans against the following
criteria:

o their Expected Net Present Value (ENPV), and
o their expected punctuality (EP) defined as the expected percentage of work items delivered
on time;

BEARS is supported by a tool that automatically shortlists a set of Pareto-optimal release plans
that maximize expected NPV and expected punctuality. The tool is implemented in JAVA. It uses
JMetal [55] for multi-objective optimisation and our implementation of a Monte-Carlo simulation
of release plans to be described in Section 4.2. The tool takes as input a CSV file defining the work
items’ precedence relation and effort and value estimates. It generates a CSV file with the shortlisted
Pareto-optimal release plans and a figure of the Pareto front.

Notes.

(1) BEARS does not assume that a feature will be developed within a single iteration; the
development of a feature can start in one iteration and end in a later iteration. BEARS
also does not assume that the total effort to develop a feature is smaller than the team
capacity in each iteration. Good practices of iterative development recommend avoiding
such large features, but the mathematical model in BEARS allows them. Unlike methods that
ignore uncertainty, the BEARS model does not include a capacity constraint (Eq. 1) that is
incompatible with such large features.

(2) The budget parameter B is necessary to compute net present value. BEARS assumes a simple
model where the development team is allocated a fixed budget for its time and material for
the next H releases; this budget is independent of the release plan. It corresponds to the
fixed salary and expenses of the development team over the planning horizon. If needed, the
method can be extended to support more complex cost models, for example where the budget
varies in each iteration or depends on the features being developed. The required changes are
described in Section 4.2.2. Release planners can choose to ignore the budget by leaving the
model parameter B unspecified. The tool will then compute net present values using B = 0.

(3) By choice, BEARS does not model uncertainty about team capacity. Rather, its model assumes
the team capacity for each period to be known and fixed. This is a simplification because
the team capacity could vary due to uncertain events (e.g. sickness, people leaving the team,
etc.). In practice, these uncertain events are usually not considered during strategic release
planning. They are rather managed during operational release planning (i.e. during each
iteration), for example by adapting the release plan [1] or by recovering lost capacity with
overtime [22]. We have kept the BEARS model in line with such practices. If needed, BEARS
can be extended to deal with uncertainty about team capacity. This involves simple changes
described in Section 4.2.1.

4.1 Eliciting Effort and Value Uncertainty

Reliable, principled techniques exist for eliciting subjective uncertainty from persons and groups
of persons [56]. These techniques assume that people have some real, tacit uncertainty about the
quantities of interest (in our case, the work items’ effort and value) that can be uncovered through
targeted questions and modelled as Bayesian probability distributions. The techniques are designed
to mitigate common estimation biases such as over-confidence and anchoring.
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Fig. 2. Eliciting effort uncertainty for feature “A: view council tax bills” with the MATCH tool [52].

We use the SHELF elicitation framework [56] and its associated MATCH tool [52] to perform
such elicitation. SHELF is a comprehensive framework that includes a wide range of elicitation
techniques. In this paper, we use the ‘quartile method’ to elicit uncertainty about work items’
effort and value. The method is described below. We also assume that uncertainty about work
items effort and value have lognormal distributions. Lognormal distributions are appropriate to
model uncertainty about quantities that are always positive and where the distribution can be
asymmetric and have a long tail of possible high values [30, 56]. An alternative to lognormal
distributions is to use triangular distributions created by eliciting three point estimates: the worst,
most likely, and best cases [41, 42, 46, 63]. This approach, however, has been criticized for its failure
to elicit uncertainty accurately [56, 57]. Although BEARS currently uses lognormal distributions, its
simulation method in Section 5 can be used with any probability distribution, including triangular
distributions.

We describe the quartile method by illustrating its application for effort estimation. Eliciting
uncertainty about work items’ value is similar. For example, Figure 2 illustrates the elicitation of
effort uncertainty for work item A in the product backlog. The quartile method consists in eliciting
the development team’s subjective assessment of: (i) the effort’s upper and lower limits denoting
minimum and maximum plausible values; (ii) the effort’s median value denoting the value M such
that the development team judges it equally likely that the true effort is below M or above M;
(iii) the effort’s lower quartile denoting the value Q1 such that the development team judges it
equally likely that the true effort is below Q1 or between Q1 and M; and (iv) the effort’s upper
quartile denoting the value Q2 such that the development team judges it equally likely that the true
effort is above Q2 or between M and Q2. A facilitator helps team members adjust their estimates
by testing their indifference to alternative bets. For example, to test the median, the facilitator
asks the development team to consider a bet where they would win a large payout if they can
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correctly guess whether the true effort will be either below or above the stated median. If they
have a preference for betting either ‘below’ or ’above’, then their stated median is not the true
median of their subjective uncertainty and should be adjusted accordingly. Once all data points
have been elicited, the MATCH tool infers the best-fit lognormal distribution as shown in Figure 2.
Throughout the paper, all estimates for the local government project have been defined by the
paper’s authors for illustration purpose.

4.2 Simulating and Evaluating Release Plans

To simulate and evaluate release plans, we distinguish release plans p : WI — [1..K] that specify
when work items are planned for release from release scenarios s : WI — [1..K] that specify when
work items are actually released. During release planning, the actual release scenario is unknown.

BEARS evaluates release plans’ ENPV and expected punctuality using Monte-Carlo simulation.
The approach consists in simulating multiple release scenarios of a release plan, evaluating the net
present value and punctuality of each scenario, and estimating ENPV and expected punctuality
as the mean net present value and mean punctuality over all simulated scenarios. This approach,
whose high-level pseudo code is shown in Figure 3, is described in more details below.

4.2.1 Simulating Release Scenarios. To evaluate release plans, BEARS creates a ReleasePlan-
Simulator associated to the product backlog. The function createReleasePlanSimulator in
Figure 3 generates N simulations of work items’ effort and value drawn from the effort and value
probability distributions. By default, BEARS uses N = 10*. This creates N possible future worlds,
each having specific effort and value data for each work item. In Figure 3, the variables effort
and value are matrices of size N X |WI| such that effort[n,w] and value[n,w] denote the simulated
effort and value of work item w in the n*" simulation, respectively. Note that BEARS’s choice of
probability distribution is hidden in the function createReleasePlanSimulator; extending the
ReleasePlanSimulator to deal with different probability distributions than lognormal would only
requires changing the implementation of this function.

In each possible future world, the function generateReleaseScenario creates the release sce-
nario that would happen in this world based on the work item’s effort data. Note that release plans
do not specify any priority between work items to be delivered in the same release. However,
in order to generate a release scenario, we need to make some assumption about the order in
which work items will be worked on so that we can identify what work items are most likely
to be postponed to the next release if they cannot all be developed in time. Therefore, the func-
tion generateReleaseScenario first creates a work sequence ws that specifies in what order we
assume work items will be completed, then generates the release scenario from the work sequence.

To generate a work sequence from a release plan, we assume the following priorities between
work items: an item w; takes precedence over an item w; in the work sequence if: (i) w; is planned
for an earlier release than w; (i.e. p(w;) < p(w;)), or (ii) w; has a precedence dependency on w; (i.e.
w; < wj), or (iii) both items are planned for the same release and have no precedence dependency
and w; has a higher ratio of mean value to mean effort than wj. These priorities are described in
the startEarlier function in Figure 3.

From the work sequence, the loop in the function generateReleaseScenario assigns work
items to release periods such that the k* item in the work sequence is delivered in release i if, and
only if, the cumulative effort to develop the work sequence up to item k is more than the cumulative
team capacity up to period (i — 1) and less or equal to the cumulative team capacity up to period i:

i-1 k i
Z capacity(j) < Z effort(ws(j)) < Z capacity(j) (6)
Jj=1 Jj=1 j=1
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Module ReleasePlanSimulator
Internal Data:
backlog: Backlog, including additional parameters H, capacity, L, r and B.
N: Integer initialized to 10*.
effort: Matrix to hold work item effort simulation data.
value: Matrix to hold work item value simulation data.

Function createReleasePlanSimulator (Backlog b):
Result: Generates N simulations of work item’s effort and value to be used for
subsequent evaluation of release plans.

backlog < b

for each work item w in b do
effort[ _, w] « vector of N random data drawn from w’s effort distribution
value[ _ , w] < vector of N random data drawn from w’s value distribution

end

Function evaluateReleasePlan (ReleasePlan p):
Result: a pair of value < ENPV(p), expectedPunctuality(p) >
sumNPV, sumPunctuality « 0
forn «— 1to N do
s « generateReleaseScenario (n, p)
sumNPV «— sumNPV + NPV (s) // NPV (s) defined in Eq.7
sumPunctuality < sumPunctuality + Punctuality(s, p)
// Punctuality(s,p) defined in Eq.10
end
return < sumNPV + N, sumPunctuality + N >

Internal Function generateReleaseScenario(Integer n, ReleasePlan p):
Result: the release scenario s in the n'” simulation.
ws « list of p’s work items ordered by startsEarlier(_, _, n, p)
s « an empty release scenario
i « 1; SumCapacity « capacity(i); SumEffort < 0
for j « 1 to length(ws) do
SumEffort « SumEffort + effort[n, ws(j)]
while (SumEffort > SumCapacity) do
ie—i+1
SumCapacity «— SumCapacity + capacity(i)
end
s(i) < s(i) U{ws(j)}
end
return s
Internal Function startsEarlier(Workltem w;, wj, Integer n, ReleasePlan p):
if (p(w;) < p(w;) OR w; < w; in the backlog precedence relation) return TRUE
else return (value[n, w;] + effort[n, w;] > value[n, w;] + effort[n, w;])

Fig. 3. High-level pseudo code for simulating and evaluating release plans under uncertainty.
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where ws(j) is the j** element in the work sequence ws. This condition ensures that the total
effort in each release period does not exceed the team capacity for that period and that work items
are released in order of the work sequence.

If BEARS was to be extended to analyse uncertainty about team capacity, the only changes
required in Figure 3 would be to generate N simulations of the team capacity for each iteration in
createReleasePlanSimulator and store them as internal data, then change the two occurences
of capacity(i) to capacity[n, i] in generateReleaseScenario.

Note that simulating release plans in the context of fixed-date release cycles is substantially
different (and more complex) than under the assumption of fixed-scope releases. Methods that
assume fixed-scope releases (e.g. [10, 46, 49, 58, 63]) start like BEARS by generating N simulations
of work items’ effort and value from their probability distributions. The next steps are different.
Assuming fixed-scope releases means that release scenarios do not deviate from the release plan
(for all work items w, s(w) = p(w)) and only the release dates are uncertain. Simulated release
dates are derived from the work items’ simulated effort data: in each of the N possible future worlds,
the simulated date of the i*? release is simply the sum of the simulated efforts of all work items to
be delivered up to the i** release.

4.2.2  Evaluating Net Present Value. In a release scenario s, the value of work item w in period i,
noted value(w, s, i), equals value(w) if w was released before period i (i.e. s(w) < i), or 0 otherwise.
The total value delivered during period i of s is the sum of the value delivered by all work items:
value(s,i) = Y, ,cwrvalue(w, s, i). The Net Present Value (NPV) of release scenario s is:

NPV(s) = Z value(s, i) _B )

(1+7r)t

where B is the allocated budget for the planning horizon.

The net present value of a release plan p is a random variable whose distribution is approximated
by the simulated scenarios’ net present values. The expected NPV of a release plan is the mean
NPV over that distribution:

ENPV(p) = E[NPV(s)] 8)

BEARS computes ENPV(p) as the mean of NPV(s) over all release scenarios simulating p. In
addition to computing the expected NPV, BEARS could also compute other statistics about NPV
such as the loss probability (the probability that the net present value is negative) and the Value-at-
Risk defined as the 5/ quantile of the net present value probability distribution.

If BEARS was to be extend with a more complex cost model, for example where the cost of a
release plan depends on the features developed rather than being a fixed budget, the only change
required would be to modify the second term in Eq. 7.

4.2.3  Evaluating Expected Punctuality. The punctuality of a release scenario s with respect to a
release plan p is defined as the percentage of planned work items delivered on or before their
planned release period:

#{w e WI|s(w) < p(w)} )
#dom(p)

where dom(p) is the domain of p, i.e. the set of work items in the release plan. This punctuality

metric is similar to that used in other domains, notably in transport. For example, the punctuality

of a railway line is the percentage of trains that arrived at their final destination on time.

Punctuality(s, p) =

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.



1:14 0. Oni and E. Letier

The expected punctuality of a release plan p is the mean punctuality of the N release scenarios
that simulate p:
EP(p) = E[Punctuality(s, p)] (10)

A release plan with a 90% expected punctuality means that 90% of work items are expected
be delivered no later than their planned release. This expected punctuality metric is motivated
by the need for a simple metric to help release planners communicate the uncertainty associated
with different release plans to clients and other stakeholders. The metric allows release planners
to compare release plans with different expected punctuality and to analyse tradeoffs between
expected punctuality and expected NPV, as it will be explained in Section 4.4.

4.2.4 Computational Complexity. The function generateReleaseScenario involves sorting the
work items in the release plans and has thus a worst-case theoretical complexity of [p|In |p| where
|p| is the number of work items in the release plan p. The function evaluateReleasePlan involves
generating and evaluating N release scenarios and therefore has a computational complexity of
N X |p|In|p|. The computational cost of evaluating release plans under uncertainty is therefore
N X |p|In |p| times larger than when uncertainty is ignored. Experiments in Section 5 will report
the differences in run times on concrete release planning problems.

4.3 Shortlisting Optimal Release Plans

BEARS shortlists a set of Pareto-optimal solutions that maximize expected net present value
(ENPV) and expected punctuality (EP). In BEARS, a release plan p is Pareto-optimal if there is
no other release plan p’ that outperforms p for one criteria and is at least as good for the other
criteria, i.e. such that either ENPV(p’) > ENPV(p) and EP(p’) > EP(p), or EP(p’) > EP(p) and
ENPV(p") > ENPV(p).

In general, the number of possible release plans will be too large to compute the exact set of
Pareto-optimal solutions. BEARS thus relies on multi-objective evolutionary algorithms (MOEAs)
to explore the space of candidate release plans and generate a good approximation of the set of
Pareto-optimal plans. Our implementation provides a choice among three alternative MOEAs (users
can choose one of the three): NSGA-II [17], MOCell [54], and SPEA2 [74]. We use these MOEAs
because they have readily available implementations in JMetal, the optimisation framework used
in BEARS [55], and they are among the most widely used MOEAs for release planning [73].

To apply such algorithms, BEARS encodes a release plan p as an array of integers where each
element represents the release number p(w) assigned to a work item, or zero if the work item is not
scheduled in the plan. The size of the array is equal to the number of the work items in the product
backlog. The fitness of a release plan is evaluated using the evaluateReleasePlan function in
Figure 3. The MOEA starts by randomly generating an initial population of 100 release plans, then
iteratively evolve the population towards release plans with higher ENPV and EP using genetic
selection, crossover and mutation. Our implementation uses integer simulated binary crossover with
probability P, = 0.9 and polynomial mutation with probability P, = ﬁ where | WI| is the number
of work items. These are standard parameter settings used in previous research [73]. We have not
tuned the parameters to optimise the MOEAs. The MOEAs could potentially be optimised through
parameter tuning, by using hyperheuristics, or by devising better problem-specific algorithms (all
are topics for future research). We have set the MOEAs to terminate after having explored 25, 000
release plans. On termination, they return the Pareto-optimal release plans in their final population.

During mutation and crossover, the MOEAs may generate candidate release plans that violate
the precedence constraints between work items. Following an approach used in previous work [64],
our implementation automatically detects and repairs such violations so that the populations only
contain valid release plans. If in the future BEARS is extended to support more dependency relations
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Fig. 4. Expected NPV and punctuality of shortlisted release plans for the local government project.

between work items, such as such as coupling, exclusion and weak precedence (see Section 3.1),
the only required change will be to extend the detection and repair of constraints violations during
mutation and crossover.

Note that an important feature of MOEAs is to consider diversity in their exploration and
evaluation of candidate solutions [17, 54, 74]. Diversity of the shortlisted release plans in BEARS
is therefore achieved through the MOEAs and the multiobjective nature of BEARS optimisation
model. The next section will show an example of a diverse shortlist and how such diversity support
release planning decisions.

The computational cost of this shortlisting step is the number of release plans being evaluated by
the MOEA (25, 000) multiplied by the complexity of evaluating each release plans (N X |p|ln|p]). In
our running example, BEARS takes on average 48 seconds to shortlist release plans with a planning
horizon H = 3. The experiments in the Section 5 will measure and report run times for release
planning problems of increasing sizes.

4.4 Visualising Shortlisted Release Plans

When the search terminates, BEARS displays the shortlisted release plans’ Pareto-front. Visualising
such Pareto-front helps release planners analyse trade-off between expected value and punctuality.

For example, Figure 4 shows the returned Pareto-front for our local government problem. The
release plan with the highest ENPV, on the top left of the figure, has an expected punctuality around
70%. Release planners may hesitate to choose a release plan where 30% of work items are likely to
be late. Late deliveries, even if forewarned, will disappoint stakeholders and could put the project
at risk of being cancelled. Developers’ morale and productivity could also suffer. To address these
concerns, release planners could select a release plan with slightly lower ENPV but higher expected
punctuality up to 86%. Release plans with still higher expected punctuality are possible but would
required further sacrifice in ENPV. If the client demands a punctuality of 95% or even 100% (e.g.
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with penalties if targets are not met), release planners can select a safer release plan, reducing
ENPV to around £1,500K for 95% expected punctuality and to around £600K for 100%.

In summary, visualising the ENPV and expected punctuality of shortlisted release plans enables
release planners to have informed discussions with the project clients and development team about
the possible tradeoffs between ENPV and expected punctuality. These discussions are important: in
every project, release planners need to define a release plan that strikes the right balance between
being too ambitious (high expected net present value but low expected punctuality) and too
conservative (high expected punctuality but low expected net present value). Analysing uncertainty
using BEARS enables informed discussions about such tradeoffs.

5 EXPERIMENT: CAN UNCERTAINTY BE IGNORED?

In Sections 3 and 4, we have presented reasoned arguments why analysing uncertainty during
release planning is in theory better than ignoring it. In a nutshell, analysing uncertainty allows
for more realistic evaluation of release plans than if release plans are evaluated using inaccurate
effort and value estimates that ignore uncertainty. Analysing uncertainty also enables informed
discussions about tradoffs between expected value and expected punctuality that are not possible
when uncertainty is ignored.

In this section, we study whether analysing uncertainty makes a difference in practice: If BEARS
and methods that ignore uncertainty were applied in the same context, would they shortlist the
same release plans? Ignoring uncertainty may not be so harmful if the shortlisted release plans
are the same whether one analyses uncertainty or ignores it. The following experiment studies
whether this is the case.

5.1 Experiment Design

Our research question is:
Does BEARS shortlist better release plans than methods that ignore uncertainty?

To study this question, we apply BEARS to 32 release planning problems drawn from 8 product
backlogs and we compare the release plans shortlisted by BEARS to release plans shortlisted by
methods that ignore uncertainty. For this experiment, we consider that a release plan is better
than another if it has higher expected NPV and expected punctuality (i.e. strict dominance in
multiobjective optimisation [76]). In other words, we assume that BEARS optimisation criteria
are consistent with the release planners’ true preferences: if ENPV(p;) > ENPV(p,) and EP(p;) >
EP(p,) then release planners prefer p; over p,. This is a reasonable assumption that we will justify
further in Section 5.1.6.

5.1.1 Release Planning Problems. Table 2 lists the 8 product backlogs in our experiment. For each
product backlog, we consider 4 release planning problems by varying the planning horizon from 2
to 5 periods. The local government project is the illustrative example used throughout the paper.
The Release Planner, Word Processor, and RALIC product backlogs originate from previous studies
and have been used extensively in previous research [7, 59, 71-73]. The first two contain candidate
features for future releases of a commercial release planning tool (Release Planner) and a word
processor, respectively. The features were elicited during exploratory studies for a variant of the
EVOLVE method [35]. The product backlog for the RALIC project includes requirements for a
building access control system at University College London. A team of researchers (other than this
paper’s authors) elicited the RALIC requirements from 87 stakeholders using an online tool that
leverage stakeholders’ relationships to drive the requirements elicitation and prioritization pro-
cess [44]. The dataset has no constraint because no constraints were elicited during this elicitation
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Table 2. Release Planning Problems in the Experiment

Release Planning Problem Backlog Size Number of Constraints  Original effort estimates Original value estimates

Local Government Project 20 23 uncertain person-days uncertain economic value
Release Planner 25 11 person-hours value points
Word Processor 50 65 person-hours value points
RALIC 143 0 person-hours value points
Synthetic-30 30 11 uncertain person-days  uncertain economic value
Synthetic-50 50 15 uncertain person-days  uncertain economic value
Synthetic-100 100 30 uncertain person-days uncertain economic value
Synthetic-200 200 51 uncertain person-days uncertain economic value

Table 3. Release Planning Methods in the Experiment

Model Effort estimates Value estimates Simulation Method Optimisation problem

BEARS uncertain man-days uncertain economic value stochastic, flexible-scope Maximise expected NPV; Maximise expected punctuality
NPV-deterministic man-days economic value deterministic Maximise NPV subject to capacity constraint
VP-deterministic ~ story points value points deterministic Maximise value points subject to capacity constraint

process. The last 4 product backlogs are synthetic backlogs of size 30, 50, 100, and 200, respectively.
The work items precedence relations, effort and value estimates have been generated at random.

The original effort and value estimates for the Release Planner, Word Processor and RALIC
product backlogs do not include uncertainty. In order to use these problems in our experiment,
we have artificially added uncertainty to these estimates by simulating the uncertainty elicitation
process described in Section 4.1. For an original effort estimate x, we have set the lower and upper
bounds to x and 1.8x and the lower quartile, median and upper quartile to 1.2x, 1.5x and 1.7x. This
simulates a situation where the original effort estimate is the most optimistic value and the true
development time could take up to 1.8 times this optimistic value. This situation is consistent with
studies of software estimations that show that people tend to underestimate development time [32].
For an original value point estimate y, we have set the lower and upper bounds to 0 and 1000y and
the lower quartile, median and upper quartile to 200y, 500y, and 750y. This simulates a situation
where a single value point is worth $1, 000, the original value estimate is the most optimistic value
and the true value could be as low as zero. This is consistent with observations of software project
where initial prediction of business value tend to be overestimated [24, 53]. We make no claim
that the values we have chosen represent the true uncertainty that would have been elicited from
real developers and stakeholders in these projects. Since our objective is to compare the outputs
of different release planning methods when applied on the same inputs, it is sufficient that these
inputs are realistic (in the sense that they are consistent with empirical studies [24, 32, 53]) and
used consistently in our experiments.

5.1.2 Release Planning Methods. Table 3 summarizes the release planning methods in our experi-
ment. BEARS was defined in Section 4. NPV-deterministic and VP-deterministic are deterministic
variants of BEARS intended to be representative of release planning methods that optimise net
present value and value points, respectively. We have designed these methods specifically for this
experiment in order to be able to study the effect of analysing uncertainty in isolation from other
differences between release planning methods.

NPV-deterministic takes the same inputs as BEARS except that work items’ effort and value
estimates are single numbers instead of probability distributions. The optimisation model is to
maximize net present value (Eq. 5) subject to capacity constraints (Eq. 1). NPV-deterministic is
representative of release planning methods such as the IFM [19, 20] that optimise net present value.
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NPV-deterministic can be seen as an improved variant of the IFM. It differs from the IFM by including
effort capacity constraints instead of relying on the unrealistic assumption that the development
team can only work on a single work item in each iteration (see Section 3.4). Furthermore, it
shortlists n release plans using the same evolutionary optimisation algorithm as BEARS, whereas
IFM shortlists a single release plan using heuristic rules. Comparing BEARS to NPV-deterministic
instead of the IFM therefore allows us to study the effect of analysing uncertainty without being
affected by other differences between BEARS and the IFM.

VP-deterministic takes as input work items’ effort and value estimates given as story points
and value points. The optimisation model is to maximize value points (Eq. 3) subject to capacity
constraints (Eq. 1). VP-deterministic is representative of release planning methods such as EVOLVE-
II [61] that optimise value points. Its optimisation model subsumes the optimisation model of
EVOLVE-II: work items’ value points can be estimated directly using the ‘Business Value’ attribute
in project management systems or, as in EVOLVE-II, computed from the estimation of multiple
criteria from multiple stakeholders (Eq. 4). VP-deterministic shorlists n release plans using the same
MOEAs with repair as BEARS. This differs from EVOLVE-II that uses integer programming with
specific heuristics to increase diversity among the shortlisted release plans [61, 62]. Comparing
BEARS to VP-deterministic allows us to study differences between the optimisation models of
BEARS and methods that optimise value points without being affected by other differences such as
variations in optimisation algorithms or elicitation techniques.

5.1.3 Defining Consistent Model Inputs. For each release planning problem, we would like to
compare the methods when they are applied in the same conditions. In particular, we would
like stakeholders to be consistent when they estimate the work items’ effort and value. For our
experiment, we thus define the NPV-deterministic and VP-deterministic estimates to consistent with
the BEARS estimates. Given the BEARS probability distributions for effort and value, we set the
NPV-deterministic estimates to be the mean of the corresponding probability distribution in BEARS.
We then set the VP-deterministic estimates to be the mean of the BEARS probability distribution
normalised on a scale from 0 to 9 (the default scale in EVOLVE-II). For the VP-deterministic model,
we define the team capacity and release weights to be consistent with the team capacity and
discount rate in the BEARS model: the team capacity in each iteration (used in Eq. 1) is set using
the same conversion from person-days to story points used for converting BEARS effort estimates
to story points; the weight of each release period i (used in Eq. 3) is set to be (1 +r)~" where r is
the NPV discount rate in the BEARS model. This ensures that both models apply the same relative
weights to sum up values in different release periods.

5.1.4 Comparing Shortlists. Once the models’ inputs have been defined, we apply each method
in turn to generate their shortlists. We have used NSGA-II as MOEA for all three methods. In
BEARS, the shortlist size is determined by the number of Pareto-optimal release plans returned
by the MOEA. In NPV-deterministic and VP-deterministic, the shortlist size n can be chosen by
the release planners. The default shortlist size in ReleasePlanner 2.0, the commercial software for
EVOLVE-II method, is 10. We therefore decided that the the shortlist size for NPV-deterministic and
VP-deterministic should never be smaller than 10 and, for a fair comparison, should always be at
least as large as the BEARS shortlist. We have therefore set the shortlist size for NPV-deterministic
and VP-deterministic to be the maximum of 10 and the BEARS shortlist size. (It later turns out that
in our experiment all BEARS shortlists are larger than 10.) We then compute the expected NPV and
expected punctuality of all shortlisted release plans using the function evaluateReleasePlan in
Figure 3. Note that this function can be applied to release plans shortlisted by NPV-deterministic
and VP-deterministic even though these release plans were shortlisted using different criteria.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.



Analysing Uncertainty in Release Planning 1:19

2,200
2,100
~ 2,000
1,900 f Ane AR
1,800
1,700
1,600
1,500
1,400
1,300
1,200
1,100
1,000
900
800
700
600

Expected Net Present Value ("000 £

68 70 72 74 76 78 80 82 B84 B6 BE 90 92 94 96 98 100
Expected Punctuality (%)

Fig. 5. Release plans shortlisted by BEARS (green crosses), NPV-deterministic (yellow triangles) and VP-
deterministic (blue diamonds) for the local government project.

5.1.5 Illustrative Example. Figure 5 shows the result of comparing shortlists for our local govern-
ment project. Figure 5 extends Figure 4 (shown in Section 4.4) by showing the ENPV and expected
punctuality of release plans shortlisted by NPV-deterministic and VP-deterministic alongside those
shortlisted by BEARS. The figure shows that:

(1) The shortlists are disjoint; none of the release plans shortlisted by BEARS are shortlisted by
NPV-deterministic and VP-deterministic.

(2) The BEARS shortlist strictly dominates the two other shortlists; in other words, for every
release plan in the NPV-deterministic and VP-deterministic shortlists there is at least one
release plan in the BEARS shortlist that has higher expected NPV and higher expected
punctuality.

(3) The maximum expected NPV is nearly 10% higher in the BEARS shortlist.

(4) The expected punctuality in the BEARS shortlist ranges from 72% to 100%. In contrast, the
highest expected punctuality in the NPV-deterministic and VP-deterministic shortlists is 87%
and 80%, respectively. Most importantly, in practice users of methods that ignore uncertainty
will not know the release plans’ expected punctuality.

Investigating the causes of these results provides interesting insights into subtle harmful effects
of ignoring uncertainty during release planning.

That BEARS shortlists release plans with higher expected punctuality is not surprising given
that NPV-deterministic and VP-deterministic ignore expected punctuality. Without any information
about the uncertainty of effort estimates, such methods cannot evaluate expected punctuality.
Instead of evaluating expected punctuality, these methods require that release plans satisfy the
capacity constraint (Eq. 1). They then assume that all work items will be delivered on time, which
amounts to assuming 100% punctuality. They are therefore unable to compare release plans’ expected
punctuality. Furthermore, optimising for value (in terms of NPV or value points) is detrimental
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to expected punctuality because release plans with the most value tend to use as much of the
team’s capacity as possibly and are therefore at greater risk of exceeding the team’s capacity
during development. Conversely, release plans with high expected punctuality, such as those with
more than 90% expected punctuality in Fig. 5, are not shortlisted by NPV-deterministic and VP-
deterministic because they have lower NPV and value points than release plans that pack more
work items per iterations.

That BEARS also shortlists release plans with nearly 10% higher expected NPV is more surprising
because all three methods optimize for value using related metrics: ENPV, NPV and value points.
Moreover, our experiment uses consistent model inputs so at to minimize differences between
the three methods. It is therefore not unreasonable to expect that all three methods would be
more or less consistent in their ranking of release plans by value, i.e. that the top value release
plans according to NPV-deterministic and VP-deterministic would also be top value, or close to
top value, according to BEARS. However, this is not the case for the release plans in Fig. 5: the
top value release plans according to NPV-deterministic and VP-deterministic have higher NPV
and value points than the 6 BEARS release plans above £2,000K but much lower ENPV (lower by
10%). This is due to NPV-deterministic and VP-deterministic evaluating a release plan’s value under
the invalid assumption that all work items will be delivered in their planned release. When some
features are delivered later than planned, the actual NPV or value point of the release plan decreases
because the feature starts generating value later than planned. Unlike BEARS, NPV-deterministic
and VP-deterministic have no way of estimating the likelihoods of late feature delivery. Not taking
these likelihoods into account leads to incorrect and inconsistent evaluation of release plan values.

5.1.6  Discussion about experiment validity. Readers may wonder whether comparing release plan-
ning methods that have different optimisation models is valid: BEARS has two optimisation objec-
tives, whereas NPV-deterministic and VP-deterministic only one. Comparing different optimisation
models is the whole purpose of the experiment. In that regard, our experiment differs substantially
from previous experiments in software release planning. In previous experiments, the objective
is to compare the performance of different optimisation algorithms on software release planning
problems (see [73] for the most comprehensive study to date). In these experiments, the optimisation
model is a controlled variable (it must be fixed), and the optimisation algorithm is the independent
variable. Our experiment is different. Our objective is to compare the methods’ optimisation models,
not their optimisation algorithms. The optimisation model is the independent variable, and the
optimisation algorithm is a controlled variable.

Readers may then question the fairness of using the BEARS optimisation criteria (ENPV and EP)
for defining what it means for a release plan to be better than another. Our experiment uses these
criteria as proxy measures for the release planner’s true preferences. As mentioned at the start
of Section 5.1, this choice is based on the reasonable assumption that if ENPV(p;) > ENPV(p;)
and EP(p;) > EP(p;) then release planners will prefer p; over p;. We also claim that the BEARS
criteria are better proxy measures for the release planners’ true preferences than the criteria used by
NPV-deterministic and VP-deterministic (NPV and value points, respectively). To support this claim,
consider a situation where the criteria disagree, for example where ENPV(p;) > ENPV(p,) and
EP(p1) > EP(p;) but NPV(p;) < NPV(p,). This situation arises in Fig. 5: the release plans shortlisted
by BEARS have higher ENPV and expected punctuality than those shortlisted by NPV-deterministic
but they have lower NPV. In such situations, we argue that release planners prefer p; over p, despite
p2 having higher NPV because: (i) they will not discard information about expected punctuality
revealed by BEARS, and (ii) they will regard BEARS evaluation of expected net present value (that
takes uncertainty into account) as more reliable than the simpler evaluations of net present value
(that ignore uncertainty). We therefore argue that BEARS optimisation criteria provide a better
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model of the release planners’ true preferences than models that optimise net present value (or
value points) without considering uncertainty. The purpose of the experiment is then to study how
much ENPV and expected punctuality might be lost if release planners used NPV-deterministic or
VP-deterministic instead of BEARS.

5.1.7 Evaluation Metrics. We use two metrics to quantify the differences between release plans
shortlisted BEARS and other methods when they are applied to a set of release planning problems.

The first metric observes how often the BEARS shortlist strictly dominates the shortlists of other
methods. In our context, a release plan p1 strictly dominates a release plan p2 if ENPV(p1) >
ENPV(p2) and EP(p1) > EP(p2). A shortlist L1 strictly dominates a shortlist L2 if every release
plan in L2 is strictly dominated by at least one release plan in L1. Strict dominance is the strongest
form of dominance relation between sets of solutions in multi-objective optimisation problems [76].
If a single release plan in L2 is equal to, or is not dominated by some release plan in L1, then L1
does not strictly dominate L2.

Analysing strict dominance can tell us whether the BEARS shortlists are better than those
shortlisted by other methods but it does not tell us how much better. Our second metric quantifies
the improvement of the BEARS shortlist over the shortlist of another method by comparing their
hypervolumes. In multi-objective optimisation problems, the hypervolume of a solution set A,
noted HV(A), is the volume of the objective space dominated by A [75]. For example, in Figure 5 the
hypervolume of a shortlist is the area dominated by the release plans in the shortlist, bounded below
by the x-axis (ENPV'=0) and to the left by the y-axis (EP=0). In this example, the HV of the BEARS
and VP-deterministic shortlists are 2047 and 1541, respectively. The HV of the BEARS shortlist is
larger because it covers a larger area. The Hypervolume improvement ratio (HVIR) of a solution
set A over a solution set B is HV(A)/HV(B). In Figure 5, the HVIR of the BEARS shortlist over the
VP-deterministic shortlist is 2047/1541 = 1.33. Hypervolume is a widely used metric to compare
solution sets of multi-objective optimisation problems. We have chosen this metric because it has
as simple visual interpretation and is compatible with strict dominance, i.e. if A strictly dominates
B then HV(A)/HV(B) > 1 [76].

5.1.8 Experimental Set-Up. The MOEAs used by the release planning methods in Table 3 are
stochastic algorithms that may shortlist different release plans each time they are executed on a
given problem. To account for such randomness, we have executed 30 independent runs of the
three release planning methods on all 32 release planning problems. Each release planning method
is thus executed 960 times (30 X 32). In total, our experiment includes 2, 880 independent runs
(3 X 960), resulting in as many shortlists. All runs were executed on a single PC with Intel Core i5
CPU at 3.20GHz x 4 and 8GB of RAM.

5.1.9 Statistics. For statistical significance testing [25], our null hypothesis is that no difference
exist between the hypervolumes of shortlists generated by BEARS and methods that ignore uncer-
tainty. We compute p-levels using Mann-Whitney U-test, a nonparametric test recommended for
our context [8]. By convention, a result is said to be statistically significant if its p-value is less than
5%. Statistical significance is often misinterpreted (even by experts [25]) and should not be confused
with practical significance [16, 36, 50]. Evaluating practical significance is more meaningful. Our
experiment evaluates practical significance by measuring the strict dominance and hypervolume
improvement ratio of BEARS over methods that ignore uncertainty. The hypervolume improvement
ratio can be viewed as a problem-specific measure of effect size. It provides a simple and meaningful
way to compare shortlists generated by different methods. We report the mean and range (min and
max values) of such ratios for all release planning problems.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.



1:22 0. Oni and E. Letier

Table 4. Strict Dominance and Hypervolume Improvement Ratio of BEARS over NPV-deterministic and
VP-deterministic.

BEARS vs. NPV-deterministic BEARS vs. VP-deterministic

Strict HVIR HVIR Strict HVIR HVIR

Product Backlog H Dominance Mean Range Dominance Mean Range
Local Government Project 2 21/30 1.27 122 -1.34 30/30 1.22 1.19 -1.26
3 30/30 1.30 1.22 -1.55 30/30 1.24 1.20 -1.33

4 27/30 1.32 1.19 -1.51 21/30 1.28 1.16 -1.76

5 29/30 1.47 1.30 -1.68 27/30 1.34 1.18 -1.48

Release Planner 2 25/30 1.06 1.02 -1.11 23/30 1.05 0.97 -1.10
3 30/30 1.08 1.05 -1.11 30/30 1.07 1.05 -1.10

4 30/30 1.06 1.04 -1.09 30/30 1.06 1.04 -1.09

5 30/30 1.09 1.06 -1.15 30/30 1.07 1.06 -1.10

Word Processor 2 24/30 1.01 0.96 -1.05 23/30 1.00 0.95 -1.05
3 29/30 1.04 1.02 -1.06 29/30 1.04 1.02 -1.06

4 30/30 1.05 1.04 -1.06 30/30 1.06 1.05 -1.07

5 27/30 1.03 1.00 -1.04 30/30 1.04 1.01 -1.04

RALIC 2 30/30 1.12 1.08 -1.16 30/30 1.10 1.04 -1.20
3 30/30 1.14 1.08 -1.22 29/30 1.08 1.02 -1.15

4 30/30 1.16 1.11 -1.25 24/30 1.09 1.02 -1.14

5 30/30 1.16 1.07 -1.26 22/30 1.08 1.01 -1.15

Synthetic-30 2 30/30 111 1.05 -1.25 30/30 1.15 1.09 -1.67
3 29/30 1.11 1.06 -1.20 30/30 1.14 1.09 -1.20

4 30/30 1.15 1.10 -1.30 30/30 1.16 1.09 -1.23

5 30/30 1.16 1.11 -1.22 30/30 1.16 1.12 -1.27

Synthetic-50 2 29/30 1.14 1.03 -1.26 30/30 1.15 1.07 -1.30
3 30/30 1.25 1.12 -1.42 30/30 1.23 1.10 -1.36

4 30/30 1.30 1.22 -1.45 30/30 1.28 1.16 -1.42

5 30/30 1.30 1.21 -1.40 30/30 1.30 1.20 -1.44

Synthetic-100 2 30/30 1.08 1.05 -1.15 30/30 1.09 1.04 -1.14
3 30/30 1.20 1.10 -1.33 30/30 1.21 1.14 -1.31

4 30/30 1.32 1.20 -1.43 30/30 1.32 1.21 -1.44

5 30/30 1.38 1.30 -1.51 30/30 1.39 1.28 -1.52

Synthetic-200 2 30/30 111 1.05 -1.20 30/30 1.12 1.06 -1.22
3 30/30 1.19 1.11 -1.26 30/30 1.17 1.10 -1.24

4 30/30 1.26 1.18 -1.34 30/30 1.28 1.21 -1.38

5 30/30 1.40 1.23 -1.50 30/30 1.38 1.24 -1.50

Overall 97% (930/960) 1.18 1.03 -1.42 96% (918/960) 1.17 1.03 -1.39

5.2 Results

Table 4 shows the results. Each row reports how often BEARS strictly dominates the other methods
and the mean, minimum, maximum HVIR out of 30 runs for a given release planning problem. The
bottom row summarizes the results over all problems: out of 960 runs, BEARS strictly dominates
NPV-deterministic and VP-deterministic in 97% and 96% of the runs, respectively. Furthermore,
the BEARS shortlists have an hypervolume that is on average 18% and 17% higher than the NPV-
deterministic and VP-deterministic shortlists, respectively. The hypervolume improvements range
from 3% to 42%. All observed differences in hypervolumes between BEARS and the two other
methods are statistically significant (Mann-Whitney U test with p < .05; see Appendix C).
In conclusion, the results show that:

BEARS shortlists release plans with higher expected NPV and expected punctuality than
methods that ignore uncertainty.
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We have also compared the method’s run times. Detailed data can be found in Appendix C.
On average, BEARS is 25 times slower than NPV-deterministic and VP-deterministic. For our local
government example with H = 3, BEARS takes on average 48 seconds compared to 4 and 2 seconds
for NPV-deterministic and VP-deterministic, respectively. For our largest product backlog of 200
work items and H = 5, BEARS takes nearly 9 minutes to complete compared to 30 and 10 seconds
for NPV-deterministic and VP-deterministic. The run-time increase is due to the simulation of 10*
release scenarios used to reason about uncertainty. Although BEARS is significantly slower, its
run time remains acceptable and does not prevent the method being used during release planning
workshops. In such workshops, release plans are typically shortlisted only once after all work items
effort and value estimates have been elicited.

5.3 Threats to Validity

External validity. Our results may not generalise beyond the 32 release planning problems considered
in this experiment. Release planning problems where work items have different uncertainty, or
where other model parameters such as team capacity have different values, or where the backlog
has more or less dependencies could lead to different results. Further experiments on other problems
are needed to refine the findings. There may be specific situations where ignoring uncertainty is of
no consequence: for example, when all effort and value uncertainty are small, or when all work
items have similar effort and value, or when the backlog dependencies are such that only a few
release plans are feasible. Nevertheless, this experiment showed important differences can exist
between BEARS and methods that ignore uncertainty, and we found important differences in all
release planning problems studied so far.

The number of dependencies per work items is one of the factors that may affect the results. One
limitation of our experiment is that in the synthetic product backlogs, the number of dependencies
per work items is slightly lower than in the actual product backlogs: 11/30 (37%), 15/50 (30%),
30/100 (30%), and 51/200 (25%), for the synthetic product backlogs, against 23/20 (113%), 11/25
(44%) and 65/50 (130%) for the local government project, release planner, and the word processor,
respectively. We ignore the RALIC project for which no dependencies had been elicited. To check
whether the number of dependencies in the synthetic product backlogs may have affected the
results, we have replicated the experiment by varying the number of dependencies per work items
on the synthetic product backlogs of size 30 and 50. We limit this partial replication to these two
product backlog sizes because they correspond to the sizes of real product backlogs reported in the
literature [73]. We consider ratios of dependencies per work items of 0%, 50%, 100%, 150% and 200%
that reflect and exceed the range of number of dependencies per work items in the real product
backlogs. All dependencies are generated at random, with a constraint on their direction (from
higher to lower work item identification number) in order to avoid circular dependencies. The
results are similar to those of the original experiment: BEARS strictly dominates NPV-deterministic
in 1192 of the 1200 runs (99%) and VP-deterministic in 1188 of the 1200 runs (99%). The mean HVIR
of BEARS over NPV-deterministic and VP-deterministic is 1.19 in both cases. In these results, the
ratio of dependencies to work items does not affect strict dominance (which is always at least 98%)
and it slightly affects HVIR: the mean HVIR is between 1.16 and 1.19 when the ratio of dependencies
to work items is 0%, 50% or 100%, and between 1.22 and 1.24 when the ratio is 150% or 200%. These
additional results confirm the initial results that BEARS shortlist release plans with higher expected
NPV and expected punctuality than methods that ignore uncertainty.

Internal validity. Our experiment considers that a release plan is better than another if it has
higher expected net present value and higher expected punctuality. We justify this approach in
Section 5.1.6 by arguing that ENPV and expected punctuality provide a better model of the release
planners’ true preferences than NPV or value points alone.
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We have used NPV-deterministic and VP-deterministic as representatives of release planning
methods that ignore uncertainty. We have also simulated the application of NPV-deterministic and
VP-deterministic by deriving their effort and value estimates from the corresponding probability
distributions in BEARS. This approach was designed to minimize differences between BEARS and
methods that ignore uncertainty. Comparing BEARS to other methods that ignore uncertainty or
using different effort and value estimates (not necessarily consistent with the BEARS estimates)
would most likely amplify the differences found in our experiments.

Our experiment uses NSGA-II as MOEAs for all three methods. We used NSGA-II instead of
SPEA2 and MOCell because NSGA-1I is a commonly used “default” optimisation algorithm in search-
based software engineering [67]. Using different MOEAs is unlikely to invalidate the conclusion that
BEARS shortlists release plans with higher expected NPV and expected punctuality than methods
that ignore uncertainty because the most important difference between BEARS and methods that
ignore uncertainty is the optimisation model, not the optimisation algorithm. To test this claim,
we have replicated our experiment for the local government project using SPEA2 and MOCell
instead of NSGA-IL. The results show that BEARS outperforms the other methods with all three
MOEAs. When comparing BEARS to NPV-deterministic, the strict dominance rate and the mean
HVIR are 89% and 1.30 with NSGA-II, 95% and 1.56 with SPEA, and 95% and 1.52 with MOCell.
When comparing BEARS to NPV-deterministic, the strict dominance rate and the mean HVIR are
90% and 1.27 with NSGA-II, 98% and 1.47 with SPEA, and 87% and 1.41 with MOCell. Section 6
presents a more detailed comparison of the three MOEAs on BEARS release planning problems.

Out of scope. Our experiment focussed on analysing differences between optimal solutions to the
mathematical optimisation models at the heart of BEARS and methods that ignore uncertainty. We
have ignored other differences that are important in practice. In particular, we have not evaluated
the uncertainty elicitation method (Section 4.1), the ability of release planners to understand BEARS’
outputs, the overall cost of applying the method, and the general perceived benefits and limitations
of the method by release planners, development teams and other stakeholders.

6 SECONDARY EXPERIMENTS

We have conducted two additional experiments that are secondary to the paper’s main objective of
evaluating the impact of analysing uncertainty on release planning but are nevertheless relevant
to evaluate BEARS. This section summarizes their main findings; details can be found the online
Appendices A and B.

BEARS vs. Fixed-scope methods. The first experiment compares BEARS to release planning methods
under uncertainty that assume fixed-scope releases. For this experiment, we compared BEARS
to two methods: NPV-fixed-scope and VP-fixed-scope. The first is similar to BEARS except that it
assumes fixed-scope releases, the second is an extension of EVOLVE-II that allows for uncertain
effort estimates [63]. The experiment design is identical to the previous one and uses the same
32 release planning problems. The results show that BEARS strictly dominates NPV-fixed-scope
and VP-fixed-scope in 79% and 89% of the runs, respectively. Furthermore, BEARS’s shortlists have
an hypervolume that is on average 11% and 12% higher than NPV-fixed-scope and VP-fixed-scope,
respectively. In conclusion: in the context of fixed-date release cycles, BEARS shortlist better release
plans than methods that assume fixed-scope releases.

Evaluating BEARS Optimisation Algorithms. The second experiment evaluates the performance
of BEARS MOEAs. For this experiment, we compared the release plans shortlisted by BEARS using
three different MOEAs, NSGA-II, SPEA2 and MoCell, on the same 32 release planning problems. We
also compared the MOEAs against a random search augmented with the same constraints violation
detection and repair technique used by the MOEAs. The results show that the three MOEAs perform
better than the random search and that the differences are statistically significant. The results show
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no statistically significant differences between SPEA2 and MOCell, and a slight advantage of these
two algorithms over NSGA-II on our 32 release planning problems. The results therefore suggest
that SPEA2 and MOCell may find slightly better shortlists than NSGA-II for BEARS optimisation
problems. The purpose of this experiment was merely to check that these three MOEAs perform
reasonably well on BEARS model. We expect that future research will develop improved algorithms
able to find better shortlists with fewer evaluations.

7 BEARS LIMITATIONS AND FUTURE WORKS

BEARS was developed primarily to support our experiments. For practical use, the method and
tool have a number of limitations to be addressed in future work.

Applicability and cost. As mentioned earlier, we have not yet evaluated the method in an industrial
context. As a result, the applicability and cost of BEARS in industrial contexts are unknown. Other
release planning methods under uncertainty suffer from the same limitation. In contrast, EVOLVE-II
and other methods that ignore uncertainty have been applied in industry and their benefits well
documented [4, 45, 51]. We hope the results of our experiments can serve to justify future industry
trials of release planning methods under uncertainty.

Modelling assumptions. The economic model used in BEARS (Eq. 7 to 10) relies on simplifying
assumptions that may affect the accuracy of their net present value and punctuality estimations.
Notably, the model assumes that work items are independent. In practice, the values of two work
items may depend on a third variable making this assumption invalid (e.g. the values of online
services related to council tax payments all depend on the number of residents who pay council
taxes). This limitation can be addressed by developing more complex models but this would make
the method more difficult to apply because it will require release planners to develop project-specific
models of business value. As always, the right balance needs to be found between model complexity
and accuracy. We believe that BEARS is a good compromise: it retains much of the simplicity of
methods that ignore uncertainty (from a user perspective, only the effort and value estimation step
has changed) while providing important improvement in shortlisted release plans.

Tool limitations. The tool supporting BEARS is a prototype developed primarily to conduct our
experiments. The tool can evaluate and shortlist release plans (Sections 4.2 to 4.3) but it currently
relies on an external tool for uncertainty elicitation (Section 4.1) and does not include features
to help release planners select their preferred plan among the shortlisted ones. Such features are
essential for future industrial applications.

8 RELATED WORK

Release planning methods. Section 3 already provided a detailed guided tour of release planning
methods. We have seen that most methods ignore uncertainty [5, 68] and that the few that analyse
uncertainty [10, 46, 49, 58, 63] rely on a fixed-scope assumption that is inconsistent with current
industrial practices [45]. In contrast, BEARS analyses uncertainty in the context of fixed-date release
cycles, the release process most commonly used in industry [45]. The technical novelties in BEARS
are (i) a novel model for simulating fixed-date release plans under uncertainty (Section4.2); (ii) a
novel metric for measuring the expected punctuality of release plans (Section 4.2.3); and (iii) the
first automated tool to support release planning for fixed-date release cycles (Section 4.3).
Empirical studies. The paper’s main contribution is the experiment comparing release planning
with and without analysing uncertainty. Previous empirical studies of release planning methods
have either focussed on evaluating release planning methods in industry [4, 45, 51] or on comparing
the performance of alternative optimisation algorithms (as we do in Appendix B). A recent paper
surveys 38 different evaluations of MOEAs for software release planning and presents the most
comprehensive such evaluation to date [73]. Such evaluations compare the outputs of different
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MOEAs in the context of a single release planning method. In contrast, we present the first empirical
study that compares different release planning methods against each other.

Strategic vs. operational release planning. In this paper, we studied methods for strategic release
planning, the activity of assigning features to future releases. In contrast, operational release planning
is the activity of assigning tasks to developers within a single iteration [1, 2]. Sprint planning in
Scrum is an example of operational release planning [60]. Operational release planning is performed
more frequently than strategic release planning and deals with much finer grained work items
(e.g. user stories and tasks) than considered during strategic release planning. The release plan
generated by strategic release planning is an input to subsequent operational release planning. A
method to analyse uncertainty during operational release planning has been proposed in previous
work [1]. As in BEARS, the method uses Monte-Carlo simulations to analyse uncertainty. In this
context, the Monte-Carlo simulation is applied to a process simulation model of operational release
plans, whereas in BEARS it is applied to a cost-value model of strategic release plans. The method
to evaluate uncertainty in operational release plans performs a probabilistic sensitivity analysis to
evaluate the impact of variations in the values of model parameters such as developers’ productivity
and the number and sizes of feature to be developed, on the total time required to develop a given
set of tasks. Unlike BEARS, the proposed method does not use any optimisation method to shortlist
optimal release plans. The paper also has no experiment comparing operational release planning
methods that either analyse or ignore uncertainty. In future work, the research approach presented
in this paper could be adapted to the context of operational release planning.

Requirements and architecture decisions under uncertainty. The Bayesian approach used in BEARS
is similar to one used to support requirements and architecture decisions under uncertainty [13,
39]. The decision models supporting such requirements and architecture decisions are based on
quantitative goal models [28, 40, 70]. They allow a richer, more detailed modelling of stakeholders’
goals and business value than BEARS, but they do not support reasoning about multiple iterations
as done in BEARS. BEARS introduces novel simulation and optimisation models that are specific to
release planning.

9 CONCLUSION

The paper has shown the importance of analysing uncertainty during release planning. Analysing
uncertainty generates release plans that have higher expected net present value and expected
punctuality than when uncertainty is ignored. Analysing uncertainty also give release planners
important information about release plans’ expected punctuality that remain hidden when uncer-
tainty is ignored. Such information enables informed discussion about finding the right trade-off
between release plans that are too ambitious (high expected net present value but low expected
punctuality) and too conservative (high expected punctuality but low expected net present value).

BEARS is the first release planning method under uncertainty designed for the industry practice
of fixed-date release cycles. We have also presented the first experiment comparing a release
planning method that analyse uncertainty to release planning methods that ignore uncertainty.
Having shown the potential benefits of analysing uncertainty, we hope that our experiment will
motivate further research in this area, notably industry trials of release planning under uncertainty
and intensified research about uncertainty elicitation and analysis in software effort and value
estimates (e.g. [13, 21, 27, 34, 39, 66]). In future work, we also plan on extending BEARS to support a
wider range of activities such as: (i) analysing values from multiple perspectives and taking fairness
into consideration [23]; (ii) managing technical debt during release planning [6, 65]; (iii) supporting
decisions about what experiments to perform (e.g. as A/B tests) and what data to collect to improve
release planning decisions; and (iv) analysing objective data (e.g. from the software development
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process, software usage, and users’ feedback) to update uncertainty about feature’s effort and value
so as to inform future decisions [47].
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A COMPARING BEARS TO FIXED-SCOPE METHODS

This appendix reports an experiment comparing BEARS to release planning methods under uncer-
tainty that assume fixed-scope releases. The experiment’s objective is to study whether assuming
fixed-scope releases is harmful when applied to projects with fixed-date release cycles.

A.1 Experiment Design
The research question is:

In the context of fixed-date release cycles, does BEARS shortlist better release plans than
methods that assume fixed-scope releases?

The experiment design is identical to the one used to study differences between BEARS and
methods that ignore uncertainty. In particular, we use the same release planning problems, evalua-
tion metrics and experimental set-up. The only difference is that BEARS is now compared to two
release planning methods under uncertainty that assume fixed-scope releases: NPV-fixed-scope and
VP-fixed-scope. These methods are summarized in Table 5.

NPV-fixed-scope is a variant of BEARS that uses the same uncertain effort and value estimates as
BEARS but simulates effort uncertainty assuming fixed-scope releases instead of flexible-scope.
We have described simulation methods for both cases in Section 4.2. Comparing BEARS to NPV-
fixed-scope allows us to study the difference between fixed-scope and flexible-scope simulations
independently from other differences.

VP-fixed-scope is based on a previously published variant of EVOLVE that models uncertainty
about effort but not value [63]. The method simulates effort uncertainty assuming fixed-scope
releases. The optimisation problem has two objectives: maximise value points (Eq. 3) and maximise
the probability of delivering all features on time. The latter is defined as:

P(Vie [1.H]: Z effort(w) < capacity(i))
{weWI | p(w)=i}

The shortlists in NPV-fixed-scope and VP-fixed-scope are the set of Pareto-optimal solutions
returned by the MOEA. Shortlists of different methods can therefore be of different sizes.

Both methods use the same MOEAs with repair as BEARS. For consistency, we have tested all
methods using NSGA-II as MOEA. This reduces the risk that differences between the methods’
shortlists are due to the MOEA rather than to differences in the optimisation models.

A.2 Results

Table 6 shows the results. Each row shows the result for a specific release planning problem. The
bottom row summarises the results: out of 960 runs, the BEARS shortlist strictly dominates the
NPV-fixed-scope and VP-fixed-scope shortlists in 79% and 89% of the runs, respectively. Furthermore,
the BEARS shortlist has an hypervolume that is on average 11% and 12% higher than the NPV-
fixed-scope and VP-fixed-scope shortlists, respectively. The hypervolume improvements range from
1% to 32%. All observed differences in hypervolumes between BEARS and the two other methods
are statistically significant (Mann-Whitney U test with p < .05, see details in Table 9).

In the context of fixed-date release cycles, BEARS shortlist release plans with higher
expected NPV and expected punctuality than methods that assume fixed-scope releases. In
our experiment, the hypervolume improvement ranges from 1% to 32%, with an average of
11%.
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Table 5. Release planning methods in experiment comparing BEARS to methods that assume fixed-scope
releases

Model Effort estimates Value estimates Simulation Method Optimisation problem

BEARS uncertain person-days uncertain economic value stochastic, flexible-scope Maximise expected NPV; Maximise expected punctuality
NPV-fixed-scope uncertain person-days uncertain economic value stochastic, fixed-scope Maximise expected NPV; Maximise on-time probability
VP-fixed-scope  uncertain story points value points stochastic, fixed-scope Maximise value points; Maximise on-time probability

Table 6. Strict Dominance and Hypervolume Improvement Ratio of BEARS over NPV-fixed-scope and VP-
fixed-scope.

BEARS vs. NPV-fixed-scope BEARS vs. VP-fixed-scope

Strict HVIR HVIR Strict HVIR HVIR

Product Backlog H Dominance Mean Range Dominance Mean Range
Local Government Project 2 18/30 1.05 1.00 -1.12 18/30 1.06 1.03 -1.07
3 21/30 1.12 1.05-1.33 19/30 1.12 1.07 -1.23

4 23/30 115 1.10 -1.27 22/30 111 1.07 -1.17

5 27/30 1.16 1.11-1.24 21/30 111 1.05 -1.19

Release Planner 2 21/30 1.01 0.93 -1.06 25/30 1.02 0.95 -1.07
3 28/30 1.05 1.01 -1.08 30/30 1.06 1.03 -1.09

4 30/30 1.06 1.03 -1.11 30/30 1.05 1.03 -1.08

5 30/30 1.08 1.05 -1.12 30/30 1.06 1.03 -1.08

Word Processor 2 26/30 1.01 0.94 -1.03 20/30 1.00 0.94 -1.05
3 23/30 1.03 1.00 -1.05 27/30 1.03 1.00 -1.05

4 30/30 1.03 1.02 -1.04 30/30 1.05 1.04 -1.05

5 30/30 1.04 1.01 -1.07 26/30 1.02 0.99 -1.03

RALIC 2 30/30 1.08 1.04 -1.14 30/30 1.07 1.03 -1.12
3 29/30 1.08 1.02 -1.15 27/30 1.06 0.98 -1.12

4 29/30 1.08 1.03 -1.15 30/30 1.07 1.01 -1.11

5 27/30 1.08 1.02 -1.17 20/30 1.06 1.00 -1.09

Synthetic-30 2 20/30 1.02 1.00 -1.05 18/30 1.03 1.01 -1.09
3 30/30 1.08 1.04 -1.13 20/30 1.08 1.03 -1.11

4 30/30 1.12 1.06 -1.17 21/30 111 1.06 -1.15

5 30/30 115 1.11-1.23 27/30 1.14 1.11-1.18

Synthetic-50 2 20/30 1.02 1.00 -1.06 20/30 1.05 1.04 -1.08
3 21/30 1.08 1.03 -1.12 20/30 1.08 1.05-1.12

4 24/30 1.14 1.08 -1.20 18/30 113 1.05-1.25

5 28/30 1.20 1.14 -1.27 23/30 117 1.10 -1.26

Synthetic-100 2 28/30 1.09 1.04 -1.13 21/30 1.07 1.04 -1.12
3 29/30 116 1.10 -1.26 24/40 1.15 1.09 -1.22

4 28/30 1.22 1.12 -1.32 20/30 1.20 1.09 -1.32

5 29/30 1.26 1.18 -1.35 20/30 1.25 1.16 -1.34

Synthetic-200 2 27/30 116 1.09 -1.25 20/30 115 1.07 -1.23
3 30/30 1.24 113 -1.31 22/30 1.21 1.12 -1.29

4 29/30 1.33 1.17 -1.55 20/30 1.32 1.17 -1.92

5 30/30 1.36 1.18 -1.54 25/30 1.37 1.25 -1.69

Overall 89% (855/960) 1.12 1.01-1.32  79% (754/960) 111 1.01-1.29

In terms of run-times, we measured BEARS to be between 2 to 8 times slower than the fixed-scope
methods (see Table 10). For example, for our local government project and a planning horizon of 3,
the average run-time for BEARS is 48 seconds, compared to 20 and 12 seconds for NPV-fixed-scope
and VP-fixed-scope, respectively. For our largest problem with 200 work items and a planning
horizon of 5, BEARS average run-time is nearly 9 minutes compared to 2 minutes 30 and 2 minutes
for NPV-fixed-scope and VP-fixed-scope. The run-time difference is due to the additional complexity
of simulating release plans with flexible scope over fixed-scope (see Section 4.2).
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A.3 Threats to Validity

External validity. As for the main experiment, the results of this experiment may not generalise
beyond the 32 release planning problems considered in this study. The results nevertheless show
that differences do exist between BEARS and methods that assume fixed-scope releases and justify
using BEARS instead of fixed-scope methods in the context of fixed-date release cycles.

Internal validity. We have shown that BEARS is better than methods that assume fixed-scope
releases in the context of fixed-date release cycles for which BEARS was designed. As in the main
experiment, we assumed that BEARS optimisation criteria are consistent with the release planner’s
true preferences. Naturally, fixed-scope methods would be more appropriate than BEARS in the
context of a project with fixed-scope releases.

B EVALUATING BEARS OPTIMISATION ALGORITHMS

This experiment evaluates the performance of BEARS MOEAs. We aim to answer the following
questions:

(RQ1) Do the three MOEAs used in BEARS perform better than a random search?
(RQ2) Do the three MOEAs used in BEARS have important differences in performance?

Our objective is not to propose novel MOEAs, nor to look for the best possible algorithms for
solving BEARS optimisation problems. This experiment merely aims to check that existing MOEAs
are suitable for solving BEARS optimisation problems. Developing and evaluating more efficient
algorithms for solving BEARS optimisation problems is left as future work.

B.1 Experiment Design

The three MOEAs in our implementation of BEARS are NSGA-II, SPEA2, and MOCell. We selected
these MOEAs because they have readily available implementations in JMetal [55], the optimisation
framework used in our tool. We compare these algorithms against a random search augmented
with the same constraints violation detection and repair technique used with the MOEAs (see
Section 4.3). The random search is configured to evaluate the same number of valid release plans as
the MOEAs (25, 000).

We have executed each of the 4 algorithms 30 times on the same 32 release planning problems
used in our main experiment. This makes up a total of 3, 840 runs. For each run, we retrieve the
generated shortlist and measure its Hypervolume (HV) [75] and modified Inverted Generational
Distance (IGD+) [31]. In this experiment, we compute HV using normalised expected NPV values
for each problem, where the minimum is 0 and maximum is the highest expected NPV found in all
evaluated release plans for that problem. The HV for all problems are thus all measured on the same
scale. Better shortlists have higher HV. The IGD+ of a solution set A is the average distance between
the true Pareto-optimal solutions and the region in the objective space dominated by A [31]. When,
as in our case, the true Pareto optimal solutions are unknown, these solutions are approximated by
so-called reference Pareto-optimal solutions, which are the non-dominated solutions in the union
of all solutions explored by all algorithms over all of independent runs. Better shortlists have lower
IGD+.

We have chosen HV and IGD+ as our evaluation metrics based on guidance from Li et al. [43]
that recommend these metrics in situations, like ours, where the decision makers’ preferences
about the qualities of solutions sets are unknown These metrics are recommended because they
are compatible with the strict dominance relation and they cover all typical qualities desired of
solutions sets, i.e. their convergence (how close the solutions set is to the true Pareto front), diversity
(the extent to which the solutions set includes diverse solutions), and cardinality (the number of
solutions in the set).
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Table 7. Performance of a random search and the 3 Multi-Objective Optimisation Algorithms used in BEARS.
In each row, the worst result is highlighted in dark grey and the best in light grey.

Mean Hypervolume Mean IGD+
Product Backlog H NSGA-II SPEA2 MOCell Random NSGA-II SPEA2 MOCell Random
Local Government Project 2 0.956 0.947 0.903 0.825 0.019 0.011 0.009 0.080
3 0.982 0.982 0.991 0.878 0.076 0.042 0.002 0.115
4 0.973 0.988 0.968 0.943 0.021 0.004 0.002 0.110
5 0.975 0.982 0.996 0.888 0.019 0.009 0.005 0.114
Release Planner 2 0.806 0.807 0.851 0.752 0.268 0.025 0.019 0.444
3 0.873 0.949 0.879 0.820 0.424 0.088 0.020 0.635
4 0.948 0.973 0.900 0.917 0.178 0.014 0.005 0.301
5 0.945 0.927 0.969 0.739 0.047 0.026 0.001 0.180
Word Processor 2 0.938 0.946 0.949 0.820 0.560 0.138 0.032 1.880
3 0.971 0.988 0.999 0.907 0.257 0.016 0.005 1.050
4 0.971 0.986 0.994 0.915 0.076 0.035 0.001 0.525
5 0.925 0.938 0.996 0.925 0.052 0.006 0.005 0.361
RALIC 2 0.984 0.986 0.996 0.780 0.038 0.001 0.002 6.040
3 0.967 0.992 0.994 0.686 0.319 0.002 0.081 9.700
4 0.927 0.971 0.997 0.669 0.455 0.005 0.008 6.260
5 0.922 0.984 0.942 0.660 0.466 0.019 0.001 4.320
Synthetic-30 2 0.594 0.598 0.517 0.526 0.579 0.509 0.025 0.726
3 0.720 0.723 0.721 0.670 0.383 0.251 0.378 0.412
4 0.846 0.947 0.845 0.818 0.284 0.008 0.039 0.353
5 0.933 0.945 0.955 0.906 0.021 0.004 0.01 0.125
Synthetic-50 2 0.718 0.955 0.714 0.688 0.216 0.011 0.161 0.216
3 0.943 0.945 0.970 0.808 0.123 0.011 0.014 0.137
4 0.958 0.962 0.889 0.914 0.030 0.009 0.007 0.161
5 0.963 0.968 0.965 0.841 0.034 0.008 0.012 0.332
Synthetic-100 2 0.886 0.886 0.687 0.711 0.136 0.058 0.134 0.137
3 0.936 0.936 0.888 0.931 0.037 0.016 0.012 0.104
4 0.948 0.948 0.948 0.758 0.083 0.014 0.039 0.265
5 0.922 0.922 0.959 0.839 0.083 0.025 0.024 0.506
Synthetic-200 2 0.726 0.709 0.727 0.681 0.023 0.021 0.021 0.024
3 0.975 0.945 0.961 0.956 0.024 0.008 0.020 0.081
4 0.970 0.911 0.953 0.887 0.061 0.003 0.048 0.274
5 0.970 0.964 0.938 0.819 0.079 0.009 0.047 0.606
Overall 0.726 0.829 0.784 0.670 0.020 0.003 0.002 0.110

B.2 Results

Table 7 reports the mean HV and IGD+ of each algorithm over 30 runs for each release planning
problem. In each row, the best result is highlighted in light grey and the worst in dark grey. We
have used Mann-Whitney U test to evaluate whether the observed differences in HV and IGD+
between algorithms are statistically significant. Table 8 reports the results of these tests.

RQ1: Do the three MOEAs used in BEARS perform better than a random search? The results show
that the three MOEAs perform better than random search and that the differences in HV and IGD+
are statistically significant. In terms of IGD+, the three MOEAS outperform random search in all 32
problems. In terms of HV, the three MOEAS outperform random search in 27 of the 32 problems.
In the remaining 5 problems, random search performs better than MOCEII in 4 cases and better
than SPEAZ2 in 1 case. Note that the random search in BEARS uses the same constraint violation
detection and repair technique used by the MOEAs. Random search here is therefore more than a
simple blind search. This may explain why in a few cases it performs better than one of the three
MOEAs for one of the evaluation criteria, even if overall the MOEAs have better IGD+ and HV.
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RQ2: Do the three MOEAs used in BEARS have important differences in performance? The results
show no statistically significant differences between SPEA2 and MOCell, and a slight advantage of
these two algorithms over NSGA-II. The experiment therefore suggest that SPEA2 and MOCell
may find slightly better shortlists than NSGA-II for BEARS optimisation problems.

B.3 Threats to Validity

Our experiment follows common guidelines and practices for evaluating the performance of
stochastic multi-objective algorithms [8, 43, 73]. The most important threat to validity is the extent
to which our results can be generalized beyond the 32 release planning problems. We have controlled
threats to internal validity by justifying our selection of evaluation metrics and executing each
algorithm 30 times on each problem, as described in Section B.1.
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Table 8. Statistical Significance (p-value) of the differences between MOEAs on BEARS using Mann-Whitney
U test. Highlighted cells are those where the differences are not satisfically significant (p>.05)

Random vs. NSGA-II vs. SPEA2 vs.

Product Backlog Metric H NSGA-II SPEA2 MOCell SPEA2 MOCell MOCell
Local Government Project ~ HV 2 2.87E - 11 2.87E - 11 8.68E — 01 2.44E - 03 2.87E - 11 2.87E - 11
3 6.87E — 08 5.45E - 09 3.85E - 08 4.43E - 04 1.89E — 08 9.76E - 06
4 3.88E — 04 8.01E - 06 5.87E - 09 8.08E — 01 6.11E - 06 8.86E — 04
5 2.84E - 05 5.43E - 10 2.87E - 11 2.83E - 03 3.50E - 08 5.62E - 07
IGD+ 2 2.87E - 11 3.96E - 09 2.87E - 11 9.62E - 03 7.14E - 08 5.70E - 01
3 2.87E - 11 2.87E - 11 2.87E - 11 2.98E - 06 3.88E — 11 1.43E - 10
4 2.87E - 11 2.87E - 11 2.87E - 11 4.09E - 05 9.44E - 11 2.08E - 06
5 2.87E - 11 2.87E - 11 2.87E - 11 2.47E - 07 2.26E - 10 1.11E - 07
Release Planner HV 2 3.96E - 07 2.87E - 11 5.32E - 10 9.06E - 01 4.79E - 05 7.44E - 09
3 5.27E - 06 9.44E — 11 1.38E — 05 3.50E - 08 2.25E - 01 1.47E - 01
4 7.10E — 04 8.12E - 09 2.14E - 01 7.43E - 05 2.19E - 02 3.66E — 07
5 4.22E - 05 4.27E - 06 3.88E — 11 7.01E — 01 4.44E - 02 1.09E - 03
IGD+ 2 3.31E-10 6.81E — 09 2.87E - 11 1.37E - 08 3.51E - 11 1.65E — 01
3 2.87E - 11 2.87E - 11 2.87E - 11 1.63E — 08 3.06E — 09 1.63E — 04
4 2.87E - 11 2.87E - 11 2.87E - 11 4.49E - 08 2.74E - 10 8.71E — 01
5 2.87E - 11 2.87E - 11 2.87E - 11 4.99E - 07 5.32E - 10 5.22E - 09
Word Processor HV 2 1.02E - 09 2.87E - 11 2.87E - 11 8.14E - 03 1.47E - 02 1.53E — 02
3 3.64E — 10 2.87E - 11 2.74E - 10 7.10E — 04 5.32E - 10 2.98E - 06
4 6.07E — 06 1.77E - 09 9.31E - 10 8.63E — 02 3.21E - 08 2.40E - 06
5 2.87E - 01 4.34E - 04 1.37E — 04 1.17E - 01 5.79E - 05 2.87E - 02
IGD+ 2 2.87E - 11 2.87E - 11 2.87E - 11 2.13E - 09 2.87E - 11 1.12E - 09
3 2.87E - 11 2.87E - 11 2.87E - 11 6.81E — 09 2.87E - 11 1.54E - 10
4 2.87E - 11 2.87E - 11 2.87E - 11 2.71E - 08 5.77E - 11 7.04E - 10
5 2.87E - 11 2.87E - 11 2.87E - 11 3.31E-10 3.51E-11 5.10E - 02
RALIC HV 2 2.87E — 11 2.87E — 11 2.87E — 11 7.13E - 02 4.27E - 06 2.82E — 03
3 2.87E - 11 2.87E — 11 2.87E — 11 1.80E — 07 1.94E — 09 4.69E — 01
4 7.73E - 10 2.87E — 11 2.87E — 11 1.15E — 06 2.49E - 10 3.70E - 06
5 5.32E - 10 2.87E — 11 2.87E - 11 1.02E — 09 1.94E - 02 5.32E - 10
IGD+ 2 2.87E — 11 2.87E — 11 2.87E - 11 1.35E - 09 6.37E — 11 9.27E - 03
3 2.87E - 11 2.87E - 11 2.87E - 11 2.49E - 10 1.54E - 10 7.44E - 09
4 2.87E - 11 2.87E - 11 2.87E - 11 1.62E — 09 6.37E — 11 5.65E — 02
5 2.87E - 11 2.87E - 11 2.87E - 11 1.62E - 09 7.03E - 11 9.44E - 08
Synthetic-30 HV 2 1.17E - 01 3.88E — 04 7.78E - 03 5.35E - 01 2.76E - 02 7.36E — 02
3 5.32E - 10 1.12E - 09 2.87E - 11 2.14E - 01 1.53E — 02 8.48E - 01
4 6.51E — 06 2.87E - 11 2.87E - 11 1.84E — 04 1.47E - 01 1.14E - 01
5 6.04E — 02 2.82E - 03 2.19E - 04 3.83E - 01 9.19E - 02 3.59E - 01
IGD+ 2 4.28E - 07 2.26E - 10 2.87E - 11 3.21E - 02 3.31E - 10 1.95E - 07
3 2.87E - 11 2.87E - 11 2.87E - 11 1.95E — 07 5.43E — 05 3.26E - 05
4 2.87E - 11 2.87E - 11 2.87E - 11 7.73E - 10 1.77E - 08 1.05E — 05
5 2.87E - 11 2.87E - 11 2.87E - 11 5.84E — 10 1.49E - 08 6.98E — 05
Synthetic-50 HV 2 5.77E - 11 5.23E - 11 7.49E - 04 8.70E - 08 1.10E — 02 1.77E - 08
3 7.44E - 09 1.37E — 08 9.31E - 10 2.49E - 01 1.47E — 02 5.10E — 02
4 6.16E — 05 1.48E — 09 2.76E — 04 7.34E — 01 5.70E - 03 3.45E - 06
5 1.62E — 09 2.87E - 11 2.87E - 11 1.60E — 01 3.09E — 02 6.36E — 01
IGD+ 2 9.64E — 01 4.40E - 10 3.18E — 11 3.66E — 09 2.26E - 10 9.44E - 08
3 1.11E - 07 2.87E - 11 2.49E - 10 3.31E-10 2.68E — 07 9.41E - 01
4 2.87E - 11 2.87E - 11 2.87E - 11 1.02E - 09 3.88E — 11 1.73E - 02
5 2.87E - 11 2.87E - 11 2.87E - 11 2.74E - 10 1.04E - 10 6.04E — 02
Synthetic-100 HV 2 3.71E - 05 3.71E - 05 1.20E - 07 9.99E — 01 6.56E — 05 6.56E — 05
3 6.05E — 01 6.04E — 01 1.02E — 07 9.99E — 01 3.33E - 02 3.33E - 02
4 3.51E - 11 3.51E - 11 3.88E — 11 9.99E — 01 9.76E — 01 9.76E — 01
5 2.87E - 11 2.87E - 11 2.87E - 11 9.99E - 01 6.73E — 04 6.73E — 04
IGD+ 2 1.31E-07 1.31E - 07 2.26E - 10 9.99E — 01 3.09E — 04 3.09E — 04
3 2.87E - 11 2.87E - 11 2.87E - 11 9.99E - 01 1.60E — 01 1.60E — 01
4 2.87E - 11 2.87E - 11 2.87E - 11 9.99E - 01 4.58E - 04 4.58E - 04
5 2.87E - 11 2.87E - 11 2.87E - 11 9.99E - 01 9.41E - 01 9.41E - 01
Synthetic-200 HV 2 8.12E - 09 7.79E - 03 2.87E - 11 3.91E - 01 2.37E - 02 2.14E - 01
3 5.71E - 09 1.73E — 02 2.87E - 11 8.01E - 06 2.68E — 05 2.07E - 04
4 4.49E - 08 4.79E - 05 2.87E - 11 6.28E — 07 1.20E - 07 4.58E - 04
5 1.54E - 10 2.87E - 11 2.87E - 11 7.34E - 01 2.56E - 02 4.10E - 04
IGD+ 2 1.53E - 02 2.87E - 11 4.73E - 09 1.54E - 10 3.50E - 08 2.04E - 01
3 2.87E - 11 2.87E - 11 2.87E - 11 2.74E - 10 1.02E - 07 3.96E - 05
4 2.87E - 11 2.87E - 11 2.87E - 11 7.76E — 11 1.63E - 08 2.10E - 08
5 2.87E - 11 2.87E - 11 2.87E - 11 3.17E - 11 1.23E - 09 5.22E - 09
Overall HV 6.17E — 98 2.84E — 139 1.09E - 110 2.71E - 11 3.29E - 06 3.40E - 01
IGD+ 9.03E - 110 1.74E — 243 5.99E — 246 2.30E - 98 6.82E — 105 9.85E — 01
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C ADDITIONAL DATA
C.1 Statistical Significance

For the experiments comparing BEARS to other release planning methods (Section 5 and Appen-
dix A), we have checked that the observed differences in hypervolumes between BEARS and the
other methods are statistically significant using Mann-Whitney U test with p < .05. All p-values
are reported in Table 9.

C.2 Illustrative Examples of Generated Shortlists

To understand the practical significance of the differences between BEARS and the other methods
in our first and second experiments, it is useful to look at a few examples of shortlists generated by
the methods on specific release planning problems. Figures 6 and 7 show examples of shortlists
generated by all release planning methods for each product backlog and a planning horizon H = 3.
These examples all correspond to the first of the 30 runs of each method. For each release planning
problem, the figure shows how much the shortlist generated by BEARS dominates the shortlists
generated by the other methods.

In Figure 6, we observe that the dominance of BEARS over methods that ignore uncertainty is
important in practice. For each of these examples, we can make similar observations to those made
about the illustrative example in the paper (Section 5.1.5).

In Figure 7, we see that the difference between BEARS and methods that analyse uncertainty
assuming fixed-scope releases is smaller but still important enough to justify using BEARS for
projects with fixed-date release cycles.

C.3 Run-times

Table 10 shows the average run-time of each method for each release planning problem.
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Fig. 6. Examples of shortlists generated by BEARS (green crosses), NPV-deterministic (yellow triangles) and
VP-deterministic (blue diamonds). These examples correspond to the first of 30 runs of each method.
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Fig. 7. Examples of shortlists generated by BEARS (green crosses), NPV-fixed-scope (black triangles) and
VP-fixed-scope (red diamonds). These examples correspond to the first of 30 runs of each method.
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Table 9. Statistical Significance (p-value) of the observed difference in hypervolume between BEARS and
other methods over 30 runs using Mann-Whitney U test.

BEARS wvs.
Product Backlog H VP-deterministic NPV-deterministic VP-fixed-scope NPV-fixed-scope
Local Government Project 2 2.87E - 11 2.87E - 11 2.87E - 11 5.77E — 11
3 2.87E - 11 2.87E - 11 2.87E - 11 2.87E - 11
4 2.87E - 11 2.87E - 11 2.87E - 11 2.87E - 11
5 2.87E - 11 2.87E - 11 2.87E — 11 2.87E — 11
Release Planner 2 2.11E - 07 2.10E - 08 4.58E — 04 1.25E - 02
3 2.87E - 11 2.87E - 11 2.87E - 11 3.51E-11
4 2.87E - 11 2.87E - 11 2.87E - 11 2.87E - 11
5 2.87E - 11 2.87E - 11 2.87E - 11 2.87E - 11
Word Processor 2 3.01E - 01 6.04E — 02 4.87E - 01 3.85E - 02
3 2.87E - 11 6.37E — 11 1.15E - 10 3.06E — 09
4 2.87E - 11 2.87E - 11 2.87E - 11 2.87E - 11
5 2.87E - 11 2.74E - 10 5.84E — 10 2.87E - 11
RALIC 2 2.87E - 11 2.87E - 11 2.87E - 11 2.87E - 11
3 6.37E — 11 2.87E - 11 3.31E - 10 2.05E - 10
4 3.18E - 11 2.87E - 11 3.18E - 11 2.87E - 11
5 3.51E - 11 2.87E - 11 9.44F — 11 3.51E-11
Synthetic-30 2 2.87E - 11 2.87E — 11 4.73E - 11 6.41E — 10
3 2.87E - 11 2.87E - 11 2.87E - 11 2.87E - 11
4 2.87E - 11 2.87E - 11 2.87E - 11 2.87E - 11
5 2.87E - 11 2.87E - 11 2.87E - 11 2.87E - 11
Synthetic-50 2 2.87E - 11 2.87E - 11 2.87E - 11 7.39E — 08
3 2.87E - 11 2.87E - 11 2.87E - 11 2.87E — 11
4 2.87E - 11 2.87E - 11 2.87E - 11 2.87E - 11
5 2.87E - 11 2.87E - 11 2.87E - 11 2.87E - 11
Synthetic-100 2 2.87E - 11 2.87E - 11 2.87E - 11 2.87E - 11
3 2.87E - 11 2.87E - 11 2.87E - 11 2.87E - 11
4 2.87E - 11 2.87E - 11 2.87E - 11 2.87E - 11
5 2.87E - 11 2.87E - 11 2.87E - 11 2.87E — 11
Synthetic-200 2 2.87E — 11 2.87E — 11 2.87E — 11 2.87E — 11
3 2.87E - 11 2.87E - 11 2.87E - 11 2.87E - 11
4 2.87E - 11 2.87E - 11 2.87E - 11 2.87E - 11
5 2.87E - 11 2.87E - 11 2.87E - 11 2.87E - 11
Overall 5.43E — 116 3.21E - 149 1.36E — 104 2.71E - 114
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Table 10. Release planning methods’ run-times in seconds
Product Backlog H VP-deterministic ~ NPV-deterministic VP-fixed-scope NPV-fixed-scope BEARS
Local Gov. Project 2 2 3 10 18 45
3 2 4 12 20 48
4 3 4 15 21 60
5 3 5 17 25 65
Release Planner 2 2 3 10 15 37
3 2 4 14 25 55
4 3 5 16 30 70
5 5 8 20 35 95
Word Processor 2 2 4 18 36 95
3 3 7 20 47 135
4 4 8 23 58 155
5 6 10 26 65 163
RALIC 2 4 10 37 85 153
3 5 12 45 102 192
4 5 12 54 123 225
5 7 15 68 150 259
Synthetic-30 2 2 6 15 33 75
3 3 7 17 42 95
4 3 9 17 40 112
5 5 11 20 49 125
Synthetic-50 2 5 9 20 68 158
3 7 11 25 75 170
4 7 12 29 84 188
5 9 14 37 96 205
Synthetic-100 2 6 13 56 75 229
3 6 16 75 94 284
4 7 20 85 110 302
5 7 24 97 115 357
Synthetic-200 2 9 20 83 112 288
3 9 21 85 122 365
4 10 22 95 130 486
5 10 30 120 150 533
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