skip to main content
10.1145/3491102.3501910acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article
Public Access

Electrical Head Actuation: Enabling Interactive Systems to Directly Manipulate Head Orientation

Published:29 April 2022Publication History

ABSTRACT

We propose a novel interface concept in which interactive systems directly manipulate the user's head orientation. We implement this using electrical-muscle-stimulation (EMS) of the neck muscles, which turns the head around its yaw (left/right) and pitch (up/down) axis. As the first exploration of EMS for head actuation, we characterized which muscles can be robustly actuated. Second, we evaluated the accuracy of our system for actuating participants' head orientation towards static targets and trajectories. Third, we demonstrated how it enables interactions not possible before by building a range of applications, such as (1) synchronizing head orientations of two users, which enables a user to communicate head nods to another user while listening to music, and (2) directly changing the user's head orientation to locate objects in AR. Finally, in our second study, participants felt that our head actuation contributed positively to their experience in four distinct applications.

Skip Supplemental Material Section

Supplemental Material

3491102.3501910-talk-video.mp4

mp4

130.8 MB

3491102.3501910-video-preview.mp4

mp4

7.7 MB

3491102.3501910-video-figure.mp4

mp4

61 MB

References

  1. Ardouin, J., Lécuyer, A., Marchal, M., Riant, C. and Marchand, E. 2012. FlyVIZ: a novel display device to provide humans with 360 vision by coupling catadioptric camera with hmd. Proceedings of the 18th ACM symposium on Virtual reality software and technology (New York, NY, USA, Dec. 2012), 41–44.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Ben Abdallah, I., Bouteraa, Y. and Rekik, C. 2017. Design and development of 3d printed myoelectric robotic exoskeleton for hand rehabilitation. International Journal on Smart Sensing and Intelligent Systems. 10, (Jun. 2017), 341–366. DOI:https://doi.org/10.21307/ijssis-2017-215.Google ScholarGoogle ScholarCross RefCross Ref
  3. Bézier Path Creator | Utilities Tools | Unity Asset Store: https://assetstore.unity.com/packages/tools/utilities/b-zier-path-creator-136082. Accessed: 2021-04-07.Google ScholarGoogle Scholar
  4. Bhatt, A.D., Goodwin, N., Cash, E., Bhatt, G., Silverman, C.L., Spanos, W.J., Bumpous, J.M., Potts, K., Redman, R., Allison, W.A. and Dunlap, N.E. 2015. Impact of transcutaneous neuromuscular electrical stimulation on dysphagia in patients with head and neck cancer treated with definitive chemoradiation. Head & Neck. 37, 7 (2015), 1051–1056. DOI:https://doi.org/10.1002/hed.23708.Google ScholarGoogle ScholarCross RefCross Ref
  5. Core Motion | Apple Developer Documentation: https://developer.apple.com/documentation/coremotion. Accessed: 2021-04-07.Google ScholarGoogle Scholar
  6. CyberGrasp: http://www.cyberglovesystems.com/cybergrasp. Accessed: 2021-03-18.Google ScholarGoogle Scholar
  7. Fan, K., Huber, J., Nanayakkara, S. and Inami, M. 2014. SpiderVision: extending the human field of view for augmented awareness. Proceedings of the 5th Augmented Human International Conference (New York, NY, USA, Mar. 2014), 1–8.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Fight or Flight | Fire Prevention Services | The University of Texas at Austin: https://fireprevention.utexas.edu/firesafety/fight-or-flight. Accessed: 2021-09-05.Google ScholarGoogle Scholar
  9. Frangos, E. and Komisaruk, B.R. 2017. Access to Vagal Projections via Cutaneous Electrical Stimulation of the Neck: fMRI Evidence in Healthy Humans. Brain Stimulation. 10, 1 (Jan. 2017), 19–27. DOI:https://doi.org/10.1016/j.brs.2016.10.008.Google ScholarGoogle ScholarCross RefCross Ref
  10. Freed, M., Freed, L., Chatburn, R. and Christian, M. 2001. Electrical Stimulation for swallowing disorders caused by stroke. Respiratory care. 46, (May 2001), 466–74.Google ScholarGoogle Scholar
  11. Frisoli, A., Montagner, A., Borelli, L., Salsedo, F. and Bergamasco, M. 2009. A Force-Feedback Exoskeleton for Upper-Limb Rehabilitation in Virtual Reality. Applied Bionics and Biomechanics. 6, (Jul. 2009), 115–126. DOI:https://doi.org/10.1080/11762320902959250.Google ScholarGoogle ScholarCross RefCross Ref
  12. Gruenefeld, U., Stratmann, T.C., Ali, A.E., Boll, S. and Heuten, W. 2018. RadialLight: exploring radial peripheral LEDs for directional cues in head-mounted displays. Proceedings of the 20th International Conference on Human-Computer Interaction with Mobile Devices and Services (New York, NY, USA, Sep. 2018), 1–6.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Gruenefeld, U., Stratmann, T.C., Prädel, L. and Heuten, W. 2018. MonoculAR: a radial light display to point towards out-of-view objects on augmented reality devices. Proceedings of the 20th International Conference on Human-Computer Interaction with Mobile Devices and Services Adjunct (New York, NY, USA, Sep. 2018), 16–22.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Gugenheimer, J., Wolf, D., Eiriksson, E.R., Maes, P. and Rukzio, E. 2016. GyroVR: Simulating Inertia in Virtual Reality using Head Worn Flywheels. Proceedings of the 29th Annual Symposium on User Interface Software and Technology (New York, NY, USA, Oct. 2016), 227–232.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Gugenheimer, J., Wolf, D., Haas, G., Krebs, S. and Rukzio, E. 2016. SwiVRChair: A Motorized Swivel Chair to Nudge Users’ Orientation for 360 Degree Storytelling in Virtual Reality. Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (New York, NY, USA, May 2016), 1996–2000.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Guinet, A.L., Bouyer, G., Otmane, S. and Desailly, E. 2019. Reliability of the head tracking measured by Microsoft Hololens during different walking conditions. Computer Methods in Biomechanics and Biomedical Engineering. 22, sup1 (Oct. 2019), S169–S171. DOI:https://doi.org/10.1080/10255842.2020.1714228.Google ScholarGoogle ScholarCross RefCross Ref
  17. Hassan, M., Daiber, F., Wiehr, F., Kosmalla, F. and Krüger, A. 2017. FootStriker: An EMS-based Foot Strike Assistant for Running. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies. 1, 1 (Mar. 2017), 2:1-2:18. DOI:https://doi.org/10.1145/3053332.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Higuchi, K. and Rekimoto, J. 2013. Flying head: a head motion synchronization mechanism for unmanned aerial vehicle control. CHI ’13 Extended Abstracts on Human Factors in Computing Systems (New York, NY, USA, Apr. 2013), 2029–2038.Google ScholarGoogle Scholar
  19. Holographic Remoting Player - Mixed Reality: https://docs.microsoft.com/en-us/windows/mixed-reality/develop/platform-capabilities-and-apis/holographic-remoting-player. Accessed: 2021-04-07.Google ScholarGoogle Scholar
  20. HoloLens 2—Overview, Features, and Specs | Microsoft HoloLens: https://www.microsoft.com/en-us/hololens/hardware. Accessed: 2021-04-07.Google ScholarGoogle Scholar
  21. Jordan, J., Heusser, K., Brinkmann, J. and Tank, J. 2012. Electrical carotid sinus stimulation in treatment resistant arterial hypertension. Autonomic Neuroscience. 172, 1 (Dec. 2012), 31–36. DOI:https://doi.org/10.1016/j.autneu.2012.10.009.Google ScholarGoogle ScholarCross RefCross Ref
  22. Kamibayashi, L.K. and Richmond, F.J. 1998. Morphometry of human neck muscles. Spine. 23, 12 (Jun. 1998), 1314–1323. DOI:https://doi.org/10.1097/00007632-199806150-00005.Google ScholarGoogle ScholarCross RefCross Ref
  23. Karnath, H.-O. 1995. Transcutaneous electrical stimulation and vibration of neck muscles in neglect. Experimental Brain Research. 105, 2 (Aug. 1995), 321–324. DOI:https://doi.org/10.1007/BF00240969.Google ScholarGoogle ScholarCross RefCross Ref
  24. Kasahara, S., Nishida, J. and Lopes, P. 2019. Preemptive Action: Accelerating Human Reaction using Electrical Muscle Stimulation Without Compromising Agency. Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (New York, NY, USA, May 2019), 1–15.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Kasahara, S. and Rekimoto, J. 2014. JackIn: integrating first-person view with out-of-body vision generation for human-human augmentation. Proceedings of the 5th Augmented Human International Conference (New York, NY, USA, Mar. 2014), 1–8.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Kaul, O.B., Pfeiffer, M. and Rohs, M. 2016. Follow the Force: Steering the Index Finger towards Targets using EMS. Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems (New York, NY, USA, May 2016), 2526–2532.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Kon, Y., Nakamura, T. and Kajimoto, H. 2017. HangerOVER: HMD-embedded haptics display with hanger reflex. ACM SIGGRAPH 2017 Emerging Technologies (New York, NY, USA, Jul. 2017), 1–2.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Kono, M., Takahashi, T., Nakamura, H., Miyaki, T. and Rekimoto, J. 2018. Design Guideline for Developing Safe Systems that Apply Electricity to the Human Body. ACM Transactions on Computer-Human Interaction. 25, 3 (Jun. 2018), 1–36. DOI:https://doi.org/10.1145/3184743.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Langmore, S.E., McCulloch, T.M., Krisciunas, G.P., Lazarus, C.L., Daele, D.J.V., Pauloski, B.R., Rybin, D. and Doros, G. 2016. Efficacy of electrical stimulation and exercise for dysphagia in patients with head and neck cancer: A randomized clinical trial. Head & Neck. 38, S1 (2016), E1221–E1231. DOI:https://doi.org/10.1002/hed.24197.Google ScholarGoogle ScholarCross RefCross Ref
  30. Lin, Y.-C., Chang, Y.-J., Hu, H.-N., Cheng, H.-T., Huang, C.-W. and Sun, M. 2017. Tell Me Where to Look: Investigating Ways for Assisting Focus in 360 Video. Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (New York, NY, USA, May 2017), 2535–2545.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Lin, Y.-T., Liao, Y.-C., Teng, S.-Y., Chung, Y.-J., Chan, L. and Chen, B.-Y. 2017. Outside-In: Visualizing Out-of-Sight Regions-of-Interest in a 360 Video Using Spatial Picture-in-Picture Previews. Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology (New York, NY, USA, Oct. 2017), 255–265.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Liu, S.-H., Yen, P.-C., Mao, Y.-H., Lin, Y.-H., Chandra, E. and Chen, M.Y. 2020. HeadBlaster: a wearable approach to simulating motion perception using head-mounted air propulsion jets. ACM Transactions on Graphics. 39, 4 (Jul. 2020), 84:84:1-84:84:12. DOI:https://doi.org/10.1145/3386569.3392482.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Lopes, P., Ion, A. and Baudisch, P. 2015. Impacto: Simulating Physical Impact by Combining Tactile Stimulation with Electrical Muscle Stimulation. Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology (New York, NY, USA, Nov. 2015), 11–19.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Lopes, P., Ion, A., Mueller, W., Hoffmann, D., Jonell, P. and Baudisch, P. 2015. Proprioceptive Interaction. Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (New York, NY, USA, Apr. 2015), 939–948.Google ScholarGoogle Scholar
  35. Lopes, P., Jonell, P. and Baudisch, P. 2015. Affordance++: Allowing Objects to Communicate Dynamic Use. Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (New York, NY, USA, Apr. 2015), 2515–2524.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Lopes, P., You, S., Cheng, L.-P., Marwecki, S. and Baudisch, P. 2017. Providing Haptics to Walls & Heavy Objects in Virtual Reality by Means of Electrical Muscle Stimulation. Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. Association for Computing Machinery. 1471–1482.Google ScholarGoogle Scholar
  37. Lopes, P., You, S., Ion, A. and Baudisch, P. 2018. Adding Force Feedback to Mixed Reality Experiences and Games using Electrical Muscle Stimulation. Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (New York, NY, USA, Apr. 2018), 1–13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Lopes, P., Yüksel, D., Guimbretière, F. and Baudisch, P. 2016. Muscle-plotter: An Interactive System based on Electrical Muscle Stimulation that Produces Spatial Output. Proceedings of the 29th Annual Symposium on User Interface Software and Technology (New York, NY, USA, Oct. 2016), 207–217.Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Maayah, M. and Al-Jarrah, M. 2010. Evaluation of Transcutaneous Electrical Nerve Stimulation as a Treatment of Neck Pain due to Musculoskeletal Disorders. Journal of Clinical Medicine Research. 2, 3 (Jun. 2010), 127–136. DOI:https://doi.org/10.4021//jocmr.v2i3.406.Google ScholarGoogle Scholar
  40. Maeda, T., Ando, H., Amemiya, T., Nagaya, N., Sugimoto, M. and Inami, M. 2005. Shaking the world: galvanic vestibular stimulation as a novel sensation interface. ACM SIGGRAPH 2005 Emerging technologies (New York, NY, USA, Jul. 2005), 17-es.Google ScholarGoogle Scholar
  41. Maekawa, A., Matsubara, S., Wakisaka, S., Uriu, D., Hiyama, A. and Inami, M. 2020. Dynamic Motor Skill Synthesis with Human-Machine Mutual Actuation. Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (New York, NY, USA, Apr. 2020), 1–12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Marieb, E.N. and Hoehn, K. 2007. Human anatomy & physiology. Pearson Benjamin Cummings.Google ScholarGoogle Scholar
  43. Matsuda, A., Nozawa, K., Takata, K., Izumihara, A. and Rekimoto, J. 2020. HapticPointer: A Neck-worn Device that Presents Direction by Vibrotactile Feedback for Remote Collaboration Tasks. Proceedings of the Augmented Humans International Conference (New York, NY, USA, Mar. 2020), 1–10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Medrano, S.N., Pfeiffer, M. and Kray, C. 2020. Remote Deictic Communication: Simulating Deictic Pointing Gestures across Distances Using Electro Muscle Stimulation. International Journal of Human–Computer Interaction. 36, 19 (Nov. 2020), 1867–1882. DOI:https://doi.org/10.1080/10447318.2020.1801171.Google ScholarGoogle ScholarCross RefCross Ref
  45. Nagai, K., Tanoue, S., Akahane, K. and Sato, M. 2015. Wearable 6-DoF wrist haptic device “SPIDAR-W.” SIGGRAPH Asia 2015 Haptic Media And Contents Design (New York, NY, USA, Nov. 2015), 1–2.Google ScholarGoogle Scholar
  46. Nishida, J. and Suzuki, K. 2017. bioSync: A Paired Wearable Device for Blending Kinesthetic Experience. Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (New York, NY, USA, May 2017), 3316–3327.Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Nith, R., Teng, S.-Y., Li, P., Tao, Y. and Lopes, P. 2021. DextrEMS: Achieving Dexterity in Electrical Muscle Stimulation by Combining it with Brakes. Proceedings of the 34th Annual Symposium on User Interface Software and Technology (Virtual Event USA, Oct. 2021).Google ScholarGoogle Scholar
  48. Pfeiffer, M., Dünte, T., Schneegass, S., Alt, F. and Rohs, M. 2015. Cruise Control for Pedestrians: Controlling Walking Direction using Electrical Muscle Stimulation. Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (New York, NY, USA, Apr. 2015), 2505–2514.Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Pizzamiglio, L., Vallar, G. and Magnotti, L. 1996. Transcutaneous electrical stimulation of the neck muscles and hemineglect rehabilitation. Restorative Neurology and Neuroscience. 10, 4 (Jan. 1996), 197–203. DOI:https://doi.org/10.3233/RNN-1996-10402.Google ScholarGoogle ScholarCross RefCross Ref
  50. RehaMove_Katalog_englisch_2017-02_Web: https://hasomed.de/wp-content/uploads/hasomed-fileadmin/RehaMove/Mediathek/Broschueren_Flyer/RehaMove_Katalog_englisch_2017-02_Web.pdf. Accessed: 2021-12-23.Google ScholarGoogle Scholar
  51. Ryu, J.S., Kang, J.Y., Park, J.Y., Nam, S.Y., Choi, S.H., Roh, J.L., Kim, S.Y. and Choi, K.H. 2009. The effect of electrical stimulation therapy on dysphagia following treatment for head and neck cancer. Oral Oncology. 45, 8 (Aug. 2009), 665–668. DOI:https://doi.org/10.1016/j.oraloncology.2008.10.005.Google ScholarGoogle ScholarCross RefCross Ref
  52. Schaack, S., Chernyshov, G., Ragozin, K., Tag, B., Peiris, R. and Kunze, K. 2019. Haptic Collar: Vibrotactile Feedback around the Neck for Guidance Applications. Proceedings of the 10th Augmented Human International Conference 2019 (New York, NY, USA, Mar. 2019), 1–4.Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Schafer, R.C. 1987. Clinical Biomechanics: Musculoskeletal Actions and Reactions. Williams & Wilkins.Google ScholarGoogle Scholar
  54. Schoop, E., Smith, J. and Hartmann, B. 2018. HindSight: Enhancing Spatial Awareness by Sonifying Detected Objects in Real-Time 360-Degree Video. Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (New York, NY, USA, Apr. 2018), 1–12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Shin, J.-G., Onchi, E., Reyes, M.J., Song, J., Lee, U., Lee, S.-H. and Saakes, D. 2019. Slow Robots for Unobtrusive Posture Correction. Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (New York, NY, USA, May 2019), 1–10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Sra, M., Jain, A. and Maes, P. 2019. Adding Proprioceptive Feedback to Virtual Reality Experiences Using Galvanic Vestibular Stimulation. Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. Association for Computing Machinery. 1–14.Google ScholarGoogle Scholar
  57. Takahashi, A., Brooks, J., Kajimoto, H. and Lopes, P. 2021. Increasing Electrical Muscle Stimulation's Dexterity by means of Back of the Hand Actuation. Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (New York, NY, USA, May 2021), 1–12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Tamaki, E., Miyaki, T. and Rekimoto, J. 2010. PossessedHand: a hand gesture manipulation system using electrical stimuli. Proceedings of the 1st Augmented Human International Conference (New York, NY, USA, Apr. 2010), 1–5.Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Tamaki, E., Miyaki, T. and Rekimoto, J. 2011. PossessedHand: techniques for controlling human hands using electrical muscles stimuli. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (New York, NY, USA, May 2011), 543–552.Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Tsetserukou, D., Sato, K. and Tachi, S. 2010. ExoInterfaces: novel exosceleton haptic interfaces for virtual reality, augmented sport and rehabilitation. Proceedings of the 1st Augmented Human International Conference (New York, NY, USA, Apr. 2010), 1–6.Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Vallar, G., Rusconi, M.L., Barozzi, S., Bernardini, B., Ovadia, D., Papagno, C. and Cesarani, A. 1995. Improvement of left visuo-spatial hemineglect by left-sided transcutaneous electrical stimulation. Neuropsychologia. 33, 1 (Jan. 1995), 73–82. DOI:https://doi.org/10.1016/0028-3932(94)00088-7.Google ScholarGoogle ScholarCross RefCross Ref
  62. Wu, D., Wang, L. and Li, P. 2016. A 6-DOF exoskeleton for head and neck motion assist with parallel manipulator and sEMG based control. 2016 International Conference on Control, Decision and Information Technologies (CoDIT) (Apr. 2016), 341–344.Google ScholarGoogle ScholarCross RefCross Ref
  63. Xiao, R. and Benko, H. 2016. Augmenting the Field-of-View of Head-Mounted Displays with Sparse Peripheral Displays. Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (New York, NY, USA, May 2016), 1221–1232.Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Yamazaki, Y., Hasegawa, S., Mitake, H. and Shirai, A. 2019. Neck strap haptics: an algorithm for non-visible VR information using haptic perception on the neck. ACM SIGGRAPH 2019 Posters (New York, NY, USA, Jul. 2019), 1–2.Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Yang, J., Sasikumar, P., Bai, H., Barde, A., Sörös, G. and Billinghurst, M. 2020. The effects of spatial auditory and visual cues on mixed reality remote collaboration. Journal on Multimodal User Interfaces. 14, 4 (Dec. 2020), 337–352. DOI:https://doi.org/10.1007/s12193-020-00331-1.Google ScholarGoogle ScholarCross RefCross Ref
  66. Yem, V., Vu, K., Kon, Y. and Kajimoto, H. 2018. Effect of Electrical Stimulation Haptic Feedback on Perceptions of Softness-Hardness and Stickiness While Touching a Virtual Object. 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR) (Mar. 2018), 89–96.Google ScholarGoogle ScholarCross RefCross Ref
  67. Zhang, H. and Agrawal, S. 2017. An Active Neck Brace Controlled by a Joystick to Assist Head Motion. IEEE Robotics and Automation Letters. PP, (Jul. 2017), 1–1. DOI:https://doi.org/10.1109/LRA.2017.2728858.Google ScholarGoogle ScholarCross RefCross Ref
  68. Zhang, H., Albee, K. and Agrawal, S.K. 2018. A spring-loaded compliant neck brace with adjustable supports. Mechanism and Machine Theory. 125, (Jul. 2018), 34–44. DOI:https://doi.org/10.1016/j.mechmachtheory.2017.12.025.Google ScholarGoogle ScholarCross RefCross Ref
  69. Zhang, H., Chang, B.-C., Andrews, J., Mitsumoto, H. and Agrawal, S. 2019. A robotic neck brace to characterize head-neck motion and muscle electromyography in subjects with amyotrophic lateral sclerosis. Annals of Clinical and Translational Neurology. 6, 9 (2019), 1671–1680. DOI:https://doi.org/10.1002/acn3.50864.Google ScholarGoogle ScholarCross RefCross Ref
  70. Zhang, J., Fiers, P., Witte, K.A., Jackson, R.W., Poggensee, K.L., Atkeson, C.G. and Collins, S.H. 2017. Human-in-the-loop optimization of exoskeleton assistance during walking. Science. 356, 6344 (Jun. 2017), 1280–1284. DOI:https://doi.org/10.1126/science.aal5054.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Electrical Head Actuation: Enabling Interactive Systems to Directly Manipulate Head Orientation
    Index terms have been assigned to the content through auto-classification.

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      CHI '22: Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems
      April 2022
      10459 pages
      ISBN:9781450391573
      DOI:10.1145/3491102

      Copyright © 2022 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 29 April 2022

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed limited

      Acceptance Rates

      Overall Acceptance Rate6,199of26,314submissions,24%

      Upcoming Conference

      CHI '24
      CHI Conference on Human Factors in Computing Systems
      May 11 - 16, 2024
      Honolulu , HI , USA

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format