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Advances in personalization of digital services are driven by low-cost data collection and processing, in addi- 

tion to the wide variety of third-party frameworks for authentication, storage, and marketing. New privacy 

regulations, such as the General Data Protection Regulation (GDPR) and the California Consumer Privacy Act, 

increasingly require organizations to explicitly state their data practices in privacy policies. When data prac- 

tices change, a new version of the policy is released. This can occur a few times a year, when data collection 

or processing requirements are rapidly changing. Consent evolution raises specific challenges to ensuring 

GDPR compliance. We propose a formal consent framework to support organizations, data users, and data 

subjects in their understanding of policy evolution under a consent regime that supports both the retroactive 

and non-retroactive granting and withdrawal of consent. The contributions include (i) a formal framework 

to reason about data collection and access under multiple consent granting and revocation scenarios, (ii) a 

scripting language that implements the consent framework for encoding and executing different scenarios, 

(iii) five consent evolution use cases that illustrate how organizations would evolve their policies using this 

framework, and (iv) a scalability evaluation of the reasoning framework. The framework models are used to 

verify when user consent prevents or detects unauthorized data collection and access. The framework can be 

integrated into a runtime architecture to monitor policy violations as data practices evolve in real time. The 

framework was evaluated using the five use cases and a simulation to measure the framework scalability. The 

simulation results show that the approach is computationally scalable for use in runtime consent monitoring 

under a standard model of data collection and access and practice and policy evolution. 
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 INTRODUCTION 

eb and mobile applications increasingly collect sensitive information from application users to
ffer personalized services. For example, social media and dating websites allow users to build inti-
ate personal profiles that are linked to other users based on personal relationships, employment
ebsites collect and share job histories, and grocery stores use rewards programs to collect and

rack food and beverage purchases. Personalization allows organizations to tailor user experiences
o individual user preferences, and a subset of these data is used to personalize ads, based on chang-
ng user behaviors, lifestyle choices, and life stages. With cloud-based services, organizations can
cale their applications to thousands and millions of users, which requires sharing personal data
ith third parties [ 39 ]. 
Laws and regulations, such as the EU General Data Protection Regulation (GDPR) , 1 have

een enacted to transfer control to and from organizations, so that users can restrict how their
ersonal data are collected and used. The GDPR, in particular, protects the data of citizens of EU
ember countries, while people from other countries remain excluded. While users frequently

hare their own personal data, the GDPR more generally refer to the data subject, which is the

erson described by personal data (see Article 4(1) of GDPR). The term data subject is sufficiently
road to cover data processed by first-party services, who have a direct relationship with users, and
ata processed by third-party services who have an indirect relationship with users, as well as to
ccount for data shared by one user that is about another person. Prior work to formalize consent
nder the GDPR [ 6 , 17 ] have considered the logical consequences of data collection, access, and
urpose when consent is granted or revoked. However, as policies and data practices change, these
ormalizations can become inconsistent. This article addresses this limitation of prior work. 

Under the GDPR, consent is a key element in privacy, and it has become a critical element under
he EU GDPR. 1 Under GDPR, consent is one of a few legal bases available that can be used to pro-
ess app user data (see Article 6-1(a)) and, in most cases, consent is the only viable basis. Consent
onstitutes legal evidence of app user awareness about their data being collected, used, and shared
y organizations. Under the GDPR, the data subject is protected, because the demonstration of a
alid acquisition of the consent is a responsibility of the organization, i.e., the data subject does not
eed to initiate a request to receive this protection. To this end, the organization must present infor-
ation about how the data will be processed and then request consent from the data subject before

rocessing the data. Furthermore, the data subject may revoke their consent at a later date, which
eans that the organization can no longer process data collected after the revocation (see Article 7).
owever, the organization may continue to process data collected under the previously granted

onsent if they choose to do so. In general, the organization or data user often obtains consent
hrough click-through privacy notices, e.g., when the app user first uses the service. Consent can
e obtained in other ways, including just-in-time consent after an app user has already begun using
he service, as long as the consent is granted prior to the collection or use of the subject’s data [ 42 ].

Data subject decisions about granting consent can be driven by the perception of trust in an
rganization with respect to their history of bad privacy practices. For example, recent disclosures
 Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural 

ersons with regard to the processing of personal data and on the free movement of such data and repealing Directive 

5/46/EC (General Data Protection Regulation). 
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Fig. 1. Revision history of the Waze privacy policy from 2011 to 2018. 
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y Facebook of personal data leaks to third parties [ 22 ] led some app users to restrict their privacy
references, which control who can access their data, and others to delete their account, thus
pting out entirely. 
Internally, organizations can make changes to their data practices several times a year. Evidence

f changes can be observed in the revision histories of evolving privacy policies. Figure 1 shows the
hanges to the privacy policy of Waze, a popular mobile app for automobile navigation, based on an
nalysis by the authors [ 38 ]: The y -axis shows the number of statements per policy revision, with
he policy revision dates along the x -axis; exact statement matches appear in blue, new statements
ppear in red, and statements with changes to wording appear in orange. Some of these changes are
ue to changes in boilerplate language (e.g., how the organization or user are referenced) or to data
urposes. Under the GDPR, changes to data practices and purposes require consent. While Waze
n particular underwent a number of changes from late 2012 to mid-2014, there were significant
hanges from late 2017 through mid-2018, at which point the GDPR went into effect. 

Changes in an app’s data practices can be driven by changes in their underlying technologies.
or example, as a mobile navigation app, Waze accesses a user’s real-time location using the mo-
ile device’s operating system to offer real-time navigation and driving-related services. Location
ata can include more information than simply the user’s longitude and latitude position. De-
ending on the technology used to calculate the position, whether the user is indoors, outdoors,
alking, or driving could all be inferred, and if the location were linked to a location database,
hether the user was located in a residential or retail space and even which retail store could be

nferred. Moreover, if the position is calculated with the use of short distance technologies, such as
luetooth or 802.11 wireless networking, then information about other devices may be collected,
ven if not pertinent to the purposes of the app. User movements over time could be stored to
uggest frequently used routes, visited locations, and preferred retail stores. The evolution of loca-
ion technologies generates different location data types, wherein precision, frequency, and other
racking information differ from one technology to another. The varying sensitivity of types of
ata collected and accessed are, in part, driven by the evolution of the technology. In parallel, as
echnology drives changes in data practices, an organization must update their privacy policies and
nsure that previously granted consent matches the scope of data collected and its purposes of use.

As a matter of requirements engineering, under the GDRP, see Articles 6-1(a) and 7, organiza-
ions should tag their data to know when they were collected and when they obtained consent.
ecause the GDRP requires that consent be granular, including that purposes be distinguishable
ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 2. Pub. date: February 2023. 
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see Recitals 32 and 43), organizations should also tag these data with purposes for which consent
as granted. Notably, organizations may collect data as a consequence of their system design, but

hey may not process the data for a specific purpose without consent. At scale, one can imagine
hat organizations who are in competitive markets will be looking for new opportunities to process
pp user data, leading to changes to their practices. In addition, app users may either be uncom-
ortable with new purposes or shift their trust in organizations due to improper data handling by
he organization or the market. To address this problem, we propose a formal consent framework,
xpressed in Description Logic (DL) , to support data subjects, data users, and organizations in
he understanding of consent under evolving policies. The framework formally expresses how to
utomatically verify the compliance of data access, given data subject consent. The contributions
f the article include (i) a formal framework that can be used by organizations to support data
sers to reason about data collection and access under multiple consent granting and revocation
cenarios, (ii) a scripting language that implements the consent framework for encoding and ex-
cuting different scenarios, (iii) five consent evolution use cases that illustrate how organizations
ould evolve their policies using this framework, and (iv) a scalability evaluation of the reasoning

ramework to show the computational feasibility of the approach. 
These three contributions above comprise new, previously unpublished work that extends a

new ideas” paper originally presented in RE’19 in track RE@Next! [ 38 ]. 

 FRAMEWORK OVERVIEW AND TERMINOLOGY 

he formal consent framework is expressed in Description Logic and designed for organizations to
eason about whether data collection and access are authorized by a data subject’s consent history,
iven that consent can be granted and withdrawn under one of two modalities: retroactivity , in
hich the act of granting and withdrawing consent are applied retroactively to affect access to
reviously collected data, and non-retroactivity , in which granting and withdrawing consent only
ffect access to data in the present and future. 

In this framework, we distinguish between the web and mobile application user , who is often
he data subject about whom data are collected, and the data user , who works for an organization
r organization and uses the data subject’s data for business purposes. The data user is a general
erm that covers the data processor role under Articles 4(2) and (6) of the GDPR, including
ollecting, recording, storage, alteration, retrieval, use, transmission, and erasure, among other
ctivities. These activities are generalized into two principal actions: collection , which describes
he point where data enters the organization, and access , which covers activities to use the data
or a specific purpose. Activities, such as erasure and destruction, are outside the scope of the
urrent framework. In Section 6 , we discuss how the “Right to Be Forgotten” is separate from the
onsent framework. In this article, policy refers to the abstract rules that govern an organization’s
ata practices. These policies may be summarized in natural language in the form of a “privacy
olicy,” which is a legal document organizations use to communicate their policy and practices
o data subjects and users. The framework described in Section 4 is a formal representation of
 specific subset of the organizations overall policy intended to govern the matter of consent to
ollect and access personal data. Hypothetical or real changes to the policy can be expressed in
he framework to reason about the effects of those changes, and laws require that privacy policies
re updated to accurately reflect the organization’s policy, whenever it changes. The framework
an be used to verify polices and data practice scenarios at design time, or it can be integrated
nto a runtime architecture to perform monitoring. 

Figure 2 shows an overall system architecture in which the consent framework could be used
o monitor consent at runtime. In Figure 2 , we distinguish between authorized services, which go
hrough an access control gateway to access the database, and trusted-by-design services, which
CM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 2. Pub. date: February 2023. 
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Fig. 2. Architecture to illustrate monitoring. 

Fig. 3. Example of consent framework illustrating a simple scenario within the framework. 
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irectly access the database but are still monitored via a logging service. The architecture repre-
ents how consent can be verified and monitored as follows: (A) when users grant and withdraw
onsent, a consent service records those changes to a consent log via a logging service. The con-
ent log is used by the consent monitor to update the consent model. In addition, (B) services that
re trusted-by-design will access a database, which (C) logs queries to an access log that is (E)
onitored by the consent monitor to detect ex post violations. Moreover, (F) services that require

er-transaction authorization will request permission using an access control service (ACS) ,
hich can either (F) log those requests to an access log for ex post violation detection, or (G) the
CS can delegate those requests to the consent monitor, which would deny a request prior to
ccess if a valid consent permitting access has not been granted. 

In Figure 3 , we present a consent framework example to illustrate the overall approach and con-
ent lifecycle. The example includes principal components of the framework model and language,
ncluding actor actions (grant and revoke consent, collect and access data). These components are
ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 2. Pub. date: February 2023. 
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Fig. 4. Six scenarios combining retroactive and non-retroactive consent and withdrawal. 
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ormally defined in Section 4 . In the figure, the actions performed by the data user and data subject
re shown as “swim lanes” where actions, represented by ovals, are presented in time order, indi-
ated by solid black arrows that lead from past events to future events. At each point where a data
ser collects or accesses data, the consent framework can be used to check if the action is approved
y the data subject’s consent history, including where consent was granted and withdrawn or if the
ction is denied. In Figure 3 , we illustrate where a non-retroactive withdrawal of consent prohibits
 future collection (see red “access denied” sign in the Data User swim lane) but does not prohibit
ccess to a data previously collected under the withdrawn consent (see subsequent “access ap-
roved” sign in the same swim lane). This example is simple, and more complex scenarios include
verlapping consents and other modes of retroactive and non-retroactive consent and withdrawal.

Under the GDPR, organizations are permitted to use retroactive consent and non-retroactive
ithdrawal. There are no restrictions in GDPR preventing organizations from using non-

etroactive consent or retroactive withdrawal, which both provide data subjects with greater
rivacy protection but that would make fewer data available to data users. Figure 4 presents
ix scenarios that arise from the combination of consent and withdrawal and both retroactivity
odalities. In Figure 4 , time moves forward from left to right, and horizontal shaded bars show

urrent access authorizations by collection time. Dark green shading shows collection time from
hich data are accessible; the light red shading shows where data are inaccessible. The vertical

ines show times where consent is granted or withdrawn. Non-retroactive consent (top, scenario
) grants access only to data collected in the future. While non-retroactive withdrawal (scenario 2
nd 5 from top) revokes access to data collected in the future but not to previously authorized data
ccess. Finally, retroactive withdrawal (scenario 3 and 6) revokes access to data at any collection
ime, while retroactive consent (scenario 4) grants access to data at any collection time. 

The consent framework is formalized in Description Logic to allow a data user to express and
heck an arbitrary number of consent and withdrawal events while ensuring compliance at col-
ection and access time. We next discuss the technical challenges of formalizing the framework
efore presenting the framework and illustrating examples. 
Organizations can apply the framework by formalizing their data practices in the limited scope

f data collection and access. This formalization includes constructing an ontology of data types
CM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 2. Pub. date: February 2023. 
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nd data purposes, which must be maintained by the organization over time as their software and
ssociated technologies evolve. Using the framework, the organization can then (1) simulate con-
ent evolutions to understand the effect of using any of the six consent scenarios (see Figure 4 );
2) they can adopt any one of the six scenarios as a reference model in the design of GDPR-
ompliant software; or (3) they can monitor and verify at runtime whether a request to collect
r access data is approved or denied based on the consent history of the data subject (see Figure 3 ).
he consent framework, whether applied in a simulation or in consent verification, supports an
rganization who processes data using any combination of the six scenarios applied to the same
ata types. 

.1 Consent and Right to Be Forgotten 

onsent under the GDPR can be withdrawn at any time by the user. When this happens, organi-
ations must quickly halt the processing of user data and block any further access to such data.
ata collected under previously granted consent may still be accessed if consent is withdrawn
on-retroactively or if there is another valid legal basis or another consent that covers that same
ata and has not been withdrawn. 
The GPDR provides the right to be forgotten, which is similar to withdrawing consent at any

ime. Recall that retroactive withdrawal is a stronger protection than non-retroactive withdrawal,
ecause retroactive withdrawal removes authorizations to access data previously collected. This
ffectively means the previously collected data can still reside in an organizations database, but it
s no longer accessible under the consent that was withdrawn. With retroactive consent granted
n the future, the data may become accessible once again. 

The right to be forgotten is a stronger protection than retroactive withdrawal, because the users
an now ask for their data to be deleted, in addition to halting all processing activities. Organi-
ations must delete all user data and “forget” information related to this user. In the case of data
ollected under a different legal basis than consent, for example, and in the case of public infor-
ation whose collection did not require an explicit consent of the user, the right to be forgotten

an also be used to delete that data. If data are accessed, used, and shared for multiple purposes,
hen all these activities must stop and the same is true for third parties, who are asked to delete
he data and stop further data processing activities. 

Next, we introduce the technical challenges to consent verification before we introduce the
ramework formally in Section 4 and describe framework application use cases in Section 5 . 

 TECHNICAL CHALLENGES 

escription Logic [ 10 ] are the de-facto languages for ontologies and the Semantic Web. Descrip-
ion Logic is a subset of first-order logic languages, which is less expressive but guarantees de-
idability. We chose DL because of its ontology orientation, since we need to represent and verify
ierarchical relationships between the data types used in privacy policies. For example, users can
rovide consent on some broad category of data, such as personal information , or they can provide
eparate consents on narrower, more specific, categories, such as e-mail address or phone number .
hese hierarchical relationships can lead to inconsistencies and conflicts in deciding if data can be
rocessed [ 18 ]. 
While DL can be used to more easily build consistent taxonomies from the same kinds of data

ypes used in privacy policies, the formalization of consent evolution is more challenging in DL
ue to their limited expressivity and an open world assumption. DL has limited expressivity that
as been introduced in favor of decidability [ 31 ]. Description Logic supports only binary relations,
o that two individuals can be related one to another, but no other dimensions, such as time, can
e included within the same relationship. 
ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 2. Pub. date: February 2023. 
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The open world assumption means that unknown facts are considered neither false nor true. In
ontrast, a closed world assumption, also called negation by failure, considers unknown facts to be
alse by default. In DL, if one declares that “approved consent” is equivalent to “not consent with-
rawn,” then consent events can still be in an unknown state in which they are neither consented
or withdrawn. 
Monotonicity. Monotonicity is a desirable property for updating functions of any formaliza-

ion, because additions to a knowledge base with this property will not invalidate prior facts.
onotonic update functions are simpler and efficient and ensure that the existing knowledge base

s never changed and only extended by new facts. However, consent evolution appears to have a
on-monotonic behavior. For example, in the case of a withdrawal event, one might expect the
pdate function should change existent authorizations in a non-monotonic way by negating ac-
essibility or changing the authorization from a permission to a prohibition. While consent may
e implemented using various access control rules across different systems and platforms, consent
nly defines a window of authorization between acts of granting and withdrawal consent and not
pecific access control rules. Within this window, other concerns may affect who has access based
n fine-grained access control rules subject to platform implementations. To ensure monotonic-
ty, we formalize the evolution of these authorization windows in our representation so that the
hole history of consent and authorization changes is maintained. We use temporal steps to de-
ne the validity of authorizations over time; specifically, consent is withdrawn from the temporal
tep in which the authorization is no longer valid. In contrast, consent is approved at the temporal
tep in which authorizations start to be valid. This distinction will be illustrated further later in
ection 4.1 . 

Temporality. Representation of time and temporal concepts is not specifically supported in
L. There are temporal extensions for DL [ 7 –9 , 32 ], but they all introduce overwhelming exten-

ions of the language and an increase in computational complexity, which we aim to avoid in
avor of understandability and efficiency. For example, some temporal extensions are based on the
epresentation of many time-related concepts, relationships, and constraints, such as an instant

r interval of time, the concepts of before, after, meanwhile, started before, ended after , and so on.
oreover, the representation of temporal concepts, such as the interval of time in which a consent
as granted and then withdrawn, can be approached in different ways. A strong simplification
f the representation of temporality is to focus only on forward-time or backward-time. In our
ramework, we have multiple, evolving consents, where a change in consent affects authoriza-
ions only in the future and never in the past. Thus, our temporality representation is based on
orward-time. 

Use Limitation. The GDPR requires organizations to limit uses to those purposes stated at
he time of collection, which is also called the Use Limitation Principle in the OECD Guidelines
n the Protection of Privacy and Transborder Flows of Personal Data. To implement use limita-
ion, organizations must specify purposes in advance and restrict access to collection purposes.
urposes may be broadly described, such as advertising, or they may be specific, such as targeted
dvertising or payment processing. In Role-Based Access Control (RBAC) , roles represent a
competency to do specific tasks” or “duty assignments” to data users, which change infrequently,
ecause they correspond to an organization’s functions and business processes [ 40 ]. The key dif-
erence between roles and purposes is the orientation: Roles describe the work performed by a class
f users, whereas purposes define the work for which data are used. For example, one can assign
he same scope of work to the role Advertiser as they would the data purpose Advertising. Because
f the extensive history of using role-based orientations in established security standards, we use
he role-based orientation in this article to implement use limitation, noting that a purpose-based
rientation could alternatively be used if preferred. 
CM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 2. Pub. date: February 2023. 
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 FORMAL CONSENT FRAMEWORK 

his section presents the formal consent framework. The formal framework is specified in DL,
hich is a subset of first-order logic for expressing knowledge. A DL knowledge base (KB) is

omprised of intensional knowledge, which consists of concepts and roles (terminology) in the
Box T, and extensional knowledge, which consists of properties, objects, and individuals (as-
ertions) in the ABox A [ 10 ]. In this article, we use the DL family ALC , which includes logical
onstructors for union, intersection, negation, and full existential qualifiers over roles. Concept
atisfiability, concept subsumption and ABox consistency in ALC are PSPACE-complete [ 10 ]. In
he notation that we use in this article, strings of lowercase letters are used for individuals and
trings with the initial letter as an uppercase letter are used for concepts. 

Description Logic includes axioms for subsumption, disjointness, and equivalence with respect
o a TBox and an interpretation function . T that assigns an interpretation to a concept. The special
oncepts “top” � correspond to the entire domain of interpretion � = ΔT , and the “bottom” con-
ept ⊥ corresponds to an empty domain ⊥ = ∅ . Subsumption describes individuals using general-
ties: We say a concept C subsumes a concept D, written T |= D � C , if D 

T ⊆ C 

T for all interpreta-
ions T that satisfy the TBox T. The concept C is disjoint from a concept D, written T |= D � C → ⊥ ,
f D 

T ∩ C 

T = ∅ for all interpretations T that satisfy the TBox T. Finally, the concept C is equivalent
o a concept D, written T |= D ≡ C , if D 

T = C 

T for all interpretations T that satisfy the TBox T. 
The universe of discourse consists of concepts for Col l ec tion, Ac c ess, and Consent with associ-

ted events described by individuals, e.g., a collection event c ∈ Col l ection, and concepts for Data ,
ataSub je ct , the Re ci pi ent of data during an access event, and T ime . The consent history is a DL
B that is monotonically constructed from a series of collection, access, and consent events. We
ow describe definitions needed to perform this construction. In this formalization, we make a
ew key assumptions underpinning the consent history: 

• Updates to the consent history are monotonic, i.e., new information cannot invalidate pre-
viously received information. This assumption is imposed by Description Logic, which is
monotonic. 

• When granting and withdrawing consent, authorizations describe data in vague or abstract
terms. This is consistent with modern practice, where organizations seek authorization for
broad classes of data to increase flexibility in data practices. 

• When collecting or accessing data, organizations describe data in specific terms. This is
consistent with how hardware, software, and algorithms are written to operate on specific
data elements or collections of specific elements. 

.1 Representing Time 

he consent framework uses the notion of forward time, in which events can be referenced as
ccurring after other events, but there is no way to express the occurrence of events during or
efore other events. While limited, this restriction is both necessary and minimal. 

Definition 1. Time is described by subsumption, using the notion of forward time , such that it
s true that T |= T x � T ime with respect to a TBox T and for each time concept T x that represents
n open time interval beginning at a timestep x in 1. . . n up to the latest timestep n . Each timestep
 +1 in the future is described by the concept T x+1 , such that it is true that T |= T x+1 � T x . 

The linear chain of subsumption in which nested concepts contain exactly one concept per level
rovides a complete description of time, with a root concept T ime that includes any time since the
eginning, a leaf concept T n that includes only time in the future and no disjoint concepts. Thus,
n forward time, each concept T x describes a time interval that begins at timestep x and continues
ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 2. Pub. date: February 2023. 
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orward indefinitely. Concepts that represent time starting from a given instant in the future, are
ubsumed by concepts that represent time starting from an instant in the past. 

Events can be placed within time intervals explicitly as individuals in Description Logic. Time
ntervals are described by the conjunction of a start time, inclusive, and an end time, exclusive.
he end time is represented by the negation of Time at the end timestep. The interval T x � ¬ T y 

or y > x describes events that occur in times, T x , T x+1 , T x+2 . . . up to and not including time T y 

nd beyond. Under the open world assumption, explicit negation is used to close the time interval;
therwise, the event can be subsumed by T x and any subclasses in T x . 
Forward time is a restricted representation of time in logic, which is sufficient and minimal to

epresent time for collection, access, and consent. 

.2 Representing Data 

n the consent framework, data are the principle concept about which events take place. Data
oncepts may be broad and encompassing, such as personal information, or specific, such as e-mail
ddress [ 26 ]. Descriptions of data are broad when referenced in consent events, so as to support
uthorization to collect and access a class of data, whereas they are specific when referenced by
ollection and access events for which a specific data type is sought for a specific purpose. 

Definition 2. Data are described by subsumption, such that it is true that T |= C � Data for each
ata concept C with respect to a TBox T. Organizations can introduce an arbitrary number of data
oncepts and should declare when it is known that two data concepts are disjoint. For example, an
rganization may declare that Aдe and Location are disjoint but not declare that PhoneN umber is
isjoint from Demoдrap hic Data if this separation is unknown. 

In the consent history, interpretations of Data are constructed through relations, called proper-
ies, to other concepts in the knowledge base. These interpretations answer specific questions, such
s “which data subject is the data about,” or “when was the data collected?” Each property narrows
he interpretation of data in question, e.g., given a data subject datas ub je ct 1 ∈ Dat aSub je ct , the
xiom about ( dat asu bjec t1 ) � Dat a refers to all data about this data subject, including data that
ave been collected and accessed. The framework formalization supports five properties to data
escribed in the consent history: 

• Data � ∃about .Dat aSub je ct : The ab out property is asymmetric and non-transitive and de-
scribes who the data are about. 

• Data � ∃col l e cte dAt .T ime : The col l e cte dAt property is asymmetric and non-transitive and
describes when (within what time interval) the data are collected. 

• Data � ∃col l e cte dBy.Re ci pi ent : The col l e cte dBy property is asymmetric and non-transitive
and describes by whom the data are collected. The Rec ip ient concept and its subclasses
describe the job role or purpose for which data are collected. 

• Data � ∃ac c e s s e dAt .T ime : The ac c e s s e dAt property is asymmetric and non-transitive and
describes when (within what time interval) the data are accessed. 

• Data � ∃ac c e s s e dBy.Re ci pi e nt : The acce s s e dBy property is asymmetric and non-transitive
and describes by whom the data are accessed. The Rec ip ient concept and its subclasses
describe the job role or purpose for which data are collected. 

• Data � ∃au thorizedBy .C ons e nt : The aut horizedBy property is asymmetric and non-
transitive and describes which subclass of data are authorized by a consent for collection
and access. This property has the inverse property authorize s . 

The above properties will be used below to define how events are recorded in the consent history.
CM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 2. Pub. date: February 2023. 
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.3 Collection, Access, and Purpose 

onsent to data collection and access should be restricted by data purpose, which should be gran-
lar and separable under GDPR. Data purpose granularity refers to the level of specificity of the
urpose description: A purpose “for service improvement” is less granular than “for identifying
nd fixing software faults” and “for improving response times,” which are more granular and ex-
mples of service improvement activities. Data purpose is needed to apply the use limitation prin-
iple, which guarantees that data are only used for the original purposes for which the data were
ollected and for no other purposes. In the consent framework, purpose is expressed using a role-
ased orientation, in which the data user assumes a role that describes the class of work for which
he data will be used. For example, a data user may be an advertiser or payment processor, and
oreover, we assume that any data-related class of actions can take on a role-based orientation.

n the consent framework, all data user roles are a sub-class of the Rec ip ient class. 
Whenever data are collected or accessed, a new event is recorded in the consent history and

epresented as an individual in the ABox. Each event has properties that answer questions about
hen the data were collected or accessed, who collected or accessed the data, and who the data

re about. 

Definition 3. Collections are events with a relation to the time of collection and the recip-
ent of the collection, as expressed by the DL intersection Col l ec tion � ∃c ol l ect edAt .T ime �
col l e cte dBy. Re ci pi ent . For a data type Location, a data subject datas ub je ct1 , and a recipient
dve rtis e r , we express a collection event c1 at time T 1 as follows: 
c1 ∈ Col l ec tion � ∃c ol l ect edAt . ( T 1 � ¬ T 2 ) � ∃col l ec tedBy .Adve rtis e r � ab out .datas ub je ct1 
here T 2 is the closest timestep following T 1 so that T 1 � ¬ T 2 limits the collection between T 1

nd T 2 . 

Definition 4. Accesses are events with a relation to the time of access and the recipient of the
ccess, as expressed by the DL intersection Ac c e s s � ∃ac c e s s e dAt .T ime � ∃ac c e s s e dBy. Re ci pi ent .
or example, an access event a 1 at time T 1 is expressed as 
a 1 ∈ Ac c e s s � ∃ac c e s s e dAt . (T 1 � ¬ T 2 ) � ∃ac c e s s e d By.Ad ve rtis e r � ab out .dat as ub je ct1 
To ensure a consistent consent history, however, each collection and access event must be au-

horized, which we now discuss. 

.4 Granting and Withdrawing Consent 

ranting and withdrawing consent is an action performed by the data subject. These events define
he space of authorized collection and access over a time interval, which is opened at the time of
ranting consent and closed at the time of withdrawal. 

Definition 5. Granting consent is an event with an authorization relation to (1) an entire class of
ata, (2) any acts to collect or access this data class at an open time interval, (3) the recipient by
hom the class was collected, and (4) the subject about whom the data describes. 

In the consent history, each consent event is represented by an individual in the ABox. When
onsent is granted non-retroactively, the consent denotes an authorized interpretation of data
ollection and access. 

We express a consent cons e nt1 to collect and access location data by an advertiser from time T 2

nward, as follows: 

cons e nt1 ∈ C ons e nt � ∀authorize s .Location 

� ∀ authorizes . 

( 
(Col l ec tion � ∃c ol l ect edAt .T 2 ) 

� ( Ac c e s s � ∃ac c e s s e dAt .T 2 � ∃col l e cte dAt .T 2 ) 

) 

� ∀authorize s . ( ∃col l e cte d By.Ad ve rtis e r � ab out (dat as ub je ct1 ) ) 
ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 2. Pub. date: February 2023. 
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In the above axiom, the collection time constrains data in both collection and access, whereas
he access time only constrains data in access. This distinction is because consent may be granted
etroactively , which means that, while data may only be accessed from time T 2 onward, this access
ay be to data that were collected before time T 2 . The retroactive variant of the above consent is

xpressed as follows, where the concept T ime represents the earliest beginning of time: 

cons e nt1 ∈ C ons e nt � ∀authorize s .Location 

� ∀ authorizes . 

( 
(Col l ec tion � ∃c ol l ect edAt .T 2 ) 

� ( Ac c e s s � ∃ac c e s s e dAt .T 2 � ∃col l e cte dAt .T ime ) 

) 

� ∀authorize s . (∃col l e cte d By.Ad ve rtis e r � ab out .dat as ub je ct1 ) 

Definition 6. Withdrawing consent is a DL extension to an existing, unwithdrawn consent event
y closing the previously open time interval for collection or access through the authorization
elationship. For example, to withdraw consent, we simply update the class description of the
onsent individual. Non-retroactive withdrawal at time T 4 is expressed as follows: 

cons e nt 1 ∈ ¬∀aut horize s . 
( 
(C ol l ection � ∃col l e cte dAt .T 4 ) 
� (Acce s s � ∃col l e cte dAt .T 4 ) 

) 

Unlike non-retroactive withdrawal that continues to permit access to data previously collected
n the authorized time interval (e.g., from T 1 to T 4 ), retroactive withdrawal prohibits future access to
reviously collected data. The retroactive variant of the above withdrawal is expressed as follows:

cons e nt 1 ∈ ¬∀aut horize s . 
( 

(C ol l ection � ∃col l e cte dAt .T 4 ) 
� (Acce s s � ∃acce s s e dAt .T 4 � ∃col l e cte dAt .T 4 ) 

) 

As described in Section 4.1 , time is represented using forward time. In addition, actions to access
ata may not occur before that data are collected. These two restrictions have important conse-
uences on how we reason about consent. In Figures 5 through 8 , we present four visualizations
or consent that examines each combination of non-retroactively and retroactively granted and
ithdrawn consent over an arbitrary data concept. Access can occur at the same or future time
f a corresponding collection over that data. The blue lines indicate the start of a time interval,
nd the red lines indicate the end of the time interval. Collection and access authorized by each
onsent type are shown as circled check marks distributed over times T 1 , T 2 . . . 

In Figures 5 to 8 , collection time is represented vertically, and access time is represented hori-
ontally. Blue and red lines delimitate the accessibility of the data with respect to collection time.
ore precisely, blue lines represent the time when consent was granted, while red lines repre-

ent the time when consent was withdrawn. The horizontal disposition of the lines corresponds to
on-retroactivity, for which access is restricted to a given collection time. The vertical disposition
f the lines corresponds to retroactivity, for which access is restricted only between the times of
onsent and withdrawal with no limitation on the original collection time of the accessed data. 

The difference between non-retroactively granted consent and retroactive consent is visible in
igures 4 and 5 , respectively. In consent non-retroactively granted at time T 1 , access is authorized
o data collected at any future time T y for y > 1 but not to data collected before T 1 . In Figure 6 ,
owever, access to data collected before T 1 is authorized when retroactively granted. 
Consent that is non-retroactively withdrawn and retroactively withdrawn is shown in Figures 4

nd 6 , respectively. In Figure 5 , non-retroactive withdrawal at time T 2 means that access to data
ollected over the interval T 1 � ¬ T 3 can continue at any future time T y for y > 1, but collection
annot continue at any future time T z for z > 2. In Figure 7 , retroactive withdrawal limits access in
he future, such that access is not authorized for any future time T z for z > 2. 

Figure 8 shows the authorizations for retroactively granted and withdrawn consent. 
CM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 2. Pub. date: February 2023. 
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Fig. 5. Consent non-retroactively granted, non- 

retroactively withdrawn. 

Fig. 6. Consent retroactively granted, non- 

retroactively withdrawn. 

Fig. 7. Consent non-retroactively granted, retro- 

actively withdrawn. 

Fig. 8. Consent retroactively granted, retroac- 

tively withdrawn. 
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The European GDPR requires organizations to implement non-retroactive consent with non-
etroactive withdrawal as shown in Figure 5 . Notably, GDPR does not prohibit more restrictive
onsent, such as that shown in Figure 7 , and GDPR is silent on whether organizations may request
ore relaxed access to historical data through retroactive consent, as shown in Figures 5 and 7 . 

 FRAMEWORK APPLICATION AND USE CASES 

n this section, we present five use cases that illustrate several types of evolution that can arise and
ow the framework can be used to evolve and verify consent under those use cases. In addition,
e use a consent language syntax (see Appendix A ) to concisely present events and timesteps
sing the framework. In Appendix A , we present the denotational semantics that maps the lan-
uage syntax into Description Logic defined by the formal framework. The language is supported
y a tool, which is available online. 2 The tool can be used to check whether collection and ac-
ess are authorized by consent and to perform runtime monitoring that a collection and access
og conforms to a current consent history. Logs can be translated into the scripting language for
erification, or the framework’s application programmer interface can be triggered by collection
nd access events to monitor consent at runtime (see Figure 2 for an example illustrating how the
ramework can be integrated into an architecture for runtime monitoring). The scenarios can be
asily replicated using the off-the-shelf scenario scripts as described in the instructions provided
ithin the repository. 
We envision the following five use cases that policy authors may encounter when evolving

heir data practices. We identified these use cases when analyzing the consent lifecycle presented
 https://github.com/cmu-relab/consentsim.git . 
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Fig. 9. Simulation results presenting the time to complete each timestep in milliseconds. 
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n Figure 3 , specifically when considering the consequences of an organization evolving their data
ractices over time by adding and replacing services. These evolutions are triggered by changes in
ervices or how data are managed, and they should not interfere with existing consent histories,
.e., they should neither yield authorized actions without prior consent nor yield unauthorized
ctions where prior consent was granted. In addition, users should be able to grant and revoke
onsent under both old and new policies. 

• Overlapping Authorizations – organizations that collect data through multiple ser-
vices, each covered by separate consents, can encounter overlapping authorizations. A user
who revokes consent from one service could disrupt another service where consent re-
mains granted if the system does not distinguish overlapping consent and limit revocation,
accordingly. 

• Refining Existing Data Type – organizations will introduce new services and features
that require new data types. A policy author may refine existing types by either adding new
types to be included within existing types, or moving the existing types under new types.
Changing the data type hierarchy must not introduce changes in the scope of previously
granted consent. 

• Compartmentalizing Legacy Data – organizations that migrate from non-granular poli-
cies to granular policies will need to preserve consent histories over data collected un-
der legacy, non-granular policies. When completing this migration, the scope of previously
granted consent must not change. 

• Classifying Data Types under Multiple Classes – over time, organizations can classify
existing data under additional classes to restructure their data management practices (e.g.,
introducing a financial data class to add greater security to protect this class). New policies
can refer to these additional classes to simplify policy language. 

• Supporting New Purposes – organizations may add new purposes for which data are
used, but they must ensure that only if a new purpose is similar to an original purpose can
a prior consent authorize collection and access under the new purpose; otherwise, a new
consent is needed for the new purpose. 
CM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 2. Pub. date: February 2023. 
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While the above five use cases were motived by business, legal, and technological needs of the
rganization, they do not describe a complete enumeration of all possible use cases. We now review
ach of these use cases with specific illustrating examples using the framework. 

.1 Overlapping Authorizations 

n the consent framework, data types and data purposes are hierarchical, and thus it is possible
or large organizations to collect data from a data subject under multiple, separate authorizations.

hen a data subject withdraws one consent, then questions arise: (1) Can the data type that was
reviously authorized by the withdrawn consent still be collected under the remaining consent?
nd (2) Can previously collected data under the withdrawn consent still be accessed under the
emaining consent? 

For example, consider a scenario wherein an organization requests consent to collect real-time
ocation data for advertising purposes, which entails collecting precise location data every few

inutes using a mobile device location service. The organization uses these data to compute the
ser’s driving and walking routes by analyzing the device’s real-time location and accelerometer
ata to infer that the user is driving or walking and by inferring the route taken during a specific
ime interval. This scenario is expressed in the consent language as follows: 

1 new data RealTimeLocation Data 
2 new data DrivingRoute RealTimeLocation 
3 new data WalkingRoute RealTimeLocation 
4 new disjoin DrivingRoute WalkingRoute 
5 new recipient Advertiser 
6 grant RealTimeLocation datasubject1 Advertiser :consent1 
7 collect DrivingRoute datasubject1 Advertiser 
8 step 
9 grant DrivingRoute datasubject1 Advertiser :consent2 
10 collect DrivingRoute datasubject1 Advertiser 
11 step 
12 withdraw :consent1 
13 assume false collect WalkingRoute datasubject1 Advertiser 
14 assume true collect DrivingRoute datasubject1 Advertiser 
15 assume true access DrivingRoute datasubject1 Advertiser T1 
16 step 
17 collect DrivingRoute datasubject1 Advertiser 
18 step 
19 withdraw retro :consent2 
20 assume false collect DrivingRoute datasubject1 Advertiser 
21 assume false access DrivingRoute datasubject1 Advertiser T4 T5 
22 assume true access DrivingRoute datasubject1 Advertiser T1 

In the scenario above, the default data type hierarchy is refined to include real-time location
nd both driving and walking routes (lines 1–4), and a new recipient advertiser is added (line 5).
fter receiving consent from datasubject1 in time T 1 (line 6), the organization collects the driving

oute (line 7) and later requests a separate, specific consent for the driving route at time T 2 , at
hich point, they collect driving route a second time (lines 9 and10). At time T 3 , the data subject
on-retroactively withdraws the first consent to collect the real-time location (line 12), leaving
he second consent intact. At this time, the organization queries whether it can collect walking
ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 2. Pub. date: February 2023. 
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oute, which is no longer authorized and thus assumed to be false (line 13), and the driving route
line 14), which remains authorized under the second consent. Because the withdrawal was non-
etroactive, the organization can continue to access the driving route that was collected in time T 1 

nder consent1 ; however, since consent2 was withdrawn and consent1 does not cover the time
eriod of T 3 forward, the driving route collected during T 4 is no longer accessible as consent2
as withdrawn retroactively. 
In the consent framework, the data user only needs one authorization to guarantee collection

nd access. Thus, when consents are overlapping, the act to collect or access may be attributed to
ny of the overlapping consents that authorize the event. 

.2 Refining Existing Data Types 

n the framework, consent, collection, and access events are added to the knowledge base over
ime, which comprises the consent history and data collection and access log. When organizations
elease a new feature or product, however, they may need to update their policy by introducing
ew data types and purposes. If the new data types and purposes are subclasses of, and disjoint
rom, existing classes, then these additions are non-interfering, because they divide a previously
ndivided area in the domain of interpretation. However, if the new data types and purposes are
uperclasses of existing classes, then the change has the potential to interfere with the consistency
f the consent history. 
Consider, for example, an organization who previously collected Location data that were lim-

ted to location collected by a mobile device using cellular-based location. Later, the organiza-
ion plans to divide this class into CellularLocation and BluetoothLocation to account for
 new feature based on low-energy Bluetooth beacons. Because the consent history is based on
ocation , which would later come to mean CellularLocation, the organization must equate the
oncept Location to CellularLocation and thus introduce a new generic class that subsumes
hese two more specific classes. 

Recall that consent covers generic classes, whereas acts of collection and access cover specific
lasses. In addition, answers to queries are vague and include uncertainty due to the open world
ssumption. Negative answers (the concept “bottom”) guarantee that no consent is available in the
nowledge base to perform the queried action, while positive answers (not “bottom”) guarantee
hat at least a part of the queried action is covered by the consent. The data user must formulate
ueries to be as specific as possible and that cannot be further refined, so that a positive answer
uarantees that existing consent covers the complete interpretation of the queried, intended action.
For example, consider an initial scenario wherein an organization first requests consent to per-
it the collection of Location data, which at the time means data collected using the mobile

evice’s cellular network. 

1 new data Location Data 
2 new recipient Advertiser 
3 grant Location datasubject1 Advertiser :consent1 
4 collect Location datasubject1 Advertiser 
5 step 
6 withdraw retro :consent1 
7 step 

In the initial scenario, above, the policy author refers to this data type as simply Location
line 1). The data subject later grants their consent (line 3), after which the data are collected
line 4), and consent is later withdrawn retroactively (line 6). Upon developing and preparing to
CM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 2. Pub. date: February 2023. 
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elease the new feature, the policy author updates their policy to include new location meanings
y introducing new data types as follows: 

8 new data LocationV2 Data 
9 new data CellularLocation LocationV2 
10 new data BluetoothLocation LocationV2 
11 new disjoint CellularLocation BluetoothLocation 
12 new equiv Location CellularLocation 
13 grant retro BluetoothLocation datasubject1 Advertiser :consent2 
14 assume false access CellularLocation datasubject1 Advertiser 
15 assume true access BluetoothLocation datasubject1 Advertiser 

In this policy extension (lines 8–15), the organization introduces a new generic location concept,
alled LocationV2 , and creates two refinements, CellularLocation and BluetoothLocation
lines 8–10). Next, they defined these two refinements as disjoint (line 11) before equating the
egacy concept Location to the new CellularLocation concept (line 12). From that moment
nward, location data collected using the cellular network are tagged as CellularLocation ,
hile location data collected using Bluetooth wireless are tagged as BluetoothLocation . Fur-

hermore, previously collected data still exist under the legacy tag Location ; however, because
ocation is equivalent to CellularLocation , it is also subsumed by the new generic concept
ocationV2 . Any previously consents granted to collect and access Location would follow to
ellularLocation , and any new consents to LocationV2 or BluetoothLocation would be re-
tricted to the interpretation of those new classes. For example, the data subject grants consent
nline (13), and the query for access to cellular location (line 14) is not guaranteed, because the
nterpretation of the prior withdrawal of consent to Location carries forward under the new pol-
cy. In contrast, the query to access BluetoothLocation (line 15) is covered by the new consent
ranted on line 13. 
In the above example, the legacy concept Location describes a class of data that could be re-

amed to a single subclass. In the situation where previously collected location data, covers mul-
iple, previously indistinguishable classes and the policy authors now wish to distinguish these
ypes, they must instead preserve the consent log history by introducing a legacy class, which we
ow discuss. 

.3 Compartmentalizing Legacy Data 

s systems evolve, under-specification in the system description and corresponding policy can
ntroduce ambiguity and vagueness that is difficult to reconcile. This can arise due to operating a
oSQL database, for example, wherein multiple services use generic data tags to describe incoming
ata and the provenance needed to link data back to specific services cannot be reconstructed from
ogs. In this situation, the organization cannot distinguish the data stored in the database, and thus
hey must create a legacy data class that subsumes all interpretations of this indistinguishable data
o as to preserve the integrity of the consent history. For example, consider a new scenario in
hich an organization is collecting TechnicalData , which is otherwise indistinguishable but that

he organization chooses to distinguish going forward. 

1 new data TechnicalData Data 
2 new recipient Advertiser 
3 grant TechnicalData datasubject1 Advertiser :consent1 
4 collect TechnicalData datasubject1 Advertiser 
5 step 
ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 2. Pub. date: February 2023. 
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6 withdraw :consent1 
7 step 

The scenario above in lines 1–7 describes a situation wherein the policy author begins with
onsent to collect a vague class TechnicalData , which is shared with the recipient Advertiser.
oing forward, the policy author aims to distinguish the classes of data previously collected under

his generic type, as described below. 

8 new data PersonalInformation Data 
9 new data NonPersonalInformation Data 
10 new disjoint PersonalInformation NonPersonalInformation 

TechnicalData 
11 grant NonPersonalInformation datasubject1 Advertiser :consent2 
12 assume false collect TechnicalData datasubject1 Advertiser 
13 assume true access TechnicalData datasubject1 Advertiser T1 T2 
14 assume true collect NonPersonalInformation datasubejct1 Advertiser 

The author begins by evolving the policy to distinguish between the disjoint types
ersonalInformation and NonPersonalInformation , with TechnicalData becoming compart-
entalized and retired as a data tag for collection events. Under the new policy, the data user can
o longer collect the legacy data class TechnicalData , but they can continue to access previously
ollected data under timesteps T 1 and T 2 but not under T 3 and beyond. 

.4 Classifying Data Types under Multiple Classes 

ver time, organizations may wish to classify existing data using new attributes or qualities of
he data, such as whether the data are personal, financial, identifiable, or anonymous, to name a
ew attributes. In an earlier example, we introduced CellularLocation and BluetoothLocation ,
hich describe the device-based mechanisms by which location data are collected. As privacy pref-

rences evolve, the organization may be interested in further distinguishing precise and coarse or
mprecise location, noting the former introduces greater privacy risks and should receive increased
estrictions on sharing. In the consent framework, organizations can redefine existing data types
y updating the ontology in a monotonic way. This includes subclassing existing concepts under
 new concept, without compromising the integrity of the knowledge base or invalidating past
nterpretations. 

Consider an initial scenario in which only a device-based location classification exists, such that
luet oot hLocat i on � Devi ceLocati on, and the policy author aims to introduce a refinement to the
recision of the location-based data, wherein Bluet oot hLocat ion � C oars e Location by a monotonic
pdate of the knowledge base. This scenario is captured, below, where the old policy, including
onsent, collection, and withdrawal, appears in lines 1–7, and the new refinement and new consent
re introduced in lines 9–11. 

1 new data Location Data 
2 new data DeviceLocation Location 
3 new data BluetoothLocation DeviceLocation 
4 grant DeviceLocation datasubject1 Advertiser :consent1 
5 collect BluetoothLocation datasubject1 Advertiser 
6 step 
7 withdraw retro :consent1 
8 step 
9 new data CoarseLocation Location 
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10 new data BluetoothLocation CoarseLocation 
11 grant retro CoarseLocation datasubject1 Advertiser :consent2 
12 assume true access BluetoothLocation datasubject1 Advertiser T1 T3 
13 assume true access BluetoothLocation datasubject1 Advertiser T3 

In the scenario above, access to BluetoothLocation is authorized both for previously collected
ata (line 5) and for newly collected data after the new policy takes effect (line 11). At the time
f collection in T 1 , the data subject was unaware that BluetoothLocation would be interpreted
s CoarseLocation . Under the new policy, however, this interpretation is made explicit when the
ata subject grants consent later. 
Under this policy change, new and old queries continue to work correctly, and new and old

ata will be classified consistently. However, a rollback of such changes implies a non-monotonic
pdate and therefore counter actions as presented in Section 5.3 should be considered. 

.5 Supporting New Purposes 

ver time, organizations may wish to evolve their policies by introducing new purposes. In 2012,
he term Unique Device Identifier (UDID) appeared for the first time in the Waze policy in the
ollowing sentence: “Personally identifiable information may also be shared with Waze’s other
artners and service providers, with the express provision that their use of such information must
omply with this policy. For example, Waze may share your mobile device’s UDID with ad net-
orks, for the purposes described above.” By including UDID in their policy, Waze may assume
nder US law that they have consent to share the UDID collected by their app with third-party
dvertisement organizations for the purpose of targeted advertising. 

The GDPR defines the purpose limitation principle, which means that data can only be used
or a new purpose (1) if the new purpose is comparable to the original purpose, (2) if consent is
btained for the new purpose, or (3) if there is a lawful basis. Herein, we formalize the first two
onditions needed to guarantee the purpose limitation principle. 

In the first situation, a consent already exists for a given purpose, which is defined by the con-
unction of a data type and a recipient, P ur pos e _ e xis tinд : D1 � R1 . In this situation, the purpose
imitation principle allows the use of an existing consent, under the condition that the new purpose
s included in the already consented purpose, formally P ur pos e _ ne w � P ur pos e _ e xis tinд. 

In the second situation, a new consent is required to cover the new purpose P ur pos e _ ne w : D x �
 y . Formally D x � R y � ∀au thorizedBy . ( ConsentSet ) must not be an empty set, whereC ons e ntSe t

ncludes exactly and nothing more than all available consents. 
For example, consider data initially collected and used for some specific purpose

ataCol l ection1 ∈ R1 � T 1 , authorized by consent T 1 � R1 . Later, the same data are accessed for a
ifferent purpose, dataAc c e s s 1 ∈ R2 � T 2 � ac c e s s ( dataC ol l ection1 ). This operation is authorized
f either (i) the new purpose is comparable to (subsumed by) the original purpose, R2 � R1 , where
 2 � T 1 , or (ii) the new consent includes the new purpose T 2 � T 1 � R2 . 

 SCALABILITY EVALUATION 

he consent framework and tool that supports the consent language syntax (see Appendix A )
ere used in a series of simulations to study the scalability of consent verification over time for a

ingle data subject. This study was limited to the first two use cases for overlapping consent (see
ection 6.1) and refining existing data types (see Section 6.2), since the subsequent three use cases
re variations on the types of expressions covered by these use cases (e.g., adding new purposes is
 refinement of the purpose hierarchy, similarly to how adding new data types is a refinement of
he data type hierarchy in Description Logic). 
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Assumptions. The study was designed with several assumptions in mind: (1) the study is limited
o one application; (2) every day, the application collects and accesses data from the application
ser for which consent has been received; (3) each week, the organization updates their software to
x defects and add features, which could yield new data collections or accesses, and new recipients

e.g., by changing where data is hosted remotely, or changing advertisers); (4) every 90 days, the
olicy is updated, which requires a user to grant or withdraw consent; and (5) verification of data
ollection and access are performed once every day, typically at the start or end of the day when
housekeeping” functions are performed. The third assumption is based on how modern software
ngineering practices employ continuous integration and deployment. The fourth assumption is
ased on the analysis of the Waze privacy policy evolution, which shows that one policy can be
pdated as often as 3 to 4 times per year. 
Execution. The simulations were conducted using an Acer TravelMate P238 Series laptop with

n Intel i5 6200u 2.3-GHz processor, 8 G RAM, and the Windows 10 Pro v2004 Build 19041.1052
perating system. The simulation was designed in Python v3.7.8 using OwlReady 2 v0.3, which
as configured to use the default HermiT reasoner v1.3.8. The investigator closed all non-relevant

pplications while running the simulation, and each simulation was run five times and averaged
he results for each simulation. 

Implementation. Figure 9 shows three simple simulations conducted to measure the time to up-
ate the knowledge base, without synchronizing the base. Synchronization instructs the reasoner
o build the complete entailment, which is needed to check whether a collection or access concept
as an interpretation. 

• Steps: In this simulation, each timestep corresponds to a single day, in which only refine-
ment of time is considered. 

• Nested Data Types: Each timestep corresponds to a single day, in which a new data type
is added to the most specific data type in knowledge base. In this simulation, no checks
for collection or access are performed, and no consent events are recorded. This simulation
demonstrates the effect of data type refinement on the time to build the knowledge base. 

• Nested Data Types and Recipients: This simulation extends the previous one by also
adding a new recipient every day, in addition to the new data. 

In Figure 10 , we present the results of five simulations in which the knowledge base is synchro-
ized and queried to check for the possibility of collecting or accessing data: 

• Querying for Collection: Each timestep corresponds to a single day, in which the knowl-
edge base is queried to check for the possibility, given by the existence of a consent currently
granted, to collect a specific data. 

• Refining Data and Querying for Collection: Each timestep corresponds to a single day,
in which a new data type is added to the knowledge base and a query is performed to check
for the possibility, given by the existence of a consent currently granted, to collect a specific
data. 

• Querying for Access: Each timestep corresponds to a single day, in which the knowledge
base is queried to check for the existence of a consent from the past or currently granted
that allows to access data collected at a specific time in the past. 

• Refining Data and Querying for Access: Each timestep corresponds to a single day, in
which a new data type is added to the knowledge base and a query is performed to check
for the existence of a consent from the past or currently granted that allows to access data
collected at a specific time in the past. 
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Fig. 10. Simulation results presenting the time to complete each timestep in milliseconds. 

Fig. 9. Allen’s temporal interval relations. 
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• Realistic: Once per day (1 timestep), verification of a data collection and access is per-
formed, then the application collects and accesses data from the application user; each week
(7 timesteps), the data ontology is refined by nesting a new data type to the most specific
data type, and new recipients are added (e.g., by changing where data are hosted remotely,
or changing advertisers); every 90 days (90 timesteps), a new consent is granted and previ-
ous one is withdrawn, simulating a policy update and how data subjects react to the update.

nterpretation of the Results 

Consideration. As Figure 9 presents, the time to update the knowledge base is less than 1/50th of
 second, apart from extemporary spikes probably caused by a systematic increment of the knowl-
dge base. In contrast, synchronization, which is required to query the knowledge base, requires
dditional computation time. In Figure 10 , the time to query the knowledge base for collection and
ccess based on the realistic scenario at 90 days is 2.7 seconds for one data subject and after one
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ear is 6.7 seconds. Unlike access control, which guarantees that each data collection and access
equest is permitted at the time of the event, we assume that consent is checked once daily, such
s at the start or end of the day. Moreover, we assume that checking collection and access are inde-
endent events from granting and withdrawing consent. Under the assumption of independence
nd checking consent once daily, organizations have 24 hours to process a consent request, be-
ore collection and access would be prohibited. In practice, however, only three types of events—a
olicy evolution or a data subject granting or withdrawing consent—would change the authoriza-
ion of collection or access to data. Thus, organizations could assume the events are dependent,
y binding these three events to a new check (e.g., instead of checking daily, the check may be
erformed weekly or every few months, when software or policies are updated). We envision a

arge design space in which organizations may or may not have the ability to bind such events,
nd therefore they may need to process events in batches, increasing the time to process a con-
ent withdrawal. To our knowledge, the GDPR does not restrict the time to process a withdrawal;
owever, regulators typically do allow organizations a “reasonable” time to process requests. 
Complexity. A number of factors can affect the complexity of reasoning under the consent frame-

ork, including the number of data subjects whose information is being processed; the pace of
volution in business practices, such as the number of new data types being processed; and the
umber of third parties participating in processing. For some organizations, parallel processing
nd few changes to business practices and suppliers would result in less time to check collection
nd access. Larger organizations generally have more infrastructure to support compliance. Re-
ardless, organizations could implement optimizations to reduce complexity. In addition to making
ollection and access checks dependent on policy and consent changes, organizations could limit
he granularity of the data types and purposes being processed. This generality would yield less
volution, fewer policy notifications to data subjects, and thus fewer checks on collection and
ccess. In addition, organizations could use retroactivity to reduce the complexity of reasoning.
on-retroactive policies can create discontinuity in data accessibility, which requires additional

hecks into the future. Retroactive policies can consolidate authorizations by either making pre-
iously collected data uniformly accessible, or uniformly inaccessible. Retroactive policies that
ncrease access, however, may have a negative impact on privacy and thus may lead to a larger
umber of withdrawals by data subjects. Thus companies, must balance privacy protections and
ulnerabilities that arise from retroactive policies that increase accessibility. 

In summary, the simulations show the feasibility of checking collection and access periodically
t runtime using the consent framework, given a realistic scenario for evolving policies over time.
epending on variables with the organization, including how their applications are designed, op-

imizations may be needed to scale the consent framework to a specific organizational setting. 

 THREATS TO VALIDITY 

onstruct validity addresses whether what we measure is actually the construct of interest [ 53 ].
n empirical research, this concerns the design of surveys and experiments. In formal modeling,
his may refer to the realism of the primitives and their alignment with real world phenomena.
he framework introduces concepts such as user acts to grant and withdrawal consent, organiza-

ional collection and access to data. Prior studies on privacy policy language identified the actions
f collection, use, and sharing as the top three most prominent policy descriptions [ 18 , 19 ]. The
use” action is used to link data type to data purpose in policies. In the consent framework, we
istinguish collection and access, wherein access combines uses and sharing without distinction.
f an organization needs to distinguish data sharing or transfers to third parties, then access could
e sub-classed to distinguish two disjoint forms of access: internal access and third-party sharing.
CM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 2. Pub. date: February 2023. 
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While granting and withdrawing consent are recognizable in user interfaces (e.g., click-through
greements, opt-out checkboxes), application functions for data collection and access are numer-
us and often distributed across complex service compositions. For example, web applications
nclude collecting form data during online registration, and telemetry frameworks, some of which
re third-party services, that collect a user’s IP address, referrer host, and which HTML elements
 user “mouses” over, among other data types. Mobile applications further have access to mobile
evice sensors and can read and write data to device or network storage. The framework concepts
f collection and access, when combined with data type concepts, are intentionally coarse-grained
o cover such actions without the burden of enumeration. The evaluation use cases that illustrate
volution, however, demonstrate the framework’s resilience to increasing granularity when adding
ew data types and purposes. 
Internal validity concerns whether effects properly follow from the causes in an empirical study

 53 ]. In formal modeling, this concerns the correctness of the model and model inferencing. To
itigate threats to correctness, we limit our framework to concept satisfiability and subsumption

n the ALC family of Description Logics, which has been proven correct through tableau expan-
ions [ 10 ]. The consent framework then introduces axioms in Section 4 to model concepts for
onsent granting and revocation, data collection, and access and time to yield consent histories
ver a monotonically increasing TBox and ABox. To test framework, we identified and examined
ve policy evolution use cases to show that each evolution did not yield changes in the TBox and
Box interpretation given prior consent histories (i.e., no change allowed a previously unautho-

ized collection or access, and no change prohibited a previously authorized collection or access.)
External validity refers to the extent to which we can generalize the results [ 53 ]. The general-

zability of the framework was evaluated in two ways: (1) We studied the framework under five
olicy evolution use cases and (2) we conducted a simulation to evaluate the scalability of the ap-
roach. With regard to (1), the use cases were selected based on the authors familiarity with the
omain, recognizing that the problem of consent evolution is still quite new. For example, among
he six consent scenarios shown in Figure 4 , only two are required by the GDPR and actively in use
o our knowledge (non-retroactive granting and non-retroactive withdrawal). Thus, we expect the
se cases to be incomplete with regard to the possible use cases that organizations may encounter

n the future. With regard to (2), the simulation examines the scalability of the theorem prover to
eason over policy evolutions of varying complexity. However, different factors could affect the in-
erpretation of these results, based on how an organization would practically adopt the framework
or monitoring consent at runtime. For example, collection and access queries could be batched
ogether and triggered only when consent is changed on a per-user basis and used to check and
pdate classical role-based access control rules. In addition, the assumptions in the realistic sce-
ario, which include the frequency of policy evolution, data collection and access, may not match
he situation faced by other companies. Therefore, the scalability results could be different under
ifferent assumptions. 

 RELATED WORK 

n this section, we discuss foundational and related work. 

.1 Temporality in Description Logic 

escription Logic are a subset of first-order logic, intended as a general-purpose language for
nowledge representation, where decidability is valued over expressiveness. The components of
escription logic are (i) concepts, (ii) their relations or properties, and (iii) individuals. When using
L to represent an application domain, definitions of concepts and properties compose the TBox,
hile assertions about individuals and their concepts and properties compose the ABox. 
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Temporal representation is not directly supported by DL. However, time and temporal concepts
an be modeled. The Web Ontology Language (OWL) -Time ontology [ 28 ] provides concepts
elated to time representation; however, it specifies neither how to use these concepts nor how to
eason over such concepts. In general, temporal representation focuses on instants and/or inter-
als. In a point-based representation, relations between instants are “before,” “after,” and “equals.”
n an interval-based representation, relations can get up to the 13 pairwise disjoint Allen’s relations
 3 ] showed in Figure 9 . 

In the case of numerical representation of time, Allen’s relations can be easily inferred. For
ualitative representation, by assertion of Allen’s relations, inferring non-declared relations or
hecking consistency is an NP-hard problem. 

Apart from missing representation of time, DL formalisms also miss constructs to represent the
volution of concepts and their properties in time. Because DL only supports binary relations, tem-
orality is not easily encoded as a dimension of an existing relation. For example, a data collection
an be expressed as a relation between a data type and a user, however, to include also the time of
ollection we would need a ternary relation. 

Many approaches have been proposed to address such problems [ 7 ]. Versioning has been dis-
ussed in Reference [ 29 ], which proposes to create a copy of the ontology at every change. The n-
ry relations approach [ 34 ] and four-dimensional (4D) fluents [ 52 ] are two alternative approaches
o represent evolution of concepts. N-ary suggests representing a temporal ternary relation (object,
erb, predicate, time) as a concept itself representing the verb, with properties to relate it to the
bject, the predicate, and the time. The 4D-fluents approach represents a temporal relation as a 4D
bject, which includes time-specific temporal versions of the object and the predicate, where the
riginal relation is now expressed between the temporal versions of the concepts. With respect to
he n-ary approach, the 4D-fluents approach suffers from proliferation of objects (two additional
bjects for each temporal relation). The n-ary approach, however, suffers from data redundancy
n the case of inverse and symmetric properties (e.g., the inverse of a relation is added explicitly
wice). 

Relation to Temporal Logic. In the representation of consent evolution, collection defines
 time instant, and consent defines an interval between consent approval and withdrawal. Our
pproach is based on the representation of non-overlapping time intervals, where data are collected
ithin one of these intervals, while a sequence of intervals defines a consent. 

.2 Privacy Preferences and User Personalization 

ecently, organizations have pursued advanced personalization of user experiences to strengthen
heir relationship with users [ 4 , 10 , 46 ]. Personalization is commonly intended as customized or
ustomizable user experiences, based on user’s behavior or preferences. With respect to privacy
references, users can explicitly request how or when their personal data will be used. For example,
sers may want to exclude their browser search history from the dataset used by websites to show
argeted advertisements, or they may want to restrict access by other users to specific subsets of
heir personal information. 

Ackerman et al. [ 1 ] present survey results of user attitudes toward various E-commerce privacy
oncerns. Information about user attitudes can inform how designers choose which information
o regulate using preferences. The authors found that user attitudes vary around current infor-
ation practices, and thus they propose privacy clusters for individuals, labeled fundamentalists,

ragmatics, and unconcerned. Some preferences are shared by all respondents, such as automatic
ransfer and unsolicited communications are disliked, while persistent identifiers are sometimes
olerated. Much of the discomfort with the Web today results from not knowing, or not trusting
he information practices of a site [ 1 ]. 
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Teltzrow et al. [ 47 ] categorize personalization systems according to the data that they collect
nd then review surveys on privacy concerns, showing that users’ privacy concerns have a direct
mpact on personalization systems. Two approaches are discussed to implement personalization
hile alleviating the concerns of users: one based on policies and laws and the other based on

nonymity. 
Spiekermann et al. [ 45 ] describe the conflict between the general desire of people to protect their

rivacy and an organization’s aim to improve customer retention using service personalization.
he contribution consists of an empirical study that measures the actual behavior of people versus

heir stated privacy preferences. The authors categorize approaches to address the privacy issue
n three categories: law (the EU model), self-regulation (the US model), and standards. A simple-
o-use identity management system is suggested as an important privacy technology of the future
s an alternative to the limitations of anonymity and private credentials. 

The Platform for Privacy Preference (P3P) [ 23 ] is the reference platform for privacy pref-
rences on the web. With P3P, web browsers and web servers can communicate a user’s privacy
reference and compare those preferences with a website’s privacy policy. The P3P can be used to
eport misalignments, however, the preferences are never used to modify a website’s privacy set-
ings as part of P3P. P3P is a form of electronic privacy policy or notice, and Schaub et al. concluded
 study exploring the broader design space of privacy notices [ 42 ]. 

Despite the availability of privacy preference platforms, Acquisti et al. [ 2 ] show that people
annot always be counted on to set their own privacy preferences in a self-interested fashion. For
he authors the reasons are threefold: (i) individuals are uncertain about their privacy behaviors
nd the consequences of those behaviors; (ii) the context-dependency of individual concerns about
rivacy; (iii) and the degree to which privacy concerns are malleable by commercial interests.
cquisti et al. conclude that policy approaches that rely exclusively on informing or “empowering”

he individual are unlikely to provide adequate privacy protection [ 2 ]. 
In the mobile app world, where something like a privacy platform for preferences is the

ermissions system offered by the operating system. Lin et al. [ 30 ] investigate the feasibility of
dentifying a small set of privacy profiles as a way of helping users manage their mobile app
rivacy preferences. 
Privacy risk concerns the likelihood that an individual’s personal information could be used in

 harmful manner, and the impact of that harm. 3 Daniel Solove analyzed U.S. court decisions con-
erning personal privacy and proposed a taxonomy of privacy harms that includes surveillance,
orced disclosure, and blackmail [ 44 ]. Bhatia and Breaux designed and evaluated a framework to
easure the risk to personal privacy of disclosing different types of information [ 14 ]. Because pri-

acy harm is difficult to measure, they designed a scale that can be used to increase or decrease the
erception of harm based on social and physical proximity to the harm. They further propose that
evelopers can choose preferences to enhance personalization by measuring privacy risks across
heir userbase and then choosing which information types can be restricted based on variable
erceptions of risk. 
Studies have been done in analyzing the effects of the GDPR among web privacy policies around

he globe, specifically with respect to preferences for cookies and user tracking. Zaeem et al. [ 54 ]
uantified these effects by comparing policies with the use of PrivacyChecker, a data mining tool
o process textual privacy policies. Degeling et al. [ 25 ] analyzed changes to websites privacy poli-
ies at the time when the GDPR came into effect and their approach to consent management for
ookies. They argue against the confusion that still exists after the GDPR about how opt-ing out
rom third-party cookies should be enforced on the web. Nouwens et al. [ 33 ] present a study about
 https://csrc.nist.gov/publications/detail/sp/800-37/rev-2/final . 
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he effects of privacy pop-up on the behavior of web users, showing that small modification to the
raphical interface of a website can largely affect behavior of users with respect to privacy. 
Pöhls [ 37 ] consider the problem that third-party data processing companies may have in dynam-

cally verifying and proving continuously changing privacy preferences. Since preferences are not
irectly managed by third parties it may be impossible for them to provide a proof of consent,
specially considering that preferences are often modified by the users through the first-party
ompany that is collecting the data, which may omit to notify the third party about changes in the
references. In the solution proposed by the authors, consent and privacy preferences are always
ssociated within the data, which is structured as a tree. The data structure is then hashed and
igitally signed with a trusted public key certificate. 
Appenzeller et al. [ 5 ] propose an architecture for the management of consent on health data for

esearch purposes. The solution gives to the patient direct control on his data and consents. 
Relation to Privacy Preferences. We described above a limited selection of works in privacy

references, most of which are about measuring how people feel and perceive privacy with respect
o their preferences. Together with personalization, these two themes are very important in the
esearch community. 

Our work on consent described herein complements this prior work on privacy attitudes, prefer-
nces or risk, since it provides organizations a robust mechanism for managing changing consent
ptions and user preferences over time. For example, privacy attitudes and risk may be subject to
ecent events and to discovering the benefits and harms of how systems collect and use personal
nformation [ 1 , 11 ]. People do react to opportunities to change consent under different settings,
nd privacy preferences can give organizations more flexibility (e.g., versus withdrawing consent
nd leaving the service, a user could modify a single preference that only degrades the service
uality for that individual user). Our framework is a first result to help organizations understand
heir opportunities to maintain an appropriate level of access to user data while increasing their
ser base and personalization quality. 

.3 Formalization of Privacy Policy 

esearch to formalize privacy policy has sought to encode important design principles or to answer
asic questions. For example, contextual integrity states that information flows conform to norms
onsisting of a sender, a receiver, and who information is about and was formalized in temporal
ogic to detect inconsistencies between positive and negative norms [ 12 ]. Checking for policy
onflicts, however, requires abstract or vague expressions of data types and purposes and which
s supported by description logic [ 18 ]. Moreover, description logic can be used to formally trace
ataflows across third-party policies and to verify the purpose limitation and data minimization
rinciples, also called the use and collection limitation principles [ 13 ]. Bhatia et al. [ 15 ], addressing
he need for collection limitation, presented a case study about data purposes in privacy policies,
n which they identified six exclusive purposes found in the policies. Then, in Reference [ 16 ] they
nalyze the semantic of public privacy policies and report about incompleteness of data practices
escription in the policies, arguing about possible erroneous comprehension by the data subject. 
Vanezi et al. [ 51 ] proposes the use of Privacy-Calculus in a model-driven development approach

o statically check the compliance with respect to the GDPR and, more specifically, on lawfulness
f processing based on consent, consent withdrawal, and right to erasure. 
Consent Monitoring. Artfelt et al. [ 6 ] analyze GDPR articles and propose a formalization of

rticles related to monitorable system actions. The proposed formalization is based on first-order
emporal logic. They do not focus strictly on consent but more in general on GDPR data processing
rinciples. When they come to consent, however, even if they claim use and collection to be con-
ated into processing within the GDPR, they distinguish between them and only consider consent
CM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 2. Pub. date: February 2023. 
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or use. Collection is considered separately and then related to consent with the data minimization
rinciple, even though data collection before consent is still allowed. Additionally, granting and
ithdrawal are always retroactive events, in the sense they always apply to both new and already

ollected data. In this sense, our framework, which focus is solely on consent, and specifically
n evolution, is more generalizable, allowing combinations of retroactivity and non-retroactivity
n consent granting and revoking. Moreover, purpose is not considered into the formalization of
onsent, possibly misleading limitations on consent imposed by the GDPR. 

In comparison, Bonatti et al. [ 17 ], similarly to us, considered also purpose of data processing, in
ddition to data category, data subject, and recipient. Moreover, in their analysis of GDPR they also
ncluded cross-border data transfer and security measures in the context of personal data process-
ng. They propose the SPECIAL language for consent (presented in BNF format) with automated
ompliance checking (based on OWL). Also in this case, policies by default refer to the use of data.

Blockchain and Smart Contracts. Blockchain and smart contracts have also been used to
ormalize and monitor the actions access, store, and transfer over personal data and to encode
nswers to GDPR-related questions in an immutable contract [ 11 ]. In this prior work, however, the
ssue of granting and revoking consent was not addressed, including the effects of retroactivity.
ruong et al. [ 50 ] propose a blockchain-based solution to GDPR compliance, in which adhering
ompanies use smart contracts to upload on the blockchain all data and consent activities, which
re then automatically verified and certified on immutable records. 

UML Framework(s). Torre et al. [ 49 ] propose a UML diagram to capture requirements for GDPR
ompliance as a first step toward an automated engineering method for companies. The authors
dentify future directions, including a domain-specific language similarly to OCL but more under-
tandable by legal experts, goal modeling to reason on decomposition and delegation of tasks and
esponsibilities between companies, and Machine Learning and Natural Language Processing to
upport automated processing of legal policies. 

Relation to Formalization. In this article, the consent framework addresses Article (5) in GDPR
ith an additional emphasis on policy evolution and how that can lead to non-compliance. With

egard to prior work, Artfelt et al. [ 6 ] proposes a comprehensive formalization of GDPR, including
rticle (5). 

.4 Access Control 

ccess control mechanisms are commonly adopted by system administrators to regulate access
o resources, such as data or application access. Access control is generally configured to model
orporate structure and personnel roles. When enforced on databases, access control mechanisms
egulate only access to the data and not how the data are used. 

Sandhu et al. [ 41 , 40 ] proposed RBAC, which has become the industry standard for access con-
rol. In RBAC, authorizations are granted based on the role of the users. Organizations may stat-
cally assign roles to employee based on their job functions. One limitation of RBAC, however, is
he impossibility to allocate authorizations dynamically, based on the activity for which data ac-
ess is required. Task-Based Access Control (TBAC) was first proposed by Thomas and Sandhu
 48 ] to satisfy the needs of enterprises in the era of agent-based distributed computing, by moving
rom the classical subject-oriented authorization model, toward task-oriented models. 

As demand for richer access control models continued, Park et al. [ 36 ] introduced the Usage
ontrol mechanism, to unify approaches for access control, trust management, and digital rights.
rust management and digital rights differ from access control, in that the former focuses on
uthentication of users in open environments, while latter focuses on unauthorized use of the data
n the client system (a concept more similar to task-based access control). Later, Byun, Bertino et al.
 21 ] proposed Purpose-Based Access Control (PBAC) to control data access based on intended
urpose associated with the data, in which metadata about purposes is associated with a given data
ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 2. Pub. date: February 2023. 
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o specify its intended use. Finally, unlike data purpose, which assumes independent activities for
hich data are used, Nguyen, Park et al. [ 35 ] proposed PBAC, which is a mechanism that utilizes

he provenance of data [ 20 ] to control the access to the data. Davari and Bertino [ 24 ] propose a
ecentralized access control framework that supports GDPR requirements, based on XACML. 
Other solutions exist for specific applications, such as Proximity-based Access Control [ 27 ],

hich has been proposed for emergency situations, wherein people are constantly moving and
eed to quickly access resources, which are located in different physical locations. 
Relation to Access Control. The formal consent framework proposed herein is an abstract

ayer resting atop one or more of these technical solutions. The framework aggregates access con-
rol rules into a consent mechanism that is framed by the data controller through data purpose,
ontrolled or actuated by the data subject through granting and withdrawing consent, and imple-
ented or enforced by the data processor using one or more access control mechanisms. While

he framework is mechanism agnostic, the purposes expressed in the framework can be used with
oles, tasks, or purposes found in RBAC, TBAC, or PBAC. 

Unlike access control, wherein rules are written to allow or deny access, granting and withdraw-
ng consent are modifications to separate, but dependent, authorizations to collect and access data
ver time. There is no mechanism to directly deny access to data in the consent framework, only
 means to grant and limit authorizations. Granting consent yields new permissions to collect and
ccess data, whereas withdrawing consent simply removes some or all of those permissions. This
s similar to a deny-first, allow-later paradigm, in which the absence of authorization means access
s unauthorized. Moreover, authorizations may be overlapping in the type of data, purpose of use,
nd time. Time, in particular, is shaped by retroactivity, which can be assigned to the granting
nd/or withdrawal of consent. 

 CONCLUSION 

e presented a framework for the representation and analysis of evolving consent to support or-
anizations in better understanding how consent changes affect their ability to access data in a
egally compliant manner. This work is an attempt to show the complexity of consent evolution
nd demonstrate the capability and limitations of description logic in modeling consent evolution.
nder the GDPR, the framework can be used to support organizations through the framework

anguage as follows. As data controllers, organizations should document their data purposes us-
ng a classification system, which could be expressed in description logic using the language, and
reate an accounting in the language of points within their enterprise architecture where consent
s collected, e.g., across web sites, mobile applications, and so on. Changes to the consent text at
hese points should correspond to changes expressed in the framework language. As data proces-
ors, organizations can analyze database logs for collection and access events for runtime moni-
oring to detect violations. To avoid violations, however, organizations can require developers to
se collection and access enforcement points. For example, developers and users of Application

rogrammer Interfaces (APIs) can document their APIs using code-level annotations that can
e statically checked against expressions in the language indicting the developer’s design intent
e.g., to collect wireless location for advertising purposes). Each “check” can dynamically report in
eal time to the developer whether any current consents permit the intended collection or access,
s well as the proportion of the userbase and type of users who have opted in. With a framework
mplementation similar to the one described above, organizations can more precisely demonstrate
heir GDPR compliance to regulators, and regulators can check consent histories as evidence of
ompliance. 

While the consent framework includes a formalization of consent, data collection, and data ac-
ess and tools to automatically detect policy violations, there is a limitation that the framework
CM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 2. Pub. date: February 2023. 
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sers must instantiate the framework within their organization before it can be used. To perform
esign-time verification, this instantiation requires designing scenarios that reflect planned data
ractices, including adding new data types and roles to a new scenario script. To perform monitor-
ng, this requires integrating the framework into the organizational architecture (e.g., see Figure 5 ),
hich may require writing drivers to parse log files to yield data collection and access events. In
oth cases, the framework implementation and tools provide a scriptable interface that organi-
ations can use to reduce this manual effort. That said, privacy protection has a cost to the data
ubject and to the organization that is not easy to eliminate. No solution is fully automated, and
here is always a cost for integration into existing infrastructure. 

Future work includes a further evaluation of the scalability of the approach and in particular
ow multiple consents can affect big data applications, such as machine learning. In organizations
ith a broad range of services, or in data brokers, data may be pooled under different authorities

nd data purposes. In this setting, the data user may be interested in examining cross-domain
pplications, such as how one dataset, such as purchase histories, reveals insights into a person’s
ealth using health data. The results of such analysis should be restricted to the intersection of
ata purposes assigned to the individual datasets. For example, whereas purchase histories may
e treated as marketing data used for advertising purposes, and health data are used for diagnostic
nd treatment purposes, then an intersection may be empty if these two purposes are disjoint.
lternatively, if the intersection is described by a purpose for advertising treatments options, then

he results may be limited to that purpose. Other purposes, such as performing adjustments to
ealth insurance premiums, however, would be excluded. We believe the consent framework can
e used to model this kind of analysis and to restrict big data analysis to be GDPR compliant, while
till permitting legal data exploration. 

Finally, the relationship to privacy preferences is worth further consideration. Unlike consent,
references can turn on or off data collection and access at a specific time, which provides users
reater control over their privacy. However, what constitutes the meaning of “on” and “off” can
lso be affected by retroactivity in consent and withdrawal. By affording users greater control
ver their data, organizations can offer preferences to adjust access to especially sensitive data
ypes. Similarly, organizations may want to separate sensitive data types from non-sensitive data
ypes using separate user consents to avoid having users opt-out entirely from using a service. In
ddition, by offering retroactive withdrawal for sensitive data types, which is a stronger protection
han what is required under GDPR, organizations can allow users to exclude sensitive data from
uture uses after leaving a service. Upon those same users returning in the future and agreeing to
etroactive consent, they would regain access to the service with their prior data intact, which is
ot the case under the Right to Be Forgotten. 

PPENDIX 

 CONSENT FRAMEWORK LANGUAGE 

he consent framework language is used to express scenarios consisting of a sequence of data
ubject and data user actions. The formal semantics for the language are expressed in the OWL
.0. The language is supported by a tool that builds the consent history in OWL from the scenario,
hich can then be used to automate queries over the history. The language abstract syntax is

xpressed below in the Extended Backus Naur Form: Words in angled brackets are production
ules, lowercase words are keywords in the language, and words with capitalization are ground
erms that correspond to values in data, data subjects and recipients. 

 S > : = < new > | < rename > | < grant > | < withdraw > | < collect > | < access >
| step | < assume > 
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 new > : = new data DataClass DataSuperClass | new recipient RecipientClass 
|new disjoint DataClass1 DataClass2 | new equiv DataClass1 
DataClass2 

 grant > : = grant (retro)? < datadesc > :ConsentIndiv 
 withdraw > : = withdraw (retro)? :ConsentIndiv 
 collect > : = collect < datadesc > 
 access > : = access < datadesc > 
 datadesc > : = DataClass DataSubjectIndiv RecipientClass 
 assume > : = assume true < action > | assume false < action > 

The abstract syntax is assigned a denotational semantics [ 43 ] based on a semantic domain ex-
ressed in DL. The semantic domain consists of DL classes; DL operators for union, intersection,
nd negation; and a program state maintained by the language interpreter, which is a tuple ( KB, t,

, class, indiv, q ) for a DL KB , the current timestep t , the next event counter e , the class and indiv

unctions, and a query result q . As time advances, the timestep t is incremented by 1, and for each
ew collection and access event, the even counter e is incremented by 1. To facilitate translating
oncept and individual names expressed in the language to classes and individuals in TBox and
Box, we define the functions class → Names × Classes and indiv → Names × Individuals , re-

pectively. Finally, the language supports Boolean queries to test the authority to collect and access
ata, which results in changes to the Boolean value of q . The initial values for the program state
re ({ T 1 � Time , T 2 � T 1 }, 1 , 1 , {(Time , Time ), ( T 1 , T 1 ), ( T 2 , T 2 ), (Data , Data )}, {}, False ) . Finally, we
se the “&” operator to express string concatenation, which we use when composing new class
nd individual names. The language syntax is mapped to semantic functions used to build the
nowledge base. Given a program P expressed in the language syntax, the meaning of P is defined
y evaluations of individual expressions E , including sequenced in S , through a series of update

nd express semantic functions as follows: 

eaninд[[ P]] = KB where 
 valuate [[ P]] ( {T 1 � T ime, T 2 � T 1 }, 1 , 1 , { (T ime, T ime ), (T 1 , T 1 ), (Data, Data ) } , {}, Fals e ) ) 

= (KB, t , e, clas s , i ndi v, q) 
 valuate [[ E S]] (KB, t , e, clas s , i ndi v, q) = u p date[[ E]] ◦ evaluate[[ s]] 
 p date [[ ne w dat a p 1 p 2 ]] (KB, t , e , clas s , i ndi v, q) = (KB ∪ { c las s (p 1 ) � clas s (p 2 ), clas s (p 1 ) 

� Data, clas s (p 2 ) � Dat a }, t , e , clas s , i ndi v, q) 
 p date [[ ne w re c ip ient p 1 p 2 ]] (KB, t , e, class, i ndi v, q) = (KB ∪ { c las s (p 1 ) � clas s (p 2 ), clas s (p 1 ) 

� Rec ip ient , c lass (p 2 ) � Rec ip ient } , t , e, class, i ndi v, q) 
 p date [[ ne w dis joint p 1 p 2 ]] (KB, t , e, clas s , i ndi v, q) = (KB ∪ { c las s (p 1 ) � clas s (p 2 ) → ⊥}, 

t , e, class, i ndi v, q) 
 p date [[ ne w e quiv p 1 p 2 ]] (KB, t , e, clas s , i ndi v, q) = (KB ∪ { c las s (p 1 ) ≡ clas s (p 2 ) }, t , e, 

clas s , i ndi v, q) 
 p date [[ дrant D S R C ]] (KB, t , e, clas s , i ndi v, q) 

= (KB ∪ {i ndi v (C )) ∈ e xpre s s [[ auth D]] (clas s , i ndi v ) 
� e xpre s s [[ ope n inte rval]] (t ) 
� e xpre s s [[ auth R S]] (clas s )}, t , e, clas s , i ndi v, q) 

 p date[[ дr ant r etr o D S R C]] (KB, t , e, class, i ndi v, q) 
= (KB ∪ {i ndi v (C )) 
∈ e xpre s s [[ auth D]] (clas s , i ndi v ) 
� e xpre s s [[ re tro ope n inte rval]] (t ) � e xpre s s [[ auth R S]] (clas s )}, t , e, clas s , i ndi v, q)

 p date [[ w ithdraw C ]] (KB, t , e, class, i ndi v, q) 
= (KB ∪ {i ndi v (C )) ∈ e xpre s s [[ clos e inte rval]] (t )}, t , e , clas s , i ndi v, q) 
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 p date [[ w ithdr aw r etr o C]] (KB, t , e, class, i ndi v, q) 
= (KB ∪ {i ndi v (C )) ∈ e xpre s s re tro ]] clos e inte rval]] (t )}, t , e , clas s , i ndi v, q) 

 p date[[ c ol l ect D R S]] (K B, t , e, class, i ndi v, q) 
= (KB ∪ { exp ress[[ c ol l ect D R S]] (t , e, class, i ndi v )}, t , e + 1 , clas s , i ndi v 

∪{( “e ve nt ”& e , e )}, q) 
 p date[[ ac c ess D R S]] (KB, t , e, class, i ndi v, q) 

= (KB ∪ { exp ressac c ess D R S (t , e, class, i ndi v )}, t , e + 1 , clas s , i ndi v ∪ {( “e ve nt ”& e , )}, q)
 p date [[ as s u me T ac c e s s D R S]] (KB, t , e, clas s , i ndi v, q) 

= (KB, t , e, clas s , i ndi v, ¬ e xpre s s [[ T ]] ∧ KB |= e xpre s s acce s s D R S ≡ ⊥ ) 

 p date [[ as s u me T c ol l ect D R S (K B, t , e, class, i ndi v, q) 
= (KB, t , e, clas s , i ndi v, ¬ e xpre s s [[ T ]] ∧ KB |= e xpre s s [[ col l ect D R S]] ≡ ⊥ ) 

 p date [[ s te p]] (KB, t , e, class, i ndi v, q) 
= ( KB ∪ { “T ”& ( t + 2 ) � “T ”& ( t + 1 )}, t + 1 , e, class, i ndi v, q) 

 xpre s s [[ auth D]] (clas s , i ndi v ) = C ons e nt � ∀ authorize s . (clas s (D)) 
 xpre s s [[ ope n inte rval]] (t ) 

= ∀ authorize s . 
( 

(C ol l ection � ∃col l e cte dAt . ( “T ”& t )) 
� (Acce s s � ∃acce s s e dAt .T & t � ∃col l e cte dAt . ( “T ”& t )) 

) 

e xpre s s [[ re tro ope n inte rval]] (t ) 

= ∀ authorize s . 
( 

(C ol l ection � ∃col l e cte dAt . ( “T ”& t )) 
� (Acce s s � ∃acce s s e dAt . ( “T ”& t ) � ∃col l e cte dAt .T ime ) 

) 

e xpre s s [[ clos e inte rval]] (t ) = ¬∀ aut horize s . 
( 
(C ol l ec tion � ∃c ol l ect edAt . ( “T ”& t )) 
� (Ac c e s s � ∃col l e cte dAt . ( “T ”& t )) 

) 

 xpre s s [[ re tro clos e inte rval]] (t ) 

= ¬∀ authorize s . 
( 

(C ol l ection � ∃col l e cte dAt . ( “T ”& t )) 
� (Acce s s � ∃acce s s e dAt . ( “T ”& t ) � ∃col l e cte dAt . ( “T ”& t )) 

) 

 xpre s s [[ auth R S]] (clas s , i ndi v ) = ∀ authori ze s . ∃col l e cte dBy. (clas s (R)) � ab out . (i ndi v (S )) 

 xpre s s [[ acce s s D R S]] (t , e , clas s , i ndi v ) = i ndi v ( “ev ent ”& e ) 
∈ Ac c e e s s � ∃ac c e s s e dAt . ( “T ”& t � ¬ “T ”& (t + 1 )) � ∃ac c e s s e dBy .c las s (R) 
� about .i ndi v (S ) 

 xpre s s [[ col l e ct D R S]] (t , e , clas s , i ndi v ) = i ndi v ( “ev ent ”& e ) 
∈ Col l ec tion � ∃c ol l ect edAt . ( “T ”& t � ¬ “T ”& (t + 1 )) � ∃col l e cte dBy.clas s (R) 
� about .i ndi v (S ) 

 xpre s s [[ T ]] = t rue, i f T = “t rue , ” f e ls e 

An example of a simple scenario expressed in the language, below in lines 1–7, begins with
reating a new data type Location as a subclass of Data and a new recipient Advertiser . Next,
n line 3, the data subject ( datasubject1 ) grants non-retroactive consent to the Advertiser to
ollect and access Location. Non-retroactive consent and withdrawal are the default modalities.
his consent is labeled : consent1 to support a future withdrawal. In line 4, the scenario tests an
ssumption expecting it to be true that Location data can now be collected by the Advertiser
rom the datasubject1 . In line 5, the data user collects this data type, and in line 6, the time is
dvanced to the next step. Finally, in line 7, the data subject withdraws : consent1 retroactively. 

1 new data Location Data 
2 new recipient Advertiser 
3 grant Location datasubject1 Advertiser :consent1 
4 assume true collect Location datasubject1 Advertiser 
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5 collect Location datasubject1 Advertiser 
6 step 
7 withdraw retro :consent1 
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