
28 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Malicious Node Identification in Coded Distributed Storage Systems under Pollution Attacks

Published version:

DOI:10.1145/3491062

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1848497 since 2022-03-11T10:48:44Z

Abstract

In coding-based distributed storage systems (DSS) a set of storage
nodes (SN) hold coded fragments of a data unit that collectively allow one
to recover the original information. It is well known that data modification
(a.k.a. pollution attack) is the Achilles’ heel of such coding systems; in-
deed, intentional modification of a single coded fragment has the potential
to prevent the reconstruction of the original information because of error
propagation induced by the decoding algorithm. The challenge we take in
this work is to devise an algorithm to identify polluted coded fragments
within the set encoding a data unit and to characterize its performance.

To this end, we provide the following contributions: i) we devise MIND
(Malicious node IdeNtification in DSS), an algorithm that is general with
respect to the encoding mechanism chosen for the DSS, it is able to cope
with a heterogeneous allocation of coded fragments to SNs, and it is
effective in successfully identifying polluted coded fragments in a low-
redundancy scenario; ii) we formally prove both MIND termination and
correctness; iii) we derive an accurate analytical characterization of MIND
performance (hit probability and complexity); iv) we develop a C++ pro-
totype that implements MIND to validate the performance predictions of
the analytical model.

Finally, to show applicability of our work, we define performance and
robustness metrics for an allocation of coded fragments to SNs and we
apply the results of the analytical characterization of MIND performance
to select coded fragments allocations yielding robustness to collusion as
well as the highest probability to identify actual attackers.

1

Malicious node identification in coded distributed

storage systems under pollution attacks

Rossano Gaeta, Marco Grangetto

March 11, 2022

1 Introduction

Distributed storage systems (DSS) are employed to reliably hold data units by
means of a set of storage nodes (SN). As opposed to traditional monolithic enter-
prise storage, DSS can achieve better scalability, load adaptation, geographical
migration and fault tolerance, just to name a few advantages. DSS have found
their way in both research and commercial scenarios including cloud storage
data centers, peer-to-peer systems, wireless sensor networks, fog/edge comput-
ing systems [1, 2, 3, 4, 5, 6, 7]. Nonetheless, reliability and security of DSS are
still concerns that can significantly limit their adoption [8, 9].

In this context, coding based DSS have been proposed to improve many
aspects of the system, namely increasing throughput, reducing latency, simpli-
fying data collection, and granting reliability [3, 10, 11, 12]. Coding redundancy
of DSS represents a key ingredient to ensure data units’ reliability and availabil-
ity. Redundancy can be realized by means of coding techniques whereby a data
unit is divided into k fragments and n coded fragments are produced by some
suitable linear erasure code. Then, the original data units can be recovered
from a set of q ≥ k coded fragments. In this work we are going to show that
redundancy can also be exploited to secure the system against intentional or
unintentional data modification.

Most of the designs and analysis of coding-based DSS have been developed
under the (sometimes implicit) hypothesis that SNs are homogeneous [13], e.g.,
the responding probability is the same for all SNs. As a consequence of the
homogeneity assumption, uniform allocation of coded fragments to SNs repre-
sents the optimal setting from both the theoretical and practical point of views.
Nevertheless, many (if not all) systems where DSS have found their way are
heterogeneous in nature, e.g., peer-to-peer systems and fog/edge computing.
This is true also in more controlled scenarios such as cloud storage data centers;
indeed, components are periodically being upgraded and replaced leading to the
co-existence of different device models with diverse storage capacities, expected
lifetimes, access speed, and so on. Only recently, some research studies focused
on the problem of allocating coded fragments to heterogeneous SNs, i.e., charac-

2

terized by different reliability levels, to maximize the probability of successfully
retrieving the original data [14, 15].

In general, coding-based DSS have proved to be effective in delivering high
levels of reliability, availability, and performance provided that high enough
redundancy can be deployed, i.e., when the number of coded fragments n is
several times the number of data fragments k. The need for an efficient resource
management, e.g., in cloud storage data centers, or an intrinsic characteristic
of the system application, e.g., peer-to-peer based live streaming of multimedia
context, in this kind of systems has driven another line of research that deals
with the design of low-redundancy coding techniques, i.e., when n ≤ 2k.

Nevertheless, it is well known that data modification (a.k.a. pollution attack)
is the Achilles’ heel of coding systems [16]. Indeed, intentional modification of
a single coded fragment has the potential to propagate its bogus effects dur-
ing the decoding process to such an extent that the original data is completely
damaged. DSS can efficiently resist and react to pollution attacks although
existing methods have been devised under the assumptions of high redundancy
and in the case of homogeneous storage, i.e., each SN is given the same amount
of coded fragments representing a data unit. A pollution attack in a low re-
dundancy scenario is even more critical, instead, because the number of coded
fragments that can be lost (modified) without affecting data availability is very
limited.

Checksum recomputing and comparison in all those contexts wherein for each
of the n coded fragment a checksum can be computed, stored, and communi-
cated via a trusted infrastructure to clients is a viable and effective solution
to resist to pollution attacks and to identify malicious SNs. Nonetheless, in
many other contexts, e.g. in completely decentralized systems such as peer-to-
peer systems, wireless sensor networks, and fog/edge computing systems, the
access rate to data units, the constraints on meta-data storage and communi-
cation make the solution based on checksums either unfeasible or too resource
demanding. In these cases, alternative solutions should be developed.

Our contribution

The goal of the paper is to devise an accurate, efficient, and robust alternative
identification of malicious SNs that does not rely on meta-data exploitation and
that is solely based on decoding. Furthermore, the technique should not rely on
restrictive assumptions both on coding mechanism and on fragments allocation
to SNs and has to be amenable to formal characterization of its correctness and
performance. The output of the algorithm is a list of sets of coded fragments
containing polluted ones along with the identity of the actual SNs holding them.

To this end, we focus on the problem of polluter attacks in low-redundancy,
coding-based, heterogeneous DSS. We provide contributions in terms of algo-
rithmic aspects of the identification method and discuss its correctness. We also
consider its performance by deriving analytical bounds on the hit probability
and complexity of the proposed technique. Our contributions are as follows:

3

• we devise MIND, an algorithm to identify polluted coded fragments that
is built around the simple idea to progressively isolate sets of coded frag-
ments that do not trigger a pollution detection mechanism. The algorithm
input is a possibly heterogeneous allocation of coded fragments to SNs and
its output is a set of coded fragments that contain all polluted ones.

• We discuss the MIND termination and correctness; we formally prove that
when MIND returns a solution it is correct with a probability that can be
made arbitrarily close to 1 by tuning coding parameters.

• Since MIND is probabilistic we derive an analytical characterization of
its hit probability and complexity as a function of the parameters of the
algorithm, the decoding probability, and the DSS settings.

• We developed a C++ prototype that implements MIND to validate the
predictions of the analytical model we derive.

Some remarks

Although MIND is an extremely simple algorithm its proof of correctness and
the analytical characterization of its performance are not. Nevertheless, MIND
simplicity makes it an ideal candidate for deployment in high throughput en-
vironments where accuracy and complexity have to be traded-off to meet the
desired design goal.

It is worth pointing out that MIND and our mathematical modeling of its
performance and complexity are quite general and can be both applied to any
fragment encoding technique provided that a pollution detection mechanism is
available. To show the effectiveness of our proposal, in this paper we consider
Random Linear Network Codes (RLNC) whose decoding probability is analyt-
ically characterized in [17].

As an example of how MIND could be exploited in a cloud storage system, in
Section 6 we define the performance of an allocation by using two indexes: the hit
probability that represents how likely MIND is able to successfully terminate,
and the collusion resistance that is an indicator function to represent if an
allocation is able to resist collusion among malicious SNs. Based on these results
we select the allocations achieving both robustness to collusion as well as the
highest polluter identification accuracy using MIND.

Unfortunately, the design of allocation of coded fragments to SNs in presence
of pollution attacks for low-redundancy, coding-based, heterogeneous DSS is
an unclear issue that received little or no attention so far from the scientific
community. In particular while some works have focused on optimal allocation
to cope with unreliable SNs we are not aware of studies analyzing some key
security aspects such as SNs collusion potential in a heterogeneous scenario.
Nevertheless, the goal of this part of our paper is to provide an example of
how the analytical characterization of MIND performance could be exploited
to support the design of a realistic scenario. The design of efficient algorithms
to solve the optimization problems defined in Section 6 is outside the scope of

4

this paper and would deserve an intensive research effort per se. Therefore, we
used a straightforward exhaustive search for the optimal solutions; despite this
inefficient approach to the solution of our optimization problems all results have
been computed once for all in just a few hours on an i9 CPU.

Paper organization

The paper is organized as follows: Section 2 describes the coding-based DSS we
consider as well as the attack model we deal with. Section 3 contains the detailed
MIND algorithm specification by means of pseudo-code as well as formal proof
of termination and correctness. Section 4 illustrates the derivation of the ana-
lytical characterization of MIND performance and robustness whose validation
is carried out in Section 5. Section 6 comments on the results obtained from the
search for optimal allocations in a wide range of values of system parameters.
Section 7 discusses the scientific background of our work, and finally Section
8 summarizes the paper contribution, draws conclusions, and outlines possible
future developments of the current research activity. The main notation used
throughout the paper is summarized in Table 1 to serve as a reference for the
reader, with pointers to the sections where the corresponding terms are defined
for the first time. A symbol has been included in Table 1 only if it is not local
to the section it contains its definition, i.e., if it is referred to outside the section
that contains its definition. Throughout the paper we use the operator notation
|.| to denote the size of both sets and tuples.

2 System model

In this section we describe the DSS characteristics we consider; in particular,
we illustrate the coding operations and the attack model of malicious SNs.

2.1 Erasure codes for distributed allocation

In the scope of this paper we consider a scenario where a data unit d is divided
into k fragments d = (d1, . . . , dk) of equal size of z bits, then encoded onto
n ≥ k coded fragments y = (y1, . . . , yn) by a linear erasure code C(k, n) and
such coded fragments are allocated to a distributed set of storage nodes. Any
linear block code C(k, n) can be represented as linear mapping y = dG, through
the k×n generator matrix, with addition and multiplication defined in a Galois
field of a given size. In turn, the decoding process can be cast as computing k
unknown di out of a subset of the n coded fragments. For instance, this goal
can be achieved by using Gaussian elimination [18] to solve the linear problem
yS = dGS , where yS represents a subset of the coded fragments indexed by set
S ⊆ {1, . . . , n}, and GS are the corresponding equations, i.e. columns in the
generator matrix.

Each C(k, n) can be characterized by the erasure code decoding probability
ǫ(q) that denotes the probability that a data unit is decoded when |S| = q,

5

Section 2 - Erasure code
k number of data unit fragments
n number of coded fragments for a data unit
z fragment size in bits

γ(q) decoding probability at the qth fragment
ǫ(q) decoding probability with q coded fragments

Section 2 - Storage system and allocation
NS overall number of ASNs
NM overall number of malicious ASNs
N number of ASNs storing n coded fragments

n = (n1, . . . , nN) generic feasible allocation

Ai ith ASN in n
ni number of coded fragments stored by Ai

m = (m1, . . . ,mN) generic feasible attack scenario
mi number of polluted coded fragments for Ai

M(m) malicious set for m
H(m) honest set for m

Section 3 - Virtual storage nodes
x size of a VSN

V
j
i

jth VSN for ASN Ai

Nv(x) the set of all VSNs representing a data unit
Section 3 - MIND algorithm

W(x) working set
w size of W(x)

Natt max number of attempts
Section 4 - Performance indexes

p
j
i
(n,m) probability that j VSNs in Ai are polluted

pj(n,m) probability that j VSNs are polluted
p∗
hit(n,m) hit probability
a∗(n,m) complexity

Table 1: Key notation used in the paper.

i.e. the probability that rank(GS) = k, when |S| = q. It shall be noted that
ǫ(q) can be interpreted as the cumulative probability of decoding from q or less
coded fragments. In presence of ideal Maximum Distance Separable (MDS)
code, successful decoding can be accomplished from any random subset of k
coded fragments and therefore ǫ(q) = 0 if q < k and ǫ(q) = 1 if q ≥ k.

For the broad class of RLNC in a Galois field of a given size, the analytical
expressions for ǫ(q) have been derived in [17, 19]. Numerical solutions for ǫ(q)
in the case of Luby transform (LT) codes is provided by [20]. In other cases,
e.g. band codes [21], one may resort to simulation to estimate ǫ(q) empirically.

In the following, we will also need the probability that decoding occurs
exactly when the qth coded fragment is collected; this latter can be defined as
γ(q) = ǫ(q)− ǫ(q − 1).

2.2 Pollution model

We assume that malicious storage nodes can deliberately modify the coded frag-
ments they hold; as a consequence, the decoding results cannot be trusted in
general. Even a single polluted fragment can cause significant error propagation
due to the progressive combination of different received fragments during the
Gaussian elimination process. Fortunately, by exploiting coding redundancy
one can progressively check the decoded fragments for consistency with respect

6

to the redundant coded fragments; in particular, given a redundant set of coded
fragments that permits decoding, i.e. a full rank GS with |S| > k, one can
exploit redundancy to detect pollution. Namely, the linear dependent equations
can be checked for consistency with respect to the obtained solution. In presence
of coded fragments that contradict one another the whole data block d is de-
tected as polluted, even if it is not possible to identify the single polluted coded
fragments. The detail of a possible implementation of the pollution detection
mechanism is presented in Section 3.2.

Not all full rankGS are equally effective in the context of pollution detection
and identification.

Definition 2.1. A set of coded fragments S is defined as certain if rank(GS) =
k ∧ ∀s ∈ S : rank(GS\s) = k

The above definition characterizes a set of coded fragments S that induces a
full rank generator matrix, thus allowing to decode, where there is not a single
fragment s ∈ S that is essential for decoding. This amounts at never trusting
one single piece of information that is potentially polluted. It turns out that
when S is not certain one can not conclude anything on the reliability of the
decoded data.

2.3 Distributed storage system

In the following we will consider a coding-based DSS that is composed of:

• NS actual storage nodes (ASN) storing the n coded fragments y represent-
ing a data unit. A subset of NM ASNs are malicious and can intentionally
alter coded fragments they store.

• An arbitrary number of clients that can perform read or write (create)
operations.

• A master server that manages allocations of coded fragments representing
data units to ASNs and the association between names of data units and
addresses of ASNs storing their coded fragments.

Clients can perform:

• a write (or create) operation. In this case, each client relies on its own data
encoder module whose task is to create n coded fragments representing
the data unit to be stored in the DSS. Subsequently, the client provides
the n coded fragments to the master server. The master server comprises
a data allocator module that randomly selects 1 ≤ N ≤ NS ASNs to
hold the n coded fragments representing the data unit; we denote as Ai

(1 ≤ i ≤ N) the ith selected ASN.

The master server completes the operation by actually transmitting the n
coded fragments to the chosen ASNs according to some feasible allocation
as defined in Definition 2.2 whose optimality can be defined as discussed
in Section 6.3.

7

• A read operation. In this case, a client retrieves the addresses of ASN
storing the n coded fragments of the requested data unit from the master
server. Each client instructs its own data collector module to contact them
to gather the coded fragments. Once the n coded fragments are received
the client runs its data verifier module that attempts to identify malicious
ASNs by using the algorithm presented in Section 3.2. The data verifier
module of a client may either alert the master server to realize the actual
removal of malicious ASNs from the DSS or it may provide the decoded
clean data unit to a higher level application run by the client.

Please note that the system model we consider is important to get a global
picture of how MIND can be used by clients to verify integrity of a data unit.
Nevertheless, it is important to stress that for MIND to work properly the
mechanism to obtain the n coded fragments is irrelevant. For instance, in a
peer-to-peer based DSS the localization of ASNs storing the n coded fragments
might be obtained through DHTs instead of a specialized master server. There-
fore, MIND is applicable in a completely decentralized settings with no changes
possibly except for the actions that should be undertaken to remove malicious
ASNs from the DSS.

Let us now establish some notation that we will need in the following.

Definition 2.2. An N -tuple of positive integers n = (n1, . . . , nN) is called a

feasible allocation of n coded fragments to N ASNs if n =
∑N

i=1 ni. We also
define the heterogeneity of the feasible allocation n as its standard deviation
√∑

N
i=1(ni−

n
N

)2

N
. Heterogeneity quantifies how far n is from the homogeneous

allocation where each ASN receives the same amount of coded fragments n
N
.

Let us denote as mi the number of polluted coded fragments stored by ASN
Ai.

Definition 2.3. An N -tuple of non−negative integers m = (m1, . . . ,mN) is
called a feasible attack scenario for n if ∀i,mi = 0 ifAi is clean while 1 ≤ mi ≤ ni

if Ai is malicious. We call M(m) = {i : Ai is malicious} the malicious set for
m and H(m) = {i : Ai is honest} the honest set for m.

3 MIND identification algorithm

In this section we describe the algorithm MIND that is run by the data verifier
module of each client after the data collector has completed its task. The goal
is to compute the malicious set M taking as input an allocation n such that
pollution has been detected. MIND exploits the concept of virtual storage node
that is a logical partition of coded fragments physically allocated to ASNs. The
algorithm will return an empty malicious set M to indicate its failure. We
also formally prove that MIND termination is guaranteed and that when MIND
returns a solution it is correct with probability that can be made arbitrarily
close to 1 by tuning coding parameters.

8

Algorithm 1 MIND (n, x,Natt, w)

1: for i = 1 to |n| do
2: for j = 1 to ni

x
do

3: Create VSN V
j

i

4: end for

5: end for

6: for attempt = 1 to Natt do

7: V(x) = {V j

i : 1 ≤ i ≤ |n|, 1 ≤ j ≤ ni

x
}

8: W(x) ⊆R
w V(x); M = ∅;

9: if (rank(GW(x)) == k) ∧ (¬ polluted(W(x))) then
10: H = W(x); V(x) = V(x) \ W(x)
11: for u ∈ V(x) do
12: if polluted(W(x) ∪ {u}) then
13: M = M∪ {u}
14: else

15: H = H ∪ {u}
16: end if

17: end for{end of lin}

18: if certain(H) ∧ (
∧

∀h∈H
∀m∈M

(polluted((H \ {h}) ∪ {m}))) then

19: break {hit: exiting and return not empty M}
20: end if

21: end if

22: end for{end of lout}
23: return M

3.1 Virtual storage nodes

MIND is built around the simple idea to progressively isolate sets of coded frag-
ments that do not trigger the pollution detection mechanism. In principle, we
need to identify malicious ASN but we will show that may not always be feasi-
ble, depending on the number of fragments held by one ASN. The identification
becomes possible if one partitions the set of coded fragments received by one
ASN in subsets that we termed virtual storage node (VSN). It is worth pointing
out that VSNs do not have a functional role for the DSS but are logical units
introduced by MIND to detect small set of malicious fragments. In particular,
given a feasible allocation n, MIND partitions the set of coded fragments of
each ASN Ai in VSN subsets whose cardinality is equal to a positive integer x,
where ni

x
is the number of VSNs for ASN Ai

1. We denote as V j
i the jth VSN

for ASN Ai and as Nv(x) = {V j
i } the set of all VSNs representing a data unit.

We term VSN j as polluted if at least one of its coded fragments is polluted.

3.2 MIND description

1To avoid cluttering the notation and without loss of generality in the following we assume

that each value ni in n is an integer multiple of x.

9

The objective of MIND is to identify a sets of coded fragments that do not
trigger pollution detection. If this happen, the ASN (or VSN) contributing
the selected coded fragments can be considered as honest. Moreover, once a
clean set is found, it can be used as a pollution checker for all the remaining
fragments: indeed if adding more fragments from one ASN (or VSN) triggers
pollution detection, such ASN can be considered as malicious; in the opposite
case if more fragments do not produce pollution in the decoder they can be
considered as clean. The definition of VSN comprising x fragments allows us to
explore different trade-offs between identification probability and computational
cost.

MIND is described using pseudo-code notation in Algorithm 1: it takes as
input the allocation n and VSN size x and returns an estimate of the malicious
set M. The algorithm also depends on two other parameters w and Natt that
are introduced in the following. Algorithm 1 starts by partitioning ASN into
VSN of size x (lines 1-5). Then, the core of MIND is represented by the outer
loop (that we refer to in the following as lout) covering lines 6-22, where one
randomly looks for a clean set permitting the identification of polluters with the
idea presented above. A maximum number of attempts Natt is established to
guarantee termination. In line 7 the set of unknown VSNs V(x) is initialized with
all the nodes. Then, a subset W(x) composed of w VSNs is picked randomly.
From now on we term W(x) working set; it must be noted that wx ≥ k has
to be considered as a condition for decoding. In line 8 we use the notation
W(x) ⊆R

w V(x) to represent that set W(x) is a random subset of V(x) whose
cardinality is equal to w. The logical condition at line 9 serves to check if the
VSNs in W(x) permit decoding without triggering pollution; if this is the case,
set W(x) is considered as a set of honest H (line 10). In the inner loop, termed
in the following lin (lines 11-17), all remaining unknown nodes are checked
for pollution against the clean set and moved either to the set of malicious
M or honest H. Finally, two sanity checks on the estimated sets H,M are
performed (logical condition in line 18): the first amounts at guaranteeing that
H is certain according to Definition 2.1; the second one verifies the correctness of
the estimated honest and polluter sets by swapping every possible honest h ∈ H
with a polluter m ∈ M and checking that pollution is eventually detected.

In Algorithm 1 certain() and polluted() are boolean functions that return
true if the property is verified by their actual parameters and false otherwise.
The former implements Definition 2.1 while the latter is described in Algorithm
2. It relies on any decoding algorithm for the chosen encoding scheme in the
distributed storage system, where function decode() implements the desired
decoding algorithm. Then, every fragment in the set s ∈ S is checked for
consistency with the underlying linear system of equations: to this end function
substitute() described in Algorithm 3 checks whether the obtained solution
can be used to correctly compute the coded fragment s. In Algorithm 3 notation
g(s)i is used to represent the ith element of the equation to compute coded
fragment s.

If s cannot be re-coded from solution function returns false and an incon-
sistency in the tested set S is unveiled, i.e. pollution is detected in S.

10

Algorithm 2 polluted(S)

1: is polluted = false;
2: solution = decode(S);
3: for s ∈ S ∧ ¬is polluted do

4: if substitute(s, solution) == false then

5: is polluted = true;
6: end if

7: end for

8: return is polluted;

Algorithm 3 substitute(s,solution)

1: is recoded = true;
2: f = 0;
3: for i = 1 to k do

4: f = f + solutioni ∗ g(s)i
5: end for

6: if f 6= s then

7: is recoded = false;
8: end if

9: return is recoded;

It should be noted that function polluted() cannot return true when its
argument (a set of coded fragments) does not contain polluted elements since no
inconsistency is possible in this case. Conversely, function polluted() might
fail, i.e., it could erroneously return false, when at least one polluted element
is contained in its argument and no redundant coded fragment is available to
check for inconsistencies.

3.3 MIND termination

Besides the initial double loop in lines 1-5 where creation of VSNs is performed,
the core of MIND is composed of two nested loops: the inner loop lin (lines
11-17) embedded in the outer loop lout (lines 6-22). Both lin and lout are run
a finite number of times proving that MIND termination is always guaranteed.
Nevertheless, MIND might abort all Natt attempts; in that case the algorithm
terminates by returning an empty malicious set M to indicate failure.

3.4 MIND correctness

To start proving MIND correctness we first consider the following loop invariant
for lin:

(¬polluted(H)) ∧ (
∧

∀m∈M

polluted(H ∪ {m})).

This logical condition among lin variables states that we aim at computing two
not empty disjoint sets of VSNs such that pollution is not detected in set H and

11

each VSNs in M is able to trigger a pollution detection when joined to those in
H. We observe that:

• loop lin is entered only if logical condition in line 9 is true, i.e., if polluted(W(x))
is false and decoding is possible. This proves that the loop invariant is
true before entering lin because H = W(x) and M = ∅ in line 10.

• The loop invariant still holds true after each iteration in lin because VSN
u ∈ V(x) is inserted in either H or M depending on the value returned
by function polluted(W(x)∪ {u}).

• Since lin is repeated a finite number of times, i.e., the cardinality of finite
set V(x), we proved that the loop invariant is true when exiting lin.

Nevertheless, the above reasoning is not sufficient to prove MIND correctness.
Indeed, if we denote as M∗ the set of actual malicious VSNs that should be
returned by MIND the final step is to prove that at the end of loop lin the
equality M = M∗ holds. To this end we prove the following:

Lemma 3.1. Given a set of coded fragments S such that rank(GS) = k wherein
at least one element is polluted it holds that certain(S) = true → polluted(S) =
true with overwhelming2 probability.

Proof. If S is certain then by definition |S| > k. This also implies that for S
to be certain it must occur that the solutions of |S| systems of linear equations
must be obtained by excluding one coded fragment at a time in S. For each of
these solutions, the excluded coded fragment can be considered as a randomly
formed one whose probability to be bitwise equal to what would be computable
with the full knowledge of the solution is equal to 1

2z . The overall probability
that all |S| solutions are successfully checked by the excluded coded fragments
is then given by 1

2z|S| ; since |S| > k we have that 1
2z|S| < 1

2zk
. It follows that

if S is certain and it contains at least one polluted coded fragment then the
probability polluted(S)=true is equal to 1 − 1

2z|S| > 1 − 1
2zk

. Probability

1− 1
2zk is thus a lower bound to the probability that at least one element in S

triggers the detection of an inconsistency; it can be made arbitrarily close to 1
by properly choosing the coding parameters k and z.

Furthermore, elementary properties of logical implications yield the follow-
ing:

Lemma 3.2. Given a set of coded fragments S such that rank(GS) = k wherein
at least one element is polluted it holds that polluted(S) = false → certain(S) =
false with overwhelming probability.

MIND correctness can now be formally stated by analyzing the character-
istics of a randomly guessed working set W(x) computed in line 8 such that
logical condition in line 9 holds.

2By overwhelming probability we mean a probability that can be made exponentially close

to 1.

12

Theorem 3.1. Let W(x) be a set of coded fragments that satisfies logical con-
dition in line 9 yielding a solution that we denote as d. If all coded fragments in
W(x) are clean then at the end of loop lin we have M = M∗ with overwhelming
probability.

Proof. when a VSN u ∈ V(x) is analyzed in line 12 there are only two possibil-
ities:

• u is composed of clean coded fragments. In this case, logical condition in
line 12 polluted(W(x) ∪ {u})=false since coded fragments in u surely
satisfy d. Therefore, insertion of u in H is correctly performed.

• u contains 1 ≤ xp ≤ x polluted coded fragments therefore u ∈ M∗. As
we did in the proof of Lemma 3.1, we consider the xp polluted coded
fragments in u as randomly formed with respect to d; this implies that
the probability polluted(W(x)∪{u})=true in line 12 is equal to 1− 1

2zxp .
In this case, MIND correctly inserts u in M. In the unlikely case all xp

polluted coded fragments satisfy d (the probability of this event is equal
to 1

2zxp) we have that u 6∈ M∗ therefore it is correct to consider u as a
member of set H, instead.

The above analysis suggests that classification of VSNs in V(x) is correctly
performed with overwhelming probability and we obtain M = M∗ at the end
of loop lin.

We complete the analysis of MIND correctness by proving the following the-
orem that shows that a wrong guess for W(x) computed in line 8 such that log-
ical condition in line 9 holds will lead to an aborted attempt with overwhelming
probability.

Theorem 3.2. Let W(x) be a set of coded fragments that satisfies logical con-
dition in line 9. If W(x) contains at least one polluted coded fragment then set
H at the end of loop lin is not certain with overwhelming probability.

Proof. The set of coded fragments W(x) satisfies all hypothesis stated to derive
Lemma 3.2 therefore we conclude it is not certain with overwhelming probability.
Furthermore, at the end of loop lin we have W(x) ⊆ H with h VSNs that have
been added to H:

• if h = 0 then H = W(x) hence by Lemma 3.2 H is not certain with
overwhelming probability.

• If h > 0 then H ⊃ W(x). A VSN u is added to H only if polluted(W(x)∪
{u}) = false therefore at the end of loop lin we have polluted(H) =
false. It follows that H verifies the hypothesis of Lemma 3.2, i.e., it is
full rank and it contains at least one polluted coded fragment, therefore
it is not certain with overwhelming probability.

This proves that H is not certain with overwhelming probability every time a
wrong guess is made in line 8; in this case MIND aborts the attempt when
evaluating logical condition in line 18.

13

To conclude, our theorems show that when MIND returns a solution M it
is correct with overwhelming probability which can be made arbitrarily close to
1 by tuning coding parameters k and z.

Remark:

Although MIND is an extremely simple algorithm it includes a tricky part, i.e.,
the verification that the set of (hopefully) clean equationsH is actually pollution
free at the end of loop lin. There is no guarantee this property is always verified:
indeed, it is possible to compute H such that it contains polluted equations.

As a simple example consider a data unit d = (d1, . . . , dk) and the data
encoder creating n ≥ k coded fragments y = (y1, . . . , yn). Further assume that
MIND is run at the equation level, i.e., when the size of VSN is x = 1. Due
to the randomness inherent in both the encoding process and in the choice of
elements to be possibly included in H (line 8 of Algorithm 1) it might happen
that at the k − 1th iteration of lin a subset of k − 1 linearly independent coded
fragments allows one to recover k − 1 out of k data fragments (we denote as
dunknown the data fragment yet to be recovered). At the kth iteration there is
a non zero probability that a degree 1 coded fragment ykth = dunknown held by
a malicious ASN is selected. In this case, a corrupted data unit is recovered
(the malicious ASN has turned ykth = dunknown into ykth = dcorrupted) and all
subsequent coded fragments would be considered by MIND as polluted since
full and blind trust would be given to the correctness of the process leading to
set H.

The problem is: how can we discriminate between such a case and the case
where coded fragment ykth = dunknown is held by an honest ASN? The answer
is: we cannot, unless we define some computable property of set H that allows
one to discard or accept the solution provided at the end of inner loop lin. The
solution we propose is to define the certain property (Definition 2.1) that can
be efficiently verified on set H and to formally prove that we can correctly use
it to discard or accept a solution for H (lemmas and theorems in Section 3.4).

4 MIND performance

In this section we develop a mathematical characterization of the performance
of a size N , feasible allocation n in a coding-based DSS that is composed of NM

malicious ASNs and NS − NM honest ASNs. Performance is defined over two
indexes: the hit probability (the fraction of times MIND is able to successfully
isolate malicious VSNs), and complexity (the average number of trials before
MIND succeeds).

14

4.1 Hit probability and complexity with respect to a fea-

sible attack scenario

In this section we first focus on a particular feasible attack scenariom for n with
the goal to analytically derive the hit probability and complexity of MIND run
on n and m as functions of both the VSN size x and the maximum number of
attempts Natt. For the sake of readability and to avoid cluttering the notation
we omit explicit dependencies of all derived formulas on both x and Natt. Fur-
thermore, without loss of generality in the following we assume that each value
ni in n is an integer multiple of x.

4.1.1 Probability distribution of the number of polluted VSNs

For a given n we first focus on ASN Ai to derive the probability distribution
pji (n,m), i.e., the probability that j VSNs for ASN Ai are polluted.

We denote as li = (l1, . . . , lni
x
) an ni

x
-tuple of non negative integers to rep-

resent a possible distribution of polluted coded fragments among VSNs of ASN

Ai where mi =
∑

ni
x

h=1 lh. We also denote as Li the set of all such distributions
of polluted coded fragments for ASN Ai.

For a given distribution of polluted coded fragments li we call J(li) =
∑

ni
x

h=1 1 {lh > 0} the number of polluted VSNs for distribution li where the
symbol 1 {A} represents the indicator function whose value is equal to 1 if

statement A is true and 0 otherwise. Given li there exist
∏

ni
x

h=1

(

nh
i

lh

)

possible

ways of spreading polluted coded fragments. It follows that pji (n,m) can be
expressed as

pji (n,m) =

∑

li∈Li





ni
x
∏

h=1

(

nh
i

lh

)



1
{

J(li) = j
}

(

ni

mi

) . (1)

Please note that if ASN Ai is honest then pji (n,m) = 1 for j = 0 and pji (n,m) =
0 otherwise.

Starting from pji (n,m) it is possible to derive the probability distribution
pj(n,m), i.e., the probability that j VSNs are polluted in a feasible allocation
n under a feasible attack scenario m for n, as

pj(n,m) =
∑

ji1 ,...,ji|M(m)|





∏

i∈M(m)

pjii (n,m)



1







∑

i∈M(m)

ji = j







. (2)

It follows that the average number of polluted VSNs is given by

j(n,m) =

|Nv(x)|
∑

j=1

jpj(n,m),

15

and the average number of coded fragments to discard after identification of
polluted VSNs is

d(n,m) = x

|Nv(x)|
∑

j=1

jpj(n,m).

4.1.2 Upper bound on the hit probability

When j VSNs are polluted only a subset R(x, j) ⊆ Nv(x) of the initial set of
VSNs (where |R(x, j)| = |Nv(x)| − j) remains to recover the original data unit.

An upper bound on the hit probability depends on the probability to decode
the original clean data unit by using the set of remaining clean VSNs R(x, j)
that must also be certain according to Definition 2.1 (this condition is checked
by the left conjunct in line 18 of Algorithm 1). As discussed in Section 2.1,
the probability to decode the original clean data unit in this case is given by
ǫ(x(|Nv(x)| − j)), i.e., the decoding probability with the x(|Nv(x)| − j) coded
fragments contained in R(x, j). The probability that the set of coded fragments

R(x, j) is certain is equal to
(

ǫ(x(|Nv(x)|−j)−1)
ǫ(x(|Nv(x)|−j))

)x(|Nv(x)|−j)

, i.e., the conditional

probability that all possible subsets of coded fragments in R(x, j) of cardinality
equal to x(|Nv(x)|− j)− 1 allow one to recover the original data, given that the
set of coded fragments in R(x, j) is decodable.

It follows that when j VSNs are polluted recovery of the original data unit
is feasible and certain, in the sense of Definition 2.1, with probability

pcertain(j) = ǫ(x(|Nv(x)| − j))

(

ǫ(x(|Nv(x)| − j)− 1)

ǫ(x(|Nv(x)| − j))

)x(|Nv(x)|−j)

(3)

As discussed in Section 3, MIND is based on the concept of the working set
whose elements are VSNs and whose size is equal to w.3 When j VSNs are
polluters and subset R(x, j) is certain (as defined in (2.1)) then MIND can be
successful only if at least one subset W(x) ⊆ R(x, j) (where |W(x)| = w) is
decodable.

The conditional probability that a subset W(x) ⊆ R(x, j) is decodable given
that R(x, j) is certain can be expressed as

pdecode(j, w)=

{

ǫ(wx)

(ǫ((|Nv (x)|−j)x−1)
ǫ((|Nv (x)|−j)x))

(|Nv(x)|−j−w)x if w < |Nv(x)| − j

1 if w = |Nv(x)| − j
. (4)

Hence, the probability that at least one subset W(x) ⊆ R(x, j) is decodable is
given by

pexist(j, w) = 1− (1− pdecode(j, w))
(|Nv(x)|−j

w) . (5)

It follows that the product of probabilities (3) and (5) represents an upper
bound on the hit probability of MIND when j VSNs are polluted obtained as

pubhit(j, w) = pcertain(j)pexist(j, w). (6)
3Again, w actually depends on x but we omit it to improve readability.

16

4.1.3 An expression for the hit probability

If j VSNs are polluted and at least one subset W(x) ⊆ R(x, j) whose size is
equal to w is decodable, then the probability that a clean and decodable working
set is selected to start computing solutions H and M (logical condition in line
9) is given by

pselect(j, w) =

(

|Nv(x)|−j
w

)

(

|Nv(x)|
w

)

pdecode(j, w)

pexist(j, w)
, (7)

where the left factor
(|Nv(x)|−j

w)
(|Nv(x)|

w)
represents the probability of randomly selecting

a working set composed of clean VSNs while the right factor pdecode(j,w)
pexist(j,w) is the

conditional probability such clean working set is decodable given that at least
one exists. It follows that the probability MIND will succeed in Natt attempts
is given by

psuccess(j, w) =

Natt
∑

i=1

pselect(j, w)(1 − pselect(j, w))
i−1, (8)

i.e., the sum of probabilities a truncated geometric random variable is equal to
i.

All previous derivations lead us to write that MIND is successful when j
VSNs are polluted with probability

phit(j, w) = pubhit(j, w)psuccess(j, w). (9)

Then, we can compute the average hit probability of MIND as

phit(n,m,w) =

|Nv(x)|
∑

j=1

phit(j, w)p
j(n,m). (10)

If we denote the value ofw that maximizes (10) as w∗, i.e., w∗ = argmax
w

phit(n,m,w),

then we refer to
p∗hit(n,m) = phit(n,m,w∗) (11)

as the optimal hit probability of MIND for feasible allocation n under feasible
attack m.

4.1.4 An expression for the average complexity

When MIND is successful it terminates at the ith attempt with probability
pselect(j,w)(1−pselect(j,w))i−1

psuccess(j,w) , therefore the average number of attempts before hit-

ting the successful one is equal to

a(j, w) =

Natt
∑

i=1

ipselect(j, w)(1 − pselect(j, w))
i−1

psuccess(j, w)
.

17

We can express the average complexity (average number of attempts before
hit) of MIND as

a(n,m,w) =

|Nv(x)|
∑

j=1

a(j, w)pj(n,m). (12)

Also in this case, we refer to

a∗(n,m) = a(n,m,w∗) (13)

as the optimal complexity of MIND for feasible allocation n under feasible attack
m.

5 Validation results

In this section we present validation results for the mathematical model we
developed in Section 4. To this end, we developed a C++ prototype for MIND
whose results are compared against predictions from Equations 11 and 13 to
assess its accuracy.

We focus on a reference scenario where a data unit is partitioned in k = 32
fragments whose size in bits is z = 32 and where the encoder creates coded
fragments employing RLNC in a Galois field of size 2, i.e. random network
coding using XOR operations to linearly combine fragments. In case of RLNC
we can use to the analytical results derived in [17] for ǫ(q) that is required by
our model. We consider two feasible allocations n1 and n2; for each one we
analyze four feasible attack scenarios. In particular, we assume:

• the data allocator randomly selects N = 4 ASNs and determines the
feasible allocation n1 = (32, 16, 8, 4) where n = 60. In this case, we
assume there is a single malicious ASN, i.e., M = 1, that alters four
coded fragments. We consider all possible feasible attack scenarios (m1,1 =
(4, 0, 0, 0), m1,2 = (0, 4, 0, 0), m1,3 = (0, 0, 4, 0), and m1,4 = (0, 0, 0, 4))
that are obtained by assuming one out of four ASNs in n1 is malicious.

• The data allocator randomly selects N = 8 ASNs and determines the
feasible allocation n2 = (20, 12, 8, 8, 4, 4, 4, 4) where n = 64. In this case,
we assume there are two malicious ASNs, i.e., M = 2, that alter two
coded fragments each. We choose four out of

(

N
2

)

possible feasible attack
scenarios (m2,1 = (2, 0, 0, 0, 2, 0, 0, 0), m2,2 = (0, 2, 0, 0, 2, 0, 0, 0), m2,3 =
(0, 0, 2, 0, 2, 0, 0, 0), and m2,4 = (0, 0, 0, 0, 2, 2, 0, 0)).

We ran 1,000,000 trials of the C++ prototype for each feasible attack scenario
and computed the estimate for p∗hit() as the fraction of trials that successfully
terminated, and the estimate for a∗() as the average value of the number of
attempts before hitting the successful one.

The illustrations in Figure 1 show that the values of p∗hit() predicted by
Equation 11 are in excellent agreement with the results obtained by the C++

18

implementation of MIND for all considered scenarios (lines describe model pre-
dictions and points represent prototype performance results: these two sets of
values always overlap). The same conclusions can be drawn from results de-
picted in Figure 2 showing MIND complexity as predicted by Equation 13. We
conclude that our mathematical characterization of MIND optimal hit proba-
bility and complexity is highly accurate; we will exploit the model predictions
in Section 6 to compute optimal feasible allocations for a coding-based DSS for
several values of the system parameters.

wx x = 1 x = 2 x = 4
32 0.041988 0.209195 0.466666
36 0.031790 0.151724 0.4
40 0.009935 0.103448 0.333333
44 0.003732 0.064367 0.266666
48 0.001015 0.034482 0.2
52 0.000143 0.013793 0.133333
56 0.000002 0.002298 0.066666

Table 2: Probability pselect(
4
x
, w) in Equation 7 as function of x for n1 and m1,4.

Further inspection of results depicted in Figures 1 and 2 suggests a few more
observations: heterogeneity plays an important role in the severity of the pol-
lution attack. Indeed, although for both feasible allocations we considered the
same number of coded fragments is altered, the success of MIND heavily depends
on which ASNs are malicious in the feasible attack scenarios. For instance, for
n1 the feasible attack scenario m1,4 (where the malicious ASN controls only 4
out of 60 fragments) yields higher p∗hit for all values of parameter x. We can

also observe that in the same case Equation 2 yields p
4
x (n1,m1,4) = 1 for all

values of x we consider; therefore, we conclude that pcertain(
4
x
), pdecode(

4
x
, w),

and pexist(
4
x
, w) do not depend on x for a fixed value of the product wx. It fol-

lows that pselect(
4
x
, w) exclusively depends on the ratio of binomial coefficients

(|Nv(x)|− 4
x

w)
(|Nv(x)|

w)
; this is an increasing function of x as witnessed by results in Table

2.
In Table 3 we show pj(n1,m1,∗) for the four feasible attack scenarios we

consider: it can be noted that for m1,1 Equation 2 exhibits a behavior that is
less straightforward. In this case it is true that Equation 6 provides values that
decrease as x increases (hence for Natt → ∞ the value of Equation 11 decrease
as x increases). Nonetheless, for small values of Natt a larger size for VSNs is
beneficial as it yields higher values of Equation 11.

Some remarks

The following remarks complement these validation results:

19

n1 = (32, 16, 8, 4)
j pj(n1,m1,1) pj(n1,m1,2) pj(n1,m1,3) pj(n1,m1,4)

1 0.00022 0.00219 0.02857 1
2 0.05295 0.22418 0.87143 0
3 0.44849 0.63297 0 0
4 0.49834 0.14066 0 0

j(n1,m) 3.44494 2.91209 1.97143 1

Table 3: Probability distribution in Equation 2 for x = 4 in feasible allocation
n1.

• for a fixed number of polluted coded fragments the average number of
polluted VSNs j(n,m) is always less than the number of polluted coded
fragments as witnessed by results in Table 3. In turn, this means that
the probability that a clean and decodable working set is selected to start
computing solutions H and M (logical condition in line 9) increases as
x increases as shown by results in Table 2. To summarize: the higher x
the lower the overall number of VSNs, the lower the average number of
polluted VSNs, the higher pselect, the higher psuccess (Equation 8), and
finally the higher phit.

• Since our evaluation of MIND performance and complexity is model based
we developed a non-optimized C++ implementation with the sole purpose
to validate analytical results. For this reason, we did not strive to realize a
highly optimized software that would be suitable for a thorough evaluation
of running times. Nevertheless, we performed some tests to provide a
ballpark figure of running times. Figure 3 shows the average CPU time
in milliseconds for a single successful run of MIND on a PC equipped
with an i9 CPU. We only show the average CPU time for a successful
trial of MIND, i.e., a trial wherein logical condition in line 9 of Algorithm
1 is true, because the average CPU time for a failed trial takes much
less than 1 millisecond (it takes only a few tens of microseconds to run
instructions realizing lines 7-9). This means that the overall running time
of MIND can be well approximated by the CPU time for a successful trial.
Results depicted in Figure 3 refer to feasible allocations n1 and n2 and all
feasible attacks m1,∗ and m2,∗. All parameter values are those defined in
the reference scenario to compute validation results.

In a successful trial, most of the CPU time is spent for the evaluation
of logical condition when internal loop lin is exited. For a fixed value of
k, the CPU time to evaluate this logical condition is mostly determined
by the number of VSNs since the logical AND of evaluations of function
polluted((H\{h})∪{m}))must be performed by swapping every possi-
ble honest VSN h ∈ H with a polluter VSN m ∈ M. Since VSNs are size
x random subsets of the set of coded fragments stored by SNs the higher x

20

the lower the number of VSN to create (lines 1-5), test for integrity (lines
11-17), and verify for correctness of the solution (line 18). Therefore, it
can be easily noted that running times decrease as x increases since the
number of VSN decreases as shown in Figure 3.

Furthermore, we observe that by doubling N (the number of ASNs used
by feasible allocations n1 and n2) and by doubling the number of malicious
ASN (from 1 in n1 to 2 in n2) the average CPU times of MIND are only
slightly increased.

• the system model we consider is such that the task of identifying malicious
SNs is distributed to clients at each read attempt from the DSS. This
means that if at any given time any C read operations have been attempted
on any data units stored by the DSS then the probability of at least one
client spotting at least one malicious SN is given by pspot(C) = 1−(1−p)C

where p can either be p∗hit() as defined in Equation 11 if we focus on a
particular feasible allocation (a, x) under a feasible attack (a, x,m), or it
can be hopt(NM , NS , N), i.e., the optimal hit probability for MIND as
defined in Section 6.1. Probability pspot(C) can be very close to 1 even for
small values of p, i.e., for small values of parameter Natt that yields a very
low time complexity. For instance, the lowest values for p∗hit() in Figure
1 are obtained when Natt = 10 and can be lower bounded by 0.2. In this
case, after only C = 10 overall read attempts by clients the probability of
spotting at least one malicious SNs would be equal to 0.892 while after
C = 20 read attempts it would rise to 0.988.

• although we only show results for one reference scenario, two feasible al-
locations, and four feasible attack scenarios we verified that predictions of
Equations 11 and 13 are extremely accurate in a broad range of values of
parameters N , M , and n. Furthermore, very high accuracy has been ob-
tained for several combinations of feasible allocations and feasible attack
scenarios.

6 Analysis results

In this section we present an example of applicability of our work and we exploit
the mathematical characterization of MIND performance developed in Section
4 to determine the optimal feasible allocation n∗ (hence its optimal size N∗)
for a DSS where NM out of NS ASNs are malicious. To this end, we define
the concepts of performance and collusion resistance of a feasible allocation in
Sections 6.1 and 6.2, respectively. In Section 6.3 we state the optimization
problems to obtain optimal feasible allocations and in Section 6.4 we present
and comment on results we obtain.

21

6.1 Overall performance of a feasible allocation

In the following section we define the performance provided by allocation n
with respect to all possible attack scenarios that could be launched by NM

malicious ASNs in a DSS. Given a feasible attack scenario m for n we define
its degree as |M(m)|, i.e., the number of malicious ASNs in n. We denote as
ΘM

n the set of all degree M feasible attack scenarios and it is easy to show that

|ΘM
n | =

∑

m∈ΘM
n





∏

i∈M(m)

ni



.

Definition 6.1. A feasible attack scenario m for n is said to be maximally
harsh for n if ∀i ∈ M(m),mi = ni. We denote as ΦM

n the set of all possible
degree M , maximally harsh, feasible attack scenarios for n. It is easy to show
that ΦM

n ⊆ ΘM
n and that |ΦM

n | =
(

N
M

)

. Furthermore, ∀m ∈ ΦM
n there exist





∏

i∈M(m)

ni



− 1 feasible attack scenarios m∗ such that M(m∗) = M(m).

We consider the set ΦM
n of all possible degree M , maximally harsh, feasible

attack scenarios for n and we define the hit probability of n as

h∗(n,N,M) =
1

(

N
M

)

∑

m∈ΦM
n

p∗hit(n,m).

We also define the complexity of n as

c∗(n,N,M) =
1

(

N
M

)

∑

m∈ΦM
n

a∗(n,m).

Then we can define the average hit probability of allocation n when 1 ≤ M ≤
NM selected SNs are malicious provided n includes at least one malicious SN as

h(n,NM , NS, N) =

NM
∑

M=1

H(M,NM , NS −NM , N)h∗(n,N,M)

1−H(0, NM , NS −NM , N)
, (14)

where H(M,NM , NS −NM , N) denotes the probability that a hypergeometric
random variable is equal to M when population sizes are NM and NS−NM , and
a subset of size N is randomly selected. Analogously, its complexity is defined
as

c(n,NM , NS, N) =

NM
∑

M=1

H(M,NM , NS −NM , N)c∗(n,N,M)

1−H(0, NM , NS −NM , N)
. (15)

22

6.2 Collusion resistance of a feasible allocation

In this section we introduce concepts allowing us to tell how likely n is going
to resist a colluding attack in a storage system with NM malicious ASNs. We
define CP (n,m) =

∑

i∈M(m) ni as the colluding potential of the feasible attack
scenario m for n, i.e., the overall number of polluted coded fragments represent-
ing a data unit that are controlled by the set of malicious ASNs storing a data
unit. Furthermore, given a feasible allocation n and a feasible attack scenario
m for n

Definition 6.2. we consider n as collusion resistant to m if CP (n,m) < k, i.e.,
if all malicious ASNs cannot collude to modify the original data unit.

It is easy to show that, ∀m ∈ ΦM
n there exist (

∏

i∈M(m) ni) − 1 feasible

attack scenarios m∗ such that CP (n,m∗) = CP (n,m) for any value of M . For
this reason, we only consider maximally harsh, feasible attack scenarios for n to
define that:

Definition 6.3. feasible allocation n is M-collusion resistant if ∀m ∈ ΦM
n , n is

collusion resistant to m.

The concept of M−collusion resistance of n can be formalized by the collu-
sion resistance function defined as

r(n,M) =
∏

m∈ΦM
n

1 {CP (n,m) < k} ,

where collusion resistance r(n,M) = 1 if and only if n is M−collusion resistant.

6.3 Optimal feasible allocation

Finally, in this section we consider the problem of determining the optimal allo-
cation n∗ overN ASNs for a DSS composed ofNS ASNs with a fixed numberNM

of malicious ASNs. To this end we choose n∗ that maximizes h(n,NM , NS , N)
and that is NM−collusion resistant, i.e.,

n∗(NM , NS , N) = argmax
n

h(n,NM , NS , N)r(n,NM). (16)

We denote as

hopt(NM , NS , N) = h(n∗(NM , NS , N), NM , NS , N) (17)

the optimal value of the hit probability and as

copt(NM , NS , N) = c(n∗(NM , NS , N), NM , NS , N) (18)

the optimal complexity of MIND in such a scenario.

23

Parameter Values
k 32
n 64
NS 32, 96
NM 2, . . . ,NS/4
x 1, 2, 4, 8

Table 4: Parameter setting for optimization.

6.4 Results

Table 4 summarizes the values of parameters we considered in this investigation.
We assume RLNC in a Galois field of size 2 for coded fragment creation.

Results we discuss in this section can also be considered as a security analysis
of the DSS under a pollution attack mounted by NM out of NS malicious ASNs.
In particular, the output of our analysis is composed of feasible allocations of
coded fragments representing a data unit that not only are optimal with respect
to the probability MIND is able to correctly isolate polluted VSNs but are also
resistant to collusion as defined in Definition 6.3.

The first set of results is depicted in Figure 4 and compares optimal perfor-
mance of MIND for the range of values of x we consider and for NS = 32 and
Natt = 50. It can be noted that:

• for x = 4 and x = 8 accuracy increases as the size of the optimal allocations
N increases. Nevertheless, the benefit yielded by higher values of N are
counterbalanced by the increased likelihood of stragglers [4], i.e., the time
taken to retrieve the slowest, or straggling, coded fragments dominates
the decoding of the data unit. Nonetheless, results suggest that in both
cases the optimal allocation for hopt is the homogeneous allocation, i.e.,
N∗ = n

x
and n∗ = (x, . . . , x).

• For x = 1 and x = 2 the trend exhibited by hopt does depend on NM .
Indeed, when the number of malicious ASNs in the system is low (NM =
2) accuracy of MIND is monotonically increasing with N , while when
NM is large (NM = 8) accuracy decreases as N increases, instead. For
intermediate values of the number of ASNs compromised during the attack
(4 ≤ NM ≤ 6) MIND accuracy is not monotonic with N anymore.

• For x = 2 optimal allocations are:

– N∗ = n
x
and n∗ = (x, . . . , x), for NM = 2;

– for all other cases the optimal allocation turns out to be n∗ = (n −
(N∗−1)x, x, . . . , x) whereN∗ = 21 forNM = 4, N∗ = 23 forNM = 6,
and N∗ = 25 for NM = 8. Please note that the above optimal
allocation is also the most heterogeneous feasible allocation, i.e., the
one with the highest value for the standard deviation of n∗.

24

• For x = 1 optimal allocations are:

– N∗ = n
x
and n∗ = (x, . . . , x), for NM = 2;

– for NM = 4 we obtain N∗ = 24 and optimal allocation is n∗ =
(10, 7, 7, 7, 7, 7, 2, 1, 1, . . . , 1). This is neither the most nor the least
heterogeneous feasible allocation;

– for NM = 6 and NM = 8 we get N∗ = 17 and N∗ = 19, respectively.
In both cases the optimal allocation is n∗ = (n−3(N∗−1), 3, 3, . . . , 3)
that is also the most heterogeneous one.

Figure 5 shows the same results as a function of x for NM = NS/4. It can be
noted that, optimal allocations can be found for the highest value of NM only
for x = 1 and x = 2. Higher values of x make MIND faster and more accurate
but weaken it since optimal allocations can only be 6−resistant and 2−resistant
for x = 4 and x = 8, respectively. To summarize, it is possible to find at least
one allocation that is collusion resistant up to NM = 8 = NS

4 ; this means that
the DSS is able to resist to attacks launched by no more than 25% of malicious
ASNs.

Finally, Figure 6 shows the same results as a function of Natt for x = 2 and
for different sizes of the DSS NS . It can be noted that MIND optimal perfor-
mance does depend on the maximum number of attempts Natt. In particular,
for low-to-moderate values of pollution in the system, i.e., NM ≤ 6, optimal per-
formance of MIND increase monotonically as N increases when the algorithm
can be run for a very large number of attempts, i.e., for Natt = 1000. This
means that the homogeneous allocation where N∗ = n

x
is the optimal feasible

allocation. This is in sharp contrast with the previous observation we made on
results depicted in Figure 4 where an optimal value N∗ < n

x
was identified for

Natt = 50 when the number of malicious ASN is NM > 2. It follows that op-
timal allocations also depend on the time constraints imposed on the detection
and identification process.

The above observations do not hold in a small size DSS (NS = 32) when
pollution peaks at its maximum, i.e., when NM = NS/4; in this case the optimal
feasible allocation is not the homogeneous one and N∗ = 25 and n∗ = (n −
x(N∗ − 1), x, x, . . . , x) represent the best solution for any time constraint on
MIND maximum complexity.

Remark

In this section we simply aimed at giving an example of how to exploit the
accurate characterization of MIND performance to evaluate the resilience of a
DSS wherein a given number of malicious SN is assumed. The computational
cost to evaluate formulas yielding MIND performance, complexity is very small
while the analysis of all possible feasible allocations and feasible attacks can be
more costly and it depends on n, x, and NM . To solve Equations 16-18 we
used a straightforward exhaustive search for the optimal solutions: all results
have been computed in a few hours on an i9 CPU. Since this kind of evaluation

25

should be done once for all to design the characteristics of the DSS we believe
the computational complexity is acceptable.

7 Related work

Coding based DSS have been introduced to improve a target system perfor-
mance, e.g. data availability and reliability [10, 12]. Of course, DSS security
properties have attracted attention too. In the following we discuss the more
closely related works organized in terms of the different aspects they tackle.

Availability and reliability. Most works published in the field leverage on
Maximum Distance Separable (MDS), e.g. classical Reed-Solomon codes, where
the original data can be retrieved from any random combination of k (out of n)
coded fragments. Initially, the homogeneous case where all used SNs store the
same amount of fragments has been studied [13]. Recently, a line of research
has dealt with the problem of finding the optimal allocation of coded-fragments
in DSS where SNs are unreliable with heterogeneous probabilities of responding
to queries of a data collector. In [22] an MDS code is considered and various
approximations are proposed to find allocations that maximize the probability
of decoding a data unit. The authors of [15] propose an efficient calculation of
the reliability of an allocation in a heterogeneous DSS by reducing it to linear
computation cost that is based on a newly proposed weighted k-out-of-s model.
In [23] the authors propose efficient algorithms for optimizing over a few classes
of allocations that are derived from the symmetric case where each SN is given
the same amount of coded fragments. It is shown by numerical analysis that the
proposed allocations outperform existing methods. The work in [24] defines a
notion of guaranteed allocations and finds the necessary conditions for an allo-
cation to be guaranteed based on individual SNs capacities and overall storage
budget. An iterative algorithm is developed to find guaranteed allocations, if
feasible.

The redundancy of DSS can be exploited to recover from losses, with the so
called repair mechanism. In [14] the authors study the capacity of heterogeneous
DSS where SNs can have different storage capacities and different repair band-
widths. Lower and upper bounds on the system capacity are given as a function
of the average resources per SNs. In [3] an overview of the possible approaches
for exact and functional repair is provided, showing that using network cod-
ing techniques the repair bandwidth can be reduced significantly compared to
standard MDS codes. In [25] a coding approach is proposed for both a globally
regenerating and a locally repairable coding scheme. In [10, 11] erasure codes
achieving optimal trade-off between repair bandwidth and storage overhead are
proposed. In [12] the benefit of repairable codes is experimentally analyzed in
the context of large-scale storage systems.

Security. When resorting to DSS one does not want to compromise on
security. The readers can refer to [26] for a recent overview and a detailed
taxonomy of the existing approaches to counteract passive attacks in the broad
area of network coding systems. As far as DSSs are regarded, several papers have

26

dealt with the problem of securing from eavesdropper, perform integrity check
on collected data and identification of malicious SNs in presence of pollution
attack.

Cryptographic or algebraic verification techniques have been proposed by
several papers, e.g., [27, 28, 16, 29, 30, 31, 32, 33, 34, 35, 36, 37]. These ap-
proaches are hindered by the significant communication overhead required for
distribution of verification information and computational costs for data verifi-
cation. In [38] a Luby transform based cloud storage service is proposed, where
hashing is used to define retrieval and verification tags that are appended to
each coded fragment. Such tags support exact repair and data verification by
allowing a third party to perform the public integrity verification.

Another important approach to deal with pollution attacks to DSS is error
correction of corrupted fragments [39, 40, 41, 42, 43]. All these methods exploit
error correcting codes to detect fragment corruption and to recover the original
data but they may remarkably increase the overall coding overhead; indeed
error correction capacity of ideal linear codes is one half the corresponding
error detection capacity. For this reason in our work we exploit linear code
for detection only and let the proposed identification algorithm progressively
recognize and remove corrupted fragments.

A few studies are closer to our contribution. Indeed, they mainly focus on
the identification of malicious storage nodes neither by resorting to any external
verification entity, nor by exploiting fragment signatures.

In [44] the authors consider random coding-based cloud storage and devise
both a pollution detection algorithm and four identification and repair algo-
rithms to recover the original data. The algorithms represent trade-offs between
computational and communication complexity and successful identification (and
repair) probability. As opposed to ours, [44] relies on random linear coding in
Galois Field of very large size so as to guarantee that exactly k + 1 coded frag-
ments are enough to detect pollution. Another major difference is that the
coded fragment allocation problem, which is one of the main contributions of
our work, is not considered. Indeed, in [44] each data unit is allocated to n
storage nodes, each holding exactly one coded fragment.

In [45] we devised a pollution identification mechanism based on statistical
inference tailored to the DSS we proposed in [46]. In [45] we exploit the so called
Belief Propagation algorithm that only provides an estimate of the probability
of a SN being malicious, while in this work we propose MIND and show that it
provides the correct identification always almost surely. Furthermore, allocation
of coded fragments is not dealt with because an homogeneous allocation of
coded fragments to SNs is assumed as in [44]. In this work we overcome the
limitations of the identification mechanism in [45] allowing us to analyze a much
more general scenario where coded fragments can be arbitrarily placed on SNs.
Finally, in [45] the performance of the Belief Propagation algorithm is assessed
only by simulation while in the current work we develop an extremely accurate
mathematical model that is able to predict what is the hit probability of MIND.

27

8 Conclusions

In this paper we studied the problem of identifying malicious nodes in coded
distributed storage systems under pollution attacks.

To this end, we developed MIND, an algorithm to identify polluted coded
fragments exploiting the notion of virtual storage nodes that are subsets of
coded fragments held by actual storage nodes. We formally proved that MIND
termination is guaranteed and that when MIND returns a solution it is cor-
rect with probability that can be made arbitrarily close to 1 by tuning coding
parameters. We further developed a mathematical characterization of the per-
formance of MIND in terms of the probability of finding the set of polluted coded
fragments (hit probability), the average number of attempts before succeeding
(complexity). We validated the model predictions against results we obtained
from a C++ prototype we developed to represent all features of MIND.

As an example of applicability of our work, we exploited the mathematical
model to determine optimal allocations in a wide range of values for the system
parameters in the case of RLNC encoding. Our findings show that optimal
allocations depend in a non trivial way on some parameters of the algorithm as
well as on the total amount of malicious SNs in the system.

We plan to further extend our research in several directions:

• the exploration of MIND performance with respect to other encoding tech-
niques for DSS (e.g., systematic codes where coded and non-coded frag-
ments co-exist) as well as for systems where storage nodes can be unreliable
and may fail to provide coded fragments to clients.

• The design of efficient decoding algorithms (and the optimization through
parallelization of their implementations) to be evaluated in a test-bed.

References

[1] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google File System,” in
ACM SOSP, Oct. 2003.

[2] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop dis-
tributed file system,” in Mass storage systems and technologies (MSST),
2010 IEEE 26th symposium on. Ieee, 2010, pp. 1–10.

[3] A. G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh, “A survey on network
codes for distributed storage,” Proceedings of the IEEE, vol. 99, no. 3, pp.
476–489, 2011.

[4] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li,
S. Yekhanin et al., “Erasure coding in windows azure storage.” in Usenix
annual technical conference. Boston, MA, 2012, pp. 15–26.

[5] S. Muralidhar, W. Lloyd, S. Roy, C. Hill, E. Lin, W. Liu, S. Pan, S. Shankar,
V. Sivakumar, L. Tang et al., “f4: Facebook’s warm blob storage system,”

28

in Proceedings of the 11th USENIX conference on Operating Systems Design
and Implementation, 2014, pp. 383–398.

[6] Y. Xiang, V. Aggarwal, Y. R. Chen, and T. Lan, “Differentiated latency in
data center networks with erasure coded files through traffic engineering,”
IEEE Transactions on Cloud Computing, vol. 7, no. 2, pp. 495–508, 2019.

[7] E. Bacis, S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, M. Rosa,
and P. Samarati, “Dynamic allocation for resource protection in decentral-
ized cloud storage,” in Proc. of the 2019 IEEE Global Communications
Conference (GLOBECOM 2019), Waikoloa, Hawaii, USA, December 2019.

[8] G. R. Goodson, J. J. Wylie, G. R. Ganger, and M. K. Reiter, “Efficient
byzantine-tolerant erasure-coded storage,” in International Conference on
Dependable Systems and Networks, 2004, 2004, pp. 135–144.

[9] K. K. Rao, J. L. Hafner, and R. A. Golding, “Reliability for networked
storage nodes,” IEEE Transactions on Dependable and Secure Computing,
vol. 8, no. 3, pp. 404–418, 2011.

[10] Q. Liu, D. Feng, H. Jiang, Y. Hu, and T. Jiao, “Systematic erasure codes
with optimal repair bandwidth and storage,” ACM Transactions on Stor-
age, vol. 13, no. 3, 2017.

[11] Q. Liu, D. Feng, Y. Hu, Z. Shi, and M. Fu, “High-performance general
functional regenerating codes with near-optimal repair bandwidth,” ACM
Transactions on Storage, vol. 13, no. 2, 2017.

[12] O. Kolosov, G. Yadgar, M. Liram, I. Tamo, and A. Barg, “On fault toler-
ance, locality, and optimality in locally repairable codes,” ACM Transac-
tions on Storage, vol. 16, no. 2, 2020.

[13] D. Leong, A. G. Dimakis, and T. Ho, “Distributed storage allocations,”
IEEE Transactions on Information Theory, vol. 58, no. 7, pp. 4733–4752,
2012.

[14] T. Ernvall, S. El Rouayheb, C. Hollanti, and H. V. Poor, “Capacity and
security of heterogeneous distributed storage systems,” IEEE Journal on
Selected Areas in Communications, vol. 31, no. 12, pp. 2701–2709, 2013.

[15] G. Xu, S. Lin, G. Wang, X. Liu, K. Shi, and H. Zhang, “Hero:
Heterogeneity-aware erasure coded redundancy optimal allocation for reli-
able storage in distributed networks,” in Performance Computing and Com-
munications Conference (IPCCC), 2012 IEEE 31st International. IEEE,
2012, pp. 246–255.

[16] Z. Yu, Y. Wei, B. Ramkumar, and Y. Guan, “An efficient signature-based
scheme for securing network coding against pollution attacks,” in INFO-
COM 2008. The 27th Conference on Computer Communications. IEEE,
2008.

29

[17] O. Trullols-Cruces, J. M. Barcelo-Ordinas, and M. Fiore, “Exact decoding
probability under random linear network coding,” IEEE communications
letters, vol. 15, no. 1, pp. 67–69, 2010.

[18] V. Bioglio, R. Gaeta, M. Grangetto, and M. Sereno, “On the fly gaussian
elimination for lt codes,” IEEE Communication Letters, vol. 13, pp. 953–
955, 2009.

[19] X. Zhao, “Notes on ”exact decoding probability under random linear net-
work coding”,” IEEE Communications Letters, vol. 16, no. 5, pp. 720–721,
2012.

[20] Feng Lu, C. H. Foh, Jianfei Cai, and L. Chia, “Lt codes decoding: Design
and analysis,” in IEEE International Symposium on Information Theory,
2009, pp. 2492–2496.

[21] A. Fiandrotti, V. Bioglio, M. Grangetto, R. Gaeta, and E. Magli, “Band
codes for energy-efficient network coding with application to p2p mobile
streaming,” IEEE Transactions on Multimedia, vol. 16, no. 2, pp. 521–532,
2014.

[22] V. Ntranos, G. Caire, and A. G. Dimakis, “Allocations for heterogenous
distributed storage,” in Information Theory Proceedings (ISIT), 2012 IEEE
International Symposium on. IEEE, 2012, pp. 2761–2765.

[23] Z. Li, T. Ho, D. Leong, and H. Yao, “Distributed storage allocation for het-
erogeneous systems,” in Communication, Control, and Computing (Aller-
ton), 2013 51st Annual Allerton Conference on. IEEE, 2013, pp. 320–326.

[24] M. Noori and M. Ardakani, “Allocation for heterogeneous storage nodes,”
IEEE Communications Letters, vol. 19, no. 12, pp. 2102–2105, 2015.

[25] N. Silberstein, A. S. Rawat, and S. Vishwanath, “Error-correcting regener-
ating and locally repairable codes via rank-metric codes,” IEEE Transac-
tions on Information Theory, vol. 61, no. 11, pp. 5765–5778, 2015.

[26] Y. Liu and Y. Morgan, “Security against passive attacks on network coding
system – a survey,” Computer Networks, vol. 138, pp. 57 – 76, 2018.

[27] M. N. Krohn, M. J. Freedman, and D. Mazieres, “On-the-fly verification
of rateless erasure codes for efficient content distribution,” Security and
Privacy, IEEE Symposium on, 2004.

[28] C. Gkantsidis and P. Rodriguez, “Cooperative security for network coding
file distribution,” in IEEE INFOCOM, 2006.

[29] E. Kehdi and B. Li, “Null keys: Limiting malicious attacks via null space
properties of network coding,” in INFOCOM 2009, IEEE.

30

[30] Z. Yu, Y. Wei, B. Ramkumar, and Y. Guan, “An efficient scheme for se-
curing xor network coding against pollution attacks,” in INFOCOM 2009,
IEEE.

[31] X. Wu, Y. Xu, C. Yuen, and L. Xiang, “A tag encoding scheme against
pollution attack to linear network coding,” IEEE Transactions on Parallel
and Distributed Systems, vol. 25, no. 1, pp. 33–42, 2014.

[32] F. Chen, T. Xiang, Y. Yang, and S. Chow, “Secure cloud storage meets
with secure network coding,” in INFOCOM, 2014 Proceedings IEEE, pp.
673–681.

[33] A. Le and A. Markopoulou, “Nc-audit: Auditing for network coding stor-
age,” in Network Coding (NetCod), 2012 International Symposium on, pp.
155–160.

[34] S. T. Shen, H. Y. Lin, and W. G. Tzeng, “An effective integrity check
scheme for secure erasure code-based storage systems,” IEEE Transactions
on Reliability, vol. 64, no. 3, pp. 840–851, 2015.

[35] M. Baldi, F. Chiaraluce, L. Senigagliesi, L. Spalazzi, and F. Spegni, “Secu-
rity in heterogeneous distributed storage systems: A practically achievable
information-theoretic approach,” in 2017 IEEE Symposium on Computers
and Communications (ISCC), 2017, pp. 1021–1028.

[36] Y. Hu, Y. Liu, W. Li, K. Li, K. Li, N. Xiao, and Z. Qin, “Unequal failure
protection coding technique for distributed cloud storage systems,” IEEE
Transactions on Cloud Computing, pp. 1–1, 2017.

[37] W. Shen, J. Qin, J. Yu, R. Hao, J. Hu, and J. Ma, “Data integrity auditing
without private key storage for secure cloud storage,” IEEE Transactions
on Cloud Computing, pp. 1–1, 2019.

[38] N. Cao, S. Yu, Z. Yang, W. Lou, and Y. Hou, “LT codes-based secure and
reliable cloud storage service,” in IEEE INFOCOM, 2012, pp. 693–701.

[39] T. Ho, B. Leong, R. Koetter, M. Medard, M. Effros, and D. Karger,
“Byzantine modification detection in multicast networks with random net-
work coding,” Information Theory, IEEE Transactions on, vol. 54, no. 6,
pp. 2798 –2803, june 2008.

[40] S. Jaggi, M. Langberg, S. Katti, T. Ho, D. Katabi, M. Medard, and M. Ef-
fros, “Resilient network coding in the presence of byzantine adversaries,”
Information Theory, IEEE Transactions on, vol. 54, no. 6, pp. 2596 –2603,
june 2008.

[41] R. Koetter and F. Kschischang, “Coding for errors and erasures in ran-
dom network coding,” Information Theory, IEEE Transactions on, vol. 54,
no. 8, pp. 3579 –3591, august 2008.

31

[42] B. Chen, R. Curtmola, G. Ateniese, and R. Burns, “Remote data checking
for network coding-based distributed storage systems,” in Proceedings of
the 2010 ACM Workshop on Cloud Computing Security Workshop, CCSW
’10, pp. 31–42.

[43] M. Baldi, N. Maturo, E. Montali, and F. Chiaraluce, “Aont-lt: A data pro-
tection scheme for cloud and cooperative storage systems,” in 2014 Inter-
national Conference on High Performance Computing Simulation (HPCS),
2014, pp. 566–571.

[44] L. Buttyan, L. Czap, and I. Vajda, “Detection and recovery from pollution
attacks in coding-based distributed storage schemes,” IEEE Transactions
on Dependable and Secure Computing, vol. 8, no. 6, pp. 824–838, 2011.

[45] C. Anglano, R. Gaeta, and M. Grangetto, “Securing coding-based cloud
storage against pollution attacks,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 28, no. 5, pp. 1457–1469, May 2017.

[46] ——, “Exploiting rateless codes in cloud storage systems,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 26, no. 5, pp. 1313–1322,
May 2015.

32

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

p h
it* ()

Natt

–n1, x = 1
–n1, x = 2
–n1, x = 4
–n2, x = 1
–n2, x = 2
–n2, x = 4

Feasible attack scenario 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

p h
it* ()

Natt

–n1, x = 1
–n1, x = 2
–n1, x = 4
–n2, x = 1
–n2, x = 2
–n2, x = 4

Feasible attack scenario 2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

p h
it* ()

Natt

–n1, x = 1
–n1, x = 2
–n1, x = 4
–n2, x = 1
–n2, x = 2
–n2, x = 4

Feasible attack scenario 3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

p h
it* ()

Natt

–n1, x = 1
–n1, x = 2
–n1, x = 4
–n2, x = 1
–n2, x = 2
–n2, x = 4

Feasible attack scenario 4

Figure 1: Validation results for p∗hit(). Results are for both theoretical results
and measures from C++ prototype: lines describe model predictions and points
represent C++ prototype output results. Measure points always lie on the
corresponding model line.

33

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100

a* ()

Natt

–n1, x = 1
–n1, x = 2
–n1, x = 4
–n2, x = 1
–n2, x = 2
–n2, x = 4

Feasible attack scenario 1

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100

a* ()

Natt

–n1, x = 1
–n1, x = 2
–n1, x = 4
–n2, x = 1
–n2, x = 2
–n2, x = 4

Feasible attack scenario 2

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100

a* ()

Natt

–n1, x = 1
–n1, x = 2
–n1, x = 4
–n2, x = 1
–n2, x = 2
–n2, x = 4

Feasible attack scenario 3

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100

a* ()

Natt

–n1, x = 1
–n1, x = 2
–n1, x = 4
–n2, x = 1
–n2, x = 2
–n2, x = 4

Feasible attack scenario 4

Figure 2: Validation results for a∗(). Results are for both theoretical results and
measures from C++ prototype: lines describe model predictions and points
represent C++ prototype output results. Measure points always lie on the
corresponding model line.

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5

x

–n1
–n2

CPU time (in ms)

Figure 3: Average running CPU times (in milliseconds) for a successful run of
MIND. Results are averaged over the four feasible attacks m1,∗ and m2,∗ for
both feasible allocations.

34

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

hop
t

N/NS

NS = 32, x = 1, Natt = 50

NM = 2
NM = 4
NM = 6
NM = 8

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

hop
t

N/NS

NS = 32, x = 2, Natt = 50

NM = 2
NM = 4
NM = 6
NM = 8

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

hop
t

N/NS

NS = 32, x = 4, Natt = 50

NM = 2
NM = 4
NM = 6

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

hop
t

N/NS

NS = 32, x = 8, Natt = 50

NM = 2

Figure 4: Values of hopt as a function of NM .

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

hop
t

N/NS

NS = 32, Natt = 50, NM = 2

x = 1
x = 2
x = 4
x = 8

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

hop
t

N/NS

NS = 32, Natt = 50, NM = 4

x = 1
x = 2
x = 4

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

hop
t

N/NS

NS = 32, Natt = 50, NM = 6

x = 1
x = 2
x = 4

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

hop
t

N/NS

NS = 32, Natt = 50, NM = 8

x = 1
x = 2

Figure 5: Values of hopt as a function of x.

35

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

hop
t

N/NS

x = 2, NM = 2

NS = 32, Natt = 50
NS = 32, Natt = 1000

NS = 96, Natt = 50
NS = 96, Natt = 1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

hop
t

N/NS

x = 2, NM = 4

NS = 32, Natt = 50
NS = 32, Natt = 1000

NS = 96, Natt = 50
NS = 96, Natt = 1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

hop
t

N/NS

x = 2, NM = 6

NS = 32, Natt = 50
NS = 32, Natt = 1000

NS = 96, Natt = 50
NS = 96, Natt = 1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

hop
t

N/NS

x = 2, NM = 8

NS = 32, Natt = 50
NS = 32, Natt = 1000

NS = 96, Natt = 50
NS = 96, Natt = 1000

Figure 6: Values of hopt as a function of Natt for NS = 32 and NS = 96.

36

