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Abstract
Modern operating systems are tightly coupled to a specific
isolation approach and safety mechanism. At design time, the
isolation strategy is set in stone and rarely revisited later, due
toprohibitive costs. This lackofflexibilityhurts specialization,
makes it hard to leverage new software/hardware isolation
technologies, andmakes the OS less resilient to attacks target-
ing the isolation mechanism. To address these issues we have
developed FlexOS, a novel libOS approach that decouples iso-
lationproperties fromtheOSdesign.Dependingon the config-
uration, the same FlexOS code can mimic a microkernel with
multiple address-spaces, a single-address-space OS with Intel
MPK compartments, or many other OS isolation approaches.
In this paper, we summarize the current state of FlexOS

and present two main research avenues that we aim to ex-
plore next: automated porting to make OS safety property
specialization really easy, and support for CHERI hardware
capabilities to better showcase FlexOS’ potential.

CCS Concepts
• Software and its engineering→Operating systems; •
Security and privacy→Operating systems security.
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operating systems, compartmentalization, operating systems
security
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1 Background andMotivation
Modern Operating Systems (OSes) are tightly coupled to one
or a few specific isolation approaches and safety mechanisms.
At design time, the OS developers settle for a particular set
of isolation primitives and build OS services and interfaces
around it. Because this decision is so deeply entangled with
the structure of the OS, changing it at a later point is a very
costly task.
The current OS landscape broadly consists of monolithic

OSes [4] which rely on user/kernel separation using the page
table, microkernels [12, 13] which rely on server-based iso-
lation with page tables, and single-address-space OSes which
rely on intra-address-space isolation [5, 11, 17], or ditch all
formof isolation tomaximizeperformance [14, 20, 23].Clearly,
in thesemodels, changing the isolation approach or the safety
mechanism after design represents a major refactoring and
potentially maintenance effort. For example, the ongoing
Rust for Linux patch already changes over 30K LoC [22] with
tens of contributors. Kernel Mode Linux, which removes the
user/kernel separation in Linux, touches over 20 subsystems,
changes about 4K LoC [21], and breaks numerous kernel and
user functionalities.

This lackofflexibilitywith regards to the isolationapproach
and safety mechanisms poses a number of problems. First, it
prevents or limits specialization. Clearly, there is no one-size-
fits-all approach that canofferoptimalperformanceand safety
characteristics for all applications and use-cases; each OS
model effectively represents a single point in the design space
thatoffersa specific trade-offwith regards to safetyandperfor-
mance. Second, the lack of flexibility regarding safety mecha-
nisms makes it hard to leverage the many new isolation tech-
nologies that come out both in academia and in the industry:
leveragingmemory protection keys formicrokernels is every-
thing but trivial [9], and so does using CHERI [25] hardware
capabilities to isolate a microkernel [7] or a monolithic BSD
system [6]. Evenworse, this extensive redesignwork has to be
doneagain for every technology.Third,whenprimitivesbreak
(e.g., Meltdown [18] for user/kernel isolation), the lack of flex-
ibility makes it harder to find a timely and efficient answer
to the vulnerability. This problem has been noticed to some
extent in the industry and in the literature; recently, a few
OSes such as Genode [8] and CubicleOS [24] attempt to bring
a certain degree of flexibility to the OS design space. Unfortu-
nately, they remain bound to a specific isolation technology
(e.g., page table or Intel Memory Protection Keys – MPK [1]).
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In order to address these issues, we designed and imple-
mented FlexOS [16], an OS approach that enables specializa-
tion of OS isolation properties, both in terms of granularity
(what is isolated fromwhat) as well as technology (how the
isolation is provided). Unlike previous approaches, FlexOS
doesnot represent a single point in thedesign space, instead, it
can be flexibly specialized at build-time to adopt a wide range
of isolation approaches by simply changing the build configu-
ration. In this paper, we briefly introduce FlexOS and present
two future research avenues that we envision to explore: (1)
automated porting to improve onFlexOS’ current porting cost
and make it fit for more widespread use, and (2) CHERI hard-
ware capabilities support to fully showcase FlexOS’ flexibility
in the granularity and technology dimensions.

2 FlexOS: Flexible OS Isolation
To enable the build-time customization of the isolation gran-
ularity and mechanism, FlexOS is based on a highly modular
library OS (libOS), Unikraft [14]. Similarly to a component-
based OS, it is composed of fine-granular, arbitrarily small
and independent libraries that communicate via well-defined
interfaces. Figure 1 summarizes the architecture of FlexOS.
FlexOS defines isolation backends that implement isolation
support for a particular technology (e.g.MPK [1], EPT, etc., A
in Figure 1), core libraries that implement coreOS features that
constitute the trusted computing base (such as the boot code
or the scheduler, B ), and regular kernel and user libraries
(such as the filesystem, or libnginx, C ).

Unlike Unikraft, where all libraries must share a single pro-
tection domain, FlexOS libraries are isolation-agnostic: the
source code does not make any assumption about the iso-
lation strategy in the final image. The ability to write code
that is independent from the isolation profile is made possible
by FlexOS’ compartmentalization API. In FlexOS, the com-
munication between libraries happens conceptually through
abstract gates instead of usual function calls, and data shared
across libraries must be allocated via abstract shared data
primitives. At build time, and based on user configuration
input, an isolation backend is selected ( 1 ), and these abstract
primitives are instantiated by the compilerwith the backend’s
implementation ( 2 ) to generate an image to reflects precisely
the isolation technology and granularity chosen ( 3 ).

Since library implementationsdonotmakeanyassumption
about isolation, dependingon thegranularity andchosen tech-
nology, libraries can be isolated in their own compartment, or
merged together with other libraries in a same compartment.
The implementation of gates can also vary widely depending
on the underlying technology. For instance, in the case of
isolation with MPKs, gates will mainly switch the call stack
and the protection key register, but in the case ofmicrokernel-
like VM-based isolation, gates will place arguments in shared
memory and emit a remote procedure call (RPC).
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Figure 1: FlexOS overview.

We have implemented and evaluated a full-featured pro-
totype of FlexOS with backend support for Intel MPK and
EPT (VMs) — an early version of which was presented at
HotOS’21 [16]. The rest of this paper focuses on possible evo-
lutions of this work.

3 Future Research
This section presents the two main research avenues that we
aim to explore next: automated porting to make FlexOS more
accessible to the wider community, and support for CHERI
hardware capabilities to better showcase FlexOS’ flexibility.
3.1 Automated Porting
As discussed in the previous section, FlexOS libraries are
developed in an isolation-agnostic manner using a compart-
mentalization API. In practice, this means that libraries have
to be ported to FlexOS, including not only kernel libraries but
also userland libraries and applications. This manual porting
cost ismoderate—a fewdays for reasonably complex libraries.
Although it is acceptable for a research prototype, this port-
ing effort is still likely to hurt the adoption of FlexOS in the
industry and leave the system prone to human errors. An
important evolution of our work is therefore be to automate
as much as possible this porting effort.
At the time of this writing, the porting of effort of FlexOS

is twofold. First, gate placeholders have to be inserted. Con-
cretely, this consists in replacing inter-library procedure calls
by abstract gates, which will be later automatically replaced
by the toolchain with a particular implementation (see 2 in
Figure 1). An example of gate placeholder is given below:

sd = socket(AF_INET, SOCK_STREAM, 0); // before porting
flexos_gate_r(fd, liblwip, socket, AF_INET,

SOCK_STREAM, 0); // after porting

Doing such transformations is straightforward given the
function call graph for direct calls, but significantly more
complex for indirect calls (function pointers).
A second part of the porting effort consists in marking

the allocation of data shared between multiple libraries with
abstract shared data primitives. This means manually ana-
lyzing inter-library data flow and determine allocation sites
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that must be annotated. Both are hard problems in the gen-
eral case, as they can reduced to points-to analysis, which is
undecidable [15]. It is also a general, open problem shared
by all compartmentalization frameworks. In the literature,
fully automated solutions have been proposed using static
analysis such as PtrSplit and Cali [3, 19]. Other works also
present semi-automated approaches using static and dynamic
analysis, such as SOAAP [10].
Automated v.s. Semi-automated Approach Fully auto-
mated solutions have the advantage of offering seamless com-
partmentalization and significantly ease the adoption. On the
other hand, they have to be conservative due to the fundamen-
tal imprecision of static analysis [3, 15]. Moreover, software
that has not been developed with isolation in mind does not
typically make a good candidate for seamless compartmental-
ization: if a large part of the state of the library or application
is exposed in the form of shared data, then the security bene-
fits of compartmentalization are limited and the performance
impact might not be justified. Existing solutions are not able
to automatically address such issues — and even if they could,
expecting the developer to redesign the application to address
themwould be at oddswith full automation. Such approaches
are therefore incompatible with our goals of specialization
and optimal performance. Hence, we envision an approach
that features a feedback loop similar to SOAAP. In our case,
however, this feedback loop would be optional.

In our approach, a static analysis pass similar to that of Cali
would be applied to the libraries. The first aim would be full
automation, potentially at the cost of precision, performance,
and/or resource usage. However, unlike previous approaches,
the static analysis would provide rich feedback to the user.
Based on it, expert users could then take manual actions to
increase the quality of the automatic compartmentalization
bymanually annotating the code or refactoring it. Theporting
could therefore be entirely automated, without closing the
door to a feedback loop. Clearly, the goal is to get the best of
both worlds: the automation of a static analysis tool, and the
precision and bespoke character of amanual, expert approach.
Impact on the API The introduction of an automated com-
partmentalization framework would lead to the partial re-
moval of the explicit API for an implicit one, and potentially
to the introductionofadditional compilerannotations toguide
the compartmentalization and increase the quality of the iso-
lation. Instead of having explicit abstract gates, cross-library
function calls would implicitly translate to a gate at compile
time. In the spirit of the semi-automated approach, the explicit
shared dataAPIwould still be present but rather act as a guide
for the static analysis approach. If data marked as shared is
detected as library-local by the tool, then awarning is emitted,
and the same the other way around.

3.2 Support for Hardware Capabilities

With MPK and EPT, we demonstrated that a unified, flexi-
ble system can seamlessly marry very heterogeneous tech-
nologies. Nevertheless this small number of backends has
its limits from a research perspective as it (1) restrains the
trade-off space thatwe can reach (performance, safety guaran-
tees, number of domains), and (2) insufficiently demonstrates
and challenges the flexibility of FlexOS’ design. We identified
CHERI [25]hardwarecapabilities asagoodbackendcandidate
to address these issues.
Motivation forCHERI support CHERI is an ISA extension
that offers architectural support for capabilities. It enables
for significantly smaller granularity of compartmentalization
thanMPK/EPT (byte levelmemory protection), and a theoreti-
cally unlimitednumber of protectiondomains.AddingCHERI
backend support for FlexOS is interesting for this thesis for
a number of reasons:

• CHERIcapabilitieswouldextendFlexOS’ trade-offspace
with the ability to address confused-deputy situations,
reduce data sharing, and larger numbers of domains,
something that is currently impossible for architectural
(MPK) and performance reasons (EPT).

• With the exception of CheriOS [7], little work has been
done on single-address-space OSes on capability hard-
ware. CheriOS proposes a single-address space micro-
kernel utilizing CHERI for process and kernel isola-
tion. Unlike FlexOS, CheriOS takes a general-purpose
approach to single-address space OSes and targets ex-
clusively CHERI, utilizing a custom security focused
hypervisor to achieve aminimal TCB. It is an open ques-
tion whether the concepts developed by CheriOS can
be applied directly to FlexOS’ architecture.

• The flexibility of FlexOS allows it to perform fair com-
parison of CHERI with other hardware and software-
based mechanisms, something that has not been per-
formed in the literature at the time of this writing.

The choice of CHERI as a FlexOS backend is timely; the
CHERI ISA extension has recently been made available for
ARMv8-A (an ISA that FlexOS supports) andMorello, a pro-
totype board, will be released in January 2022 [2].
Engineering Approach Ultimately the goal would be to
port FlexOS to be able to run in full capability mode, i.e. with
every pointer in the code backed by a capability used to check
boundaries and access rights upon dereferencing. However, a
number of issues might arise due to the limited compatibility
with certain C idioms commonly used in low level systems
software such as OSes. Hence, we envision a transitional goal
through the use of CHERI’s hybrid capability mode, in which
only select pointers are protectedwith capabilities.Weplan to
leverage CHERI’s Default Code Capability (DCC) andDefault
Data Capability (DDC), defining the range of virtual address
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space accessible by the currently running thread, to enforce
isolation between compartments. Data will be shared safely
and efficiently between communicating compartments by
protecting the corresponding pointers with capabilities.
In addition to this, we expect that additional changes will

be required in core subsystems such as scheduling and mem-
ory management. These should eased by FlexOS’ hook API
that lets isolation backends perform relevant operations upon
events such as thread creation or context switches. In general,
the characteristics of the CHERI ISA seem to fit well with
FlexOS’ API.

4 Summary
We have briefly introduced FlexOS, an OS approach that en-
ables specialization of OS isolation properties. Based on this
we presented future research avenues to extend it: automatic
porting tomakeFlexOS it formorewidespreaduse, andCHERI
hardware capabilities support to better showcase its flexibility.
In addition to these, we also envision to better explore new
practical use-cases enabled by FlexOS.
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