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ABSTRACT
Machine Learning (ML) is more than just trainingmodels, the whole
life-cycle must be considered. Once deployed, a ML model needs
to be constantly managed, supervised and debugged to guaran-
tee its availability, validity and robustness in dynamic contexts.
This demonstration presents an agent-based ML workflow man-
ager so-called Scanflow1, which enables autonomic management
and supervision of the end-to-end life-cycle of ML workflows on
distributed clusters. The case study on a MNIST project2 shows that
different teams can collaborate using Scanflow within a ML project
at different phases, and the effectiveness of agents to maintain the
model accuracy and throughput of the model serving while running
in production.
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1 INTRODUCTION
Machine Learning (ML) approaches have become common with
good results in different tasks such as machine translation, image
classification, recommendation systems, and speech recognition.
While working on a ML project, ML workflows composed of some
reproducible steps and executed as a pipeline are widely used to
build or deploy a model efficiently because of the flexibility, porta-
bility and fast delivery they provide to a ML life-cycle.

ML workflows still face several challenges while being used by
different teams. The Data Science team requires to automate some
repetitive tasks within ML workflows while training and improving
the model. Therefore, some AutoML modules and frameworks [5]
have been developed to tune hyper-parameters in order to have
good learning performance with less human assistance. However,
ML life-cycle is more than just training a model [1]. Once the model
has been trained, the Data Engineer team works on deploying the
ML workflows into production. More importantly, they are required
to operate the workflows to maintain the robustness of the model,
such as to deal with security vulnerabilities, concept drift, lack of
explainability and interpretability, and hidden technical debt. Also,
the online inference model serving services have strict latency and
efficiency requirements that should be considered. Therefore, ML
workflows are no longer running in a known context and with
static requirements, meaning that how to enable the autonomy to
manage ML workflows has become an open issue [2].

The AutoML techniques proposed in previous works are turned
off after training a model, thus cannot help the model to meet dy-
namic changes after being deployed. To make an autonomic system
for ML in production, Kedziora et al. [2] and Zliobaite et al. [6]
provided conceptual level frameworks for autonomous adaptive
systems, identifying their characteristics and challenges, but with-
out any practical implementation or evaluation. Seldon [4] provides
a set of tools for deploying ML models at scale which include prac-
tical oversight and governance for ML models. But they mainly
focus on monitoring metrics, providing model explanations, and
detecting outliers and drift, rather than autonomically maintaining
model performance under those circumstances.

Currently, there is not any extensible framework bringing auton-
omy for ML workflows in production. Therefore, our work enables
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Figure 1: Data Science team works at training phase

Figure 2: Data Engineer team works at inference phase

an agent-based approach so that ML workflow systems can ben-
efit from autonomic computing to meet dynamic changes. The
agents focus on the robustness and requirements of the model at
the ML application layer as well as reasoning quality of services
and the structure of workflows at the infrastructure layer. For that
purpose, we contribute Scanflow1, an agent-based framework that
enables autonomic management of the end-to-end life-cycle of ML
workflows on distributed clusters.

2 RESEARCH AND TECHNICAL APPROACH
Scanflow overview: Overall, Scanflow supports defining different
types of workflows and building a run-time environment for each
step wrapped as a container image. Figure 1 describes the steps for
the Data Science team to develop a model. In this phase, Scanflow
can track the metadata (such as metrics and scores) and the artifacts,
support their analysis through the Checker agent, and automatically
tune the hyper-parameters through the Improver agent.

Figure 2 describes the steps for the Data Engineer team to put
the ML model into production. First, the deployment of the model
inference workflow, which could be either in batch or online mode.
The latter will wrap and deploy the model as a serving service.
Second, the autonomic operation of the workflow from both the
ML application layer and the infrastructure layer thanks to the
Scanflow integration with Kubernetes [3]. From the application
layer, Scanflow (i.e, agents) can track the model metrics (such as
scores) and artifacts (such as new data observations), detect outliers,
data drift, provide model explanations, and finally trigger updates
of the ML workflow (such as retraining the model with the new
data). From the infrastructure layer, we can take profit from the

resource management capabilities of the orchestrator. In particular,
the quality of the model serving service (such as the latency and
failure rate of invocations) can be monitored in real-time. With
these observations, Scanflow can collaborate with the resource
manager in order to autonomically scale out the service instances
or change their resource allocation to improve the reliability and
throughput of the model serving.

Agent collaboration for model debugging: Scanflow inter-
nally supports four templates of agents, namely Tracker, Checker,
Improver, and Planner. The Data Engineer team can provide custom
functions to enhance the capabilities of each agent and deal with
different robustness problems. As a proof-of-concept, Algorithm
1 outlines the interaction and collaboration of built-in Scanflow
agents which feature a non-trivial drift anomaly detector that auto-
nomically deals with out-of-distribution samples in the data and
improves a target accuracy estimator based on human feedback to
label new data.

Algorithm 1: Agent-based model debugging
Input: tracker-agent; checker-agent; improver-agent;
planner-agent; 𝑛𝑒𝑤𝑑𝑎𝑡𝑎: new predictions samples;𝑚:
current model; 𝑞: current model accuracy;

while size(𝑛𝑒𝑤𝑑𝑎𝑡𝑎) > 1000 do
tracker-agent(𝑛𝑒𝑤𝑑𝑎𝑡𝑎) call checker-agent;
𝑎𝑛𝑜𝑚𝑎𝑙𝑦, 𝑝𝑖𝑐𝑘𝑒𝑑 ← checker-agent(𝑛𝑒𝑤𝑑𝑎𝑡𝑎);

while size(𝑝𝑖𝑐𝑘𝑒𝑑) > 100 do
checker-agent(𝑝𝑖𝑐𝑘𝑒𝑑) call improver-agent;
𝑚′, 𝑞′ ← improver-agent(𝑝𝑖𝑐𝑘𝑒𝑑);
if 𝑞′ > 𝑞 then

improver-agent(𝑚′, 𝑞′) call planner-agent;𝑚
replaced by𝑚′ ← planner-agent(𝑚′)

end
end

end
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