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ABSTRACT

It has been shown that the parallel Lattice Linear Predicate (LLP) algorithm solves many combi-
natorial optimization problems such as the shortest path problem, the stable marriage problem and
the market clearing price problem. In this paper, we give the parallel LLP algorithm for many dy-
namic programming problems. In particular, we show that the LLP algorithm solves the longest
subsequence problem, the optimal binary search tree problem, and the knapsack problem. Further-
more, the algorithm can be used to solve the constrained versions of these problems so long as the
constraints are lattice linear. The parallel LLP algorithm requires only read-write atomicity and no
higher-level atomic instructions.

1 Introduction

It has been shown that the Lattice Linear Predicate (LLP) algorithm solves many combinatorial optimization problems
such as the shortest path problem, the stable marriage problem and the market clearing price problem [1]. In this
paper, we show that many problems that can be solved using dynamic programming [2] can also be solved in parallel
using the LLP algorithm. Dynamic programming is applicable to problems where it is easy to set up a recurrence
relation such that the solution of the problem can be derived from the solutions of problems with smaller sizes. One
can solve the problem using recursion; however, recursion may result in many duplicate computations. By using
memoization, we can avoid recomputing previously computed values. We assume that the problem is solved using
dynamic programming with such bottom-up approach in this paper.

The LLP algorithm views solving a problem as searching for an element in a finite distributive lattice [3, 4, 5] that
satisfies a given predicate B. The predicate is required to be closed under the operation of meet (or, equivalently
lattice-linear, defined in Section 2). For all the problems considered in the paper, the longest subsequence problem, the
optimal binary search tree problem and the Knapsack problem, the predicate is indeed closed under meets. Any finite
distributive lattice can be equivalently characterized by a finite poset of its join-irreducibles from Birkhoff’s theorem
[3, 4]. The LLP algorithm works on the finite poset in parallel to find the least element in the distributive lattice that
satisfies the given predicate. It starts with the bottom element of the lattice and marches towards the top element of
the lattice in a parallel fashion by advancing on any chain of the poset for which the current element is forbidden.

There are also some key differences between dynamic programming (the bottom-up approach) and the LLP algorithm.
The usual dynamic programming problem seeks a structure that minimizes (or maximizes) some scalar. For example,
the longest subsequence problem asks for the subsequence in an array A[1..n] that maximizes the sum. In contrast, the
LLP algorithm seeks to minimize or maximize a vector. In the longest subsequence problem with the LLP approach,
we are interested in the longest subsequence in the array A[1..i] for each i ≤ n that ends at index i. Thus, instead of
asking for a scalar, we ask for the vector of size n. We get an array G[1..n] and the solution to the original problem is
just the maximum value in the array G. Similarly, the optimal binary search tree problem [6] asks for the construction
of an optimal binary search tree on n symbols such that each symbol i has probability pi of being searched. Our goal
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is to find the binary search tree that minimizes the expected cost of search in the tree. The LLP problem seeks the
optimal binary search tree for all ranges i . . . j instead of just one range 1..n. Finally, the knapsack problem [7, 8]
asks for the maximum valued subset of items that can be fit in a knapsack such that the profit is maximized and the
total weight of the knapsack is at most W . The LLP problem seeks the maximum profit obtained by choosing items
from 1..i and the total weight from 1..W . In all these problems, traditionally we are seeking a single structure that
optimizes a single scalar; whereas the LLP algorithm asks for a vector. It turns out that that in asking for an optimal
vector instead of an optimal scalar, we do not lose much since the existing solutions also end up finding the optimal
solutions for the subproblems. The LLP algorithm returns a vector G such that G[i] is optimal for i.

The second difference between dynamic programming and the LLP algorithm is in terms of parallelism. The dynamic
programming solution does not explicitly refers to parallelism in the problem. The LLP algorithm has an explicit
notion of parallelism. The solution uses an array G for all problems and the algorithm requires the components of G
to be advanced whenever they are found to be forbidden. If G[i] is forbidden for multiple values of i, then G[i] can be
advanced for all those values in parallel.

The third difference between dynamic programming and the LLP algorithm is in terms of synchronization required
during parallel execution of the algorithm. In case of dynamic programming, if the recursive formulas are evaluated
in parallel it is assumed that the values used are correct. In contrast, suppose that we check for G[i] and G[j] to be
forbidden concurrently such that G[i] ends up using an old value of G[j], the LLP algorithm is still correct. The only
requirement we have for parallelism is that when G[i] uses a value of G[j], it should either be the most recent value
of G[j] or some prior value. A processor that is responsible for keeping G[i] may get old value from G[j] in a parallel
setting when it gets this value from a cache. In a message passing system, it may get the old value of G[j] if the
message to updateG[j] has not yet arrived at the processor withG[i]. Thus, LLP algorithms are naturally parallel with
little synchronization overhead.

The fourth difference between dynamic programming and the LLP algorithm is that we can use the LLP algorithm
to solve a constrained version of the problem, so long as the constraint itself is lattice-linear. Suppose that we are
interested in the longest subsequence such that successive elements differ by at least 2. It can be (easily) shown
that this constraint is lattice-linear. Hence, the LLP algorithm is applicable because we are searching for an element
that satisfies a conjunction of two lattice-linear predicates. Since the set of lattice-linear predicates is closed under
conjunction, the resulting predicate is also lattice-linear and the LLP algorithm is applicable. Similarly, the predicate
that the symbol i is not a parent of symbol j is lattice-linear and the constrained optimal binary search tree algorithm
returns the optimal tree that satisfies the given constraint. In the Knapsack problem, it is easy to solve the problem
with the additional constraint that if the item x is included in the Knapsack, then the item y is also included.

We note here that our goal is not to improve the time or work complexity of the algorithms, but to provide a single
parallel algorithm that solve all of these problems and their constrained versions. Furthermore, the parallel algorithm
we propose has no synchronization overhead, i.e., they only require read-write atomicity.

This paper is organized as follows. Section 2 gives background on the LLP method. Section 3 gives the programming
notation used to express LLP algorithms in the paper. Section 4 applies the LLP method to the longest subsequence
problem. Section 5 give a parallel algorithm for the optimal binary search tree construction problem. Section 6 gives
an LLP algorithm for the knapsack problem.

2 Background

In this section, we cover the background information on the LLP Algorithm [1]. Let L be the lattice of all n-
dimensional vectors of reals greater than or equal to zero vector and less than or equal to a given vector T where
the order on the vectors is defined by the component-wise natural ≤. The lattice is used to model the search space of
the combinatorial optimization problem. The combinatorial optimization problem is modeled as finding the minimum
element in L that satisfies a boolean predicate B, where B models feasible (or acceptable solutions). We are inter-
ested in parallel algorithms to solve the combinatorial optimization problem with n processes. We will assume that
the systems maintains as its state the current candidate vector G ∈ L in the search lattice, where G[i] is maintained at
process i. We call G, the global state, and G[i], the state of process i.

Fig. 1 shows a finite poset corresponding to n processes (n equals two in the figure), and the corresponding lattice of
all eleven global states.

Finding an element in lattice that satisfies the given predicate B, is called the predicate detection problem. Finding
the minimum element that satisfies B (whenever it exists) is the combinatorial optimization problem. A key concept
in deriving an efficient predicate detection algorithm is that of a forbidden state. Given a predicate B, and a vector
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Figure 1: A poset and its corresponding distributive lattice L

G ∈ L, a state G[j] is forbidden (or equivalently, the index j is forbidden) if for any vector H ∈ L , where G ≤ H , if
H[j] equals G[j], then B is false for H . Formally,

Definition 1 (Forbidden State [9]) Given any distributive lattice L of n-dimensional vectors of R≥0, and a predicate
B, we define forbidden(G, j,B) ≡ ∀H ∈ L : G ≤ H : (G[j] = H[j])⇒ ¬B(H).

We define a predicate B to be lattice-linear with respect to a lattice L if for any global state G, B is false in G implies
that G contains a forbidden state. Formally,

Definition 2 (lattice-linear Predicate [9]) A boolean predicate B is lattice-linear with respect to a lattice L iff ∀G ∈
L : ¬B(G)⇒ (∃j : forbidden(G, j,B)).

Once we determine j such that forbidden(G, j,B), we also need to determine how to advance along index j. To that
end, we extend the definition of forbidden as follows.

Definition 3 (α-forbidden) Let B be any boolean predicate on the lattice L of all assignment vectors. For any G, j
and positive real α > G[j], we define forbidden(G, j,B, α) iff

∀H ∈ L : H ≥ G : (H[j] < α)⇒ ¬B(H).

Given any lattice-linear predicate B, suppose ¬B(G). This means that G must be advanced on all indices j such
that forbidden(G, j,B). We use a function α(G, j,B) such that forbidden(G, j,B, α(G, j,B)) holds whenever
forbidden(G, j,B) is true. With the notion of α(G, j,B), we have the Algorithm LLP . The algorithm LLP has
two inputs — the predicate B and the top element of the lattice T . It returns the least vector G which is less than or
equal to T and satisfies B (if it exists). Whenever B is not true in the current vector G, the algorithm advances on all
forbidden indices j in parallel. This simple parallel algorithm can be used to solve a large variety of combinatorial
optimization problems by instantiating different forbidden(G, j,B) and α(G, j,B).

ALGORITHM LLP: To find the minimum vector at most T that satisfies B
vector function getLeastFeasible(T : vector, B: predicate)
var G: vector of reals initially ∀i : G[i] = 0;

while ∃j : forbidden(G, j,B) do
for all j such that forbidden(G, j,B) in parallel:

if (α(G, j,B) > T [j]) then return null;
else G[j] := α(G, j,B);

endwhile;
return G; // the optimal solution

The following Lemma is useful in proving lattice-linearity of predicates.

Lemma 1 [1, 9] Let B be any boolean predicate defined on a lattice L of vectors.
(a) Let f : L → R≥0 be any monotone function defined on the lattice L of vectors of R≥0. Consider the predicate
B ≡ G[i] ≥ f(G) for some fixed i. Then, B is lattice-linear.
(b) If B1 and B2 are lattice-linear then B1 ∧B2 is also lattice-linear.

We now give an example of lattice-linear predicates for scheduling of n jobs. Each job j requires time tj for completion
and has a set of prerequisite jobs, denoted by pre(j), such that it can be started only after all its prerequisite jobs have
been completed. Our goal is to find the minimum completion time for each job. We let our lattice L be the set of
all possible completion times. A completion vector G ∈ L is feasible iff Bjobs(G) holds where Bjobs(G) ≡ ∀j :
(G[j] ≥ tj) ∧ (∀i ∈ pre(j) : G[j] ≥ G[i] + tj). Bjobs is lattice-linear because if it is false, then there exists j such
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Pj : Code for thread j
// common declaration for all the programs below
var G: array[1..n] of 0..maxint;// shared among all threads
input: t[j] : int, pre(j): list of 1..n;
init: G[j] := t[j];

job-scheduling:
forbidden: G[j] < max{G[i] + t[j] | i ∈ pre(j)};

advance: G[j] := max{G[i] + t[j] | i ∈ pre(j)};

job-scheduling:
ensure: G[j] ≥ max{G[i] + t[j] | i ∈ pre(j)};

Figure 2: LLP Parallel Program for (a) job scheduling problem using forbidden predicate (b) job scheduling problem
using ensure clause

that either G[j] < tj or ∃i ∈ pre(j) : G[j] < G[i] + tj . We claim that forbidden(G, j,Bjobs). Indeed, any vector
H ≥ G cannot be feasible with G[j] equal to H[j]. The minimum of all vectors that satisfy feasibility corresponds to
the minimum completion time.

As an example of a predicate that is not lattice-linear, consider the predicate B ≡
∑

j G[j] ≥ 1 defined on the space
of two dimensional vectors. Consider the vector G equal to (0, 0). The vector G does not satisfy B. For B to be
lattice-linear either the first index or the second index should be forbidden. However, none of the indices are forbidden
in (0, 0). The index 0 is not forbidden because the vector H = (0, 1) is greater than G, has H[0] equal to G[0] but it
still satisfies B. The index 1 is also not forbidden because H = (1, 0) is greater than G, has H[1] equal to G[1] but it
satisfies B.

3 Notation

We now go over the notation used in description of our parallel algorithms. Fig. 2 shows a parallel algorithm for the
job-scheduling problems.

The var section gives the variables of the problem. We have a single variable G in the example shown in Fig. 2. G is
an array of objects such that G[j] is the state of thread j for a parallel program.

The input section gives all the inputs to the problem. These inputs are constant in the program and do not change
during execution.

The init section is used to initialize the state of the program. All the parts of the program are applicable to all values
of j. For example, the init section of the job scheduling program in Fig. 2 specifies that G[j] is initially t[j]. Every
thread j would initialize G[j].

The always section defines additional variables which are derived from G. The actual implementation of these vari-
ables are left to the system. They can be viewed as macros. We will show its use later.

The LLP algorithm gives the desirable predicate either by using the forbidden predicate or ensure predicate. The
forbidden predicate has an associated advance clause that specifies howG[j] must be advanced whenever the forbidden
predicate is true. For many problems, it is more convenient to use the complement of the forbidden predicate. The
ensure section specifies the desirable predicates of the form (G[j] ≥ expr) or (G[j] ≤ expr). The statement ensure
G[j] ≥ expr simply means that whenever thread j finds G[j] to be less than expr; it can advance G[j] to expr. Since
expr may refer to G, just by setting G[j] equal to expr, there is no guarantee that G[j] continues to be equal to expr
— the value of expr may change because of changes in other components. We use ensure statement whenever expr
is a monotonic function of G and therefore the predicate is lattice-linear.

4 Longest Increasing Subsequences

We are given an integer array as input. For simplicity, we assume that all entries are distinct. Our goal is find for each
index i the length of the longest increasing sequence that ends at i. For example, suppose the array A is {35 38 27
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45 32}. Then, the desired output is {1 2 1 3 2}. The corresponding longest increasing subsequences are: (35),
(35, 38), (27), (35, 38, 45), (27, 32).

We can define a graph H with indices as vertices. For this example, we have five vertices numbered v1 to v5. We draw
an edge from vi to vj if i is less than j and A[i] is also less than A[j]. This graph is clearly acyclic as an edge can only
go from a lower index to a higher index. We use pre(j) to be the set of indices which have an incoming edge to j. The
length of the longest increasing subsequence ending at index j is identical to the length of the longest path ending at j.

To solve the problem using LLP, we model it as a search for the smallest vector G that satisfies the constraint B ≡
∀j : G[j] ≥ 1 ∧ ∀j : G[j] ≥ max{G[i] + 1 | i ∈ pre(j)}. To understand B, we first consider a stronger predicate
B∗ = (G[1] = 1) ∧ ∀j : G[j] = max{1,max{G[i] + 1 | i ∈ pre(j)}}. The interpretation of G[j] in B∗ is that it is
the length of the longest path that ends in j. Thus, in the longest increasing subsequence problem we are searching for
the vector that satisfies the predicate B∗. Instead of searching for an element in the lattice that satisfies B∗, we search
for the least element in the lattice that satisfies B. This allows us to solve for the constrained version of the problem
in which we are searching for an element that satisfies an additional lattice-linear constraint.

The underlying lattice we consider is that of all vectors of natural numbers less than or equal to the maximum element
in the lattice. A vector in this lattice is feasible if it satisfies B. We first show that the constraint B is lattice-linear.

Lemma 2 The constraint B ≡ (∀j : G[j] ≥ 1) ∧ (∀j : G[j] ≥ max{G[i] + 1 | i ∈ pre(j)}) is lattice-linear.

Proof: Since the predicate B is a conjunction of two predicates, it is sufficient to show that each of them is lattice-
linear from Lemma 1(b). The first conjunct is lattice linear because the constant function 1 is monotone. The second
conjunct can be viewed as a conjunction over all j. For a fixed j, the predicate G[j] ≥ max{G[i] + 1 | i ∈ pre(j) is
lattice-linear from Lemma 1(a).

Our goal is to find the smallest vector in the lattice that satisfies B. Now, LLP algorithm can be formulated as LLP-
Longest-Increasing-Subsequence.

ALGORITHM LLP-Longest-Increasing-Subsequence: Finding the Longest Increasing Subsequence.
Pj : Code for thread j
input: A:array of int;
var G: array[1 . . .n] of int;
init: G[j] = 1;

pre(j) := {i ∈ 1..j − 1|A[i] < A[j]};
ensure: G[j] ≥ max{G[i] + 1 | i ∈ pre(j)};

This algorithm starts with all values as 1 and increases the G vector till it satisfies the constraint G[j] ≥ max{G[i] +
1 | i ∈ pre(j)}. The above algorithm, although correct, does not preclude G[j] from getting updated multiple times.
To ensure that no G[j] is updated more than once, we introduce a boolean fixed for each index such that we update
G[j] only when it is not fixed and all its predecessors are fixed. With this change, our algorithm becomes LLP2-
Longest-Increasing-Subsequence.

ALGORITHM LLP2-Longest-Increasing-Subsequence: Finding the Longest Increasing Subsequence.
Pj : Code for thread j
input: A:array of int;
var G: array[1 . . .n] of int;

fixed: array[1 . . .n] of boolean;
init: G[j] = 1; fixed[j] := false;

pre(j) := {i ∈ 1..j − 1|A[i] < A[j]};
forbidden: ¬fixed[j] ∧ (∀i ∈ pre(j) : fixed[i]);

advance: G[j] := max{G[i] + 1 | i ∈ pre(j)};
fixed[j] := true;

Let us now analyze the complexity of the algorithm. The sequential complexity is simple because we can maintain the
list of all vertices that are forbidden because all its predecessors are fixed. Once we have processed a vertex, we never
process it again. This is similar to a sequential algorithm of topological sort. In this case, we examine a vertex exactly
once only after all its predecessors are fixed. The time complexity of this algorithm is O(n2).
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For the parallel time complexity, assume that we have n2 processors available. Then, in time O(log n), one can
determine whether the vertex is forbidden and advance it to the correct value if it is forbidden. This is because for
every j, we simply need to check that all vertices in pre(j) are fixed and j is not fixed. By using a parallel reduce
operation, we can check in O(log n) time whether j is forbidden. If the longest path in the graph H is ∆, then the
algorithm takes O(∆ log n) time.

Now, let us consider the situation where each thread j writes the value of fixed[j] and G[j] without using any
synchronization. If any thread j reads the old value of fixed[i] for some i in pre(j), it will not update fixed[j] at
that point. Eventually, it will read the correct value of fixed[i], and perform advance. We do assume in this version
that if a process reads fixed[i] as true, then it reads the correct value of G[i], because fixed[i] is updated after G[i].
Consequently, we get the following result.

Lemma 3 There exists a parallel algorithm for the longest increasing subsequence problem which uses just read-write
atomicity and solves the problem in O(∆ log n) time.

We now add lattice-linear constraints to the problem. Instead of the longest increasing subsequence, we may be
interested in the longest increasing subsequence that satisfies an additional predicate.

Lemma 4 All the following predicates are lattice linear.

1. For any j, G[j] is greater than or equal to the longest increasing subsequence of odd integers ending at j.

2. G[j] is greater than or equal to the longest increasing subsequence such that jth element in the subsequence
exceeds (j − 1)th element by at least k.

Proof:

1. Since lattice-linear predicates are closed under conjunction, it is sufficient to focus on a fixed j. If G[j] is
less than the length of the longest increasing subsequence of odd integers ending at j, then the index j is
forbidden. Unless j is increased the predicate can never become true.

2. We view this predicate as redrawing the directed graph H such that we draw an edge from vi to vj if i is less
than j and A[i] + k is less than or equal to A[j].

We note here that the problem can also be solved in parallel using repeated squaring of an appropriate matrix. We do
not discuss that method here since it is not work-optimal and generally not efficient in practice.

5 Optimal Binary Search Tree

Suppose that we have a fixed set of n symbols called keys with some associated information called values. Our goal
is to build a dictionary based on binary search tree out of these symbols. The dictionary supports a single operation
search which returns the value associated with the the given key. We are also given the frequency of each symbol as
the argument for the search query. The cost of any search for a given key is given by the length of the path from the
root of the binary search tree to the node containing that key. Given any binary search tree, we can compute the total
cost of the tree for all searches. We would like to build the binary search tree with the least cost.

Let the frequency of key i being searched is pi. We assume that the keys are sorted in increasing order of pi. Our
algorithm is based on building progressively bigger binary search trees. The main idea is as follows. Suppose symbol
k is the root of an optimal binary search tree for symbols in the range [i..j]. The root k divides the range into three
parts – the range of indices strictly less than k, the index k, and the range of indices strictly greater than k. The left
or the right range may be empty. Then, the left subtree and the right subtree must themselves be optimal for their
respective ranges. Let G[i, j] denote the least cost of any binary search tree built from symbols in the range i..j. We
use the symbol s(i, j) as the sum of all frequencies from the symbol i to j, i.e.,

s(i, j) =

j∑
k=i

pk

For convenience, we let s(i, j) equal to 0 whenever i > j, i.e., the range is empty.

We now define a lattice linear constraint on G[i, j]. Let i ≤ k < j. Consider the cost of the optimal tree such that
symbol k is at the root. The cost has three components: the cost of the left subtree if any, the cost of the search ending
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at this node itself and the cost of search in the right subtree. The cost of the left subtree is

G[i, k − 1] + s(i, k − 1)

whenever i < k. The cost of the node itself is s(k, k). The cost of the right subtree is

G[k + 1, j] + s(k + 1, j)

Combining these expressions, we get

G[i, j] = min
i≤k<j

(G[i, k − 1] + s(i, j) +G[k + 1, j])

This is also the least value of G[i, j] such that

G[i, j] ≥ min
i≤k<j

(G[i, k − 1] + s(i, j) +G[k + 1, j])

We now show that the above predicate is lattice-linear.

Lemma 5 The constraint B ≡ ∀i, j : G[i, j] ≥ mini≤k<j(G[i, k − 1] + s(i, j) +G[k + 1, j]) is lattice-linear.

Proof: Suppose that B is false, i.e., ∃i, j : G[i, j] < mini≤k<j(G[i, k − 1] + s(i, j) + G[k + 1, j]). This means that
there exists i, j, k with i ≤ k < j such that G[i, j] < (G[i, k − 1] + s(i, j) + G[k + 1, j]). This means the the index
(i, j) is forbidden and unless G[i, j] is increased, the predicate B can never become true irrespective of how other
components of G are increased.

We now have our LLP-based algorithm for Optimal Binary Search Tree as Algorithm LLP-OptimalBinarySearchTree.
The program has a single variable G. It is initialized so that G[i, i] equals p[i] and G[i, j] equals zero whenever i is not
equal to j. The algorithm advances G[i, j] whenever it is smaller than mini≤k<j G[i, k − 1] + s(i, j) + G[k + 1, j].
In Algorithm LLP-OptimalBinarySearchTree, we have used the awlways clause as a macro that uses s(i, j) as a short
form for

∑j
k=i p[k].

ALGORITHM LLP-OptimalBinarySearchTree: Finding An Optimal Binary Search Tree
Pi,j : Code for thread (i, j)
input: p:array of real;// frequency of each symbol
init: G[i, j] = 0 ∀i 6= j;

G[i, i] = p[i];
always: s(i, j) =

∑j
k=i p[k]

ensure:
G[i, j] ≥ mini≤k<j G[i, k − 1] + s(i, j) +G[k + 1, j]

priority: (j − i)

Although, the above algorithm will give us correct answers, it is not efficient as it may update G[i, j] before G[i, k]
and G[k, j] for i ≤ k < j have stabilized. However, the following scheduling strategy ensures that we update G[i, j]
at most once. We check for whether G[i, j] is forbidden in the order of j − i. Hence, initially all G[i, j] such that
j = i + 1 are updated. This is followed by all G[i, j] such that j = i + 2, and so on. We capture this scheduling
strategy with the priority statement. We pick G[i, j] to update such that (j − i) have minimal values. Of course, our
goal is to compute G[1, n]. With the above strategy of updating G[i, j], we get that G[i, j] is updated at most once.
Since there are O(n2) possible values of G[i, j] and each takes O(n) work to update, we get the work complexity of
O(n3). On a CREW PRAM, we can compute all i, j with the fixed difference in parallel. By using O(log n) span
algorithm to compute min, we get the parallel time complexity as O(n log n). Thus, we have the following result.

Lemma 6 There exists a parallel algorithm for the optimal binary search tree problem which uses just read-write
atomicity and solves it in O(n log n) parallel time.

We now consider the constrained versions of the problem.

Lemma 7 All the following predicates are lattice linear.

1. Key x is not a parent for any key.

2. The difference in the sizes of the left subtree and the right subtree is at most 1.

7
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Proof:

1. This requirement changes the ensure predicate to G[i, j] ≥ mini≤k<j,k 6=xG[i, k− 1] + s(i, j) +G[k+ 1, j].
The right hand side of the constraint continues to be monotonic and therefore it is lattice linear.

2. This requirement changes the ensure predicate to G[i, j] ≥ mini≤k<j,|k−1−i,j−k−1|≤1G[i, k−1] + s(i, j) +
G[k + 1, j]. This change simply restricts the values of k, and the right hand side continues to be monotonic.

Remark: A problem very similar to the optimal Binary Search tree problem is that of constructing an optimal way of
multiplying a chain of matrices. Since matrix multiplication is associative, the product of matrices (M1 ∗M2) ∗M3

is equal to M1 ∗ (M2 ∗M3). However, depending upon the dimensions of the matrices, the computational effort may
be different. We let the dimension of matrix Mi be mi−1 ×mi. Note that this keep the matrix product well-defined
because the dimension of matrix Mi+1 would be mi × mi+1 and the product Mi ×Mi+1 is well-defined. We can
view any evaluation of a chain as a binary tree where the intermediate notes are the multiplication operation and the
leaves are the matrices themselves. Suppose, our goal is to compute the optimal binary tree for multiplying matrices in
the range Mi . . .Mj . Borrowing ideas from the previous section, we let G[i, j] denote the optimal cost of computing
the product of matrices in the range Mi . . .Mj . Suppose that this product is broken into products of Mi . . .Mk and
Mk+1 . . .Mj and then multiplication of these two matrices. We can compute the cost of this tree as

G[i, k] +G[k + 1, j] +mi−1mkmj

Then, we have the following predicate on G.

G[i, j] ≥ min
i≤k<j

(G[i, k] +mi−1mkmj +G[k + 1, j]

The reader will notice the similarity with the optimal binary search tree problem and this problem and the same
algorithm can be adapted to solve this problem.

6 Knapsack Problem

We are given n items with weights w1, w2, . . . , wn and values v1, v2, . . . , vn. We are also given a knapsack that has
a capacity of W . Our goal is to determine the subset of items that can be carried in the knapsack and that maximizes
the total value. The standard dynamic programming solution is based on memoization of the following dynamic
programming formulation [10, 11]. Let G[i, w] be the maximum value that can be obtained by picking items from 1..i
with the capacity constraint of w. Then, G[i, w] = max(G[i− 1, w−wi] + vi, G[i− 1, w]). The first argument of the
max function corresponds to the case when the item i is included in the optimal set from 1..i, and the second argument
corresponds to the case when the item i is not included and hence the entire capacity can be used for the items from
1..i− 1. If wi > w, then the item i can never be in the knapsack and can be skipped. The base cases are simple. The
value of G[0, w] and G[i, 0] is zero for all w and i. Our goal is to find G[n,W ]. By filling up the two dimensional
array G for all values of 0 ≤ i ≤ n and 0 ≤ w ≤W , we get an algorithm with time complexity O(nW ).

We can model this problem using lattice-linear predicates as follows. We model the feasibility asG[i, w] ≥ max(G[i−
1, w−wi] + vi, G[i− 1, w]) for all i, w > 0 and wi ≤ w. Also, G[i, w] = 0 if i = 0 or w = 0. Our goal is to find the
minimum vector G that satisfies feasibility.

Lemma 8 The constraint B ≡ ∀i, w : G[i, w] ≥ max(G[i−1, w−wi] +vi, G[i−1, w]) for wi ≤ w is lattice-linear.

Proof: If the predicate B is false, there exists i and w such that G[i, w] < max(G[i − 1, w − wi] + vi, G[i − 1, w]).
The value G[i, w] is forbidden; unless G[i, w] is increased the predicate can never become true.

ALGORITHM LLP-Knapsack: Finding An Optimal Solution to the Knapsack Problem
Pi,j : Code for thread (i, j)
input: w, v:array[1..n] of int;// weight and value of each item
var: G:array[0 . . . n, 0 . . .W ] of int;
init: G[i, j] = 0 if (i = 0) ∨ (j = 0);
ensure:
G[i, j] ≥ max{G[i− 1, j − wi] + vi, G[i− 1, j]} if j ≥ wi

≥ G[i− 1, j], otherwise.

8
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Algorithm LLP-Knapsack updates the value of G[i, j] based only on the values of G[i − 1, .]. Furthermore, G[i, j]
is always at least G[i − 1, j]. Based on this observation, we can simplify the algorithm as follows. We consider the
problem of adding just one item to the knapsack given the constraint that the total weight does not exceed W . We
maintain the list of all optimal configurations for each weight less than W .

ALGORITHM LLP-IncrKnapsack2: Finding An Optimal Solution to the Incremental Knapsack Problem
Pj : Code for thread j
input: w, v: int;// weight and value of the next item

C: array[0 . . .W ] of int;
var: G:array[0 . . .W ] of int;
init: ∀j : G[j] = C[j];
ensure:

G[j] ≥ C[j − w] + v if j ≥ w

The incremental algorithm can be implemented in O(1) parallel time using O(W ) processors as shown in Fig. LLP-
IncrKnapsack2. Each processor j can check whether G[j] needs to be advanced.

We can now invoke the incremental Knapsack algorithm as Algorithm Knapsack2. If we hadW cores, then computing
G[i, .] from G[i− 1, .] can be done in O(1) giving us the span of O(n).

ALGORITHM Knapsack2: Finding An Optimal Solution to the Knapsack Problem
Pj : Code for thread j
input: w, v:array[1..n] of int;// weight and value of each item
var: G:array[0 . . .W ] of int;
init: ∀j : G[j] = 0;
for i := 1 to n do

G := IncrKnapsack2(w[i], v[i], G);

We now add some lattice-linear constraints to the Knapsack problem. In many applications, some items may be
related and the constraint xa ⇒ xb means that if the item xa is included in the Knapsack then the item xb must also
be included. Thus, the item xa has profit of zero if xb is not included. The item xb has utility even without xa but not
vice-versa. Without loss of generality, we assume that all weights are strictly positive, and that index b < a. In the
following Lemma, we use an auxiliary variable S[i, j] that keeps the set of items included in G[i, j] and not just the
profit from those items.

Lemma 9 First assume that (i 6= a). Let B(i, w) ≡ G[i, w] ≥ max(G[i−1, w−wi] + vi, G[i−1, w]) for (wa ≤ w)
and G[i, w] ≥ G[i− 1, w], otherwise. This predicate corresponds to any item i different from a. The value with a bag
of capacity w is always greater than or equal to the choice of picking the item or not picking the item.

Let B(a,w) ≡ G[a,w] ≥ max(G[a − 1, w − wa] + va, G[a − 1, w]) if b ∈ S[a − 1, w − wa] ∧ (wa ≤ w) and
G[a,w] ≥ G[a− 1, w], otherwise.

Then, B(i, w) is lattice-linear for all i and w.

Proof: Suppose that B(i, w) is false for some i and w. Unless G[i, w] is increased, it can never become true.

7 Conclusions

In this paper, we have shown that many dynamic programming problems can be solved using a single parallel Lattice-
Linear Predicate algorithm. In particular, LLP algorithm solves the problem of the longest increasing subsequence, the
optimal binary search tree and the knapsack problem. In addition, it solves the constrained versions of these problems.
The parallel algorithms described in the paper works correctly with read-write atomicity of variables without any use
of locks.
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