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ABSTRACT 
Transparent research practices      
analytic methods, and data to be thoroughly evaluated and poten-
tially reproduced. The HCI community has recognized research 
transparency as one quality aspect of paper submission and review 
since CHI 2021. This course addresses HCI researchers and stu-
dents who are already knowledgeable about experiment research 
design and statistical analysis. Building upon this knowledge, we 
will present current best practices and tools for increasing research 
transparency. We will cover relevant concepts and skills in Open 
Science, frequentist statistics, and Bayesian statistics, and uncer-
tainty visualization. In addition to lectures, there will be hands-on 
exercises: The course participants will assess transparency practices 
in excerpts of quantitative reports, interactively explore implica-
tions of analytical choices using RStudio Cloud, and discuss their 
fndings in small groups. In the fnal session, each participant will 
choose a case study based on their interest and assess its research 
transparency together with their classmates and instructors. 

enable the research design, materials,
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1 MOTIVATION AND SCOPE 
“CHI papers should strive for research transparency regardless of the 
contribution type and methodology.” 

— CHI 2022 Guide to a successful submission [4] 

Transparent research practices enable the research design, mate-
rials, analytic methods, and data to be thoroughly evaluated and 
potentially reproduced. The importance of transparent research 
practices is widely recognized. As of June 2019, the Transparency 
and Openness Promotion (TOP) Guidelines [30] are implemented 
by 4,985 journals [28]—among them are prominent outlets from a 
variety of scholarly disciplines, e.g., Science, Nature Human Behavior, 
Psychological Science, American Economic Association. 

In the last decade, the feld of HCI has been continuously engag-
ing in the conversation related to replicability and transparency 
(e.g., RepliCHI movement [55–58], Transparency movement [6, 19, 
20, 50]). These eforts manifested in the community-led efort in 
2019 [5] to add a section on research transparency to the Guide 
to a successful submission [2] and Reviewing [3], which was of-
cially adopted since CHI 2021. However, other HCI outlets have 
yet to catch up: only 12% of HCI-related journals adopted the TOP 
guideline [1]. As for researchers’ practices, a survey of CHI au-
thors shows several misunderstandings about transparent prac-
tices for research materials and data [49]. The report by OECD 
points out that even seasoned researchers also need to acquire new 
Open Science skills [33, p. 92]. Education can improve the research 
practices of individuals (bottom-up) and expand community sup-
port for transparent research policies (top-down). However, the 
report by the U.S. National Academies of Sciences, Engineering, 
and Medicine indicates that such education is still rare in academic 
institutions [31, pp. 153–154]. This report also recommends that 
professional societies train students and researchers as well as sup-
porting development of educational programs. To date, neither 
SIGCHI nor ACM provides training in transparent research 
practice or Open Science. 

The feld of HCI has a wide variety of methods to acquire knowl-
edge: quantitative, qualitative, design, and engineering—to name 
a few [35]. The scope of this course focuses on quantitative 
empirical research. A large body of research from the feld of HCI 
and visualization had also contributed to improving transparent 
practices in quantitative research (e.g., [7, 10, 11, 13, 21, 22, 44, 47]). 
This course will present current best practices and tools for 
research transparency. 
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2 INTENDED AUDIENCE AND 
PREREQUISITES 

The intended audience is HCI researchers and students who already 
have elementary knowledge in quantitative research design and 
statistical analysis. For example, they should already know the dif-
ferences between the within-subjects and between-subjects design. 
They should have performed statistical analysis on a few datasets. 
They should also be familiar with how research articles report their 
method and results. 

In the course, we will use R to demonstrate analytic decisions, sta-
tistical analysis methods, and visualization techniques. The knowl-
edge and experience of R will be benefcial for future adoption. The 
participants may have a better learning experience if they previ-
ously used an interpreted language (e.g., Python, R). Nevertheless, 
the participants are not expected to be profcient at R to understand 
the course materials. In the course, the participants will access RStu-
dio Cloud through their web browser. No other prior software setup 
is required. 

3 BENEFITS AND LEARNING OUTCOMES 
After the course, we expect the participants to be able to get started 
on improving their own research practices, assessing research trans-
parency in articles they read and review, as well as evaluating 
institutional policies that may impact research transparency. To-
ward these goals, we design this course with the following specifc 
learning outcomes: 

The course participants. . . 
• aware of decisions made in the course of quantitative re-
search and the importance of making them transparent, 

• know a range of practices, methods, and tools to improve 
research transparency, 

• can apply principles to evaluate and compare the trans-
parency of statistical and visualization techniques, and 

• can preregister and deposit their research artifacts in FAIR 
repositories. 

4 CONTENT AND PRACTICAL WORK 
Research transparency spans from planning to sharing results. We 
have organized it into four sections. 

4.1 Planning research and sharing research 
 artifacts

Planning involves deciding on the type of research questions, choos-
ing variables to study, defning which variables and how they will 
be measured, and deciding on how many participants to recruit. 
Such decisions afect how to collect and analyze data. Ambiguities 
in describing the plan impede attempts to verify, replicate, and build 
upon the fndings. 

This section will introduce the participants to lists of research 
decisions (e.g., [52]). We will show examples of how these decisions 
could infuence data analysis. There will be hands-on practice in 
identifying ambiguities and omissions of research decisions from 
excerpts of research papers. We will discuss strategies for planning 
sample sizes [23], and the participants will explore how their deci-
sions impact the statistical power using a simulation tool (e.g., [51]). 

We will demonstrate how to preregister these research and ana-
lytical decisions. We will show several examples of preregistration 
and fnal research to illustrate the fact that “preregistration is a 
plan, not a prison” [9]—changes and further exploratory analyses 
are possible and can be made transparent. We will discuss types 
of research artifacts and how to share them according to the FAIR 
principles (Findability, Accessibility, Interoperability, and Reuse). 
We will also discuss ethical concerns in data collection and sharing. 

4.2 Choosing statistical methods and reporting 
their results 

This course recognizes that many statistical approaches are valid, 
and each approach has its own merits and challenges. Instead of 
presenting one best method, we will present a set of guiding prin-
ciples [48] (provided in Appendix A) that allow the course partici-
pants to evaluate transparency. We will sample several statistical 
techniques and apply them to example datasets. Participants will 
have access to pre-written analysis R scripts. They will be able to 
experiment with diferent analytic decisions and discuss the impli-
cations from the perspective of transparency with their classmates. 

For frequentist statistics (e.g., t-test, Wilcoxon, or ANOVA), 
we will discuss common mistakes in interpreting p-values and 
confdence intervals. We will discuss the diferences in the under-
standability and usability between simple and standardized efect 
sizes. We will also discuss the implications of the presence and 
the absence of pre-study power analyses. We will cover important 
statistical results that are necessary for meta-analysis. 

For Bayesian statistics, we will start by introducing Bayesian 
statistical concepts, including prior and posterior distributions as 
well as the likelihood function. We will then walk through the 
implementation of several Bayesian models, and compare them 
with the frequentist analogs, followed up by extensions to these 
models with respect to increasing transparency. We will later fo-
cus on interpreting the posterior distributions of Bayesian models 
to estimate the probabilities of an efect. If time permits, we will 
also discuss other opportunities: (1) choosing prior distributions 
to improve both the models and transparency in the results; (2) 
using metrics such as information criteria to disclose transparency 
in model evaluation and selection; and (3) following best practices 
such as posterior predictive checks to increase the transparency in 
reviewing processes. 

4.3 Visualizing the results 
Continuing from our session on statistical methods, we will equip 
participants with mindsets and tools to create transparency-oriented 
visualizations during their analysis as well as for their papers. Such 
visualizations for analysis results can make a paper more transpar-
ent in multiple ways, including improving faithfulness, robustness, 
process transparency, and clarity (which are transparent statistics 
principles, see Appendix A). 

We will frst introduce the idea that visualizing uncertainty in-
formation is staying faithful to their statistical analysis. Without 
proper uncertainty representation, we risk exaggerating the cer-
tainty of our fndings [15]. Drawing from recent literature [40], 
we will show diferent uncertainty visualizations designs and the 

https://rstudio.cloud
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concepts behind the variations. Notably, there are no one-size-fts-
all solutions for uncertainty communication. Thus, we will teach 
the practice of selecting the most ethical and transparent option at 
each decision point within the data visualization pipeline. These 
concepts include frequency vs. probability framing, implicit vs. ex-
plicit uncertainty, and aleatory vs. epistemic uncertainty. Then, 
we will include an interactive activity where participants interpret 
frequency-based plots and discuss the potential pros and cons of 
example visualizations based on the concepts they just learned. We 
will show how multiverse analyses can increase the robustness of 
statistical analysis [11], and techniques for visualizing their results. 

More practically, we will identify the visualization opportuni-
ties in the two versions of statistical analysis introduced in the 
last section. To improve process transparency, we will show ex-
amples of visualizations used throughout the analysis, advocating 
for visualizations as a refex during analysis. These visualizations 
include plots for the raw data, summary plots, plots for confdence 
distributions (frequentist) or posterior distributions (Bayesian), and 
other model diagnostic plots. For demonstration, we will use R pack-
ages including ggplot2 [53], tidybayes [18], and ggdist [17]. The 
focus of this part is on how the properties of these visualization 
techniques lend themselves to transparency. Therefore, all partic-
ipants will beneft from this part regardless of their preference 
and skills in R. In addition, we will ofer practical guidelines for 
making visualizations clear and simple as possible, especially for 
publication in research manuscripts [16]. These guidelines include 
“establishing viewing order” and “matching efective visual encod-
ing with importance.” As an activity, we will provide negative and 
positive examples from recent publications, or elicit visualizations 
for reporting results from the participants, and use the guidelines 
to help everyone improve on these visualizations. 

4.4 Participant’s case studies on research 
transparency 

We wish to give the participants a personal experience where trans-
parency depends on the perspective and background knowledge of 
the readers. Since our course will cover only a small set of statis-
tical analysis techniques and dataset types, we wish to allow the 
participants to choose specifc issues they are curious about and 
discuss the topics from the transparency perspective. 

Between the third and the fourth session of the course, we will 
ask each participant to prepare case studies on research trans-
parency to share with the classmates. They may select the cases 
from their own published research or research articles they have 
read. The participants may also draw examples from Open Access 
VIS [14]—an annotated index of the research articles published at 
VIS conference based on their transparency practices. 

In the fourth session of the course, we will group the participants 
into breakout rooms according to the synergy of their case studies. 
An instructor will moderate the discussion and give feedback in 
each room. We will draw collective lessons learned and discuss 
them in a plenary at the end of the course. 

5 LIMITATIONS 
We do not expect that after a four-session course the participants 
will immediately transform their entire research practices to be 

transparent. Such transformation will require looking into specifcs 
of research methods and application domains. This course will 
provide a broad overview on what to be cognizant of, pointers 
on where to learn in-depth, and practical experience of a range 
of important skills. This teaching strategy will provide a foundation 
that is adequately broad as well as samples of experiences that will 
pique participants’ curiosity to further their knowledge. 

6 INSTRUCTORS 
Chat Wacharamanotham is an Assistant Professor at the Uni-
versity of Zurich (UZH). The focus of his work is on understanding 
and developing tools for planning, reporting, reading, and sharing 
quantitative research [12, 32, 51, 59, 60]. He is also a co-organizer of 
the Transparent Statistics in Human–Computer Interaction group. 
He has fve years of experience teaching a research method course 
for graduate students. In 2019, he received the UZH teaching award 
in recognition of “teaching, which stimulates dialogue between 
lecturers and students as well as exchange between students in the 
best possible way” [34]. 

Fumeng Yang is a PhD candidate at Brown University. Her 
research interests are designing visualizations and exploring com-
putational approaches to help researchers and end-users think sci-
entifcally [26, 36]. She served as a Student Volunteers chair for IEEE 
VIS 2018, 2019, and 2020, where she interacted with and instructed 
a cohort of students in a series of conference events. 

Xiaoying Pu is a Ph.D. candidate at the University of Michigan. 
In her research, she takes a human-centered approach to communi-
cating uncertainty and statistics with visualizations [41, 43]. She 
has organized a CHI 2021 SIG on visualization grammars [42] and 
contributed to a research transparency tutorial at IEEE VIS 2020. 
Her website is xiaoyingpu.github.io. 

Abhraneel Sarma is a PhD student at Northwestern University. 
His research interests include studying how people make decisions 
using visualizations, and how visualizations can be used for improv-
ing statistical analysis or reporting statistical results. In addition, he 
has studied how users implement certain aspects of a Bayesian mod-
els [47] and has developed tools for conducting multiverse analysis 
which is an approach for more transparent statistical research [46]. 

Lace Padilla is an Assistant Professor at the University of Cali-
fornia Merced. Her program focuses on how people make uncertain 
decisions with forecast visualizations to improve visualization tech-
niques and uncertainty literacy. She works collaboratively with do-
main experts to empirically test current uncertainty communication 
approaches and develop new techniques in contexts such as wild-
fre risk reduction (PI, NSF award #2122174), pandemic forecasting 
(co-PI, NSF award #2028374), energy grid resiliency (sub-contract, 
DOE award), and hurricane forecasting [25, 38, 39, 45]. She has 
co-authored a forthcoming chapter reviewing modern uncertainty 
visualization techniques, entitled Uncertainty Visualization [37]. 

7 RESOURCES 
• Chapter 1 of the Transparent Statistics Guidelines [48] pro-
vides the full description of the principles, their rationale, 
and application examples. 

• For the course participants who wish to expand their knowl-
edge on estimation-approach in frequentist statistics, we 

https://ggplot2.tidyverse.org/
https://mjskay.github.io/tidybayes/
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recommend Cumming & Calin-Jageman’s book Introduction 
to the New Statistics [8]. 

• For the course participants who wish to familiarize them-
selves with Bayesian statistics, we recommend skimming 
Betancourt’s article Towards A Principled Bayesian Work-
fow [29] This article provides instructive visualizations and 
R codes. And for those who wish to dig deeper, we recom-
mend McElreath’s book Statistical rethinking [27] or Lam-
bert’s book A student’s guide to Bayesian statistics [24]. 

• For the course participants who wish to learn R and ggplot, 
we recommend the R for Data Science [54]—which is available 
online free of charge. R profciency is not a prerequisite for 
this course. 

8 ACCESSIBILITY 
The content of our course necessitates many data visualizations. We 
regret that such content may impose a barrier for people with visual 
impairments. For people with hearing impairment, we requested 
an automatic real-time transcription (e.g., those provided in Zoom) 
in this course proposal. We are not aware of further accessibility 
barriers. 
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A TRANSPARENT STATISTICS GUIDING 
PRINCIPLES 

Quoted and abbreviated from [48]). 

(1) Faithfulness: A transparent statistical report should strive 
to capture and convey the “truth” as accurately as possible, 
especially concerning the uncertainty within the data. 

(2) Robustness: In order to minimize the likelihood of inaccu-
rate (unfaithful) results, data analysis and reporting strate-
gies that are robust to departures from statistical assump-
tions—or that make few assumptions—should ideally be pre-
ferred. 

(3) Resilience: Data analysis and reporting strategies should 
be resilient to statistical noise, i.e., they should yield similar 
outcomes across hypothetical replications of the same study. 

(4) Process Transparency: Data analysis and reporting strate-
gies need to be explained rather than implied. The decisions 
made during the analysis and report writing should be com-
municated as explicitly as possible. 

(5) Clarity: Study reports should be easy to process—even when 
they target experts. Ideally study reports should be accessible 
to most members of the HCI community, instead of being 
comprehensible by only a handful of specialists. 

(6) Simplicity: When choosing between two data analysis pro-
cedures, the simplest procedure should ideally be preferred 
even if it is slightly inferior in other respects. 

(7) Non-contingency: When possible and outside exploratory 
analyses, data analysis and reporting strategies should avoid 
decisions that are contingent on data, e.g., “if the data turns 
out like this, compute this, or report that”. 

(8) Precision and economy: Even if full transparency is achieved, 
a study report where nothing conclusive can be said would 
be a waste of readers’ time, and may prompt them to seek 
inexistent patterns. Data quality, high statistical power, and 
high statistical precision are important goals to pursue. 

(9) Material availability: Sharing as much study material as 
possible is a core part of transparent statistics, as it greatly 
facilitates peer scrutiny and replication. 
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