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ABSTRACT

We study the optimal behavior of a bidder in a real-time auction subject to the requirement that a
specified collections of heterogeneous items be acquired within given time constraints. The problem
facing this bidder is cast as a continuous time optimization problem which we show can, under cer-
tain weak assumptions, be reduced to a convex optimization problem. Focusing on the standard first
and second price auction mechanisms, we first show, using convex duality, that the optimal (infinite
dimensional) bidding policy can be represented by a single finite vector of so-called “pseudo-bids”.
Using this result we are able to show that, in contrast to the first price auction, the optimal solution
in the second price case turns out to be a very simple piecewise constant function of time. Moreover,
despite the fact that the optimal solution for the first price auction is genuinely dynamic, we show
that there remains a close connection between the two cases and that, empirically, there is almost no
difference between optimal behavior in either setting. Finally, we detail methods for implementing
our bidding policies in practice with further numerical simulations illustrating the performance.
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First Price Auction; Second Price Auction; Transportation Production Problem
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1 Introduction

Since at least 2016 online advertising, which includes ads in cellphone apps, website banner ads, search engine key-
word ads, etc. has been the dominant advertising segment [19]. One of the drivers of this dominance is not only the
fact that so many people are now online, but that the technology enables more accurate targeting. That is, advertisers
can accurately target their messaging to the groups or individuals to which the message is most relevant. This technol-
ogy enables advertisers to raise awareness of their products, website or app operators (i.e., “publishers”) to monetize
their audiences, and internet users to access a wealth of gratis content.

There are many different mechanisms through which publishers can sell ad space. For example, sponsored search
is a well known mechanism for search engines where certain keywords (e.g. “mortgage”, “used car”, etc.) trigger
the display of relevant sponsored results. More traditional fixed contracts (e.g., for the display of fixed banner ads)
between advertisers and publishers also remain common, particularly for businesses which need to be careful about
their image and want to maintain complete control over what their brand is associated with. Finally, a significant
portion of total advertising revenue is generated through a mechanism called real-time bidding (RTB), which is the
mechanism at the focus of this paper.
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RTB is facilitated by auction exchanges (e.g., Google AdX [28]) where the arrival of each user to a publisher website
or app triggers a sealed-bid auction (the bid is hidden from other participants) wherein advertisers bid on the right to
display their ad to the particular user. Generically, we will think of this as a single “item”, and the known characteristics
(e.g., age, interests, etc.) of the visitor as the item’s “type”. Advertisers decide upon which types they wish to target,
and bid on these items when they arrive at the auction exchange.

In this paper we study a problem of interest to intermediaries or brokers known as Demand Side Platforms (DSPs), see
e.g. [39]. Advertisers contract with these DSPs to bid on the RTB market on their behalf. Specifically, we consider
DSPs that have entered into contracts which require a specified number of items of particular types be won within
a given time deadline. We do not allow for the contract requirements to be subject to post hoc negotiation – once
the contract is accepted the DSP is obligated to meet the requirements. This benefits the advertiser by allowing them
to offload the risk associated with price changes in the market, and gives the DSPs the opportunity to profit from
managing this risk on behalf of multiple advertisers. Thus, the objective of the DSP is to win the required items in
RTB at the lowest possible cost (since the difference between the contract value and its cost of acquiring the ads is the
profit). This is a natural setting to consider as there is a reasonable expectation of efficiency gains when the demands
of a large number of advertisers are aggregated by intermediaries.

The dominant auction mechanisms in RTB are first price and second price auctions. In either case, the item is awarded
to the highest bidder, but the difference lies in what they pay: in a first price auction, the winning bidder pays their
actual bid, whereas in a second price auction, the winning bidder pays whatever the second highest bid was. In both
auctions, the bids are sealed (other participants don’t observe them, even after an item is allocated) so the only source
of information about prices are from available historical data, and the knowledge gained from the bidder’s direct
participation. Standard overviews of auction theory are provided by [24, 29].

Related Work Real-time bidding is commonly studied from at least two main perspectives: the descriptive analysis
of the market itself (e.g., [20, 2, 3]), where questions of game theoretic equilibria are at the forefront; and the con-
sideration of normative problems of optimal bidding. Our perspective is normative. We solve an optimal bidding and
allocation problem by providing algorithms which produce a plan over a given time horizon specifying the optimal
average rate that items should be acquired, and to which contracts (or campaigns) they should be allocated. Similar
allocation problems have been considered from the publisher’s viewpoint [8, 33] and the advertiser’s [48, 37]. How-
ever, aside from [37], no other papers, to our knowledge, have considered contract management aspects with hard
constraints from the DSP perspective. Many works have studied the problem of short time horizon adaptation, for
instance the works of [16, 47, 21, 23] have applied classical control theory methods (e.g., PID controllers) and those
of [18, 7, 43] MDP formulations and reinforcement learning. The goal of these works are to maintain or maximize
certain performance indicators, e.g., click through rates or purchasing decisions. As such, these works can be seen as
considering a faster time scale in comparison to our problem. Optimal bidding problems over a long time horizon are
considered by [13, 17] via application of stochastic optimal control, where the goal is to maximize the total valuation
of items attained over the period, subject to budget constraints. An important consideration has thus also been the
estimation of item valuations, and how to map valuations into bids, see e.g., [32, 49]. These are distinct from the
present work since we do not appeal to any notion of item valuation, indeed, a valuation can only be derived from the
contract requirements. Our formulation is also dual to many of these as we seek to minimize the cost of obtaining a
given number of items, as opposed to maximizing the utility of items obtained within a given budget. A similar class
of problems to our optimal acquisition problem is that of revenue management (see e.g., [40, 6]) wherein a merchant
needs to set prices for their wares in order to optimally liquidate their inventory. Aside from the superficial distinction
of sell-side versus buy-side, the contract management problem studied in the present paper involves substantially dif-
ferent constraints. Finally, many papers have also studied separate, but important, statistical estimation problems (e.g.
[11, 44, 51, 52, 45, 15]) concerned with estimating the prevailing prices of arriving items.

Contributions This paper studies an optimal bidding and allocation problem similar to the earlier work of [37]
for second price static auctions, but with the additional consideration of temporal dynamics and differing contract
deadlines. The main contributions of this paper over those of [37] are threefold: Firstly, the recognition that the
problem is in fact naturally convex, this leads to an analysis which is general enough to unify both the first and second
price auctions, as well as to result in an insightful duality theory. Secondly, a clear development of practical and simple
algorithms for implementing solutions to the optimal bidding and allocation problem are provided, along with detailed
simulation evidence and practical methods for adaptation to a stochastic environment. And finally, we show that there
is a close connection between the first and second price cases, both theoretically as well as through experimental
evidence.

Outline The outline of the paper is as follows: We formally introduce the problem in Section 2. In Section 2.3, we
show that it can be reformulated as an infinite dimensional convex optimization problem (albeit with some additional
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assumptions in the first price case, see Proposition 2.2). The convex formulation and a strong duality theorem is
provided in Section 2.4, where we also show that the optimal time dependent bids are fully determined by a finite set
of parameters deemed pseudo bids. Using duality, we show in Section 2.5 that there is a close connection between the
first and second price case; this connection is expanded upon in the simulations of Section 3.2, where experimental
evidence demonstrates that there is little practical difference between the solutions calculated in the two cases. In
terms of implementation, the dual problem in Section 2.4 is finite and can be solved to attain exact solutions, but doing
so requires computationally expensive integration steps; this motivates a simpler polyhedral approximation method
in Section 3.1, where we also bound the error between the approximation and the true optimal solution. Using the
methods of Section 3.1, an empirical study is carried out in Section 3.2 using real RTB data. Motivated by the results
of this simulation, Section 3.3 examines additional practical methods for online bid updates and for accounting for
uncertainty in any estimated quantities. Finally, Section 4 concludes. Proofs are provided in the appendix.

2 The General Optimal Bidding Problem

We consider the problem of bidding in a sequential auction with M available item types j ∈ [M ]
∆
= {1, 2, . . . ,M}

and where we are required to fulfill N contracts by winning a specified number of items of given types. Specifically,
the contract i ∈ [N ] is a 3-tuple (Ai, Ci, Ti), where Ai ⊆ [M ] is the set of item types that can be allocated towards
the contract, Ci is the number of items (of any type in Ai) that are needed, and Ti is the time deadline by which the
items must be obtained. Another collection of sets, Bi, is uniquely determined by the condition i ∈ Aj ⇐⇒ j ∈ Bi,
and the sets Ai,Bj therefore determine a bipartite graph G on [N ]× [M ] encoding which item types can be allocated
to which contracts, and conversely, which contracts can be satisfied by which item types. It will be convenient to write
(i, j) ∈ G to mean that i, j is an edge in this graph.

We will suppose without loss of generality that 0 < T1 ≤ T2 ≤ · · · ≤ TN . Contracts stipulating more complicated
item requirements (e.g., at least 100 of type j, and an additional 50 of either j or j′) can be implemented by introducing
multiple contracts with the same deadlines. Denoting T ∆

= TN for the end of the problem horizon and T0
∆
= 0 will

also be notationally convenient. The time Ti indicates when contract i “exits” the problem, and similarly it will be
convenient to write T j = max

i∈Bj
Ti for the time that items of type j exit, i.e., are no longer needed.

Remark 2.1 (Non-zero Initial Times). The framework can also incorporate introducing new contracts part way
through the fulfillment of existing ones by “resetting” the existing contracts by subtracting the current time and already
obtained supply from their requirements, and then adding the new contracts to the collection before recalculating the
optimal bids. This is further explored in Section 3.3.1 for the purpose of adapting to a stochastic environment. Man-
aging contracts with starting times other than 0 is also not a major difficulty: each contract must now come along with
a starting time Si and it’s deadline Ti, the ultimate result being that integrals over the interval [0, Ti] would need to be
taken over [Si, Ti], and the dual problem considered in Section 2.4 will have additional variables. In some applications
(e.g., processor speed scaling [14]), there are algorithms which can take advantage of special structure in the arrivals
of jobs (e.g., that the jobs be first-in first-out: Si ≤ Sj =⇒ Ti ≤ Tj) to achieve performance improvements, but such
structure does not impact the methods we develop here.

Remark 2.2 (Item types). That a contract may be fulfilled with any arrangement of items in Ai (e.g., Ci items of a
single type j ∈ Ai is just as good as an even distribution over all items in Ai) appears at first as an unusual modelling
artifact. However, it need not be the case that the counter party can distinguish between item types. For example,
consider two contracts: contract 1 targets anyone aged 30 − 40, and contract 2 targets anyone aged 20 − 40. This
would result in the DSP recognizing two types of items: people aged 20 − 30 and people aged 30 − 40. Contract 2
can indeed be fulfilled just as well with either type, but contract 1 can be fulfilled only with the second type.

2.1 Supply Rate Curves and Cost Functions

The model of how items are acquired relies on a function Wj(x, t), called a supply curve, associated to each item
type j and quantifying, instantaneously at time t, the expected number of items that would be won by bidding x. This
function derives from the assumption that our bidder is a price taker, i.e., has no substantial market impact.

The function Wj(x, t) should be thought of us an un-normalized (cumulative) distribution function with respect to
the bid argument x, but as a rate with respect to the time argument t. This function needs to be estimated from
available historical data (see e.g., [11, 44, 51, 41, 15] for work on this problem), and represents what is essentially
a fluid approximation of the “landscape” of competing bids. It is important to emphasize that these curves represent
averages, but that the environment is stochastic in actuality. Assuming that we only have access to the first order
average statistics leads to a simpler problem, while at the same time also being a weaker assumption than if we were
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to develop a full stochastic model that assumes further information about higher order statistics. Nevertheless, we will
see in Section 3.3 some practical methods for adapting to the stochastic environment.

We remark that the purpose of including time-dependence is to enable the consideration of forecast changes in supply
availability; in particular, there are natural cycles present in the average available supply throughout time: see e.g.,
[46], as well as Figure 1.

Additionally, we must introduce a cost function fj(x, t) which quantifies, instantaneously at time t, the expected cost
of bidding x on every arriving item of type j. This function naturally depends on the auction mechanism, but also on
the supply rate curve Wj , since the total amount spent depends upon the number of items which are actually won. In
order to lighten the notation, we will often suppress the j index and t argument, writing W (x), f(x) etc. when it is
clear from, or irrelevant to, the context.

For a first price auction, the cost function is the product of the bid and the supply rate curve, since you pay your bid:

f1st(x) = xW (x)1R+(x), (1)

where

1A(x) =

{
1 x ∈ A
0 otherwise ,

is the indicator for the set A.

In the second price case, the supply rate curve becomes an integrator, since we only pay the highest competing bid:

f2nd(x) =

∫ x

0

udW (u)1R+
(x)

=
[
xW (x)−

∫ x

0

W (u)du
]
1R+

(x),

(2)

where the first integral is to be understood as a Lebesgue-Stieltjes integral (see e.g. [36, ch. 6]) and we have integrated
by parts. The inequality

f2nd ≤ f1st, (3)

is evident from the above since f2nd(x) = f1st(x)−
[∫ x

0
W (u)du

]
1R+

(x).

We will consider both first price and second price auctions as the two cases are amenable to a unified treatment.
However, we often place our focus on the first price case, as its analysis requires an additional (albeit rather weak)
assumption. We will occasionally omit the superscript 1st or 2nd (sometimes written as a subscript) depending on
whether or not we want to emphasize a particular case. Moreover, it is important to recognize that the DSP must
estimate the curve W (x) in the auction they will actually participate in. Due to strategic differences between the first
and second price cases, these functions will not be the same across auction types, but our analysis has no need to
distinguish between them.

We make the following basic assumptions.
Assumption 2.1 (Supply Rate Curve Properties). For every t ∈ R+, the functions x 7→ Wj(x, t) are strictly positive
and continuous on R, as well as being either strictly monotone increasing on an interval (−∞, x̄j ] ⊆ R and flat

thereafter, or strictly monotone increasing on R and unbounded. Moreover, s̄j(t)
∆
= supxWj(x, t) is either +∞ or

attained at some x̄j(t) ∈ R. Finally, Wj(x, t)→ 0 as x→ −∞.

The reasons for these assumptions, and whether or not they can be relaxed, is discussed in the following sequence of
remarks.
Remark 2.3 (Attainment). That the supremum ofW must be obtained when finite is not a benign assumption. It tech-
nically excludes many models of the form W (x, t) = λ(t)W (x) where λ(t) is a supply rate and W (x) is a cumulative
distribution function with unbounded support (e.g., 1− e−γx). Of course, this is essentially only a theoretical restric-
tion, and such models are reasonable in practice since one could choose some large but fixed maximum allowable bid x̄
and truncate. If the supremum is not attained when finite, then the inverse functionW−1 is not lower semi-continuous,
which is an important property for rigorous proofs.
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Figure 1: Estimated Supply Rate Curves and Costs
Supply rate and win probability curves estimated from iPinYou data. (a) Item arrival rates and the corresponding

forecasts. The hatched region indicates an in-sample period with the remainder being out-of-sample. (b) Estimates of
the win probability function W̃ (x, t) are obtained via Gaussian Kernel Density Estimates.

Remark 2.4 (Randomized Bidding). It is known that there are benefits to randomized bidding [22]. That is, if σ > 0
is a parameter, and x(t) is the estimated optimal bid at time t, then the actual bid submit to the auction house should
be the random quantity b ∼ N (x(t), σ2). In this case, nominal bids below 0 still have some probability of inducing
an actual bid above 0. The σ parameter can, for example, be chosen to correspond to the bandwidth of kernel density
estimates of supply rate curves, a natural estimation procedure for this application. Thus, a nominal bid of x → −∞
can be understood as ensuring that the probability of the actual bid exceeding the floor price is converging to 0.

Remark 2.5 (Continuity). Following the discussion of the previous remark, randomized bidding also leads naturally to
supply rate curves which are smooth (possessing higher order derivatives), for exactly the same reason that Gaussian
kernel density estimates are smooth. Indeed, it would be reasonable to assume that supply rate curves are smooth,
but we only require simple continuity. In the work of [37], supply curves are initially assumed merely to be only
right-continuous; however, it is then shown that optimal bidders must randomize, which makes the curves effectively
continuous.

2.1.1 Estimation of Supply Rate Curves

In order to provide further context, we briefly discuss estimates of supply curves obtained from the IPinYou dataset
[50, 27]. We are not focused on the statistical estimation problem, and we therefore use simple methods. Further detail
is provided in the appendix.

In this example, the supply curve W (x, t) is estimated by combining estimates of the supply rate (the rate of items
arriving), denoted by λ(t), and the probability of winning an item at a certain price. We denote the probability of
winning by W̃ (x, t), and the supply rate curve estimate is then taken to be W (x, t) = λ(t)W̃ (x, t). Figure 1a depicts
representative examples of rate estimates and clearly depicts the typical daily cycles in supply rates. Figure 1b depicts
examples of W̃ (x, t) estimates. The curves are positive, continuous, monotone increasing, and truncated to a bid of
x = 300, c.f., Assumption 2.1.

2.2 Problem Definition

Our goal is to find a bid path x(t) ∈ RN×M and allocation path γ(t) ∈ [0, 1]N×M which solves the following
problem:
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minimize
x,γ

N∑

i=1

∫ Ti

0

[∑

j∈Ai

γij(t)fj(xij(t), t)
]
dt

subject to
∑

j∈Ai

∫ Ti

0

γij(t)Wj(xij(t), t)dt ≥ Ci

∑

i∈Bj

γij(t) ≤ 1, γij(t) ≥ 0,

(TP )

where it is to be understood that constraints containing unqualified indices are to hold over their whole range. That is,
γij(t) ≥ 0 is short for: ∀(i, j) ∈ G ∀t ∈ [0, Ti] γij(t) ≥ 0. Additionally, functions γij(t), xij(t) etc. are treated as 0
or undefined outside of t ∈ [0, Ti]. The notation

Tt
∆
= {i ∈ [N ] | t < Ti} (4)

indicating the contracts active up to time t will be useful in keeping track of active contracts.

The variable γij(t), referred to as the allocation, parameterizes the proportion of items of type j which will be bid
on on behalf of contract i. Similarly, xij(t) indicates the bid that should be submit for an item of type j on behalf
of contract i. Concretely, upon the arrival of an item of type j at time t, the DSP bids on the item with probability
Γj(t) =

∑
i∈Bj γij(t), and if they have chosen to bid they do so on contract iwith probability γij(t)/Γj(t), and finally

place the bid xij(t) on the item. We have here allowed for the possibility of placing different bids depending upon
which contract the item will be allocated towards, however, it will be shown in the sequel that this is never necessary
and that Problem (TP ) could have been written with bids xj(t) indexed only by j and t, rather than the triple i, j, t.

We set the stage for our solution of Problem (TP ) with some final conventions.
Definition 2.1 (Conventions). We writeW−1

j (x, t) for the inverse function of x 7→Wj(x, t). The inverse is guaranteed
to exist on the range of Wj since the function is strictly monotone. Outside the range, the inverse is understood to be
+∞, i.e., W−1

j (s, t) = ∞ if there is no x ∈ R such that Wj(x, t) = s. Typically, we will use x for bids and s for
units of supply.

2.3 Convex Acquisition Costs

The key to understanding Problem (TP ) is to consider acquisition cost functions:

Λj(s, t)
∆
= fj ◦W−1

j (s, t) (5)

which quantify, instantaneously at time t, the average cost of acquiring supply at the rate s.

In the second price case, the acquisition cost function is always convex. Indeed, this can be seen by a change of
variables y = W (u)

Λ2nd(s) = 1R+
(W−1(s))

∫ W−1(s)

0

udW (u)

= 1{s≥W (0)}

∫ s

W (0)

W−1(y)dy,

which is convex since its (one-sided) derivative on the domain is monotone non-decreasing. The interpretation of this
result is that the marginal acquisition costs are increasing [26]. This is entirely natural for second price auctions since
you pay the same amount for items that would be won by bids of x, whether or not you’re bidding exactly this amount,
or something greater.

For the case of first price auctions, while total costs are necessarily always greater for greater bids, the marginal costs
need not necessarily be increasing and therefore convexity does not always hold. In order to understand when it does,
we need to discuss the idea of log-concavity. Recall that a function W is log-concave if ln ◦W is concave and that
any concave function is log-concave, but that the converse is false. The following notion of concavity, which includes
both concavity and log-concavity, is utilized in our analysis.
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Definition 2.2 (α-concavity). Define, for α ≥ 0, x > 0 the function

`α(x)
∆
=

∫ x

1

1

tα
dt =

{
lnx α = 1
x1−α−1

1−α otherwise ,

where in particular `2(x) = 1 − 1/x. We will say that a positive function W : R → (0,∞) is (strictly) α-concave if
`α ◦W is (strictly) concave. In particular, W is log-concave if α = 1 and concave if α = 0.

The following observation tells us that for any α > 1, α-concavity is a weaker requirement than log-concavity, which
is in turn weaker than concavity.
Proposition 2.1 (Hierarchy of α-concavity). For 0 ≤ α < β, if W is α-concave, then it is also β-concave.

We can now characterize the conditions under which the cost of acquisition function Λj(s, t) is convex in s for first
price auctions. As discussed above, a similar statement holds for the second price case, and doesn’t require the log-
concavity assumption.
Proposition 2.2 (Convex Acquisition Costs – First Price Case). Suppose that a supply rate curve W (x) is strictly
2-concave. Then in a first price auction, the extended acquisition function

Λ1st(s)
∆
=




∞; s > s̄
0; s < W (0)
sW−1(s); otherwise

, (6)

is a proper1, lower semi-continuous, non-decreasing, and convex function on R, which is strictly convex on [W (0), s̄].
Moreover, the convex conjugate

Λ∗1st(p)
∆
= sup

s∈R

[
sp− Λ(s)

]
,

is itself a proper, lower semi-continuous, non-decreasing, and convex function on R, which satisfies Λ∗1st(p) =∞ for
p < 0, and if s̄ <∞, then Λ∗1st(p) = px̄− Λ1st(s̄) on p > x̄.

2.4 Optimal Bidding in Continuous Time

As long as the acquisition cost functions are convex, we can equivalently reformulate Problem (TP ) as the following
continuous time convex optimization problem. This reformulation is not trivial and makes use of the existence of a
campaign-independent optimal bid xij(t) = xj(t), the existence of which is established by using the convexity of Λ.
Proposition 2.3 (Continuous Primal Problem). In a first or second price auction, suppose that for each j ∈ [M ] and
t ∈ [0, T j ], the acquisition cost curve Λj(x, t) is convex in x. Then, Problem (TP ) can be reformulated as

minimize
s,r

M∑

j=1

∫ T j

0

Λj(sj(t), t)dt

subject to
∑

j∈Ai

∫ Ti

0

rij(t)dt ≥ Ci

∑

i∈Bj

rij(t) = sj(t)

rij(t) ≥ 0.

(P )

If a solution exists, then a solution to the original problem (TP ) is obtained via xij(t) = W−1
j (sj(t), t) for each

i ∈ Bj and γij(t) = rij(t)/sj(t). Moreover, Problem (P ) is convex.

Remark 2.6 (Connection to Transportation-Production Problems). This result demonstrates that Problem (TP ) can
be reformulated as an instance of a (convex) Transportation-Production problem (see [26, 35]) in continuous time

1Recall that a function f : R→ (−∞,∞] is proper if it is not everywhere equal to +∞.
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(hence the label (TP )), which is in turn an example of a monotropic program [34, 4]. To see this connection, one can
think of i as the “consumption nodes”, j as the “production nodes”, the graph G (defined through the sets Ai,Bj) as
defining the transportation network, and the functions fj ,Wj ,Λj as characterizing the costs of production.

In order for a solution to exist, it is necessary only that an adequate amount of supply is available to fulfill each contract
before its deadline. In the context of internet advertising, this is not unreasonable, and a coarse sufficient condition
is W (x) → ∞ as x → ∞. As in the case of finite optimization problems, strong duality obtains if there is a strictly
feasible point.
Assumption 2.2 (Adequate Supply). We suppose that ∃x ∈ RM such that the following linear feasibility problem has
a strictly feasible point (i.e., a Slater point)

find γijk

such that
∑

k:Tk≤Ti

∑

j∈Ai

γijk

∫ Tk

Tk−1

Wj(xj , t)dt > Ci

∑

i∈Bj

γijk ≤ 1, γijk ≥ 0.

(7)

That is, there exists a large enough constant bid such that an adequate amount of supply is attained.
Remark 2.7. A simpler sufficient condition (appearing also in [26]) is to suppose that each curve has an adequate
amount of supply to fulfill all the contracts to which it is assigned:

∀j ∈ [M ] ∃x ∈ R :

∫ τj

0

Wj(x, t)dt >
∑

i∈Bj

Ci,

where τj = min{Ti | i ∈ Bj}. Finally, this condition is clearly satisfied under the simple condition that if for each j, t
we have Wj(x, t)→∞ as x→∞.

Proposition 2.4 (Duality). A Dual of (P ) can be formulated as

maximize
ρ,µ

−
M∑

j=1

∑

k:Tk≤T j

∫ Tk

Tk−1

Λ∗j (µjk, t)dt+

N∑

i=1

ρiCi

subject to µjk ≥ ρi ∀i ∈ Bj ∩ TTk
ρi ≥ 0,

(D)

which is a finite convex problem. Problem (D) is dual to Problem (P ) in the sense that ifD? and P ? are their respective
values (possibly∞ or −∞), then D? ≤ P ?.

Finally, under Assumption 2.2 there exists a solution (s, r) ∈ L2(R)M × L2(R)N×M to Problem (P ) and a solution
(ρ, µ) ∈ RN × RM to Problem (D) and −∞ < D? = P ? <∞.

Finally, the optimal bid path x(t) for Problem (TP ) can be reconstructed from solutions to (D) and is, in fact, fully
characterized by the finite vector ρ ∈ RN , which we designate as the vector of pseudo-bids.
Example 2.1 (Pseudo Bids). Suppose that µjk, ρi are optimal dual multipliers for the Problem (D) and consider the
s-dependent portion of the Lagrangian:

L(s) =

M∑

j=1

∫ T j

0

[
Λj(sj(t), t)− µj(t)sj(t)

]
dt,

where µj(t) = µjk for t ∈ [Tk−1, Tk) is piecewise constant.

Minimizing this function over sj(t) leads to an optimal supply path as a function of µj(t). Since the above function is
convex, we know that the optimum is attained at sj(t) such that the pointwise selection holds:

µj(t) ∈ ∂Λj(sj(t), t), (8)
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where ∂ indicates the subdifferential and is with respect to the first argument. Therefore, since µj(t) = max
i∈Bj∩Tt

ρi, the

entire optimal supply path s(t), and therefore the entire optimal bid path x(t), is fully determined by the finite vector
ρ ∈ RN through Equation (8). For this reason, we refer to ρ as the vector of pseudo bids.

2.5 Connections Between First and Second Price Auctions

It will be seen in Section 3.2 that, empirically, the optimal solution calculated for the second price auction also provides
very good bid and allocation paths for the first price auction. From Example 2.1, we know that the optimal solutions
cannot be exactly the same (except perhaps in some coincidental cases), but we explain the empirical similarity by
illuminating the close connection between the first and second price cases in the following proposition.
Proposition 2.5 (Connection Between First and Second Price Case). Under Assumption 2.2, and whenever the acqui-
sition cost curves are convex, the Problem (TP ) for a second price auction is equivalent to solving

minimize
x,γ,ρ

M∑

j=1

∫ T j

0

xj(t)Wj(xj(t), t)dt−
N∑

i=1

ρiCi

subject to
∑

j∈Ai

∫ Ti

0

γij(t)Wj(xj(t), t) ≥ Ci

∑

i∈Bj

γij(t) = 1, γij(t) ≥ 0, ρi ≥ 0

xj(t) ≥ ρi ∀i ∈ Bj ∩ Tt.

(9)

The objective function involves xj(t)Wj(xj(t), t), which is the cost associated with a first price auction.

Returning to Example 2.1, we can make a further explicit comparison between the two cases.
Example 2.2 (Pseudo Bids (continued)). For the purpose of illustration, let us temporarily assume that our supply
rate curves are smooth in the bid x, and that the optimal solutions satisfy sj(t) ∈ (Wj(0, t), s̄j(t)) (i.e., do not reach
the extremes of available supply) so that we have the simple expressions Λ2nd

j (s, t) =
∫ s
Wj(0,t)

W−1
j (y, t)dy and

Λ1st
j (s) = sW−1

j (s, t). For the first price case, let us define a function gj , where ′ denotes differentiation with respect
to x:

gj(x, t)
∆
=
f ′j,1st(x, t)

W ′j(x, t)
= x+

Wj(x, t)

W ′j(x, t)
.

We can then solve Equation 8 for the optimal bid in terms of µj , which in the first price case, can be written in terms
of g: Λ′−1

j (x, t) = Wj ◦ g−1
j (x, t). The second price case is much simpler, and we have Λ′2nd(x, t) = W−1(s, t).

That is, the analogous ’g’ function for the second price case is the identity.

Now, in each case we map the desired supply s into the required bid x through xj(t) = W−1
j (sj(t), t) and find that

the optimal bids for each case are

xj(t) =

{
µ2nd
j (t) Second Price
g−1
j (µ1st

j (t), t) First Price,
(10)

where µ2nd
j (t) is the dual multipliers associated to Problem (D) with second price cost function and µ1st

j are multipliers
of the same problem but with the first price cost function; that is, µ1st

j 6= µ2nd
j in general. It is important to recognize

that µ(t) is a piecewise constant function which is fully determined by ρ ∈ RN . The implication being that in each
case, the entire time-dependent optimal bid path is fully characterized by the finite vector ρ associated to the dual
problem (D).

The upshot of these calculations is that in the second price case, the optimal bid path is constant between contract
deadlines, whereas in the first price case the pseudo bids need to be mapped through the function g−1. The intuition
for this fact is that in a second price case you are “protected” from overpaying (since you only pay the second highest
bid) whereas in the first price case you need to adapt the bids to your belief about the prevailing prices.
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If the supply rate curves are time-independent (i.e. W (x, t) = W (x)), then the function g−1
j is time-independent

as well. It may be conjectured that in this case the optimal bids would coincide, i.e., that µ2nd
j (t) = g−1

j (µ1st
j (t)).

Experimental evidence shows that this does not seem to be the case in general.

3 Computational Methods and Simulations

In this section we review computational methods useful for the implementation of our theory (Section 3.1); carry out
a Monte Carlo simulation lending evidence to the similarity between the first and second price case, as suggested
by Proposition 2.5 (Section 3.2); and finally provide basic results on practical methods for adapting to a stochastic
environment (Section 3.3).

3.1 Computing and Implementing Optimal Bids

To summarize the developments so far, the solution to the optimal bidding and allocation problem (TP ) consists of
a bid path x(t) and allocation path γ(t). The function γij(t) indicates that if an item of type j is won at auction at
time t, then it should be allocated towards contract i with probability γij(t). Therefore, upon the arrival of an item
of type j, the bidder should sample a random index î ∈ Bj from a categorical distribution with P{̂i = i} = γij(t).
Then, the function xîj(t) indicates the nominal bid which should be submit to the auction house (the actual bid being
N (xîj(t), σ

2) if randomization is used). Finally, if the item is won, it should be allocated to contract î.

The Problem (TP ) is, as written, not tractable. However, Proposition 2.3 tells us that the solution s(t), r(t) to the
convex problem (P ) can be used to obtain the optimal bid and allocation through

xij(t) = W−1
j (sj(t), t),

γij(t) = rij(t)/sj(t),

where it is to be understood that xij(t) = γij(t) = 0 for any j 6∈ Ai or t > Ti, and that any 0/0 encountered in the
construction of γij(t) is to be taken as 0. Moreover, this formula tells us that we actually need to keep track of only
M bidding functions, xj(t), since there is an optimal solution such that xij(t) = xi′j(t) for each i, i′ ∈ Bj .
Problem (P ) is still an infinite dimensional problem, and thus remains intractable as written. A solution could be
obtained by first solving the dual (D) (which is finite, but requires integration), substituting the resulting pseudo-bids
(through g−1, see Example 2.2) into the original problem (TP ) and solving the resulting linear program to obtain γ(t).
However, we have found that directly discretizing the primal problem and solving the resulting convex program tends
to be faster and with limited degradation in accuracy. Moreover, solving the primal directly results in both the optimal
bids and the optimal allocations simultaneously.

Therefore, in this section we study the discretization of Problem (P ). We will see that the linearity of the constraints
allows us to construct feasible approximate solutions for (P ), and that we can also estimate the sub-optimality of the
approximation. Some additional details pertaining to the convexity of Λ and how the supply curves can be guaranteed
to have the needed α-concave property are provided in the Appendix A. The conclusion of our developments is
provided in Algorithm 1. The error condition in Algorithm 1 encountered when supply is inadequate can be handled,
for example, by modifying the objective of Problem (PK) to instead penalize supply shortfalls, rather than attempting
to enforce them as constraints, resulting in a “best effort” solution.

To the end of discretizing Problem (P ), choose a sequence of points 0 = T̃0 < T̃1 < · · · < T̃K = T where K ≥ N

and {Ti}Ni=1 ⊆ {T̃k}Kk=1. Then, using the notation ∆k = T̃k − T̃k−1 we define, for k ∈ [K] and T̃k ≤ T j

Λjk(s)
∆
=

1

2
∆k

[
Λj(s, T̃k) + Λj(s, T̃k−1)

]
, (11)

i.e., a trapezoidal approximation of the integral
∫ T̃k
T̃k−1

Λj(s, t)dt. The following finite approximation of Problem P is
natural:

Proposition 3.1 (Finite Primal Problem). The finite optimization problem over the variables rij [k], sij [k] defined by
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minimize
s,r

M∑

j=1

∑

k:T̃k≤T j

Λjk(sj [k])

subject to
∑

j∈Ai

∑

k:T̃k≤Ti

∆krij [k] ≥ Ci

∑

i∈Bj∩TTk

rij [k] = sj [k]

rij [k] ≥ 0,

(PK)

is a finite approximation of (P ): any solution (sj [k], rij [k]) of (PK) is feasible for Problem (P ) (as a piecewise
constant function of t).

Let g−1
j (µ, t) denote a continuous selection from Equation (8) of Example 2.1 (e.g., choose the right derivative). If

each cost function fj(x, t) = xWj(x, t) is Lf -Lipschitz in x (uniformly in t a.e.) and g−1
j (x, t) is Γg-Lipschitz in t

a.e. (uniformly in x), then the cost difference εK of the optimal solution to (P ) and the feasible piecewise constant
approximation obtained from Problem (PK) is bounded by

εK ≤
M

4
LfΓg

K∑

k=1

∆2
k.

If for each j the function Wj(x, t) (and hence Λj(s, t)) is almost everywhere twice continuously differentiable in t, the
integral approximation error δK between the objective of (P ) and (PK) is bounded by δK = O(

∑K
k=1 ∆3

k).

In particular, if we have ∆k = T/K (valid as long as T̃k contains the contract deadlines), then we have the bounds

εK ≤
MLfΓgT

2

4K

δK = O(1/K2).

The total discretization error between the value of (PK) and the value of (P ) is therefore εK + δK = O(1/K).

A summary of our proposed bidding methods are provided in Algorithm 1. The cost functions must correspond
to either a second or a first price auction, and the supply curves must be strictly 2−concave in the latter case, see
Proposition 2.2.

Algorithm 1: Computing Optimal Bids

input : Contracts {(Ai, Ci, Ti)}Ni=1, supply curves {Wj(x, t)}Mj=1, cost functions fj(x, t), parameter
K ≥ N + 1

output : Bid path x(t) and allocation path γ(t)

1 (T̃k)K−Nk=0 ← segment([0, T ],K −N) // cut [0, T ] into K −N equal segments

2 (T̃k)Kk=0 ← sort({T̃k}K−Nk=0 ∪ {Ti}Ni=1) // incorporate contract deadlines

3 Let Λj(s, t) = fj ◦W−1
j (s, t) // acquisition function

4 if Assumption 2.2 holds (adequate supply is available) then
5 sj [k], rij [k]← solve(PK) // solve discretized problem

6 else
7 return error

8 xj(t)←W−1
j (sj [k], t) ∀t ∈ [T̃k−1, T̃k), k : T̃k ≤ T j , j ∈ [M ] // construct bid path

9 γij(t)← rij [k]/sj [k] ∀t ∈ [T̃k−1, T̃k), k : T̃k ≤ T j , i ∈ Bj , j ∈ [M ]
10 return (x(t), γ(t))

11
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3.2 Monte Carlo Simulations

We have run experiments to empirically evaluate the performance of our methods on real data from the well known
IPinYou dataset [27, 50]. Further details on the specific simulation methodology are provided in the appendix. Our
simulations in this section focus on the similarity between the optimal solutions computed in the first and second price
settings cf. Proposition 2.5.

All our computations have been carried out with Python’s scientific computing stack [38] and CVXPY [12] [1]. To
summarize our setup, we have estimated supply rate curves Wj(x, t) via Gaussian kernel density estimation using the
one week of available data stratified into twenty-four one hour intervals. The bandwidth is chosen via Silverman’s rule
(see e.g., [42, ch. 6]), which results in smooth estimates, and is not likely to be overfit. The hourly stratification results
in a supply rate curve estimate which accounts for daily periodic trends, but not weekly ones. In practice, supply curve
estimation is made more challenging by the fact that price observations are censored, that is, the true winning price is
only observed by the winner [44, 51, 45]. However, the IPinYou dataset was obtained by submitting very high bids
which win almost every impression, and we are therefore able to comfortably ignore the affects of censoring in our
simulation with the understanding that more sophisticated supply rate curve estimation methods are to be applied in
practice.

The problems we simulate in this section contain N = 6 contracts and M = 5 item types. Each contract in the
collection is randomly sampled uniformly at random within prescribed bounds. In particular, the starting “real” time
point (i.e., time T0 = 0) is sampled from anywhere between the bounds of available data, the length of contracts
is uniformly random between 0 and 70 hours, and the number of required items are sampled uniformly between a
small (easily fulfilled) lower bound, and a large (near the maximum available supply) upper bound – random contracts
which are not feasible are re-sampled. A total of 250 Monte Carlo iterations are carried out. We use the same estimated
supply rate curves in each simulation, but the auction prices and item arrival times are sampled directly from real data2.

Whenever an adequate number of items to fulfill a contract are acquired, that contract is removed from simulation
and a completely new set of bids are calculated given the new (reduced) set of contracts. Not doing so would result
in overfilling some contracts, which would never be done in practice. Thus, since there are a total of 6 contracts, we
solve 6 instances of Problem (PK) over the course of each simulation run.

When the problem data (i.e., the supply rate curves Wj) have been estimated from the IPinYou dataset, there is almost
no difference between the results obtained for first or second price cases. That is, the solution (x, γ) for Problem
(TP ) when f = f2nd is very nearly optimal for the same problem when f = f1st, and vice versa. This similarity
is explained by the close connection between the two problems established by Proposition 2.5 – essentially, the main
difficulty is in finding bids which result in a feasible allocation. Note however, that all else being equal, second price
auctions are naturally much cheaper than first price auctions; in our case, the total spend in a first price auction is
on average 60% greater than in a second price auction. However, this obviously does not account for the incentive
differences of participants in different auction settings.

Synthetic examples where the solutions between first and second price auctions differ significantly can be constructed
and revolve around the function g(x, t), identified in Example 2.1, which is used in the mapping from the constant
pseudo bids (dual multipliers) into (actual) bids x(t). Since in the second price case g−1

2nd(p, t) = p for every t, the
most striking differences occur when g fluctuates rapidly with time. This corresponds to the case where the marginal
cost of production f ′1st(x, t)/W

′(x, t) (if the curves are differentiable in x) vary rapidly, as can be seen in Example
2.1. Major fluctuations of this sort are not observed in our dataset. We also note that examples where the solutions
differ, but the supply rate curves are time homogeneous (i.e., Wj(x, t) = Wj(x)) can also be constructed.

A summary of these numerical results is provided in Table 1. The simulation is carried out where the true auction
mechanism is a first price auction. The first and second row in the table corresponds to a cost metric (relative cost per
item acquired) with the third row measuring the mean fulfillment. The first row measures the average spend per item
over simulations that actually fulfilled all contracts (defined as reaching at least 98% fulfillment) and the second row
measures the average spend per item over all simulations. The first two columns in the table correspond to the two
possible cost functions used in solving Problem (PK) (either a first or second price cost) and the third column provides
a p-value comparing the significance of the differences in the other two columns. The cost is measured relative to the
first column.

It would be expected that using a cost function which corresponds to the true auction mechanism would result in
improved performance. However, no real difference is observed. These results indicate that in practice, regardless
of whether the true auction mechanism is first price or second price, the bidder can bid as if it were a second price

2All of the code used in our experiments will be made available on github @RJTK.
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(TP ) Cost Function
Performance Metric f = f1st f = f2nd t-test p

Spend / Item (fulfilled) 1 0.996 0.952
Spend / Item (total) 1 1.02 10−6

Mean Fulfillment % 0.895 0.895 0.777

Table 1: Summary of Simulation Results (N = 250)

Relative average spend and mean normalized contract fulfillment in a monte carlo simulation of a first price auction
(rows) for algorithms based on first price and second price cost functions (columns). (total) indicates averages taken

over the entire set of simulations, and (fulfilled) indicates averages over fulfilled contracts only. The performance
between the two algorithms is nearly identical. The p-values are obtained from paired sample t-tests

scipy.stats.ttest rel and independent sample t-tests scipy.stats.ttest ind in the case of the first row
(since there is an unequal number of samples in that case).

auction. This is advantageous not only for simplicity, but because Problem (P ) is always convex for Λ = Λ2nd, but
not necessarily for Λ1st, see Section 2.3.

The fulfillment row of Table 1 indicates the mean (over the 250 simulations) of the average (over the 6 contracts)
percentage fulfillment. That is, if we let c(k)

i (t) be the cumulative number of items acquired for contract i by time t in
the kth simulation, we are reporting the mean over k of

C(k)
avg

∆
=

1

N

N∑

i=1

c
(k)
i (Ti)

Ci
. (12)

We turn to a further analysis of fulfillment in the next section.

3.3 Improving Fulfillment

Table 1 indicates that, on average, contracts are only about 90% fulfilled by their deadline. This is an important issue,
but is not surprising because supply curves are averages while actual items arrive randomly. The theory that has been
developed is thus optimal for the average case. Directly addressing the stochastic nature of the problem, e.g., via a
dynamic stochastic model, is one possible alternative. However, such models are generally intractable, and do not
easily lead to practical bidding algorithms. On the other hand, while staying within an average case framework, there
are at least two effective methods for improving upon fulfillment: receding horizon updates, and risk-aware supply
adjustments, which we consider in turn.

3.3.1 Receding Horizon

Suppose that at time t there has been ci(t) supply acquired for contract i. This is useful information which can be
incorporated back into updated supply curve estimates, as well as into the calculation of future bids and allocations.
Since we are assuming the use of only crude supply curve estimates from historical data, we consider only how to
incorporate this information into new bid calculations. Most straightforwardly, a new instance of Problem TP can be
solved for the updated contracts {(Ai, Ci − ci(t), Ti − t)}Ni=1, and this bid re-calculation carried out at regular time
intervals. This method of adaptation is referred to as a receding horizon method [25] and accounts for unexpected
supply shortfalls by increasing the bid (which gets us closer to complete fulfillment), and decreases the bid when
unexpected supply surpluses are encountered (which reduces costs).

3.3.2 Supply Inflation

In addition to a receding horizon, it is important to account for uncertainty in supply curve estimates, as well as the
random dynamics intrinsic to the market. Our main algorithm does not endogenously account for the possibility of
supply shortfalls, (it pertains only to an average case scenario) but a parameter, δ, can be appropriately tuned to inflate
the supply.

Concretely, if C is the required supply, we can instead aim at an inflated supply target by solving Problem (PK) with
an inflated supply constraint (1 + δ)C. The parameter δ can be tuned via cross-validation procedures, or calculated
to correspond with a model of estimation and market uncertainty. This adjustment has the effect of front-loading the
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acquisition of supply, a result similar to that of [17]. In combination with a receding horizon, excess spending will
also be limited.

In order to justify this adjustment, we provide a simple example model. Suppose that M = N = 1 (i.e., there is a
single item type and a single contract), that we have the contract ({1}, C, T ), and that the supply curve is now the
random and time-independent quantity W(x) with EW(x) = W (x), for some known W (x). Then, given a risk
tolerance parameter ε ∈ (0, 1) we seek a solution to the following problem

minimize
x

Tf(x)

subject to P
(
TW(x) ≥ C

)
≥ 1− ε,

(13)

where f(x) is the expected cost per unit time in the auction when bidding x. Since the objective function is monotone
increasing, the optimal solution to the problem is the smallest xwhich is feasible and we have established the following
proposition.
Proposition 3.2. Suppose that f(x) is monotone non-decreasing. Then, the optimal solution of Problem (13) is given
by

x?(ε) = min{x | P
(
W(x) ≥ Ci/T

)
≥ 1− ε}. (14)

In principle, this result covers every probabilistic model for the distribution of W including the accounting of un-
certainties in prices, item arrival rates, and estimation inaccuracies. Moreover, many such models for the function
x 7→ P

(
W(x) ≥ Ci/T

)
can be expected to be monotone non-decreasing in x (similarly to f ), in which case the

actual computation of x?(ε) poses no difficulty. It will be seen in the following example that plausible probabilistic
models can reduce into the framework of supply inflation, i.e., aiming for some (1 + δ)C.
Example 3.1 (Poisson Model). Suppose that W(x) ∼ Po(W (x)) has a Poisson distribution with mean W (x). Al-
though proposition 3.2 still applies to this model, and a computational solution is easy to obtain, we will make use
of the Poisson Chernoff bound to find an illustrative approximation x̃(ε) in closed form. Replacing the probabilistic
constraint in Problem (13) with the right hand side of the bound

1− P
(
W(x) ≥ C/T

)
≥ 1− (eW (x))C/T e−W (x)

(C/T )C/T
,

which is valid as long as W (x) ≥ C/T , results in a more stringent requirement. Thus, a feasible point x̃(ε) for the
problem can be found by solving the following inequality:

(eW (x))C/T e−W (x)

(C/T )C/T
≤ ε

(a)⇐⇒ x ≥W−1
(
−C
T
W−1

(
−1

e
εT/C

))
,

where in (a) W−1 is the lower branch of the Lambert-W function, i.e., the inverse function of x 7→ xex , which
is decreasing and negative [10]. Since −W−1

(
− 1
e ε
T/C

)
≥ 1, this has the form of a multiplicative inflation of the

required supply, and can be written as (1 + δ)C where δ = −W−1

(
− 1
e ε
T/C

)
− 1.

3.3.3 Sensitivity Simulations

In order to illustrate the effects of a δ risk adjustment and the receding horizon re-calculations, we have carried out
simulations similar to those of Section 3.2, however with smaller contracts N = M = 3. The results are summarized
by Figures 2 and 3.

Figure 2 provides a box plot comparing the parameter δ (applied to inflate the supply of each contract by the same
proportion) to the average contract fulfillment (see C(k)

a , Equation (12)). As is expected, the proportion of contracts
which are completely fulfilled increases with δ. In addition, the plot provides pairs of boxes comparing the results when
the bids are updated only after a contract is fulfilled (this is the minimal update schedule that doesn’t overfill contracts),
and when the bids are also updated every hour of simulation time (typically, about 20 updates are calculated over the
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Adjustment Parameter δ

5.5

6.0

6.5

7.0

7.5

C
os

t
p

er
M

ea
n

C
on

tr
ac

t
V

el
oc

it
y

Effect of δ-Adjustments and Receding Horizon on Costs

Receding Horizon

None

Hourly

Figure 3: Risk Adjustment Simulations (Fulfillment)
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simulation). An hourly receding horizon has a dramatic affect on the fulfillment – even without a risk adjustment, more
than half of the contracts are fulfilled to at least 98%, and with a risk adjustment, almost all contracts are completely
fulfilled.

Figure 3 provides a line plot similar to Figure 2 except the ordinate now quantifies the cost paid for items. Points
are mean values across 500 simulations and error bars are 98% confidence intervals. In order to create a reasonable
cost metric which is comparable across different contracts, we have normalized the total cost of attempting to fulfill a
contract by that contract’s “mean velocity” requirement. To understand what we refer to as the velocity requirement,
suppose that we are obligated to obtain C items in T time. Then, we define the velocity of this requirement by
v = C/T . We take the mean velocity of the whole contract to be the average of the velocities of each individual
requirement in the contract (in this case, over theN = 3 requirements). To merely normalize by, e.g., the total number
of items, would not result in a fair comparison since one contract may require obtaining the same number of items in
less time (since they are generated randomly), which necessitates paying higher prices.

The main conclusions to be drawn from 3 are as follows. Firstly, without a receding horizon, there is naturally a
tendency for costs to increase, since the supply acquisition is front-loaded. Secondly, as δ increases, the same upward
pressure on costs is applicable as in the case without any receding horizon, but at the same time, for contracts which
are difficult to fulfill, the receding horizon will drastically increase bids, which also increases the cost. However, for
contracts which are easy to fulfill, or which get close to fulfillment early in the bidding period, the receding horizon
smooths out the acquisition rate by reducing the bid, and therefore reducing costs. These are competing effects, but
the use of the receding horizon is still able to reduce costs when δ is large; an ultimately small cost for achieving near
complete fulfillment.

In summary, the receding horizon is able to achieve a much higher fulfillment proportion by increasing the bids (and
incurring higher costs) for contracts which are difficult to fulfill (e.g., when supply rates are overestimated), while at
the same time reducing the costs of fulfilling the remaining contracts by smoothing out bids that are too large.

4 Conclusions

This paper has studied the problem of minimum cost contract fulfillment in RTB auction markets. We have analyzed
generalizations of the model proposed in [37] by considering both the first and second price auction mechanisms, and
by allowing for general time-varying supply rate curves which can account for daily and weekly periodic cycles in
market data. Moreover, we have uncovered the intrinsic convexity of the problem and provided a natural condition
under which a strong duality result holds. Using duality, it has been shown that there is a close connection between the
optimal bids x(t) and certain dual variables which facilitates the complete representation of the optimal function x(t)
through the finite vector ρ ∈ RN+ of dual variables. This close connection motivates the terminology “pseudo-bids”
for the dual variables ρ. In the first price case, the optimal bids are obtained from ρ by mapping them through a
time-varying function quantifying the marginal costs of acquiring additional items; in the second price case (but not
the first), the optimal bids are given exactly by ρ, which implies the optimal bids in this case are piecewise constant
functions of time.

Further consequences of duality have lead to the conclusion (backed up with experimental simulation evidence) that
there is in fact very little difference between the optimal solution in the first price or second price cases. This result
has the important practical implication that, regardless of the type of auction one is participating in, they may as well
assume that they are participating in a second price auction, which has been seen to always lead to a convex problem.
Indeed, in second price auctions, the optimal bids are constant (corresponding exactly to the dual pseudo-bids ρ)
and therefore the original time-independent formulation of [37] largely covers the general time-dependent case after
calculating suitable time averages.

Finally, Section 3 develops methods for implementation and reports the results of simulation studies. A discretization
method for Problem (P ) is studied in Section 3.1 and we obtain a convergence rate for this discretization. The dis-
cretized problem is used in an empirical Monte Carlo study in Section 3.2, which demonstrates the similarity between
optimal bidding in first and second price auctions. Further simulations in Section 3.3 demonstrate the effectiveness of
δ supply inflation and receding horizon bid recalculation for ensuring that contracts are actually fulfilled in practice.
Additional information regarding the practical implementation of these methods is provided in the appendix, with the
basic ideas being summarized in Algorithm 1.
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A Supply Rate Curve Estimation

In practice, the functions W (x) will be estimated from available historical data. Therefore, depending on the method
used to carry out this estimation, the resulting Λ(x) is not necessarily guaranteed to be convex in the first price case
(recall Proposition 2.2 requires 2-concavity of W ). If the estimate of W (x) is simply carried out by fitting a particular
parameterized distribution (e.g., a normal approximation) to a dataset, then there is unlikely to be any issue since
most distributions commonly employed for this purpose do in fact have log-concave cumulative distribution functions.
Moreover, since W (x) arises through an auction process, extreme value theory and the Fisher-Tippett-Gnedenko
Theorem may motivate the belief that W (x) should tend to be close to a Weibull distribution, which is log-concave at
least for some parameter ranges.

However, our empirical data (see also [27, 50]) suggests that such simple models are not good estimates for supply
rate curves, and that the curves have a tendency towards some multi-modality. For this reason, the methods of Section
3.2 make use of Kernel density estimates (KDE). A Gaussian KDE model for W (x) is natural because it ensures
smoothness, that W > 0, and the bandwidth can be chosen to correspond to the level of bid noise (or the level of bid
noise can be chosen from the optimal KDE bandwidth).

Unfortunately, KDE estimates of W (x) from data need not be (and often aren’t) log-concave or α-concave. In order
to deal with this problem, we consider calculating a convex and piecewise affine majorant of the function Λ(s), which
will transform Problem (PK) into a linear program. A similar minorizing envelope can also be calculated through
the methods of [30], and a piecewise minorant thereof computed by outer linear approximations. There is no obvious
reason to prefer one approximation over the other and our experience has not demonstrated a clear benefit either way.

Alternatively, taking the log-concave envelope of W (x) through similar methods is guaranteed to result in convex
acquisition functions. The considerations of the previous paragraph suggest that we should at least expect the KDE
estimates of W to be “almost” log-concave, and indeed, this is what we have observed in our own experiments; the
convex envelopes are only slight perturbations of the original supply rate curve estimate.

A.1 Piecewise Affine Approximation

Let us denote by Λ̃(x) the acquisition cost function attained from an estimated supply rate curve and by ΛU(x) the
minimal convex majorant Λ̃(x), i.e.,

ΛU(x) = inf{λ(x) | λ(x) ≥ Λ̃(x), λ is convex and monotone increasing}. (15)

We emphasize that λ must be monotone increasing, but this would also follow as a consequence of the monotonicity
of Λ̃. The maximal minorant can be defined similarly. Moreover, α-concave envelopes can be calculated by requiring
that `α ◦ λ is convex.

A piecewise affine approximation of ΛU can be found by discretizing a compact interval [a, b] ⊂ R into n + 1 points
x0, x1, . . . , xn and solving the following convex quadratic program where convexity and monotonicity are enforced
via finite differences

minimize
λ

1

n+ 1

n∑

i=0

(
λi − Λ̃(xi))

)2

subject to λi ≥ Λ̃(xi)

λi − λi−1 ≥ 0 ∀i ∈ [n]

λi+1 − 2λi + λi−1 ≥ 0 ∀i ∈ [n− 1].

(EU)

An accurate approximation of the convex majorant is recovered via linearly interpolating λi. In fact, λi will result in
a strictly monotone function (and therefore a continuous inverse) whenever Λ̃ is strictly monotone.

It is important that the developments in Section 2.4 do not make any assumptions regarding the differentiability of
W (x) or Λ(s), since if these curves are corrected through solution of Problem (EU) to ensure convexity, it is by
definition not differentiable. Moreover, simply interpolating the resulting λi (e.g. with a cubic spline) may not be
acceptable as, to our knowledge, it is not possible for this process to maintain simultaneously the monotonicity, con-
vexity, and minorization of W̃ .
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Remark A.1 (Sparse Approximations). It is desirable to use a fine discretization in Problem (EU), otherwise the
resulting function may fail to majorize Λ̃ in regions of high curvature. However, each piecewise segment translates
to an additional constraint when ΛU is substituted into Problem (PK) (see Section A.3), which may become overly
burdensome for large problems. Therefore, it may be desirable to use a coarser approximation obtained by linearly
interpolating samples of ΛU(s). Since ΛU(s) is convex, this process is guaranteed to produce another piecewise affine
convex function which further majorizes ΛU(s).

A.2 An Example

We consider an illustrative example of calculating log-concave envelopes of the supply rate curve in a simple market
model. We suppose that each participant is characterized by a bid and rate pair (bi, ri) indicating that they will bid
bi with probability ri on any arriving item. We sample {(bi, ri)}30

i=1 randomly as b ∼ exp(0.5) and ri ∼ β(11.1, 10)
which represents a market with 30 participants whose average bid is 0.5 and have an average probability of (11.1 −
10)/11.1 ≈ 0.1 of bidding.

The bid landscape in this situation is given by

W (x) =
∏

i:bi>x

(1− ri),

indicating the probability of winning an item if the bid x is placed.

We let W̃ (x) be a KDE smoothed (with σ2 = 1/4) version of W which corresponds either to the true supply rate
curve under randomized bidding, or a reasonable estimate (from historical data) thereof. We denote supply rate curve
estimates W̃ L(x) and W̃N which are derived from W (x) by solving Problem (15) for the function −log ◦ W and
moment matching a Gaussian c.d.f., respectively. Note that this procedure produces minorants of the supply rate curve
(and therefore majorants of the acquisition cost curve), since using a convex majorant procedure results in minorants of
concave functions. Figure 4 plots examples of these functions and their associated cost and acquisition counterparts.

The examples of Figure 4 are chosen to deliberately exaggerate the differences between the supply curve estimates
and the envelopes. For the simulation examples of Section 3.2 the two curves are often indistinguishable.

A.3 Linear Approximations of Primal Problem

From Section 3.1 we have the time discretized primal problem (PK):

minimize
s,r

M∑

j=1

∑

k:T̃k<T j

Λjk(sj [k])

subject to
∑

j∈Ai

∑

k:T̃k<T j

∆krij [k] ≥ Ci

∑

i∈Bj∩TTk

rij [k] = sj [k]

rij [k] ≥ 0.

(PK)

Suppose that the functions Λj(s, T̃k) have piecewise affine approximations Λ̂k(s) = max
h∈Hjk

(
mhj [k]s+ bhj [k]

)
. Then,

by introducing additional variables αjk we can reformulate PK in epigraph form as a linear program
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Figure 4: Example Supply Rate Functions
Comparison of different methods of estimating supply rate curves. Lower left: Comparison of KDE smoothing, the
maximal log-concave minorant thereof, and a Gaussian c.d.f. (fit by moment matching) overlaid upon a true market
state. Lower right: The three corresponding supply rate curves. Upper right: Corresponding cost curves. Upper left:
Corresponding acquisition cost functions where we see that KDE smoothing does not lead to convexity, and that a

Gaussian estimate is not a consistent minorant or majorant.

minimize
s,r

1

2

M∑

j=1

∑

k:T̃k≤T j

∆k(αjk + αj,k−1)

subject to
∑

j∈Ai

∑

k:T̃k≤T j

∆krij [k] ≥ Ci

mhj [k]sj [k] + bhj [k] ≤ αjk∑

i∈Bj∩TTk

rij [k] = sj [k]

rij [k] ≥ 0,

(16)

which is the formulation we have employed for our simulations in Section 3.2.

B Simulation (Additional Details)

In this section we provide additional details on the methods used to produce the results of Section 3.2.

B.1 Estimating Supply Rate Curves

The iPinYou dataset consists of impression data derived from a real DSP and includes information about bidding
prices, market prices, and user characteristics. We focus on the season two data (a week long period 2013-06-06
to 2013-06-12). In all cases, our supply rate curve estimates are 24h-periodic in time and therefore account for the
natural daily (but not weekly) cycles in prices and arrival rates. Since this paper does not focus on the estimation
of supply rate curves, we apply a simple estimation procedure using the entire dataset as input. Though this has the
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Figure 5: Estimated Supply Rate Curves and Costs
Cost and supply rate curves estimated from iPinYou data from the first 3 days of season 2. (a) Item arrival rates and

the corresponding forecasts. The hatched region indicates an in-sample period with the remainder being
out-of-sample. Our simulations run on similar 3 day periods with a 12 hour sliding window for a total of 9 periods of
72 hours each. (b) Estimates of the win probability function W̃ (x, t) for t = 00 : 00 : 00 (blue) and t = 09 : 00 : 00

(red). We compare Gaussian KDE (solid line) with a parametric Exponential CDF (dashed line).

effect of leaking some information from the future, the estimation of supply rate curves is not subject to optimization,
limiting the impact of this leakage. Moreover, the dataset is averaged into a single 24h periodic function and extended
through periodicity. It is reasonable to believe that the previous week’s (out of sample) data would provide similar
results. Figure 5 provides an illustration of estimated supply rate curves where only 72h of data is used to forecast the
remaining 96h for purposes of illustrating a case where historical data is used in this manner to forecast future trends.

Provided with the iPinYou dataset is a user tag which, according to [50] is “[a segment] in iPinYou’s proprietary
audience database”. We therefore use the user tag property as the “item types”, focusing on the five most common
tags: 10063, 10006, 13866, 10024, and 10083.

B.2 Estimating the Supply Rate

In order to estimate the supply rate λj(t) for each user tag, we have taken the inverse of the average of the time
differences between arrival instants in each hour of the day, after removing outliers. Calculating the number of arrivals
over an hour long period is not adequate as there appear to be large consistent gaps in arrival times: we suspect that
the dataset was subsampled prior to being released.

This calculation results in estimates λj [0], ..., λj [23], with time denoted in hours. The continuous estimate was subse-
quently formed by smoothly interpolating between these points with a 24−periodic boundary, resulting in a function
λ̃j(t) defined on [0, 24]. A forecast for the average supply rate at time t is obtained via λj(t) = λ̃(t mod 24).

An illustrative example for tags 10063, 10006, and 13866 is provided in Figure 5a.

B.3 Estimating Win Probabilities

Similarly to the supply rate estimates, we estimate an average win probability function for each t ∈ 0, . . . , 23 and
then smoothly interpolate along t to estimate a 24−periodic function W̃j(x, t) indicating the probability of winning
an impression of type (user tag) j arriving at time t given a bid x.

The estimate of x 7→ W̃j(x, t) is obtained by smoothing the histogram with a Gaussian kernel (bandwidth chosen
simply by the Normal Reference Rule [42, Chap. 6.3]) for each market price data point falling into the hour long
window. The results of this procedure, as well as a comparison to a parametric estimate with an Exponential density
are given in Figure 5b.

The market price attribute in the dataset corresponds to the price actually paid in the second price auction. We have
not accounted for the affects of censoring; since the DSP collected the dataset with large bids intended to win most
impressions that were bid on, this isn’t a significant factor.
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B.4 Cost and Supply Rate Curves

The supply rate curve Wj(x, t) is simply the product of the supply rate λj(t) and the win probability W̃j(x, t). The
cost curves f1st and f2nd is derived from the supply rate curve using numerical integration and interpolation.

B.5 Simulating the Bidding Process

The simulations of Section 3.2 are obtained by storing the hour-by-hour inter-arrival and price data for each item type
j ∈ [M ] and sampling uniformly from these datasets. At simulation time t ∈ R+ we sample an inter-arrival time ∆t
and price P from the data for hour btc + 1 with probability t − btc and otherwise from the data for hour btc. A bid
is solicited from a bidder (an implementation of (PK)) and if the bid exceeds P the bidder allocates that item to the
fulfillment of a contract. The simulation time is them updated to t+ ∆t and the process continues.

Algorithm 2: Bidding Simulation

input : A Bidder derived from Section 3.1.
output : Recording of Bidder’s item allocations to process into normalized acquisition curves.

1 // Initialize:
2 Q← Priority-Queue([ ]) // Sort by time
3 t← 0 // The ‘‘current’’ time
4 for j ∈ [M ] do
5 // Sample an inter-arrival time and a price
6 (∆t, P )← Sample-Dataset(t,j)
7 Q.push((t+ ∆t, P, j))

8 // Simulate bidding process:
9 while t < Tend do

10 t, P, j ← Q.pop()
11 b← Bidder.solicit bid(t,j) // Ask for a bid on type j at time t
12 if b ≥ P then
13 Bidder.award item(t,j) // Allocate items for winning bids

14 (∆t, P )← Sample-Dataset(t,j) // Append next (t, P ) pair for j to Q
15 Q.push((t+ ∆t, P, j))

16 Function Sample-Dataset(t,j):
17 p← t− btc
18 U ∼ U(0, 1) // Interpolate between hours
19 if p ≤ U then
20 h← btc
21 else
22 h← btc+ 1

23 ∆t← Sample-Inter-arrivals(hour=h,type=j)
24 P ← Sample-Prices(hour=h,type=j)
25 return (∆t, P )

C Proofs

C.1 Proofs of Main Results

Proposition 2.2 (Convex Acquisition Costs – First Price Case). Suppose that a supply rate curve W (x) is strictly
2-concave. Then in a first price auction, the extended acquisition function

Λ1st(s)
∆
=




∞; s > s̄
0; s < W (0)
sW−1(s); otherwise

, (6)
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is a proper3, lower semi-continuous, non-decreasing, and convex function on R, which is strictly convex on [W (0), s̄].
Moreover, the convex conjugate

Λ∗1st(p)
∆
= sup

s∈R

[
sp− Λ(s)

]
,

is itself a proper, lower semi-continuous, non-decreasing, and convex function on R, which satisfies Λ∗1st(p) =∞ for
p < 0, and if s̄ <∞, then Λ∗1st(p) = px̄− Λ1st(s̄) on p > x̄.

Proof of Proposition 2.2. Since f(x) = xW (x)1R+
(x) we have, for s ∈ ran W , Λ(s) = sW−1(s). On s ≤ W (0)

we have Λ(s) = 0, and on s ∈ {s|s > s̄} we have Λ(s) =∞. Moreover, by Assumption 2.1, W attains its supremum
(when finite) and so Λ is continuous at s̄. Convexity will therefore follow if Λ is convex on int ran W . To this
end, we use the 2-concavity of W to see that 1 − 1/W (x) is concave on its domain and therefore that the inverse,
W−1

(
1/(1− x)

)
is convex for the portion of x ∈ (−∞, 1) which remains in the range of W . It is fairly well known

that for a convex function f , the function

(cx+ d)f
(ax+ b

cx+ d

)

is convex on cx + d > 0 (see e.g. [5, Ex. 3.20]. Therefore, by setting a = c = 1, b = −1 and d = 0 we obtain
convexity of

(cs+ d)W−1
( cs+ d

(c− a)s+ (d− b)

)
= sW−1

(
s
)

which is the function Λ(s).

In consideration of the conjugate, it is evident that since Λ(s) ≥ 0 we have Λ∗(p) = ∞ for p < 0 (take s → −∞).
For p > x̄, if s̄ < ∞, then since s < s̄ =⇒ W−1(s) < x̄ and Λ(s̄+) = ∞ we see that sp − Λ(s) is maximized at
s = s̄. That Λ∗(p) is non-decreasing follows since for p ≤ q we have sp− Λ(s) ≤ sq − Λ(s) on s ≥ 0. Finally, that
Λ∗(p) is proper, lower semi-continuous, and convex is a statement of the Fenchel-Moreau Theorem (see e.g., [9, sec
4.2]).

Proposition 2.3 (Continuous Primal Problem). In a first or second price auction, suppose that for each j ∈ [M ] and
t ∈ [0, T j ], the acquisition cost curve Λj(x, t) is convex in x. Then, Problem (TP ) can be reformulated as

minimize
s,r

M∑

j=1

∫ T j

0

Λj(sj(t), t)dt

subject to
∑

j∈Ai

∫ Ti

0

rij(t)dt ≥ Ci

∑

i∈Bj

rij(t) = sj(t)

rij(t) ≥ 0.

(P )

If a solution exists, then a solution to the original problem (TP ) is obtained via xij(t) = W−1
j (sj(t), t) for each

i ∈ Bj and γij(t) = rij(t)/sj(t). Moreover, Problem (P ) is convex.

Proof of Proposition 2.3. First, we establish that whenever a solution exists, there is also a solution with the property
that xij(t) = xj(t) and where

∑
i∈Bj γij(t) ∈ {0, 1}. To this end, suppose (x, γ) is a solution of Problem (TP ), and

3Recall that a function f : R→ (−∞,∞] is proper if it is not everywhere equal to +∞.

25



Real-time Bidding for Time Constrained Impression Contracts in First and Second Price Auctions –
Theory and Algorithms A PREPRINT

with total cost J . Let (x̃, γ̃) be another bid and allocation pair with total cost J̃ defined by

x̃j(t)
∆
= W−1

j

(∑

i∈Bj

γij(t)Wj(xij(t), t), t
)
,

γ̃ij(t)
∆
=

γij(t)Wj(xij(t), t)∑
u∈Bj γuj(t)Wj(xuj(t), t)

,

where 0/0
∆
= 0 in the definition of γ̃. We proceed to show that (x̃, γ̃) is also a solution and we note that the definition

of γ̃ satisfies ∀t < T j
∑
i∈Bj γ̃ij(t) ∈ {0, 1}.

It is clear that the pair x̃, γ̃(t) is feasible by construction. Indeed, γ̃ij(t) ≥ 0 and
∑
i∈Bj γ̃ij(t) ≤ 1 by definition.

Moreover, we have

∑

j∈Ai

γ̃ij(t)Wj(x̃j(t), t) =
∑

j∈Ai

[γij(t)Wj(xij(t), t)
∑
v∈Bj γvj(t)Wv(xvj(t), t)∑

u∈Bj γuj(t)Wj(xuj(t), t)

]

=
∑

j∈Ai

γij(t)Wj(xij(t), t),

which when integrated from 0 to Ti meets or exceeds Ci since (x, γ) is assumed to be a solution.

The cost of (x̃, γ̃), instantaneously at time t, then satisfies J̃ = J since J is the minimal cost and

J̃
∆
=

∫ T

0

[ N∑

i=1

∑

j∈Ai

γ̃ij(t)fj(x̃j(t))
]
dt

(a)
=

∫ T

0

[ N∑

i=1

∑

j∈Ai

γ̃ij(t)Λj

(∑

u∈Bj

γuj(t)Wj(xuj(t), t), t
)]

dt

(b)

≤
∫ T

0

[ N∑

i=1

∑

j∈Ai

γ̃ij(t)
∑

u∈Bj

γuj(t)Λj(Wj(xuj(t), t), t)
]
dt

(c)
=

∫ T

0

[ M∑

j=1

∑

u∈Bj

γuj(t)fj(xuj(t), t)
∑

i∈Bj

γ̃ij(t)
]
dt = J

where (a) is just the definition of Λj = fj ◦ W−1
j (see Section 2.3), (b) follows by the convexity of Λj and that

Λj(0) = 0 (since γij need not necessarily sum to 1), and (c) follows again by Λj = fj ◦W−1
j and then by swapping

the order of summation using i ∈ Bj ⇐⇒ j ∈ Ai.
We can now recall the original problem (TP ), and apply the preceding results to eliminate the dependence of the bid
on i, since if a solution exists it can be assumed to have the property xij(t) = xj(t):

minimize
x,γ

N∑

i=1

∫ Ti

0

[∑

j∈Ai

γij(t)fj(xj(t), t)
]
dt

subject to
∑

j∈Ai

∫ Ti

0

γij(t)Wj(xj(t), t)dt ≥ Ci

∑

i∈Bj

γij(t) ≤ 1, γij(t) ≥ 0,

Due to the bids’ independence of i, we can rearrange the objective by swapping the order of summation:
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N∑

i=1

∫ Ti

0

[∑

j∈Ai

γij(t)fj(xj(t), t)
]
dt =

M∑

j=1

∫ T j

0

[
fj(xj(t), t)

∑

i∈Bj

γij(t)
]
dt, (17)

which, after making the substitution sj(t) = Wj(xj(t), t), results in

minimize
s,γ

M∑

j=1

∫ T j

0

[
Λj(sj(t), t)

∑

i∈Bj

γij(t)
]
dt

subject to
∫ Ti

0

∑

j∈Ai

γij(t)sj(t) ≥ Ci

∑

i∈Bj∩Tt

γij(t) ≤ 1

γij(t) ≥ 0, sj(t) ≥ 0.

(18)

Now, since any optimal solution can be assumed to be such that
∑
i∈Bj γij(t) ∈ {0, 1} and since Λj(0, t) = 0, there is

no loss of generality in adding the constraint
∑
i∈Bj γij(t) = 1 and eliminating this term from the objective. Finally,

making the substitution rij(t) = γij(t)sj(t) results in the formulation of Problem (P ).

Proposition 2.4 (Duality). A Dual of (P ) can be formulated as

maximize
ρ,µ

−
M∑

j=1

∑

k:Tk≤T j

∫ Tk

Tk−1

Λ∗j (µjk, t)dt+

N∑

i=1

ρiCi

subject to µjk ≥ ρi ∀i ∈ Bj ∩ TTk
ρi ≥ 0,

(D)

which is a finite convex problem. Problem (D) is dual to Problem (P ) in the sense that ifD? and P ? are their respective
values (possibly∞ or −∞), then D? ≤ P ?.

Finally, under Assumption 2.2 there exists a solution (s, r) ∈ L2(R)M × L2(R)N×M to Problem (P ) and a solution
(ρ, µ) ∈ RN × RM to Problem (D) and −∞ < D? = P ? <∞.

Proof of Proposition 2.4. The first part of the theorem is a simple statement of facts from convex analysis, and the
strong duality result is based on Lagrange multiplier theory for real valued functions in a reflexive Banach space. In
particular, we establish the existence of a solution to Problem (P ) (in L2) under Assumption 2.2 via the direct method
(see e.g., [9, thm. 5.51]) and strong duality via the methods of [9, Ch. 9].

Consider a Lagrangian of Problem (P ):

L(s, r, ρ, µ) =

M∑

j=1

∫ T j

0

Λj(sj(t), t)dt+

N∑

i=1

ρi

[
Ci −

∑

j∈Ai

∫ Ti

0

rij(t)dt
]

+

M∑

j=1

∫ T j

0

µj(t)
[∑

i∈Bj

rij(t)− sj(t)
]
dt

(19)

with the problem domain S = dom L restricted to a convex subset of L2:

S
∆
= P ×D ∆

= {(r, s), (ρ, µ) | rij(t) ≥ 0, ρi ≥ 0, µj(t) ≥ 0}.

It is well known that the primal problem (P ) can be posed as finding s, r which attains the infima:

inf
s,r∈P

sup
ρ,µ∈D

L,
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since the suprema is∞ whenever the constraints of (P ) are not met. Moreover, it is a general theorem (the max-min
inequality) that

D? ∆
= sup
ρ,µ∈D

inf
s,r∈P

L ≤ inf
s,r∈P

sup
ρ,µ∈D

L ∆
= P ?.

We proceed to show that finding ρ, µ to maximize infs,r∈P L is equivalent to (D). Consider first the r variable, we
have:

inf
r≥0

N∑

i=1

∑

j∈Ai

∫ Ti

0

(
µj(t)− ρi

)
rij(t)dt,

which is −∞ unless µj(t) ≥ ρi for i ∈ Bj . Next, examine infs L:

inf
s

M∑

j=0

∫ T j

0

[
Λj(sj(t), t)dt− µj(t)sj(t)

]
,

which can be computed point-wise (it will be clear that the resulting function is in L2) as

inf
s

[
Λj(sj , t)− µjsj

]
= −sup

s

[
µjsj − Λj(sj , t)

]

= −Λ∗j (µj , t),

the negative of the conjugate of s 7→ Λj(s, t) (see Proposition 2.2). Combining these calculations together results in
the following problem:

maximize
ρ,µ

−
M∑

j=1

∫ T j

0

Λ∗j (µj(t), t)dt+

N∑

i=1

ρiCi

subject to µj(t) ≥ ρi ∀i ∈ Bj ∩ Tt
ρi ≥ 0.

(20)

Suppose that ρi is optimal for this problem. Then, since Λ∗ is monotone increasing, the optimal µj(t) is the smallest
possible, which implies we can take µj(t) to be piecewise constant between contract deadlines (any deviation over
a positive measure interval increases the cost, and any deviation over a measure zero set doesn’t change the cost).
Denote by µjk the value taken by the optimal µj(t) over [Tk−1, Tk] for Tk ≤ T j to obtain Problem (D). Indeed, it can
be seen that µjk = max

i∈Bj∩TTk
ρi.

Finally, we show the existence of solutions to both (P ) and (D), as well as the equality of their values, under the
adequate supply assumption 2.2.

Under Assumption 2.2 the R-valued function on L2(R)M × L2(R)N×M defined by (s, r) 7→ sup
ρ,µ
L(s, r, ρ, µ) is a

proper, convex, and l.s.c. function. That this function is proper follows from the assumption since there is at least
one feasible point, the convexity follows since suprema over families of affine functions are convex, and lower semi-
continuity follows since this property is preserved through the suprema. Naturally, the restriction of S to the primal
variables (s, r) remains closed and convex.

Now, by the basic properties of Wj (Assumption 2.1) Λj(s) is positively-coercive (i.e. Λj(s) → ∞ as s → ∞);
this property is thus inherited by the function s 7→ sup

ρ,µ
L(s, r, ρ, µ). Indeed, by the construction of L the function

r 7→ sup
ρ,µ
L(s, r, ρ, µ) must be positively-coercive as well since if

∑
i∈Bj rij(t) 6= sj(t) then sup L(s, r, ρ, µ) = ∞.

Then, keeping in mind that (s, r) ∈ S =⇒ s, r ≥ 0, this is enough to satisfy the growth condition required by [9,
thm. 5.51 (c)] and establishes the existence of a solution to inf

s,r
sup
ρ,µ
L and therefore to (P ).

The statement of strong duality now follows from combining [9, thm. 9.8] and [9, thm. 9.13] with Assumption 2.2.
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C.2 Additional Proofs

Proposition 2.1 (Hierarchy of α-concavity). For 0 ≤ α < β, if W is α-concave, then it is also β-concave.

Proof of Proposition 2.1. First we check that `β ◦ `−1
α (x) is both monotone increasing and concave. This follows if

the first derivative

d

dx
`β ◦ `−1

α (x) =
`′β ◦ `−1

α (x)

`′β ◦ `
−1
α (x)

,

is positive and monotone non-increasing; which, since `−1
α is itself monotone non-decreasing, follows if

`′β(x)

`′α(x)

is both positive and monotone decreasing. Since `′α(x) = x−α this function is xα−β , which is positive on the domain
x > 0 and decreasing if α < β.

Now, we check concavity of `β ◦W directly from the definition, for t ∈ (0, 1):

`β ◦W (tx+ (1− t)y) = `β ◦ `−1
α ◦ `α ◦W (tx+ (1− t)y)

(a)

≥ `β ◦ `−1
α

(
t`α ◦W (x) + (1− t)`α ◦W (y)

)

(b)

≥ t`β ◦ `α ◦ `−1
α ◦W (x) + (1− t)`β ◦ `−1

α ◦ `α ◦W (y)

= t`β ◦W (x) + (1− t)`β ◦W (y),

where (a) follows by the assumed concavity of `α ◦W and the monotonicity of `β ◦ `−1
α while (b) from the concavity

of `β ◦ `−1
α .

Proposition 2.5 (Connection Between First and Second Price Case). Under Assumption 2.2, and whenever the acqui-
sition cost curves are convex, the Problem (TP ) for a second price auction is equivalent to solving

minimize
x,γ,ρ

M∑

j=1

∫ T j

0

xj(t)Wj(xj(t), t)dt−
N∑

i=1

ρiCi

subject to
∑

j∈Ai

∫ Ti

0

γij(t)Wj(xj(t), t) ≥ Ci

∑

i∈Bj

γij(t) = 1, γij(t) ≥ 0, ρi ≥ 0

xj(t) ≥ ρi ∀i ∈ Bj ∩ Tt.

(9)

The objective function involves xj(t)Wj(xj(t), t), which is the cost associated with a first price auction.

Proof of Proposition 2.5. We first examine the conjugate function for the second price acquisition function. We have

Λ2nd(s)
∆
=




∞; s > s̄
0; s < W (0)∫ s
W (0)

W−1(y)dy; otherwise
. (21)

We can find the conjugate on a segment of R by differentiation:

Λ∗2nd(µ) = sup
s

[
sµ− Λ(s)

]
,
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leading to the supremum being attained at s = W (µ) as long as µ ∈ [0, x̄] (in which case the derivative is indeed
W−1(s)). We already know from Proposition 2.2 that when µ < 0 we have Λ∗(µ) = ∞ and if s̄ < ∞ and µ > x̄,
then Λ∗(µ) = s̄µ− Λ(s̄).

Therefore, since Λ(W (µ)) = f(µ) by definition, we have

Λ∗2nd(µ) =

{ ∞; µ < 0
µs̄− Λ2nd(s̄); µ > x̄
µW (µ)− f2nd(µ); otherwise

. (22)

Given a dual solution µ, ρ of Problem (D), which attains the primal problem’s value by strong duality Proposition
2.4, we see from the above calculations that the maximizing argument for Λ∗ is just s = W (µ), therefore it must be
the case that the optimal bid is the optimal multiplier xj(t) = µjk on t ∈ [Tk−1, Tk), which recovers the result of
Example 2.1 that for the second price auction there exists an optimal piecewise constant bid.

Using this fact, and writing the dual as a minimization problem by negating its objective, we can consider the problem
of simultaneously solving the dual (D) and the original Problem (TP )

minimize
x,γ,ρ

M∑

j=1

∫ T j

0

[
f2nd
j (xj(t), t) + Λ∗j (xj(t), t)

]
dt−

N∑

i=1

ρiCi

subject to
∑

j∈Ai

∫ Ti

0

γij(t)Wj(xj(t), t) ≥ Ci

∑

i∈Bj

γij(t) = 1, γij(t) ≥ 0, ρi ≥ 0

xj(t) ≥ ρi ∀i ∈ Bj ∩ Tt,

(23)

where we have again applied the fact that there exists a solution such that xij(t) = xj(t) for every i ∈ Bj and where∑
i∈Bj γij(t) = 1 (see the proof of 2.3).

If we can show that the optimal dual multipliers satisfy µjk ≤ x̄j , then using the fact that xj(t) = µjk for t ∈
[Tk−1, Tk) and the expression for Λ∗ we have the result, since the f2nd

j terms cancel.

To this end, recognize that since µjk = max
i∈Bj∩TTk

ρi, we must have µjk ≤ x̄j unless there is some ρi > x̄j . We

suppose by way of contradiction that ρi > x̄j . Consider the portion of the objective of (D) related to contract i (where
Λ = Λ2nd):

−
∑

j∈Ai

∑

k:Tk≤Ti

∫ Tk

Tk−1

Λ∗j (µjk, t)dt+ ρiCi
(a)

≤ ρiCi −
∑

j∈Ai

∫ Ti

0

Λ∗j (ρi, t)dt

(b)
= ρiCi −

∑

j∈Ai

∫ Ti

0

(ρis̄j(t)− Λj(s̄j(t), t))dt

=
∑

j∈Ai

∫ Ti

0

Λj(s̄j , t)dt+ ρi

[
Ci −

∫ Ti

0

s̄j(t)dt
]

(c)
<
∑

j∈Ai

∫ Ti

0

fj(x̄j(t), t)dt

where (a) follows from µjk ≥ ρi since Λ∗ is non-decreasing, (b) from Equation (22) since ρi > x̄j , and (c) from
ρi ≥ 0 combined with Assumption 2.2 which ensures the bracketed term is negative. The final expression is the cost
attained by bidding x̄j(t) so by strong duality ρi > x̄j must not have been optimal (recall that in the dual we are
maximizing). Therefore, µjk ≤ x̄j , which completes the proof.

Proposition 3.1 (Finite Primal Problem). The finite optimization problem over the variables rij [k], sij [k] defined by
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minimize
s,r

M∑

j=1

∑

k:T̃k≤T j

Λjk(sj [k])

subject to
∑

j∈Ai

∑

k:T̃k≤Ti

∆krij [k] ≥ Ci

∑

i∈Bj∩TTk

rij [k] = sj [k]

rij [k] ≥ 0,

(PK)

is a finite approximation of (P ): any solution (sj [k], rij [k]) of (PK) is feasible for Problem (P ) (as a piecewise
constant function of t).

Let g−1
j (µ, t) denote a continuous selection from Equation (8) of Example 2.1 (e.g., choose the right derivative). If

each cost function fj(x, t) = xWj(x, t) is Lf -Lipschitz in x (uniformly in t a.e.) and g−1
j (x, t) is Γg-Lipschitz in t

a.e. (uniformly in x), then the cost difference εK of the optimal solution to (P ) and the feasible piecewise constant
approximation obtained from Problem (PK) is bounded by

εK ≤
M

4
LfΓg

K∑

k=1

∆2
k.

If for each j the function Wj(x, t) (and hence Λj(s, t)) is almost everywhere twice continuously differentiable in t, the
integral approximation error δK between the objective of (P ) and (PK) is bounded by δK = O(

∑K
k=1 ∆3

k).

In particular, if we have ∆k = T/K (valid as long as T̃k contains the contract deadlines), then we have the bounds

εK ≤
MLfΓgT

2

4K

δK = O(1/K2).

The total discretization error between the value of (PK) and the value of (P ) is therefore εK + δK = O(1/K).

Proof of Proposition 3.1. Let (s?[k], r?[k]) be an optimal solution to Problem (PK) and (s?(t), r?(t) an optimal so-
lution to (P ) with corresponding (piecewise constant) dual multipliers µ?j (t). It is evident that (s?[k], r?[k]) is fea-
sible for the continuous time problem (P ) by construction since the integral of a piecewise constant function is e.g.,
∆krij [k].

Bounding the integral approximation error is a simple application of the well known error bound for the trapezoidal
rule (see e.g. [31, ch. 7]), i.e., for any point s0 there is some t̂ ∈ (T̃k−1, T̃k) such that

∣∣
∫ T̃k

T̃k−1

Λj(s0, t)dt
∣∣ ≤ ∆3

k

24

∂2Λj(s0, t)

∂t2

∣∣∣
t=t̂
.

Now the integral approximation error, i.e., the error between the objective of (PK) and (P ) evaluated on the piecewise
constant solution s?[k] of (PK) is

∣∣∣
M∑

j=1

∑

k:T̃k≤T j

∫ T̃k

T̃k−1

Λj(s
?[k], t)dt−

M∑

j=1

∑

k:T̃k≤T j

Λjk(s?(T̃k))
∣∣∣ ≤ O

(
M

K∑

k=1

∆3
k

)
.

To bound the error of using the solution to (PK) as a feasible point for (P ), we would like to find a point in time where
attained supply is maximized:

τk ∈
{
t ∈ [T̃k−1, T̃k) | s?(τk) ≥ s?(u) ∀u ∈ [T̃k−1, T̃k]

}
,
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though this set may be empty since s?(t) can be discontinuous at T̃k. However, since we are here assuming smoothness
of the supply rate curves in t, the total supply attained in an ε-interval of time must converge to 0 as ε→ 0 and therefore
there must exist points τk ∈ [T̃k−1, T̃k) such that the piecewise constant function k 7→ s?(τk) is feasible for (PK),
since s?(t) is feasible for (P ). We therefore have the inequalities:

∫ T̃k

T̃k−1

Λj(s
?
j (t), t)dt ≤

∫ T̃k

T̃k−1

Λj(s
?
j [k], t)dt ≤

∫ T̃k

T̃k−1

Λj(s
?
j (τk), t)dt.

We can bound the absolute difference between the outer terms as follows:

∫ T̃k

T̃k−1

|Λj(s?j (t), t)− Λj(s
?
j (τk), t)|dt (a)

=

∫ T̃k

T̃k−1

|fj(g−1
j (µ?j (t), t), t)− fj(g−1

j (µ?j (t), τk), t)|dt

(b)

≤ Lf

∫ T̃k

T̃k−1

|g−1
j (µ?j (t), t)− g−1

j (µ?j (t), τk)|dt

(c)

≤ LfΓg

∫ T̃k

T̃k−1

|t− τk|dt

≤ 1

4
LfΓg∆

2
k,

where (a) follows by definition of Λj and g−1, (b) follows by the Lipschitz continuity of f(x, t) w.r.t. x; and (c)
follows by the Lipschitz continuity of g−1(x, t) w.r.t. t.

Summing these individual error terms we obtain an overall error bound

M∑

j=1

∣∣∣
∫ T

0

Λ(s?(t), t)dt−
K∑

k=1

∆kΛk(s?[k])
∣∣∣ ≤ M

4
LfΓg

K∑

k=1

∆2
k.

The total error then arises from summation

∣∣∣
∫ T̃k

T̃k−1

Λj(s
?(t))dt− Λj(s

?[k])
∣∣∣ ≤

∣∣∣
∫ T̃k

T̃k−1

Λj(s
?(t))dt−

∫ T̃k

T̃k−1

Λj(s
?(T̃k))

∣∣∣

+
∣∣∣
∫ T̃k

T̃k−1

Λj(s
?(T̃kk))− Λj(s

?(T̃k))
∣∣∣,

and results in a total error εK + δK = O(1/K).
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