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ABSTRACT

Serverless functions provide high levels of parallelism, short start-
up times, and “pay-as-you-go” billing. These attributes make them
a natural substrate for data analytics workflows. However, the
impossibility of direct communication between functions makes
the execution of workflows challenging. The current practice to
share intermediate data among functions is through remote object
storage (e.g., IBM COS). Contrary to conventional wisdom, the
performance of object storage is not well understood. For instance,
object storage can even be superior to other simpler approaches
like the execution of shuffle stages (e.g., GroupBy) inside powerful
VMs to avoid all-to-all transfers between functions. Leveraging
a genomics pipeline, we show that object storage is a reasonable
choice for data passing when the appropriate number of functions
is used in shuffling stages.
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1 PROBLEM STATEMENT AND GOALS.

Serverless computing platforms (such as AWS Lambda, IBM Cloud
Functions, etc) provide on-demand scalability and fine-grained re-
source allocation. This means that a developer can leverage massive
levels of parallelism in just a few seconds to build applications with
rapid horizontal scaling. Along with their ease-of-use, these plat-
forms have been recently used to execute serverless workflows
composed of a sequence of execution stages, which can be repre-
sented as a directed acyclic graph (DAG). DAG nodes correspond
to serverless functions and edges correspond to the flow of data
between dependent stages.

Unfortunately, serverless functions do not support point-to-point
communication. As a result, the standard practice for passing inter-
mediate data between serverless functions is through remote object
storage (e.g., IBM COS). If care is not taken, however, I/O-bound
stages that require all-to-all data transfers between functions (such
as GroupBy and OrderBy) can end up bottlenecking the system. This
typically occurs due to the limited throughput of object storage
services (e.g., IBM COS only supports a few thousand operations/s).

On the positive side, object storage is cheap and an “always-on”
service, requiring little intervention from the user. It is therefore
the most comfortable option for programmers and data analysts,
despite its higher latency and lower throughput compared to other
alternatives such as AWS ElastiCache. For this reason, some practi-
tioners prefer to run I/O-bound stages inside large-memory virtual
machine (VM) instances to minimize data transfers. Nevertheless,
these solutions do not exploit the huge aggregated bandwidth of-
fered by object stores.

The objective of this demo is to show the practical utility of a pure
serverless implementation for workflows. That is, we demonstrate
that object storage performs well when the appropriate number of
functions is used in I/O-bound stages. To do so, we run a genomics
pipeline in two manners. One way that is “purely” serverless using
object storage, and the other when the shuffle operation runs inside
a powerful VM. In this way, we qualitatively evaluate the pros and
cons of each strategy for serverless workflows.

2 RESEARCH AND TECHNICAL APPROACH.

2.1 Pipeline Description.

We employ METHCOMP [1], a compression method for DNA
methylation annotation files, as an evaluation workflow, since it is
habitual in the genomics community. For instance, the ENCODE
project repository contains bisulfite data for more than 500 samples.
Unfortunately, raw data in structured BED format! can amount to
tens of GBs. METHCOMP presents a compression method tailored
to methylation data that yields about 10x better compression ratio
than gzip. Particularly, this method operates in two consecutive
stages. A first sort stage that entails all-to-all data transfers be-
tween functions, and a second stage that is embarrassingly parallel
(encoding). For the purpose of this demonstration, we port the
METHCOMP pipeline to serverless.

2.2 DPipeline Implementations.

We use Lithops [3], an open source? Python framework for server-
less analytics. Lithops allows the parallel execution of analytics
workflows on top of cloud functions. Moreover, it supports the
provisioning of heavyweight VM instances to run computations,
which gives us the chance to seamlessly run different incarnations
of the same pipeline. We use IBM Cloud as the cloud provider for
both scenarios. IBM COS is used as data passing mechanism in both
pipelines.

Our first implementation is VM-based (Figure 1, A). Thanks to
Lithops VM provisioning, we execute the sort stage within a VM
with sufficient physical memory, while resorting to cloud functions
only for the encoding stage.

Our second implementation is purely serverless (Figure 1, B). For
the sort operation, we use Primula [4], an extension of Lithops
that optimizes all-to-all transfers between functions. Along with a
number of I/O optimizations for serverless all-to-all communication,
Primula finds the optimal number of functions for a given shuffle
data size “on the fly”. For I/O-bound tasks, using the optimal number

!https://www.encodeproject.org/data-standards/wgbs/
2https://github.com/lithops-cloud/lithops
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Table 1: Performance of METHCOMP pipeline in terms of
latency and cost for a 3.5GB input.

Configuration Latency (s) Cost ($)
"Purely" serverless 83.32 0.008
VM-supported 142.77 0.010

of functions in terms of remote storage resource utilization is crucial
for good performance [4].
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Figure 1: Purely serverless (A) and hybrid implementations
(B) of the genomics compression pipeline.

2.3 Experiment setup and results

In the demo, we will evaluate both configurations in the us-east
region using the 3.5GB dataset: ENCFF988BSW?. We will allocate
2GB of memory to cloud functions, and use a bx2-8x32 IBM Virtual
Server Instance as our VM for the sort stage.

Table 1 shows our results in terms of end-to-end latency and
cost for a parallelism degree of 8 workers. End-to-end latency in-
cludes startup times. Cost subsumes the following charges: the cost
of cloud functions, storage requests, and the VM expenses — i.e.,
execution time and storage volume. While both configurations de-
liver similar costs, the “purely” serverless architecture significantly
outperforms the hybrid pipeline in terms of latency. This shows
that the execution of DAGs over a serverless infrastructure can
be superior to a VM-based, “serverful” infrastructure thanks to a
better exploitation of the aggregated bandwidth offered by object
storage when sharing intermediate data.

2.4 User Interface and Configuration.

As our main objective is to show the feasibility of executing work-
flows using a pure serverless architecture, we found it imperative
to provide a declarative programming interface to represent work-
flows. To this end, we augmented Lithops with a module to create
pipelines from JSON configuration files. Further, we also developed
a IPython interface for job tracking in real time, which displays the
workflow progress and breaks the cost down at each stage.

3https://www.encodeproject.org/experiments/ENCSR515MHO/

3 RELATED WORK

Research on serverless analytics systems is gaining attraction in
the last few years. Lithops [2] is an open-source, general-purpose
tool for serverless analytics. Lithops is now multi-cloud [3] and for
legacy support, it also enables the execution of Python code as is
inside VM instances. To improve the performance of all-to-all data
transfers through object storage, Lithops integrates Primula [4].
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