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ABSTRACT 
Various automated eating detection wearables have been proposed 
to monitor food intakes. While these systems overcome the forget-
fulness of manual user journaling, they typically show low accuracy 
at outside-the-lab environments or have intrusive form-factors (e.g., 
headgear). Eyeglasses are emerging as a socially-acceptable eating 
detection wearable, but existing approaches require custom-built 
frames and consume large power. We propose MyDJ , an eating de-
tection system that could be attached to any eyeglass frame. MyDJ 
achieves accurate and energy-efcient eating detection by captur-
ing complementary chewing signals on a piezoelectric sensor and 
an accelerometer. We evaluated the accuracy and wearability of 
MyDJ with 30 subjects in uncontrolled environments, where six 
subjects attached MyDJ on their own eyeglasses for a week. Our 
study shows that MyDJ achieves 0.919 F1-score in eating episode 
coverage, with 4.03× battery time over the state-of-the-art systems. 
In addition, participants reported wearing MyDJ was almost as 
comfortable (94.95%) as wearing regular eyeglasses. 

CCS CONCEPTS 
• Human-centered computing → Ubiquitous and mobile de-
vices; • Applied computing → Health informatics. 

KEYWORDS 
eating detection, wearable computing, automated dietary monitor-
ing, multimodal sensing 
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1 INTRODUCTION 
Food journaling is an efective method that is widely recommended 
by clinicians and dietitians for maintaining healthy eating habits. 
Writing a food journal brings awareness of the food intake and 
leads to a healthy choice of food and efective weight and chronic 
diseases management [33, 51, 52]. While there are tools that fa-
cilitate interactive food journaling, such as web or mobile food 
logging apps [23, 38, 60], the manual efort involved in the journal-
ing process often results in losing habit in the long-term [19, 20]. 
To address such difculties, a signifcant amount of research has 
been contributed to developing wearable automatic eating detection 
systems to assist in monitoring eating habits. 

For wide deployment and practical use, a wearable eating detec-
tion system should be accurate even in uncontrolled settings and 
energy-efcient [44, 66, 74, 86]. Wearable eating detection systems 
use various wearable form factors such as headgear [13], neck-
lace [17, 84], neckband [68, 82], and wristband [22, 72, 78]; however, 
they fail to achieve high accuracy over prolonged eating sessions or 
have limited social acceptability due to their distinctive form factors. 
A promising approach is using eyeglasses [7, 18, 27–29, 67, 83], as 
users’ familiarity and comfort with eyeglasses make them a socially 
acceptable alternative to other wearables. Furthermore, the close 
proximity of the eyeglasses to the mouth is an ideal condition for 
correctly detecting and identifying eating events. However, exist-
ing proposals require custom-built frames [7, 83] to accommodate 
numerous sensors, resulting in reduced usability and hindering 
the adoption among users who wear non-instrumented eyeglasses. 
Moreover, some proposals are shown to be energy-inefcient or 
inaccurate in practical settings — for example, an accelerometer-
based approach [29] is inaccurate for users who are not aggressive 
chewers. 

We propose MyDJ (My Dietary Journalist), an eating detection 
system attached to eyeglasses. Unlike previous eyeglass eating de-
tection methods, 1) MyDJ achieves accurate and energy-efcient 
eating detection by leveraging a combination of a piezoelectric 
sensor and an accelerometer that are low-power and capture com-
plementary chewing signals on eyeglasses. Moreover, 2) our sensor 
placement design on eyeglasses does not require custom-built eye-
glass frames and thus easily integrates with any design of eyeglasses. 
To assess our system, we prototyped MyDJ on a custom-built cir-
cuit, attached it to a commodity eyeglass frame, and collected 237 
hours of data from 24 participants in uncontrolled environments. 
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MyDJ achieves an average accuracy of 0.984 and an F1-score of 
0.919 in eating episodes detection while achieving 4.03× battery life 
improvement over a previous eyeglass eating detection system [7]. 
To evaluate the long-term accuracy and wearability of MyDJ , we 
collected 477 hours of data from six participants, who attached 
MyDJ on their own eyeglasses for a week in uncontrolled environ-
ments. Throughout the week-long study, MyDJ detected 111 out of 
120 meals or snacks. Furthermore, our user survey shows that the 
comfort level of wearing glasses with MyDJ attachable is 94.95% 
compared with wearing own eyeglasses. 

This paper contributes to the feld of HCI as follows: We present 
(1) a design and implementation of an attachable eating detection 
system that easily integrates on any eyeglass frames; (2) an evalua-
tion based on a week-long in the wild data collection in which users 
attach MyDJ on their eyeglasses. Our data collection is quite exten-
sive as the longest data collection from previous eating detection 
eyeglasses was for two days [7]. 

2 BACKGROUND AND RELATED WORK 
We frst defne eating and eating episode, then survey eating detec-
tion systems in the form of eyeglasses and other wearable devices. 

2.1 Defnition of Eating and Eating Episode 
We use the defnition of eating and eating episode from Bi et al. [13] 
throughout this paper. Eating is defned as “an activity involving 
the chewing of food that is eventually swallowed”. We thus exclude 
the detection of drinking or chewing gums. Eating episode is de-
fned as “a period of time beginning and ending with eating activity, 
with no internal long gaps, but separated from each adjacent eating 
episode by a long gap”, where a gap is a period in which no eating 
activity occurs, and where long means a duration greater than a 
specifed parameter. In this paper, we used 15 minutes as a parame-
ter to specify the long gap between the eating episodes, as in [13]. 
Note that the shortest eating episode on our system is 15 seconds, 
which allows the detection of most eating episodes, including short 
snacking events. 

2.2 Eating Detection on Wearable Form Factors 
Other Than Eyeglasses 

Wearable eating detection systems have been proposed for vari-
ous form factors. Bi et al. proposed a form of headgear [13] and 
headband [12] that both utilize piezoelectric sensing on a mastoid 
bone for capturing chewing signals. While accurate and energy-
efcient, wearing headgear or headband is socially unacceptable in 
various situations. Neckbands [25, 68, 82] that use acoustic sensing 
to capture chewing and swallowing sounds have limited usability in 
warm weather due to the sweat between the band and the neck [75]. 
Moreover, constant audio sensing could lead to privacy concerns. 
Necklaces [2, 17, 39, 74, 84] utilizing proximity sensing to track 
jaw movements or piezoelectric sensing to capture the throat vibra-
tions are also popular. While necklaces are common and socially 
acceptable to wear, these form factors are not widely accepted as 
a survey reports that 45% of people would never wear such form 
factors [5], whereas 64% population of the US wear eyeglasses on 
a daily basis [29]. Moreover, proximity sensing on the necklace is 

prone to error under direct sunlight or user movements while eat-
ing [17, 62]. Other systems that leverage in-ear proximity sensing 
on an earpiece [9, 10], acoustic sensing on a Bluetooth headset [31], 
or surface pressure sensing on a cap [87] could be unacceptable in 
a social dining situation. Lastly, smartwatch-based eating detection 
systems [22, 43, 72, 78] perform hand-to-mouth gesture recognition 
and require users to wear it on their dominant hand for eating 
detection. It is also shown that such a system sufers from high 
false positives in uncontrolled settings [17]. 

In summary, the performance of the surveyed eating detection 
wearable form factors degrades in uncontrolled, real-life settings. 
Moreover, certain wearables could be inappropriate to wear in 
social dining situations. We believe eating detection on eyeglasses 
could be a viable option as it could be easily worn during any 
dining experience and could also achieve high accuracy due to close 
proximity to the chewing location [41]. We now review previous 
research on eating detection using eyewear. 

2.3 Eating Detection on Eyeglasses 
Eating detection on eyeglasses could ofer accurate eating detec-
tion thanks to the sensor placements close to the mouth and jaws 
(i.e., where chewing and swallowing happen) while simultaneously 
providing a socially acceptable wearable form factor [41]. 

Previous approaches on eyeglasses, however, mostly require 
custom-built eyeglass frames for specifc sensor placement, which 
limits their adoption to users who wear non-instrumented com-
modity eyeglasses. Some of the proposals were uncomfortable to 
wear or failed to achieve accurate or energy-efcient eating detec-
tion in real-world deployments. The system by Zhang et al. [83], 
for instance, requires personalized frames to place electrodes to 
the human skin for Electromyography (EMG) sensing. Its accuracy 
sufers when sweat or hair get in between the electrodes and the 
user’s skin [1]. Some methods require placing piezoelectric sen-
sors [27, 28] directly in contact with the skin using medical tape, 
which hinders comfort. Systems solely based on accelerometer [29] 
are inaccurate for users who are not aggressive chewers (as we 
discuss in Section 3 and 5). FitByte [7] utilizes sensor-fusion with 
gyroscopes, an accelerometer, and a proximity sensor placed on the 
eyeglasses frame. However, it drains a battery in less than a day 
(with the same battery as recent commodity smart eyeglasses [80]). 
It also requires the eyeglasses temple to be built with fexible ma-
terials to ensure a snug ft to improve IMU readings. Rahman et 
al. [67] and Chung et al. [18] proposed using inertial sensors and 
load cells respectively, but the accuracy of both of their design was 
evaluated only in controlled lab settings. Mirtchouk et al. [57, 58] 
used a combination of inertial and acoustic sensing on eyeglasses, 
smartwatches, and earbuds. However, wearing earbuds is typically 
not an acceptable social behavior and their reported eating detec-
tion F1-score was lower than those by other approaches using only 
eyeglasses. 

Unlike previous approaches, MyDJ overcomes the aforemen-
tioned limitations by achieving both accurate and energy-efcient 
eating detection with a new sensing design on eyeglasses. We also 
believe the design of MyDJ as an attachable to eyeglass frames 
enables comfortable usage and deployability. 
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(a) Printed circuit board.

220mAh battery in a plastic housing

LDT0-028K
piezoelectric sensor
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piezoelectric sensor

(b) All components are assembled on eyeglasses. (c) WearingMyDJ .

’

Figure 1:MyDJ prototype.

3 MYDJ DESIGN
We present the design overview of MyDJ (Figure 2). We first illus-
trate the hardware and sensing design of MyDJ that reports the
raw data signals from sensors when a user is chewing. We then
describe each component of the eating detection framework that
processes the sensor data in real-time. Finally, we demonstrate the
implementation of our prototype, built on a custom printed circuit
board (PCB).

3.1 Design Goals
Our design has the following goals:

• Design a sensing system that could easily integrate
with existing eyeglass frames: As users select different
eyeglass frames based on their own style and need [15, 35], a
desired eating detection system should be available for most
existing frames. It should not require specific materials or
the shape of an eyeglass frame to sense food intake.

• Use low-power sensors and optimized data processing
pipeline for energy-efficiency: Energy efficiency of awear-
able eating detection system is a critical factor for its usabil-
ity [13]. The system should utilize low-power sensors and
effectively minimize its computational overhead in sensor
data processing (e.g., feature selection).

• Capture complementary eating-related signals for ro-
bust and accurate sensing: Eating detection systems should
be robust to different users or environmental changes [66].
Multimodal sensing with different signals enables the system
to work even when one source of the signal is weak [61].

• Place sensors for accurate sensing without sacrificing
user comfort: An eating detection wearable should be com-
fortable to wear [79]. Sensor placements should not cause
user discomfort to achieve accurate sensing (e.g., in-ear
canal [3]). We aim to place sensors that achieve both high
accuracy and user comfort.

3.2 Overview of Hardware and Sensing
We use a piezoelectric sensor and an accelerometer onMyDJ , which
operates in relatively low-power than other transducers [50, 69].
We designed each sensor to capture two complementary chewing
signals, as shown in Figure 3. Note that these are not the only
eating-related signals available on eyeglasses; other signals such
as the chewing sound of mastication muscle activation could also
be leveraged [3, 83]. However, we do not consider other signals as
robust sensing of such signals is limited in the presence of loud
background noises or requires more power-consuming sensors [6].

3.2.1 Piezoelectric Sensor. We use a piezoelectric sensor to capture
the temporalis muscle contraction (Figure 3a) that elevates the
mandible (the lower jaw) on chewing. This muscle contraction
generates huge mechanical dynamics on its skin, which is easily
noticeable even with our fingers.

Piezoelectric sensors require firm contact with human skin for
better sensing quality. Previous studies used form factors such
as headgear [13] and headband [12] or used medical tape [28] to
attach the sensor. We chose a novel design of piezoelectric sensor
placement on eyeglasses that is comfortable and achieves accurate
sensing. We place the sensor on the inner side of the eyeglass frame
near the ear, where the sensor’s contact with human skin could
be naturally provided. Figure 1b visualizes the placement of the
piezoelectric sensor on our prototype. This location near the ear is
where the temporalis muscle is located beneath the skin. Our sensor
placement could monitor chewing activity without causing user
discomfort. Our design is also readily applicable at most eyeglass
frames, as eyeglasses are commonly designed to be placed on ears.

3.2.2 Accelerometer. We use an accelerometer to capture the prop-
agation of mechanical vibrations (Figure 3b), which occurs when
chewing food — primarily caused by the crunched food and by
clenching the teeth. These mechanical waves propagate onto the
eyeglass frame via the locations near the nose and the ear, where
the eyeglasses are in contact with the human skin. We placed the
sensor on the eyeglasses temple, which is shown in Figures 1a
and 1b. As we place the small sensor on an eyeglasses temple, it is
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MyDJ
Eating Detection Framework

Piezoelectric
Sensor Data Pre-

processing
Feature 

Extraction

Data Pre-
processing

Feature 
Extraction

DNN Classification

Accel.
Features

Piezo.
Features Model

Output

Accelerometer

Figure 2: System Overview of MyDJ . 

TEMPORALIS
MUSCLE

JAW 
ELEVATION

JAW 
ELEVATION

CHEWING
IMPULSE

(a) (b) 

Figure 3: FL on two datasets with diferent deadline confgu-
ration methods: (a) Temporalis contraction. (b) Mechanical 
waves propagation. 

comfortable and easy to wear and could be integrated into various 
eyeglass frames through simple adjustments. 

3.2.3 Hardware Implementation. Our prototype is powered by 
nRF52840, a 32-bit ARM Cortex-M4 MicroController Unit (MCU) by 
Nordic Semiconductor, with a foating-point unit running at 64MHz, 
1MB fash memory, and 256kB RAM. The MCU is connected to 
LDT0-028K piezoelectric sensor and ADXL313 3-axis accelerom-
eter via a 12-bit Analog-to-Digital Conversion (ADC) interface 
and I2C serial communication interface, respectively. We used an 
MDBT50Q-P1M module that encapsulates the MCU connected to 
a trace antenna for Bluetooth Low Energy (BLE) communication 
and mounted it on our custom PCB (1.6 cm × 4.1 cm), alongside 
with ADP3301 3.3V regulator, micro-USB connector, and micro SD 
card connector. Figure 1 shows the example of a custom PCB being 
attached to a commodity eyeglass frame with the 220mAh battery 
inside a plastic housing. 

3.3 Combining Raw Signals from Two Sensors 
Using our MyDJ prototype, we capture the raw sensor responses 
from both sensors and illustrate how each sensor captures unique as-
pects of the chewing signals when eating. We also explore whether 
the sensor responses of eating could be distinguished from other 
human activities. The sensor responses discussed in this subsection 
used 256Hz and 400Hz sampling rates for a piezoelectric sensor and 
an accelerometer sensor, respectively. We also use these sampling 
rates in our eating detection framework in Section 3.4, which are 

chosen to be minimal but sufcient to capture chewing signals after 
multiple iterations of testing on diferent confgurations. 

First, we observe the raw time-domain signals on both sensors 
when a user is chewing. We provide the raw data in two cases where 
1) a user is chewing without head motion and 2) a user is chewing 
and moving his head. The purpose of performing the second case 
is to assess both sensors’ stability on MyDJ while a user is freely 
moving one’s head while eating in a natural setting. In this scenario, 
the person with MyDJ horizontally shakes the head at 0.5Hz while 
chewing. Figure 4 shows the raw sensor responses of both sensors 
for both cases. 

We observe that each sensor captures unique signals distin-
guished from the other. The sensor response in Figure 4a shows 
clear peaks at chewing by both sensors. The boxes in the fgure 
indicate the sensor-specifc patterns of peaks observed with each 
chewing activity. The piezoelectric sensor response shows a pattern 
of low-frequency peaks of relatively long duration that starts with 
the Jaw Elevation Start (JES) and ends after the Jaw Elevation End 
(JEE). Such response pattern around JES and JEE matches with 
the temporalis activity at the chewing cycle. On the other hand, 
the accelerometer response shows high-frequency peaks of short 
duration after the JEE. These high-frequency peaks are generated 
from the interference of multiple mechanical waves propagated 
from the chewing impulse. 

When a user is chewing while moving his head (Figure 4b), 
similar patterns are visible for both sensors, which indicates that 
our design with these two sensors is robust to the motion noise. 
Note that the y-axis range of Figure 4b is wider than in Figure 4a. 

In Figure 5, we visualize both sensors’ responses with a sequence 
of various human activities; walking, being stationary, eating, and 
talking. It is shown as a time-domain raw data (top) and as a spectro-
gram that shows the frequency domain response over time (bottom). 
From both sensors’ responses, eating is distinguished from other 
activities in both the time and frequency domains. While walking 
and eating seem to have similar high-frequency peaks at the time-
domain response of an accelerometer, their spectrogram response 
shows distinct patterns, especially at the frequency range over 
50Hz. The spectrogram of eating and talking in the piezoelectric 
sensor shows distinct patterns, even though both activities include 
jaw movements. This distinction stems from the fact that eating 
involves more regular and intensive jaw movements than talking. 

3.4 Eating Detection Framework 
3.4.1 Data Preprocessing. A piezoelectric sensor and an accelerom-
eter equipped on MyDJ continuously generate raw data stream 
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(b) Chewing while head moving.

Figure 4: Raw data signals from two sensors when chewing. The bottom images in Figure 4a are from the video recorded
during the experiment for demonstration. JPS, JES, JEE, and HMS stands for Jaw Protraction Start, Jaw Elevation Start, Jaw
Elevation End, and HeadMoving Start. Boxes indicate the distinctive signal patterns of each sensor that appears with chewing.
The piezoelectric sensor shows low-frequency peaks of longer duration while the accelerometer shows short high-frequency
peaks after JEE, which indicates that these two sensors are sensing the different sources of signals from chewing activities.
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Figure 5: Time/frequency domain sensor responses at the sequence of different human activities.

at 256Hz and 400Hz sampling rates, respectively. As we use a 3-
axis accelerometer that outputs X, Y, and Z values per sample, we
calculate the root sum squared of each value and use it as an ag-
gregated acceleration of the sample. Both streams of input data are
segmented into non-overlapping windows of three seconds, which
was chosen based on the previous work [12] that experimented
with varying window sizes for eating detection. We use the same
size of windows for both sensors to extract features from the same
window and determine whether a user is eating at the window,
which is further aggregated to detect eating episodes as illustrated
in Figure 3.4.3.

3.4.2 Feature Extraction and Selection. We apply feature extraction
and use extracted features as an input to the classification model.
While recent sensor-based applications use complex neural layers
(e.g., CNN, autoencoders) for artificial feature engineering [59, 70],
we use extracted features to minimize the power and memory
consumption. Note that we run our eating detection framework on
board of MyDJ to preserve user privacy without transmitting the
raw data externally.

By applying reflection padding at both ends, a three-second win-
dow is divided into 24 frames each, with 75% overlapping and a
one-second duration. On each frame, we extract three types of
frame-level features: Short-time Fourier transform (STFT), Mel-
Frequency Cepstral Coefficients (MFCCs), and Root-Mean-Square
(RMS). We chose STFT since the spectrogram response of eating
is visually differentiated from other human activities, as shown in
Figure 5. The MFCCs, which are widely used in automatic speech
recognition systems, were selected as they apply a discrete cosine
transform at mel-scale filter banks that mimic the human ear per-
ception of sound [32, 71]. STFT and MFCCs use the sampling rate
of each sensor as the number of FFT points. Lastly, we used RMS
to capture the mean power magnitude of the input signal.

Once we extract the features, We further statistically aggregate
frame-level features on each frequency to generate window-level
features as in BodyBeat [68]. In total, we extracted 1,500 features
(1,290 for STFT, 200 for MFCCs, and 10 for RMS) from each sensor
on a three-second window. We further normalized these aggregated
features per person.
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(a) Windows to EEFs. (b) EEFs to eating episodes. 

Figure 6: Eating Episode Frames (EEFs) and eating episodes 
generation from three-second windows. 

We performed feature selection on the extracted features to fnd 
the minimal but optimal set of features for accurate eating detection. 
We used Joint Mutual Information Maximisation (JMIM) [11] for 
feature selection, which fnds the optimal set of features that has 
maximal Mutual Information (MI) with the label. According to the 
benchmark study of various feature selection methods [14], JMIM 
achieves the best median accuracy among all flter methods with 
the selected set of features when it is tested on 16 large classifcation 
datasets. 

3.4.3 Window Classification and Eating Episode Detection. For 
the classifcation of each three-second window, we used a fully-
connected Deep Neural network (DNN) classifer as in previous 
approaches with the same type of sensors [26, 46]. While some 
studies [13, 83] used lightweight linear classifers such as Logistic 
Regression (LR) or Linear Discriminant Analysis (LDA), we used 
DNN as it shows superior performance in various domains [4], 
including eating detection [24, 31], by capturing nonlinear separa-
tion within data. Other approaches [7, 8] used ensemble classifers 
such as Random Forests (RF), but their confguration with 100 trees 
might result in large memory footprint (∼ 700KB) on wearable 
microcontrollers. We used only one hidden layer with 50 hidden 
nodes for our DNN, which consumes only 10.61KB of memory. 

As the window-level classifer could output false-positive results, 
MyDJ determines a user is eating based on the detection of eating 
episodes. MyDJ detects eating episodes with a similar strategy from 
a previous work [13]. Five consecutive three-second windows are 
used to detect Eating Episode Frame (EEF) of 15 seconds, as shown 
in Figure 6a. If there are more than two windows classifed as eating, 
the fve windows are aggregated as EEF. Once the EEF is detected, 
MyDJ determines that a user is eating. 

We use 15 seconds for EEF to capture short instances of eat-
ing, such as snacking, instead of 1 minute used by the previous 
work [13]. The rationale of using 15 seconds is to use multiple three-
second windows and to detect eating episodes that contain only 
one chewing episode, which has 13 seconds of mean duration [65]. 

EEF becomes a building block of longer eating episodes, and 
Figure 6b shows how multiple EEFs are aggregated into longer 
eating episodes. Aggregated EEFs with an interval shorter than 15 
minutes are considered as a single eating episode, as defned in 
Section 2.1. 

3.4.4 Sofware Implementation. We used Python toolkit librosa [55] 
for the extraction of all features and analysis on the server and used 
R package praznik [42] for JMIM feature selection. We implemented 
the DNN classifer with PyTorch [64] for the evaluation in Sec-
tions 5.2 and 5.3. For the evaluation of MyDJ ’s poweconsumption 

in Section 5.4, we implemented the extraction of selected features 
on our prototype in embedded C with nRF5 SDK provided by the 
Nordic Semiconductor. We implemented DNN inference on our 
prototype using matrix multiplication from CMSIS DSP Software 
Library [49] that comes with the ARM Cortex processors. 

4 DATA COLLECTION 
We conducted two IRB-approved data collection studies with difer-
ent lengths and user constraints. From the frst study, we collect our 
training data where users’ behavior is precisely captured with the 
camera. Since the primary goal of MyDJ is long-term real-world 
usability, we collect the training data from the outside-the-lab en-
vironments for a day-long period. With this data, we train the 
classifcation models for MyDJ to evaluate the accuracy of MyDJ 
for a longer duration. To this end, we perform the second study 
where we collect week-long data where more realistic and diverse 
user behavior is captured without the camera. We interviewed the 
participants of both studies on the experiences of wearing MyDJ 
to assess the usability of the device. 

4.1 Day-long Data Collection with 
Ground-truth Collection Camera 

We recruited 24 participants (13 males; 11 females; aged 20-46). 
Twenty-one were university students and the rest were a nurse, a 
homemaker, and an ofce worker. Nine users wear eyeglasses daily, 
13 had worn eyeglasses in the past but were no longer wearing (i.e., 
got Lasik operations), and two had no experience of daily wearing 
eyeglasses. Each participant participated for a day and got compen-
sated $50. Eighteen participants collected data on a weekday, while 
6 participants collected on a weekend. On the day of the study, each 
participant visited the laboratory in the morning to get equipped 
with MyDJ-attached eyeglasses and left to collect data throughout 
the day. We used one type of commodity eyeglass frames to attach 
MyDJ for this study, which is shown in Figure 1. Note that we asked 
the participants who wear eyeglasses on their daily lives to instead 
wear contact lenses and then wear the MyDJ-attached eyeglasses 
that we provide during the study. Participants were encouraged to 
do any activity of their choice, including their regular daily routine. 
Participants were allowed to take of eyeglasses when they were in 
a situation that required it (e.g., swimming), but we asked them to 
limit such time to a maximum of two hours. They returned to the 
lab in the evening to return the device and be interviewed for the 
experience of wearing MyDJ . 

A total of 237 hours of data (9.88 hours on average per participant) 
with 94 eating episodes (48 meals and 46 snacks) were collected. 
Participants consumed various types of food, including meat (pork, 
beef, and chicken), sandwiches, fried rice, hamburgers, noodles, 
tonkatsu (pork cutlet), pizza, salad, cake, chocolate chips, etc. The 
data also include diverse non-eating activities such as brushing their 
teeth, riding a bicycle, driving, cooking, washing dishes, attending 
a conference, playing drums, exercising in a gym, walking with a 
dog, knitting, etc. 

Ground-truth collection & annotation: To collect ground-
truths, participants were asked to carry a smartphone throughout 
the day and record themselves with a front-facing camera. We ad-
ditionally provided a supplementary phone battery and a portable 
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Table 1: Specifcation of participants’ eyeglass frame and head. 

Participant Id P25 P26 P27 P28 P29 P30 

Image 

Frame Material 
Weight 
H/W/D 
T2T/E2E 

Metal+Plastic 
21.8 

47/129/137 
140/113 

Metal 
18.5 

46/135/146 
142/99 

Metal 
21.4 

33/128/133 
132/113 

Metal 
14.9 

42/133/132 
133/96 

Plastic 
20 

45/132/138 
130/136 

Plastic 
33.6 

44/137/144 
158/162 

Head O2O/HL 160/235 155/215 155/220 155/235 165/240 175/245 

Units are given in g for weight and mm for length. The weight of MyDJ is 9.7g. 

(a) Camera setup. (b) Screenshots from the collected videos. 

Figure 7: Example of camera usage for ground-truth label 
collection from the day-long study with various user activi-
ties; eating, working at a desk, conducting a chemical exper-
iment, exercising at a gym, etc. 

smartphone fip stands for day-long recording. Figure 7 shows how 
the camera and the experiment setup were used in the experiment, 
along with example screenshots. We recorded the video without 
sound. We asked the participants to record themselves as much as 
possible, including the eating moments. We allowed them to cover 
the lens when they were not eating and wanted to avoid the video 
recording; however, with the participant’s approval, such data were 
not erased and were simply annotated as non-eating. To assess our 
camera system’s impact on participants’ data collection during the 
study, we conducted a survey that asks how participants perceived 
the camera system and report it in Section 6.4. 

To synchronize MyDJ sensors and the video, we asked the partic-
ipants to tap the temple of the eyeglasses nine times in front of the 
camera at the beginning of the study. This created a unique sensor 
signal pattern that allowed us to identify the exact synchronization 
moment on both the video and the sensor data. 

The annotation from the video was manually done by three of 
the authors. One annotated the entire data, while the remaining 
two divided the data into halves and annotated each, making two 
sets of annotated labels. For the labels that confict between the two 
sets, each set’s annotators had a discussion session to determine 
the fnal label for the data. We annotated the label in every second 
of the data as one of the following: eating and non-eating. We 
determined a second as eating if a participant chews food at least 
once. Otherwise, a second was determined as non-eating. Thus, 
drinking was not labeled as eating. Furthermore, for each of the 
three-second windows, we determined a window as eating if any 
of the three seconds was annotated as eating. Otherwise, the three-
second window was annotated as non-eating. We calculated the 
intercoder reliability using Cohen’s Kappa [45] based on previous 
study [8]. Our annotation resulted in Kappa (κ) = 0.846, where 
κ > 0.8 represents almost perfect agreement [56]. 

Height 
(H)

Width (W)

Temple-to-temple
distance (T2T)

Earpiece-to-earpiece
distance (E2E)

Depth (D)

Obs-to-obs
distance (O2O)

Head Length
(HL)

Figure 8: Illustration on the metrics of eyeglass frame and 
head of participants that are used in Table 1. Obs-to-obs is 
the straight-line distance between the left and right otoba-
sion superius, which is the point of attachment of eyeglasses 
near the temporalis muscle [54]. 

4.2 Week-long Data Collection with MyDJ 
Attached on Participants’ Eyeglasses 

The goal of this data collection study was to evaluate the long-term 
accuracy and usability of MyDJ when it is attached to users’ own 
eyeglasses. We recruited six participants (four males; two females; 
aged 25-51) who have their own eyeglasses and did not participate 
in the prior study. Four were university students, and the rest were 
a homemaker and a lecturer. The specifcation of participants’ eye-
glasses frame and head are shown in Table 1, and the metrics used 
for the measurement are illustrated in Figure 8. Four users always 
wear eyeglasses except when sleeping, and two users wear them 
for few hours a day for specifc purposes (e.g., driving, blue-light 
protection). We asked participants to continuously wear eyeglasses 
during the study. Each participant participated for seven days and 
got compensated $150. 

On the frst morning of the study, each participant came to the 
laboratory and we attached MyDJ on the participant’s eyeglasses. 
Participants left to collect data and visited the lab on the evening of 
the seventh day of the study to return the device and be interviewed. 
The battery life of MyDJ performing data collection is longer than 
a day; with average power draw of 22.95mW, it lasts 35.43 hours 
on a 220mAh battery. Thus, we asked participants to charge MyDJ 
once a day with a given micro-USB charger before going to bed, 
to ensure that MyDJ is operating properly during the study. The 
battery was not replaced during the study. 

A total of 477 hours of data (11.34 hours on average per day 
per participant) with 136 eating episodes (93 meals and 43 snacks) 
were collected. The data includes multiple eating episodes and 
activities that are more diverse than the previous study. While 
participants ate most types of food from the previous study, they 
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also ate new types such as dumplings, squid sashimi, peach, avocado, 
fsh and chips, soba noodles, grilled duck, lotus root, and shrimp. 
Participants went to their own workplaces where they gave lectures, 
conducted chemical experiments, etc. They also went to multiple 
public places and social meetings, where they used various modes of 
transportation (e.g., driving, riding a bus, subway, or bicycle). One 
participant even went on a date with MyDJ-attached eyeglasses. 
We conducted a survey that asks how participants perceived the 
social acceptance of MyDJ at diferent places (Section 5.5). 

Ground-truth collection & annotation: We removed the smart-
phone camera from this study to minimize the constraints on the 
participant’s behavior. Instead, we collected the ground-truth via 
a mobile messenger app (KakaoTalk [21]) as shown in Figure 9. 
During the study, the participants were asked to send information 
to the authors about their food intake in real-time. The information 
includes (1) start and end time of the food intake at a minute-level, 
(2) types of food that are being consumed and its image, (3) whether 
it is snack or meal, and (4) whether a participant is confdent about 
the time of the food intake. The confdence was collected as partic-
ipants occasionally forgot to send messages in time; participants 
were instructed to send their best guess on the time of the food 
intake when they were not confdent. Out of 136 eating episodes, 
120 were replied as confdent in this data collection study, and we 
excluded non-confdent eating episodes from the evaluation. 

5 EVALUATION 
We evaluate MyDJ to answer the following key questions: 1) How 
accurate is MyDJ in eating detection? 2) How much power does 
MyDJ consume? 3) How is the user experience of wearing MyDJ? 

5.1 Experiment Settings & Procedures 
We preprocessed the collected data and trained the eating detection 
model to assess if MyDJ performs well in the wild. We evaluate the 
eating detection accuracy of MyDJ in both studies by comparing 
diferent types of input features on the metrics as follows. 

5.1.1 Input Feature Types. To understand the efectiveness of fus-
ing two diferent types of sensors on MyDJ , we show our evaluation 
results on each following input feature types: Piezo, Accel, and Com-
bined. Piezo uses only the features from the piezoelectric sensor 
on MyDJ , Accel uses only the features from the accelerometer on 
MyDJ , and Combined uses the input features from both sensors, 
representing the performance of our design with MyDJ . 

5.1.2 Evaluation Metrics. We use the following metrics to evaluate 
the eating detection accuracy of MyDJ : 

• Accuracy / F1-score / Precision / Recall: We measure these 
metrics on the eating episode coverage. We mainly focus on 
F1-score as eating, and non-eating data are highly unbalanced 
(1:19.75 in our day-long study dataset). Figure 10 shows an 
example of how the eating episode coverage is processed to 
calculate each metrics. TP, TN, FP, and FN are all used to 
calculate accuracy, F1-score, precision, and recall. 

• Undetected eating episodes / False alarms: We count the 
number of ground-truth eating episodes without true pos-
itives as undetected eating episodes to evaluate how often 
eating episodes MyDJ would miss. Moreover, we count the 

number of detected eating episodes without true positives as 
false alarms to evaluate how often false alarms MyDJ would 
trigger. We also provide analysis on each occurrence of un-
detected eating episodes and false alarms to better understand 
under what circumstances MyDJ works and fails. 

• Coverage ratio / Duration diference / Delay: We addi-
tionally measure the metrics that were widely adopted in 
other eating detection approaches [7, 8, 13]. The coverage 
ratio is defned as the percentage of the correctly recognized 
duration of an eating episode. Note that the recall and the 
coverage ratio are equivalent on an eating episode, but we 
report the recall by averaging it per person, while we report 
the coverage ratio by averaging it per episode. The duration 
diference is defned as the absolute duration diference be-
tween an eating episode and corresponding detected eating 
episode, and the delay is defned as the elapsed time from 
the beginning of an eating episode which the system starts 
to detect it. 

5.1.3 Method. For each input feature type, we processed the data 
and extracted features following the method presented in Sec-
tion 3.4. For the day-long study, we applied the Leave-One-User-Out 
(LOUO) methodology to study the performance of MyDJ when de-
ployed to a new user. We divided the 24 users into one test user 
and 23 training users and performed feature selection on the 23 
training users. From the feature selection result, we used top-K 
selected features for training a DNN for window-level classifca-
tion. DNN was trained with 23 training users, and we explored the 
impact of K from the following list: 5, 10, 20, 50, 100, 500, and 1,500. 
The motivation for using diferent numbers of selected features 
is to assess MyDJ’s accuracy with a smaller number of features, 
as the number of input features is a crucial factor for the power 
and memory consumption of the system. We split the test user’s 
data into two chunks by dividing it in half without shufing, which 
ensures at least one meal to be included in each chunk. We tested 
each test user twice and averaged the results, with confguring 
one chunk as the validation data and the other as the test data, 
and vice versa. After training the window-level classifer, we infer 
the window-level label of the test data chunk and perform eating 
episode detection based on the method described in Section 3.4.3. 
We repeat the above process 24 times with confguring each of the 
24 users as a test user and report the average accuracy and per-user 
accuracy. For each training process, the model was trained for 50 
epochs with a learning rate of 0.001. 

For the week-long study, we utilize a pre-trained model that is 
trained while evaluating the day-long study to infer the window-
level label and perform eating episode detection. We chose a model 
for each Piezo, Accel, and Combined, which have shown the highest 
F1-score on window-level classifcation with each input feature type 
on the day-long study dataset. Moreover, we perform fne-tuning 
on the pre-trained model of Combined to generate a personalized 
model on each user to validate if MyDJ performs better when 
trained with the target user data. From seven days of data on a 
user, we use the data from a single day to fne-tune the pre-trained 
model and evaluate on the remaining six days, which we repeat the 
process seven times for each user with utilizing each day for fne-
tuning. To generate the personalized model, the pre-trained model 
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ID Day Time confidence Type Details

P27 Aug 
18th

22:07-
22:40 False Snack ice cream, 

cookie

P29 Aug 
21th

09:10-
09:43 True Meal

salmon, salad, 
onion, avocado, 

kimchi, rice, apple

Figure 9: Ground-truth label collection during the week-long study.

Time

True Negatives
(TN = 10 min)

Ground-Truth Eating Episode 
(7:10 ~ 7:45)

Detected Eating Episode
(7:20 ~ 8:00)

7:00 7:10 7:20 7:45 8:00

𝐚𝒄𝒄𝒖𝒓𝒂𝒄𝒚 = 	
𝑇𝑃 +𝑇𝑁

𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 +𝐹𝑁
= 0.583					 				 		𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 = 	

𝑇𝑃
𝑇𝑃 + 𝐹𝑃

= 0.625	

𝑭𝟏	𝒔𝒄𝒐𝒓𝒆 = 	
2∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

= 0.667					 				 	𝒓𝒆𝒄𝒂𝒍𝒍				 				 = 	
𝑇𝑃

𝑇𝑃 +𝐹𝑁
= 0.714

False Negatives
(FN = 10 min)

True Positives
(TP = 25 min)

False Positives
(FP = 15 min)

Figure 10: An example of eating episode coverage calculation.
TP, TN, FP, and FN stand for True Positives, True Negatives,
False Positives, and False Negatives respectively.

was additionally trained with smaller epochs (=5) and learning
rate (=0.00001), as common practice for fine-tuning [47]. From the
evaluation, we exclude eating episodes in which participants did
not reply “confident” for its start and end times.

5.2 Day-long Study Results
Figure 11 shows the performance of MyDJ with a different num-
ber of selected input features from the day-long study. Figure 11a
shows the average F1-score in eating episode coverage. The Com-
bined outperforms both Piezo and Accel by up to 0.136 in the mean
F1-score. The mean F1-score of Combined stays consistently high
even with decreasing number of input features, with >0.890 mean
F1-score in eating episode coverage at all number of selected fea-
tures. In contrast, with a number of features less than 100, a mean
F1-score of <0.840 could be achieved using only a single sensor.
Compared with the 1,500 features case, Combined could achieve a
99.7% reduction of input feature space with five features, sacrificing
only 0.037 in mean F1-score. The Accel shows a comparably high
mean F1-score at 500 selected features, but the usage of both sen-
sors in Combined produces high performance with a low number of
selected features, which is critical in maintaining low computation
and memory consumption of the system.

Figure 11b and 11c each depicts the averaged counts of unde-
tected eating episodes and false alarms from 24 participants on a
different number of selected features. Combined shows fewer unde-
tected eating episodes than Piezo and Accel at all number of selected
features. Combined maintains ≤3 over all number of selected fea-
tures while Piezo and Accel yield as high as 22 and 11 undetected
eating episodes. This result suggests that the fusion of both sensors

reduces occurrences of undetected eating episodes. For false alarms,
Accel shows the least count with features less than 20, while Com-
bined shows the least count otherwise. We suspect that Accel with
a small number of features reliably classifies non-eating data but
also classifies some borderline eating cases as non-eating, as it has
higher precision than recall (e.g., 0.901 vs. 0.831 with 15 features).

Based on our experiments, we recommend to use 50 input fea-
tures for MyDJ . While decreasing the number of input features
would reduce computation overhead, we also aim to achieve high
eating episode coverage with fewer undetected eating episodes and
false alarms. We chose 50 input features as MyDJ achieves 0.919
F1-score in eating episode coverage while it drops to 0.917 and 0.916
with 20 and 100 input features, respectively. MyDJ achieves >0.920
F1-score with 500≥ features, but we use 50 features as it requires
10× feature processing for only 0.005 F1-score improvement. 50
input features also yield the lowest false alarms and comparably low
undetected eating episodes (=2). Our recommended model for MyDJ
achieves 0.984 accuracy, 0.919 F1-score, 0.923 precision, and 0.925
recall in eating episodes coverage while detecting 92 out of 94 eating
episodes only with 12 false alarms from the day-long experiment
with 24 participants. It also achieves a 92.0% coverage ratio and 121.4
seconds of duration difference for each eating episode, with 11.9
seconds of delay in detecting the beginning of the episode. Note
that it shows a 0.794 F1-score in window-level classification, which
is comparable with a state-of-the-art system [13] that performs
window-based eating detection.

Two undetected eating episodes were less than a minute long,
where participants had a mini Oreo and tapioca balls in the bubble
tea. We suspect MyDJ could not detect the short episodes with
these small-sized snacks, as it is primarily trained on meal data. We
found that false alarms mostly occurred in unusual circumstances,
such as when a participant fiercely scratched her head or walked
unsteadily with irregular steps. 10 out of 12 false alarms have a
duration of 15 seconds, which is a length of an eating episode frame.
Ones with longer durations (164 and 494 seconds) happened when
a participant was exercising in a gym or walking outside. We expect
such occurrences will be reduced when the MyDJ is trained with a
larger and more diverse set of real-world data.

In Figure 12, we report the per-participant F1-score of the eating
episode coverage. In both cases, we observe that Combined consis-
tently shows higher F1-score for every participant compared with
Accel and Piezo. The lowest F1-score of Combined among all par-
ticipants is 0.671, which outperforms the lowest F1-score of Accel
(0.221, P23) and Piezo (0.0, P18). Our results suggest that eating de-
tection systems with a single accelerometer on glasses could result
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(a) Eating episode coverage F1-score. (b) Undetected eating episodes. (c) False alarms. 

Figure 11: Averaged results on a diferent number of selected features from the day-long study. 
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Figure 12: Episode-level F1-score per participant from the day-long study. 

in low accuracy for some users — such as P3, P15, and P23 in our ex-
periment. Some users (P12, P18) show extremely low performance 
with Piezo; we suspect that their eating data on the piezoelectric 
sensor is distinct from others, as the classifer trained on other users 
classifes most of the eating data as non-eating. For participants P1, 
P7, and P23 who had low Combined F1-score (< 0.8), we suspect 
that their chewing styles were diferent from the majority of users. 
We believe their performances could be further improved by model 
personalization as we introduce in Section 5.3. In summary, Com-
bined (i.e., MyDJ) consistently provide the highest F1-score on each 
participant for most of the cases (14 out of 24), providing at least 
> 0.671 F1-score on all users even if the single-sensor approach 
outperforms. 

5.3 Week-long Study Results 
Figure 13 shows the per-participant performance of MyDJ from 
the week-long study. For each participant, Figure 13a depicts the 
F1-score in eating episode coverage, while Figures 13b and 13c show 
the number of the undetected eating episodes and the false alarms, re-
spectively. Between the pre-trained models, Combined achieves the 
highest mean F1-score of 0.777, while Piezo and Accel achieve 641 
and 651, respectively. The lowest F1-score of Combined among all 
participants is 0.626 (P30), which outperforms the lowest F1-score 
of Piezo (P29, 0.381) and Accel (P26, 0.185). In addition, the mean 
coverage ratio of Combined is 0.894, which outperforms Piezo (0.703) 
and Accel (0.703). This result suggests that multimodal sensing of 
Combined provides a high F1-score and coverage ratio on most users 
with diferent types of eyeglass frames. 

Moreover, the total count of undetected eating episodes of Com-
bined is nine, which is less than Piezo (26) and Accel (27). Every 
undetected eating episode from the pre-trained Combined model 
were snacking episodes, except for one meal episode, which was 
only three minutes long. This does not mean that MyDJ cannot de-
tect short eating episodes; 12 of 17 eating episodes that are less than 
or equal to three minutes long were detected. Participants were 
having eggs, banana, peach, ice cream, grapes, or fried onion when 
eating episodes were undetected; however, MyDJ detected other 
eating episodes with these foods (e.g., MyDJ detected a participant 
having ice cream for seven minutes). The total count of false alarms 
of Combined is 91, which is more than Accel (57) but less than 
Piezo (132). While Accel results in the least count of false alarms, 
it results in more false alarms than other input types on one user 
(P26). Combined consistently shows ≤23 false alarms on each user, 
with less undetected eating episodes than single-sensor approaches 
on all users. Among the false alarms on the pre-trained model of 
Combined, 63 out of 91 were less than a minute long. The longest 
false alarm was 33 minutes and 44 seconds long. As we did not 
use a camera at the week-long study, we asked participants what 
they were doing when the false alarm happened. For the long false 
alarms, participants replied that they were wearing a headphone, a 
VR headset, or a safety goggle, which might have physically adhered 
with MyDJ and afected the sensors. Participants also replied that 
they were working out at a gym when false alarms were detected. 
We expect these false alarms could be resolved when the model 
is trained with more diverse real-world data. Some participants 
replied that they were chewing straws with iced drinks at the false 
alarm moments, which indicates that MyDJ detected chewing as 
designed for such occasions. 
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(a) F1-score. (b) Undetected eating episodes. (c) False alarms. 

Figure 13: Per-participant results from the week-long study. All subgraphs share the same legend of Figure 13b. 

The pre-trained model of Combined further improves with the 
fne-tuning process. The mean F1-score increases by 0.072 on the 
personalized model (0.777 to 0.849), with the lowest F1-score in-
creasing by 0.154 (0.626 to 0.780). While there exist users (P26 and 
P27) whose F1-score decreases with the personalized model, their 
F1-score drop (0.002 and 0.025) is signifcantly lower compared 
with the user who gained the most F1-score after fne-tuning (P30, 
0.229). Moreover, the personalized model results in 12.4 undetected 
eating episodes and 37.4 false alarms on average of seven iterations 
of fne-tuning. The count of false alarms decreased more than twice 
after fne-tuning on most users, while the number of undetected 
eating episodes only increased by 0.5 per user. The mean coverage 
ratio decreased after fne-tuning (89.4% to 84.5%), but it still shows 
≥72.6% coverage ratio on all users. In a nutshell, the personalized 
model improves the F1-score and reduces false alarms, especially 
on users with low performance on the pre-trained model. As gen-
erating the personalized model requires a user to provide labels as 
in our week-long study, we interviewed the participants on their 
experience of labeling and further discuss it in Section 6.3. 

5.4 Power Consumption 
We used Monsoon Power Monitor (FTA22D) [36] to measure the 
power draw of our prototype on performing real-time eating detec-
tion. We divided the functionality of MyDJ into three categories; 
raw data sensing, feature extraction, and classifcation. Starting with 
the idle state of the device that does not perform any functionality, 
we added each functionality one by one to measure the power con-
sumption of each. For each measurement, we measured the power 
draw by averaging the results from fve minutes of execution. We 
used a 3.7V voltage supply of the power monitor. 

The results reported in Table 2 show that the total power draw 
of MyDJ is 26.06mW, which results in 66 hours and 38 minutes of 
operation time with the same battery of recently released commod-
ity smart eyeglasses (470mAh, Vuzix Blade Upgraded [80]). This 
is 4.03× longer battery time compared with the reported battery 
time of the state-of-the-art eating detection system on glasses [7]. 
We observe that most of the power was drawn by the raw data 
sensing with two sensors. We also note that the power consumption 
of the classifcation is noticeably small. We conjecture that this is 
due to the small size of the neural network (50×50×2 nodes) and 
the power-efcient matrix multiplication APIs of ARM. 
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(a) Scores of Q1 and Q2 that ask 
comfort of wearing MyDJ com-
pared with regular eyeglasses. 
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(b) Scores of Q3 to Q5 that ask 
the user experience of wearing 
MyDJ for a long-term. 

Figure 14: User experience questionnaire scores on MyDJ 
and regular eyeglasses. 

5.5 User Experience Survey 
To assess the comfort level of wearing MyDJ in uncontrolled en-
vironments, we frst asked two questions to the 24 subjects (P1 -
P24) who participated in the day-long study: (Q1) How convenient 
was it to put on the wearable device? (Q2) Would you wear this 
device in your daily life? Questions were answered with a 0-10 
point scale, where 10 indicates the highest comfort. Moreover, to 
further understand the user experience of wearing MyDJ at a long 
term, we surveyed six subjects (P25 - P30) who participated in the 
week-long study. We asked how much do participants agree with 
the following statements, where each describes a diferent impres-
sion of wearing a device in their daily life: (Q3) I could wear this 
device for more than a week in my daily routine. (Q4) Wearing this 
device made it difcult to carry out my daily life. (Q5) I do not feel 
secure and safe wearing the device in my daily life. Participants 
answered each statement with a 0-10 point scale, where 0 indicates 
“strongly disagree” and 10 indicates “strongly agree”. In addition, we 
interviewed the six users’ experience of wearing MyDJ in the long 
term, in terms of its social acceptance and frame weight unbalance. 

We additionally asked Q1, Q2, and Q4 on regular eyeglasses to 
understand the participants’ personal preference on eyeglasses-type 
wearables. For the questions on regular eyeglasses, participants 
answered based on their personal experiences or perceptions of 
wearing eyeglasses. 



              

         

      

      
           

       
      

      

Table 2: Power measurements of MyDJ on each functionalities. 

Functionalities Average Power Draw(mW) Battery Life1 

Idle 10.76 161 hrs 20 min 
Raw data sensing with two sensors +8.73 89 hrs 11 min 

Feature extraction +6.38 67 hrs 7 min 
Classifcation +0.19 66 hrs 38 min 

Total 26.06 66 hrs 38 min 
                  1 Battery life is calculated based on the 470mAh battery of recent smart eyeglasses, Vuzix Blade Upgraded [80]. 

           
            

            
            

            
          
             

         
           

           
            

           
          

             
               

          
          

         
           

          
            

   

          
            

             
          
           

          
          

          
            

             
            

        
            

          
         

            
           

          
           

            
            

            
             

          
         

            
             

          
            

    
             

          
         

             
             
           

             
    

       
            

           
           
         

            
           

           
        
           

           
            

         
           

           
               
            

  
         

           
          

         
           

         
            

              
                
           
           

            

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Jaemin Shin, et al. 

Comfort: Figure 14a shows the box plot graphs of the survey 
scores. For Q1, MyDJ scores 6.58 ± 2.15 and the regular eyeglasses 
score 7.13 ± 1.90 from 24 participants. For Q2, MyDJ scores 6.54 
± 2.45 and the regular eyeglasses score 6.70 ± 2.42. Moreover, we 
conducted a paired t-test (α=0.05) on Q1 and Q2, as both results 
are found to be following normal distribution on the Shapiro–Wilk 
test [73]. For Q1, the p-value of MyDJ is 0.02009, indicating that both 
results are statistically distinguished and the regular eyeglasses are 
found to be more comfortable than MyDJ for our participants. For 
Q2, however, MyDJ shows a p-value of 0.76, where participants are 
willing to wear MyDJ at a similar level compared with the regular 
eyeglasses. We noticed that there were users who were not willing 
to wear MyDJ , regardless of its functionality. Nine participants who 
wear eyeglasses daily gave a higher score to MyDJ (Q1: 6.78 ± 1.64, 
Q2: 6.89 ± 2.09) than others (Q1: 6.46 ± 2.44, Q2: 6.33 ± 2.69), which 
indicates that users who do not usually wear eyeglasses prefer 
less to adopt MyDJ .However, most users replied that the overall 
experience of wearing MyDJ was comfortable, that MyDJ scored 
94.95% of the regular eyeglasses on average: “I found no diference 
of wearing MyDJ with wearing regular eyeglasses. As I’m wearing 
eyeglasses daily, I would be happy to wear them with some additional 
functionalities.” (P5, P8). 

Long term wearability of MyDJ:. Figure 14b shows the box 
plot graphs of the Q3-Q5 scores. For Q3, participants gave a score 
of 8.33 ± 2.25, where they mostly agreed to wear MyDJ for more 
than a week. We additionally asked the maximum duration that 
each user could wear MyDJ . Four out of six participants replied 
that they could continuously wear MyDJ , and one other participant 
replied “1 year”. A remaining participant who replied “1 week” 
explained that the difculties with the current MyDJ prototype: “As 
the device externally exposes the circuit board and the wires, I was 
worried that the device could be broken when I played sports or got 
caught in the rain.” (P29). We believe that this problem could be 
easily handled by encapsulating and protecting each component 
of MyDJ in future prototypes. While our study lasted for only a 
week, this result suggests that MyDJ with durable prototype could 
be accepted on most users for more longitudinal study. 

For Q4, MyDJ (3.5 ± 2.43) and the regular eyeglasses (1.67 ± 
1.03) score below 5 on average, indicating that both wearables do 
not signifcantly disturb users in their daily routine. A participant 
who gave the largest score diference (MyDJ 8, regular eyeglasses 3) 
implied that it is due to the pain from the prototype’s piezoelectric 
sensor flm: “I could continuously feel the sharp edges of the flm 
sensor on my skin” (P30). Again, we expect this would be resolved 
in the next prototypes of MyDJ by switching the sensor with a soft 

and stretchable design [76] or packaging it with soft silicon-based 
protection [16]. We also asked whether the participants changed 
their schedule because of the fact that they are wearing MyDJ , and 
all the participants replied they were able to go through a week as 
scheduled:“The eyeglasses feel mostly the same with and without the 
attachable device, and there was nothing that I couldn’t do because of 
the device.” (P25, P27). 

For Q5, participants gave a score of 1.00 ± 1.10, where most of 
them felt safe and secure while wearing MyDJ . One participant 
mentioned that the narrowed-down vision could become a problem: 
“The battery part of the device blocked my sight, and that felt slightly 
risky when I was working out or jogging.” (P25). We believe that this 
could be resolved by placing the battery at diferent locations (e.g., 
on the circuit board) or using a narrower battery that fts the width 
of the eyeglass frame. 

Social acceptability: To understand how the physical appear-
ance of MyDJ impacted the users in the long term, we asked par-
ticipants if they were worried about how they look with MyDJ . 
Four out of six participants replied that they were completely fne 
with their appearance while wearing MyDJ . Other two participants 
replied that they felt unnatural to put an additional device on the 
eyeglasses: “I felt that the device attachment on my eyeglasses make 
them look diferent from ordinary eyeglasses, and this made me worry 
about what others would think.” (P28, P29). However, both partici-
pants reported that the main problem arose from the appearance of 
the current prototype, where a circuit board and wires are exposed. 
They both agreed that the problem would be resolved if the next 
prototype of MyDJ has electronics housing. Moreover, a participant 
mentioned that wearing MyDJ would be much easier if it becomes 
a mainstream wearable: “We all laughed at Airpods when it frst 
came out, but we all wear it now. Just like that, I think wearing this 
device will no longer make me nervous when many others are wearing 
it.” (P29). 

Additionally, we asked participants how the others reacted when 
they wore MyDJ . Most of the participants replied that they were 
frequently asked multiple times about what the device was, but 
they haven’t received any negative comments about the device. 
Some participants even replied that the people they meet daily (e.g., 
family, friends, colleagues, etc.) mostly haven’t noticed a diference 
while MyDJ was attached: “My family did not know the presence of 
the device for days until I explain it frst.” (P27), “Most of my colleagues 
did not notice it at frst glance. Later, some of them asked me if I have 
got a new pair of eyeglasses.” (P25, P30). One participant mentioned 
that others questioned if MyDJ contains a camera: “Some of my 
colleagues asked if the device is recording video. After I explained the 
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Table 3: A comparison with the previous eating detection studies. We compare the following metrics: F1-score, Undetected 
Eating Episodes (UEE), False Alarms (FA), Power Draw (PD) in mW, Battery Capacity (BC) in mAh, and RunTime (RT) in 
hours. 

Year Study Wearable Sensors1 F1 UEE FA PD2 BC RT 

2015 
2016 
2017 
2017 

Thomaz et al. [78] 
Farooq et al. [27] 
Bedri et al. [8]3 

Chung et al. [18] 

smartwatch 
eyeglasses 

outer-ear fap 
eyeglasses 

S1 
S4 

S1-S3 
S6 

0.76 
1.004 

0.80 
0.944 

-
-

1 out of 16 (0.06) 
-

-
-
2 
-

-
-
-
-

-
-
-
-

-
-
-
-

2018 Bi et al. [13] headgear S4 0.78 2 out of 26 (0.08) 12 14.47 110 28.10 
2018 Chun et al. [17] necklace S5 0.75 - - 82.22 400 18 
2018 Farooq et al. [29] eyeglasses S1 0.86 - - - - -
2018 Zhang et al. [83] eyeglasses S7 > 0.77 1 out of 44 (0.02) - - - -
2019 
2020 

Zhang et al. [84] 
Bedri et al. [7]3 

necklace 
eyeglasses 

S1-S3, S5, S8 
S1, S2, S5 

0.77 
0.89 

13 out of 76 (0.17) 
6 out of 28 (0.21) 

-
4 

81.96 
105.08 

350 
900 

15.80 
31.68 

2022 MyDJ eyeglass attachable S1, S4 0.92 2 out of 94 (0.02) 12 26.06 220 27.83 
1 S1-accelerometer, S2-gyroscope, S3-magnetometer, S4-piezo, S5-proximity, S6-load cell, S7-EMG, S8-light 
3 Power draw values are calculated assuming the 3.7V powered system. 
3 These studies tried multiple combination of wearables and sensors, and here we report what they recommended for the real-world usage. 
4 These studies report the F1-score from the in-lab study. 

type of sensors on the device and how it worked, they were fne with 
it.” (P28). This indicates that the device could be initially viewed 
privacy invasive, but our MyDJ design without such sensors (e.g., 
camera) make it less concerning. 

We asked if it was difcult to go to public space or social meet-
ings with MyDJ . Five of six participants found it not difcult to 
wear MyDJ in such contexts. It is also shown in what participants 
reported during the week-long study that they have been to malls, 
gyms, restaurants, lectures (as a lecturer), and dates while wearing 
MyDJ . One participant who opposed others replied that it is mainly 
due to others asking frequently: “I become more nervous as others 
ask what the device is, and that made me avoid going to the public 
places.” (P29). We envision this problem to be resolved with smart 
eyewear being more widespread and common. 

Weight imbalance: Five of six subjects replied that the weight 
imbalance of eyeglass frame due to MyDJ attachment did not make 
them uncomfortable. This includes the participant with the lightest 
eyeglass frame (P28, 14.9g). Nevertheless, participants generally 
reported that they could sense the weight imbalance when MyDJ 
is attached. A participant who replied that the weight imbalance 
was uncomfortable said that the problem is temporary: “I initially 
found it disturbing, but soon I got used to it. It feels like wearing a 
new eyeglass frame and adapting to it.” (P29). While participants 
replied that the weight imbalance problem does not cause long-term 
discomfort, this could also be handled by attaching a similar weight 
at the other side, after minimizing MyDJ at the next prototypes. 

Batery management: Five of six participants reported that 
they had no problem with charging MyDJ once a day. A participant 
mentioned “I always charge my phone and smartwatch before going to 
bed, and it was no hassle to add one more device.” (P25). A participant 
with a diferent opinion from others replied “I usually charge my 
electronics during daytime, but I had to additionally charge this device 
while I was asleep, because I cannot see anything while it’s charging.” 

(P26). The participant further expressed that the problem would 
be resolved if MyDJ could be easily attached and detached from 
eyeglasses, which would allow it to be charged during daytime. 
This is part of our plan in developing the next prototype of MyDJ . 

6 DISCUSSION 

6.1 Comparison with Previous Methods 
Table 3 compares the F1-score, undetected eating episodes, false 
alarms, and battery life of MyDJ with the previous eating detec-
tion studies reported by each work. Chung et al. [18] and Farooq 
et al. [27], which evaluated their system in lab settings showed 
higher F1-score than other approaches with in-the-wild evaluation 
methods. MyDJ achieves the highest F1-score among the studies 
with in-the-wild experiments, with the least ratio of undetected eat-
ing episodes to the total eating episodes. Compared with Farooq 
et al. [29] that used one accelerometer placed on the eyeglasses, 
MyDJ reports higher F1-score due to the multimodal sensing of 
MyDJ with additional piezoelectric sensor. Note that a comparison 
of results reported by each diferent paper is not ideal, as each 
study used the data collected from diferent group of people and 
environments. Nevertheless, we believe that such comparison gives 
insights in understanding the performance of MyDJ over prior 
studies. 

MyDJ also shows 4.03× less power consumption than the state-
of-the-art system on eyeglasses (Bedri et al. [7]), due to the use of 
less number of sensors with lower sampling rate (400Hz vs 4kHz 
on an accelerometer). While Bi et al. [13] achieves the lowest power 
draw, MyDJ achieves less ratio of false alarms to the total eating 
episodes with a runtime over a day on a 220mAh battery. 

6.2 Performance on Diferent Eyeglass Frames 
While we have demonstrated the performance of MyDJ on various 
eyeglass frames in Section 5.3, one might wonder how diferent 
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eyeglass frames could afect the performance of one person. Three 
of our lab colleagues performed a pilot study where they wore three 
types of eyeglass frames with MyDJ for three days, wearing each 
frame for a day. We chose a frame from three major categories 
of eyeglass frames [48], which are rimless, semi-rimless, and full-
rimmed. None of the three participants were authors. We used 
the model trained in Section 5.2 to infer the collected data. The 
results show that MyDJ performs ≥0.886 F1-score in eating episode 
coverage regardless of the frame type on the participants. The 
largest F1-score diference between eyeglass frames on each of the 
three participants were 0.084, 0.095, and 0.038. The semi-rimless 
eyeglass frame shows the highest F1-score (0.987, 0.981, 0.954) on 
all participants, while the rimless eyeglass frame shows the lowest 
F1-score (0.903, 0.886, 0.916) on all participants. We believe the low 
performance of certain frames could be improved with fne-tuning 
as in Section 5.3, or using a model that is trained on data from 
various frames. 

6.3 User Experience on Providing Labels for 
the Model Fine-tuning 

We observed that the personalized model shows improved perfor-
mance for a portion of participants in Section 5.3. As it requires 
the user to manually label their eating episodes for a day, we asked 
participants if conducting such a task is feasible for better perfor-
mance. All of the six participants replied that they could provide 
such labels for one or two days: “It was not really a burden for me, 
as I usually take a picture of everything I eat.” (P26). However, par-
ticipants mostly agreed that the labeling process should be eased, 
rather than entering plain text on a mobile messenger app: “It would 
be much easier with a fxed-form entry, as it was hard to recall the 
things that I should record each time.” (P30), and “I expect this process 
to be challenging for elderly, as they are not all familiar with using 
keyboards on smartphones.” (P27). Based on the feedback, we believe 
the model personalization on new MyDJ users could be done, but it 
requires a simpler method of label entry. We leave this as our next 
step of research. 

6.4 Impact of the Ground-Truth Collection on 
Smartphone Camera 

We conducted a qualitative study on participants to assess the im-
pact of our ground-truth collection system on the day-long study. 
We asked the participants if the smartphone camera system gen-
erally afected their movement or eating activity. Few participants 
replied that their behavior has changed due to the presence of a 
video-recording smartphone in proximity: “I unusually wiped out 
my mouth multiple times while eating, as I could see myself from 
the smartphone screen.” (P24) and “At the beginning of the study, I 
felt weird because of the feeling of being watched. However, I soon 
got used to it.” (P12). Nevertheless, most participants replied that 
they did not feel any change: “I did not care the camera at all while 
eating.” (P17). We asked the participants if they had changed their 
daily schedule because of the smartphone camera system, and all 
participants replied that there was no change in their schedule. 

Jaemin Shin, et al. 

6.5 Limitations 
Eyeglass form factor: One clear limitation of MyDJ is that it 

cannot support eating detection on people who do not desire to 
wear eyeglasses. As shown in Section 5.5, there are users who do 
not want to wear eyeglasses, where one of the primary reasons is 
the societal perceptions that wearing eyeglasses is unattractive [40]. 
However, as discussed in Section 2.2, eyeglasses are familiar to more 
users than other eating detection form factors (e.g., necklaces). We 
believe that eyeglasses could gain popularity with various smart 
glasses and AR glasses appearing with numerous functionalities [34, 
37, 53, 77, 81, 85]. 

Data collection on multiple glass frames: While MyDJ is de-
signed to be attached to any eyeglass frame, we collected our train-
ing data on a single eyeglass frame. While our model successfully 
detected most of the eating episodes on the participants’ own eye-
glasses, we expect our model could be more robust to diferent 
eyeglass frames when it is trained on the data from various frames. 
This is part of our future work. 

6.6 Use Cases of MyDJ 
We expect user application of MyDJ could be helpful for real users 
in the following ways. First, when MyDJ detects the eating moment 
of a user in real-time, the system could provide Just-In-Time Adap-
tive Interventions (JITAI) to provide feedback based on the user’s 
eating activity. For example, a system could be designed to prevent 
overeating, providing real-time interventions when a user is spend-
ing too much time eating [84]. Second, when a user wears MyDJ 
long-term, aggregated result of detected eating episodes could be 
used to provide personalized feedback on the user’s eating activ-
ity. For example, if there are a number of detected eating episodes 
around nighttime, the system could suggest users to have fewer 
midnight snacks. We believe that designing the appropriate user 
application with MyDJ could potentially help 1.9 billion and 650 
million overweight and obese people worldwide, respectively [63], 
and 70 million patients with eating disorders [30]. 

7 CONCLUSION 
We propose MyDJ , an accurate and energy-efcient eating detection 
system that could be attached to any eyeglass frame. Our sensing 
fusion of a piezoelectric sensor and an accelerometer on an eyeglass 
temple achieves accurate sensing in uncontrolled environments, 
as each low-power sensor captures the distinct source of chewing 
signals. We collected a total of 714 hours of data with 30 partici-
pants from uncontrolled environments, where six of them attached 
MyDJ on their eyeglasses for a week. MyDJ reaches 0.984 accuracy 
and 0.919 F1-score in eating episode detection outside-the-lab, with 
a 4.03× battery time improvement over the state-of-the-art eating 
detection glass system. Our survey on the comfort level of wearing 
MyDJ shows a 94.95% score compared with wearing regular eye-
glasses. We believe realizing high accuracy, energy efciency, and 
user comfort is the right step toward developing automated eating 
detection systems in practice. 
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