
An Exploratory Study of Sharing Strategic Programming
Knowledge

Maryam
George Mason University George Mason University

Fairfax, VA, USA Fairfax, VA, USA
marab@gmu.edu tlatoza@gmu.edu

Jenny Liang Amy J. Ko
University of Washington University of Washington
Seattle, Washington, USA Seattle, Washington, USA
jliang9@cs.washington.edu ajko@uw.edu

Arab Thomas D. LaToza

ABSTRACT
In many domains, strategic knowledge is documented and shared
through checklists and handbooks. In software engineering, how-
ever, developers rarely share strategic knowledge for approaching
programming problems, in contrast to other artifacts and despite its
importance to productivity and success. To understand barriers to
sharing, we simulated a programming strategy knowledge-sharing
platform, asking experienced developers to articulate a program-
ming strategy and others to use these strategies while providing
feedback. Throughout, we asked strategy authors and users to
refect on the challenges they faced. Our analysis revealed that de-
velopers could share strategic knowledge. However, they struggled
in choosing a level of detail and understanding the diversity of the
potential audience. While authors required substantial feedback,
users struggled to give it and authors to interpret it. Our results
suggest that sharing strategic knowledge difers from sharing code
and raises challenging questions about how knowledge-sharing
platforms should support search and feedback.

CCS CONCEPTS
• Human-centered computing → Systems and tools for inter-
action design;

KEYWORDS
Programming strategies, Knowledge sharing

ACM Reference Format:
Maryam Arab, Thomas D. LaToza, Jenny Liang, and Amy J. Ko. 2022. An
Exploratory Study of Sharing Strategic Programming Knowledge. In CHI
Conference on Human Factors in Computing Systems (CHI ’22), April 29-
May 5, 2022, New Orleans, LA, USA. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3491102.3502070

This work is licensed under a Creative Commons Attribution-NoDerivs Internationa
4.0 License.

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9157-3/22/04.
https://doi.org/10.1145/3491102.3502070

l

1 INTRODUCTION
Programming is hard. Programming languages can be difcult to
learn [33]: APIs require immense domain knowledge to master [49],
tools often pose steep learning curves [32], and developers regu-
larly encounter novel problems which they must understand and
solve creatively. And while new ways to address these challenges
are constantly created (e.g., Stack Overfow answers to fll gaps in
documentation and share reusable design patterns [29], YouTube
videos that teach new coding technologies [36], online communi-
ties that ofer mutual support [52]), new technologies result in an
endless set of new problems for developers to solve.

Because of this problem-solving burden, one form of program-
ming knowledge is essential to developer success and productivity:
programming strategies. Prior work defnes strategic knowledge in
programming as any high-level plan for accomplishing a program-
ming task, describing a series of steps or actions to accomplish a
goal [24]. For example, consider the two strategies shown in Fig-
ure 1, which include step-by-step approaches to debugging the
source of a wrong value or conducting a code review. In this paper,
we defne the term programming strategy broadly, encompassing
problem solving strategies which may difer along a number di-
mensions: their length, completeness, level of detail, and generality.
Strategies may be very specifc to a particular programming tool
or technology, explaining how to use it efectively, or ofer very
general approaches to solving problems across many tools and tech-
nologies. Strategies often require prior knowledge to use, and may
difer in how much knowledge is already assumed and how much
is explained within the strategy itself.

Research suggests that “experts seem to acquire a collection
of strategies for performing programming tasks” like these over
time and that strategies “determine success more than does the
programmer’s available knowledge" [17]. Recent studies have con-
frmed this, demonstrating that when developers are given explicit
programming strategies that are known to be efective, the efec-
tiveness of their work increases by making them more systematic
and efcient [23, 24].

Many disciplines outside of software engineering have found
ways of externalizing and sharing strategic knowledge to achieve
such benefts. For instance, the Civil Engineering Handbook [9]
describes numerous methods that frame civil engineering skills and
provides examples of how to apply them to solve problems in the do-
main. Standard Operating Procedures (SOP) externalize and share

https://doi.org/10.1145/3491102.3502070
https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://doi.org/10.1145/3491102.3502070
mailto:ajko@uw.edu
mailto:tlatoza@gmu.edu
mailto:jliang9@cs.washington.edu
mailto:marab@gmu.edu
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3491102.3502070&domain=pdf&date_stamp=2022-04-28

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Arab, et al.

Strategy1: Fault Localization

1. Locate the lines that could have produced the wrong faulty value.

2. Check each line for errors or faulty values: check if the line is executed using a logging statement or a breakpoint.

3. If the line is defective and incorrectly compute the value, then you found the defect.

4. If the line itself was not defective, check the values it used to execute.

5. If there is a new faulty value corresponding to the current line, repeat steps 1-4 with the new faulty value until there are no more faulty values to look at.

6. If you haven't found your defective line, you might've made a mistake above! Check your work and start over.

Strategy2: Code Review

1. Look at each line of code contributed.

2. If the line is removed, verify why the line is removed.

3. If the line does not have a clear reason to be removed, ask why. Use the contributor’s response to decide whether to keep the line.

4. Otherwise, if the line is added, check its style, documentation, logic.

5. If the added line has style or documentation issues or if there is an obvious bug, constructively comment on how the contributor can improve.

6. Next, verify that contribution is rigorously tested by using the software or looking at code coverage statistics.

7. If there is a defect or a lack of tests, constructively comment on how the coder can improve.

8. Finally, comment on what you think that the contributor did well on.

Figure 1: Examples of informal, explicit programming strategies for localizing a defect and performing a code review. Such
strategies are rarely shared by developers online, even though they can be crucial to successful, productive programming.

knowledge, formalizing complex operations in military, health, and
safety settings such as landing a plane or repairing a nuclear power
plant [54]. SOPs ofer step-by-step instructions, supporting users
to be more efcient by preventing errors and regulating individual,
team, and organizational behavior. Similarly, Gawande’s Checklist
Manifesto [15] argues that checklists of actions and states to verify
help secure against medical errors, reduce complexity, and enhance
performance in medical and surgical procedures. Through these
various forms of strategic knowledge, users in many domains ben-
eft from explicit sharing of methods to solve common problems,
structuring their work by providing them reminders, guidance, and
evidence-based methods for solving problems.

In software engineering, however, strategic programming knowl-
edge remains largely inaccessible. Prior work suggests that it is
largely gained through extensive experience or direct instruction [37].
And while modern software development is inherently social —
with developers asking and answering questions on Stack Overfow
[21, 30], sharing knowledge and expertise through social media,
portals, and online chat [3, 8, 34, 44, 46], and attending social gather-
ings to exchange career and technical knowledge [8, 43, 44] — there
is little evidence that developers share their strategic knowledge
like the kind in Figure 1 in these settings. Rather, most platforms and
communities focus on sharing code examples [21, 29, 50], knowl-
edge on how to maintain, confgure, or troubleshoot broader IT
issues [1, 2], and tutorials that teach new technologies [36]. Such
sharing has empowered developers to construct programs, but of-
fers little guidance on how to orchestrate the problem solving that

arises in the process of this construction, such as testing, debugging,
program comprehension, and design.

One possible reason for the lack of sharing is that strategic knowl-
edge might be tacit, in that it is situated, only efectively learned
in context, and challenging to articulate explicitly to others [38].
If strategic knowledge in programming is tacit, developers may
know how to solve various problems, but only when they enact
that knowledge and not in a form that they can articulate and share.
However, it is also possible that strategic knowledge is not tacit:
prior work suggests that efective programming is a self-regulated,
highly conscious activity [28, 39], suggesting it may be possible for
experienced developers to articulate their problem-solving strate-
gies. Moreover, some software development methodologies encode
strategic knowledge explicitly. For example, practices such as test-
driven development [6] provide relatively explicit problem-solving
steps, demonstrating that, with efort, problem-solving processes
might be able to be made explicit. Software developers who have
such knowledge may just not think to share their knowledge, or
know how or where to share it.

In this paper, we investigate why developers might struggle to
share strategic knowledge. We hypothesize this knowledge is not
tacit and can be articulated, but that there may be other barriers to
writing and sharing strategies that prior work has not yet uncovered.
Specifcally, we examine:

• RQ1: What challenges do developers experience in explicitly
articulating strategies?

• RQ2: When developers make use of explicit strategies writ-
ten by others, what challenges do they face?

1https://zenodo.org/record/5497775#.YToILtNKhTY

An Exploratory Study of Sharing Strategic Programming Knowledge CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

• RQ3: When experienced developers receive feedback from
users of their strategies, what challenges do they face in
improving their strategies?

To answer these questions, we simulated a programming strat-
egy knowledge-sharing platform with 34 developers. Experienced
developers were asked to articulate strategies, other developers
used these strategies on programming tasks and provided feed-
back, and authors attempted to use the feedback and refected on
how they might revise their strategy in response. In the rest of
this paper, we further ground our research questions in prior work,
then describe our method, analysis, and results in detail. We end
with a discussion of the implications for supporting the sharing of
programming strategies.

We found that it is possible for experienced developers to share
their programming strategies explicitly. Strategies varied greatly in
detail, from high-level descriptions of processes captured in a few
lines to elaborate procedures containing multiple sub-strategies
focused on separate sub-goals. Authors experienced challenges
generalizing their strategies to cover variation in strategy users’
expertise, mirroring challenges by users. Strategy authors found
the feedback they received from users helpful in improving their
strategy, particularly in helping highlight expert blind spots. These
results illustrate the potential for sharing strategic programming
knowledge to harness the knowledge of experienced developers.

2 BACKGROUND
Social scientists studying the nature of knowledge sharing identify
two forms of knowledge: tacit knowledge and explicit knowledge.
Tacit knowledge is implicit, acquired from experience, and consti-
tutes expertise. Explicit knowledge, in contrast, is easily transferred
through written or natural language. While explicit knowledge
can be easily articulated and communicated, tacit knowledge is
not easily shared [53], and if it is, is costly and slow to externalize
[18, 48]. Yet, at the same time, there is increasing evidence that
tacit knowledge is an “important strategic resource that assists in
accomplishing a task” [55]. Eliciting experts’ tacit knowledge helps
novices to increase knowledge and competence faster. Moreover,
in organizational contexts, experts who leave an organization may
result in knowledge loss that is costly and time-consuming, or im-
possible, to replace [26], which might be reduced by eliciting more
tacit knowledge.

Studies of knowledge sharing in software engineering illustrate
the widely varied difculties which may occur in sharing software
engineering knowledge. Design patterns are pervasive in code, but
still require considerable efort to organize, describe, and dissemi-
nate (e.g., [14]). Architectural styles are common but implicit and
take efort to identify, name, and describe [5, 11, 42]. As software
teams generate knowledge, internal tools are often required to help
developers externalize, organize, and share knowledge to facilitate
collaboration and coordination [22]. In contrast to these more ab-
stract embodiments of knowledge, sharing artifacts such as code
and tutorials appears to be much easier [3, 35, 40, 46, 51]. The ubiq-
uity of sharing on Stack Overfow [21, 30] and social media like
Yammer, blogs, LinkedIn, and Twitter [8, 44, 46] reinforce general
fndings on knowledge sharing: when knowledge is explicit, it will
be shared easily and widely.

Programming strategies are a central component of program-
ming expertise [4, 17, 27]. Strategies can express a process to decide
when to reuse code [47] as well as approaches to debugging (e.g.
backwards or forwards reasoning, input manipulation, and intu-
ition) [7]. Having an efective programming strategy can have more
of an impact on task success than a programmer’s knowledge of
plans, design patterns, or other expertise [17, 24]. Using efective
programming strategies may increase task success, reduce task time,
and allow developers to work in a more systematic and structured
manner [24]. Slicing strategies enable developers to better under-
stand the problem [12] while also improving fault localization [10].
Teaching novice programmers a strategy to trace program execu-
tion improves comprehension [57]. Programming strategies can
be represented in an explicit form and taught to novice develop-
ers [23, 37], ofering an area of opportunity to explore knowledge
sharing through programming strategies.

Closely related to programming strategies are programming
plans. Soloway and Ehrlich’s 1984 work defned programming
plans as “program fragments that represent stereotypical action
sequences in programming” [45]. Unlike programming strategies,
which describe actions a developer will take, such as retrieving
some information, making a decision, or confguring a tool, a pro-
gramming plan captures abstract patterns of computation that may
be found embodied in code (e.g., iterate over a collection). Much
work has investigated programming plans, showing that they shape
developers’ programs independent of language [19] and that learn-
ing them is dependent on a robust understanding of a language’s
semantics [56]. Programming plans are specifcally concerned with
algorithm composition and design, and not with procedures for
solving the many varied problems that arise in software engineer-
ing.

3 METHOD
In this paper, we investigate fundamental questions about the po-
tential to share strategic programming knowledge. We examine the
ability of experienced developers to write and express strategies
explicitly, the challenges developers face in making use of these
strategies, and the prospects for improving expressed strategies
through feedback. To answer these questions, we conducted a study
in which we simulated a knowledge-sharing platform. Experienced
developers authored strategies, and less experienced developers
used these strategies to complete programming tasks. Our study
consisted of three phases. In the frst phase, the frst group, which
we will call authors, each wrote a strategy for a task. In the sec-
ond phase, the second group, which we will call users, each tested
two of the authored strategies on two diferent tasks and provided
feedback and comments. In the third phase, each author received
the comments and feedback from the two users and was asked to
elaborate on challenges in addressing the feedback. Our study was
approved by the Institutional Review Boards of both of our univer-
sities. Our replication package, including all of the study materials
as well as the anonymously collected data, is publicly available.1

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Arab, et al.

3.1 Tasks
In selecting tasks, we had several objectives. We needed the tasks to
be familiar, so that experienced developers would be able to write
strategies for them. Simultaneously, we needed the approaches for
succeeding to be variable enough to observe a diversity of strategies.
One approach to investigating strategy authoring would be to ask
developers to write down a strategy of their choice. However, this
might make it challenging to identify strategy users who would
need this strategy and who had the appropriate expertise and lim-
its the ability to compare alternative strategies for the same task.
Therefore, we selected tasks for which we believed authors could
write strategies and for which we could identify relevant users
and contexts. We sought tasks which were neither too hard, given
the limited time available to participants, or too easy, obviating a
strategy’s need.

We conducted nine pilot study sessions with fve candidate tasks.
In the pilots we asked them about the difculties they faced about
the task itself and the nature of authoring. We converged toward
three tasks embodying common front-end web development activ-
ities: 1) Chrome Profler : using the Chrome Profler to improve a
website’s performance and identify the components responsible for
slow performance; 2) Error Handling: verifying the robustness of
error handling logic in a front-end web application; 3) CSS Debug-
ging: debugging an arbitrary CSS problem on a web page with an
incorrect visual style element. We also conducted three pilot study
sessions to refne the testing phase.

Asking developers to use each strategy on authentic tasks of
their own would have been ideal. However, fnding developers
at the moment they were encountering these problems in a real
context proved infeasible. Therefore, we instead developed three
programming tasks in which users could apply authored strategies.
In the Chrome Profler task, we downloaded a JavaScript applica-
tion with performance issues involving moving images and buttons
for adding, removing, and stopping moving images. Users used an
explicit strategy to determine the cause of the performance issue
and how to resolve it. In the Error Handling task, we developed a
JavaScript application containing several errors that could occur.
The users used an explicit strategy to identify potential errors that
might occur and ensure that each of these error conditions was
handled appropriately. In the CSS Debugging task, we developed a
front-end web application with several visual style defects, includ-
ing an incorrect header color, wrong border color, and incorrect
background color for buttons. Users used an explicit strategy to
fnd the causes of the defects.

3.2 Strategy Description Notation
There are many forms in which authors might share their strategic
programming knowledge. We considered an unstructured natu-
ral language, a natural language with hierarchical bulleted lists
(as shown in Figure 1), and other formats. We introduced a struc-
tured strategy writing language, Roboto [24], to help authors make
their strategies as explicit as possible. Roboto is primarily a natural
language, but includes simple control fow constructs such as condi-
tionals and loops to help strategy users to be more systematic and
comprehensive. We suggested it as a guideline for authors to orga-
nize their thoughts and communicate more precisely to strategy

STRATEGY localizeWrongValue(wrongValue)
 SET 'lines' to all of the lines of the the program that could have produced 'wrongValue'
 # We'll check each line for errors, or for faulty values.
 FOR EACH 'line' IN 'lines'
 # Use a logging statement or a breakpoint to verify that this line actually executed.
 IF 'line' executed
 # Does the line incorrectly compute the value? If so, you found the defect!
 IF 'line' is defective
 RETURN 'line'
 # If the line itself wasn't defective, maybe one of the values it used to execute was
 # defective.
 SET 'badValue' TO any incorrect value used by the line to execute
 IF 'value' isn't nothing
 RETURN localizeWrongValue('badValue')
 # If you made it to this line, then you didn't find the cause of the wrong value. Is it
 # possible you made a mistake above? If so, check your work and start over.
 RETURN nothing

Figure 2: An explicit representation of a programming strat-
egy guiding a developer’s manual work to localize a defect

users. We did not require strict conformance to Roboto notation in
this study, and participants were free to use the approach of their
choice.

Figure 2 lists an example Roboto strategy, illustrating how to
localize a defect by following data dependencies. Strategies consist
of statements describing what the developer should do next. These
include performing a specifed action, gathering information, or
making a decision about how to proceed. Statements in Roboto can
be one of six forms: Action, Defnition, Conditional, Loop, Return,
or Call [24]. Additional details about each statement can be included
through comments, indicated with a hash symbol before a statement.
Strategies may also include preconditions for using the strategy,
listed before the strategy declaration. Preconditions describe the
knowledge or familiarity a user should have with technologies,
resources, languages, tools, environments, and platforms.

3.3 Participants
To recruit participants to author strategies, we sought developers
with at least three years of experience in front-end web develop-
ment in any technology stack. We recruited alumni of our institu-
tions’ working as professional web developers. We required author
participants to be familiar with at least one of the three tasks by
self-evaluating their expertise with each task to decide if they were
qualifed to author a strategy. Twelve invited authors did not con-
sider themselves qualifed and withdrew from the study, reporting
that they had insufcient familiarity with front-end web develop-
ment, insufcient experience and confdence to write strategies, or
insufcient time.

To recruit strategy users, we sought developers with a diverse
range of programming experience to understand the range of pos-
sible difculties developers with diferent skills might face in using
a strategy. We required users to be at least 18 years old and be
familiar with front-end web development technologies, including
JavaScript, HTML, and CSS. We recruited users from the alumni
of authors’ institutions and graduate students in computer science
and software engineering at both institutions.

We collected demographic data from both the authors and users
about their prior industrial software and web development exper-
tise, the number of software and web applications they had worked
on, and the largest or most complex application they had developed.
In addition, we asked them to describe their programming and
work experience in a few sentences as well as include a link to any
professional profle they might have (e.g., LinkedIn, GitHub.)

Participants included 19 authors (identifed as A1-A19) and 15
users (identifed as U1-U15). Authors ranged from 3 to 48 years of

An Exploratory Study of Sharing Strategic Programming Knowledge CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

experience in software or web application development (median
9 years). We asked participants to separately report the number
of web-based applications and software applications they had de-
veloped. They reported having developed between 0 and 1,000
software applications (median 10) and 2 to 40 web applications (me-
dian 7). Authors worked in varying roles, including senior software
developer and software architect positions, with diverse expertise
in technologies such as full-stack web development, data visualiza-
tion, educational games, network monitoring, and virtual reality.
Users ranged from 6 months to 9 years of programming experience,
with a median of 3 years.

3.4 Data
At the end of each phase of the study, we collected survey responses.
After authoring a strategy in phase one, authors completed a survey
about the difculties they faced. To prompt authors to refect on
specifc difculties and help them recall their experiences, we brain-
stormed potential difculties. Authors rated their level of agreement
with seven potential difculties (collected from the pilot study) on
a 5-point scale and then briefy described their experiences with
each. These included translating their thoughts into words, mak-
ing the strategy understandable for novices, deciding when the
strategy has covered all scenarios and edge cases, the efort and
time required, concentrating on the task, and using Roboto and
the authoring guidelines. The given prompts are shown in Table
1. Authors were then prompted to share any other difculties they
experienced.

After fnishing using each of the two strategies in phase two,
we asked strategy users to consider fve questions about their ex-
periences. We asked what made the strategy challenging to use
in general or for a specifc step, aspects of the strategy the user
believed were missing, additional information or details which
would make it easier to follow, aspects which made it confusing or
ambiguous, and any additional challenges they faced.

In the third phase, we sent strategy users’ comments and feed-
back to each strategy’s author. Because each strategy was used with
two users, each author received two sets of responses. For each
comment in each user’s response, we asked authors to describe the
extent to which it was understandable, what might make it hard to
address, what might have led them to have not initially addressed
it when authoring the strategy and forgot to consider.

3.5 Procedure
The study consisted of three phases and was conducted entirely
asynchronously and remotely, through email and dedicated web
pages per phase. We selected this design to refect the future context
in which we expect strategy sharing to occur as well as to best
accommodate the schedules of experienced developers. Figure 3
overviews each phase of the study and part of the study process
we conducted for a CSS-Debugging task.

3.5.1 Phase One: Authoring Strategies. After agreeing to partici-
pate and selecting one of the three tasks, authors started the study
by reading a tutorial about programming strategies, illustrating a
strategy for lifting up state in React. They then completed a tutorial
explaining the syntax of the strategy description language Roboto.
To help them understand how to write strategies, the authors read

several guidelines for authoring strategies. The guidelines sug-
gested defning the strategy step by step; describing required tools,
environments, and knowledge; using comments to elaborate; avoid-
ing wasted work; including explicit restarts and rationale; and
encouraging strategy user externalization.

Authors next received their selected task and wrote their strategy
in a text editor panel. If authors had difculties completing the task,
they were encouraged to email the experimenters for clarifcation.
Immediately to the right of the strategy editor panel, the authors
could view a sample Roboto strategy. We believed an example
would help authors recall the language syntax, if they chose to use
it. To give the authors fexibility in how to express their strategy,
we did not apply any syntax checking or highlighting in the text
editor panel. After fnishing their strategy, authors then completed a
survey on the difculties they faced and completed the demographic
items. Authors had one week to complete phase one, with a series
of reminders and extensions given on days 5, 7, and 12.

3.5.2 Phase Two: Using Strategies. After agreeing to participate,
users read an introduction to programming strategies and com-
pleted the same Roboto tutorial as authors. Users then used two
diferent strategies written by authors on programming tasks. For
each task, users read a description of the task and one of the au-
thored strategies. Users received a link to an online IDE confgured
with the code for the task as well as the task description. The users
were then asked to complete the task using the strategy step by
step. Users then completed several survey items about the chal-
lenges they faced in using the strategy. These included: what made
it challenging, confusing, or ambiguous to work with the strategy;
what is missing; and what additional information, details, or fea-
tures would make it easier to follow. Finally, we asked users to
describe any other challenges they faced. After completing the frst
task, users then used a second strategy to complete a second task
and again completed the survey items on its challenges. Finally,
users completed the demographic items. The users had four days
to complete and submit phase two, with a series of reminders and
extensions given on days 3, 4, and 9. If they did not complete the
task and survey after day 10, we dropped them from the study.

After each user submitted their feedback, one of the experi-
menters read it. If it was unclear, the experimenter asked follow-up
clarifcation questions through a shared document containing the
author’s strategy and their feedback. Multiple rounds of follow-up
communication were conducted until the experimenters entirely
understood the user responses. Users who completed the study
received a $30 Amazon gift card.

3.5.3 Phase Three: Revising Strategies. In phase 3, users’ responses
on the challenges they faced with using a strategy were sent to
the corresponding strategy author. Responses were sent using a
shared document. Each user response was followed by three survey
questions for the author: (1) Does this comment make sense to
you; why or why not? (2) What, if anything, makes this comment
hard to address? (3) Was there an aspect related to this comment of
your strategy, which you forgot to consider; what made it hard to
consider? Authors who completed the study received a $40 Amazon
gift card.

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Arab, et al.

Expert Strategy
This Strategy helps developer fix the issue of an element with undesired visual/position style.
#Required Tool and Environment
Web Browser(Google chrome is preferred)
#Required Knowledge
Basic Knowledge of css and html
STRATEGY DebugCss()

Open your web app and go to the page with undesired element
SET 'buggedElement' TO element with undesired style and positioning
The "inspect" action name might be different from Browser to Browser
Right click on 'buggedElement' and click on inspect
An extra window opens with some tabs like Element, Console and Styles
Click on Styles tab in the inspect window
Make sure your buggedElement is highlighted or chosen
you will be able to see a list of stylings applied to element
IF 'buggedElement' has issue when hovering or focusin on it

When clicking on :hov, few checkboxes appears
:hover, :focus, :active are amongst them
Click on ":hov" and check all the boxes that applies

IF 'buggedElement' issue is positioning
SET 'position' TO 'buggedElement' position proptery value
IF 'position' is not absolute

DO FixCss('buggedElement’)
RETURN nothing

element with position absolute is positioned relative to the nearest positioned ancestor
Note: A "positioned" element is one whose position is anything except static.
IF 'position' is absolute

desired parent means the parent element that buggedElement was supposed to be relative to
Look up at element's ancestors and find the desired parent
SET 'parent' TO desired parent element
Change the 'parent' position proptery to relative
RETURN nothing

IF 'buggedElement' issue is styling
DO FixCss('buggedElement’)
RETURN nothing

Phase 1 Phase 2

Phase 3

Figure 3: Participants in the three study phases were given web-based materials to author strategies (Phase 1), use strategies
on a programming task (Phase 2), and comment on making strategy revisions (Phase 3).

3.6 Analysis
Our analysis focused on answering three research questions. First,
as developers articulated their strategies, we examined the dif-
culties they faced (RQ1). Second, as other developers used these
strategies on defned related programming tasks, we examined the
challenges that strategy users experienced (RQ2). Third, based on
the feedback strategy authors received from users, we examined
the potential challenges authors experienced in using feedback to
improve their strategies (RQ3).

In analyzing participants’ descriptive responses to the survey
prompts, we frst extracted any difculties they explained separately
from the question topic. To reduce potential priming efects of the
question prompts on the results, we ignored the prompts’ topic in
our analysis. Responses to Likert scale items in the frst phase were
analyzed separately.

To analyze the responses, we followed recent best practices in
qualitative coding, which treats results as novel claims to be tested
in future work, not as data to be quantifed, and which recommends
surfacing disagreements as an indicator of interpretation variance
[20]. Following these guidelines, we frst created a document con-
taining all of the responses from the authoring and testing phases

(excluding the prompts) for qualitative analysis [41]. In the frst
round of qualitative coding, three authors separately read each of
the responses and inductively generated codes. The three paper
authors separately identifed difculties, creating codes with a brief
description. The three paper authors then individually labeled each
response with zero or more codes. To aggregate these codes, the
paper authors frst compared the individually generated codes to
identify codes with the same defnition, adding them to the code
book under a unique label. The three authors compared the codes,
discussed instances of disagreement, and reached agreement by
either adding or removing the code from the code book. Disagree-
ments largely stemmed from variation in how to scope codes, and
not in the meaning of author or user statements; disagreements
were therefore resolved by agreeing upon scoping. During this
process, all remaining codes were found to convey unique chal-
lenges participants experienced and were added to the code book.
Using the fnal code book, the authors then coded the responses
in a second round. The authors then applied pattern coding to the
fnal codes [31], which groups codes into several broader categories.
This process was conducted for all three phases of the study.

An Exploratory Study of Sharing Strategic Programming Knowledge CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

This Strategy helps you identify potential errors in a
UI implementation and how to approach implementing error-handling for
Required Tools and Environments:
A web browser for running the UI
A breakpoint debugger for the UI code (likely a JavaScript debugger)
Required Knowledge
An understanding of the intended behavior and possibilities of the UI
An understanding of the UI code such that intended code paths can be identified
STRATEGY IdentifyAndHandleErrors ()
Identify the errors, keep track of them
SET `errors_to_handle` TO IdentifyErrors ()
Add error handling for them
FOR EACH `error` IN `errors_to_handle`
 DO HandleError(`error`)
STRATEGY IdentifyErrors ()
Open the UI that you are testing
Open the UI that is being tested
SET error_sequences TO []
Attempt to execute every possible sequence of inputs.
For complicated UIs, there may be an impossible number of combinations
Test the most likely sequences of events and consider streamlining UI
if this is the case
SET 'possible_inputs' TO all actions the user can take in the UI
 FOR EACH 'input' IN 'possible_inputs'
 # Run each input, make sure to test every combination
 DO `input`
 IF UIInErrorState ()
 Record input sequence that caused it, add to error_sequences
 RETURN error_sequences
STRATEGY UIInErrorState ()
SET `is_error` TO false
IF the UI allows for inputs it should not
 SET `is_error` TO true
IF the UI is displaying incorrect information
 SET `is_error` TO true
IF the UI is frozen or unresponsive
 SET `is_ error` TO true
RETURN `is_error`
STRATEGY HandleError(`error`)
IF error can be prevented
 Update code to avoid error state
IF error cannot be prevented
 IF error is confusing to user
 Update UI to explain the error to user
 IF error locks up the UI
 Update component to reset UI or refresh page

4 RESULTS

Overall, we

Figure 4: An Error Handling strategy authored by A11 and
used by U10 and U11.

found that all 19 strategy authors were able to author
an explicit strategy for the task they selected. Strategies varied in
length from 4 lines to 78 lines, with a median length of 34 lines.

Strategies consisted of fve main elements: specifying the knowl-
edge and tools necessary to use the strategy, enumerating potential
issues to investigate, determining if the issue applies to the situa-
tion at hand, ofering a solution plan for addressing the issue, and
applying it to edit the code. Strategies varied in how many of these
they included. For example, Figure 4 lists a strategy written by
A11 explaining how to handle errors. The frst few lines (gray text)
specify the required tools, environment, and knowledge that a user
needs to use the strategy. The strategy is organized into multiple
sub-strategies (each beginning with the strategy keyword in blue
text) describing how to accomplish specifc sub-goals. At the begin-
ning of the frst, "IdentifyAndHandleErrors," the user is asked to
record potential errors in a collection variable, after frst following
the "IdentifyErrors" strategy to enumerate errors. Working through
each potential error, the user is then asked to apply "HandleError".
The user then determines if each of a set of specifc issues may
apply, with specifc actions to take to resolve each issue.

In the following sections, we report challenges in sharing strate-
gic programming knowledge, focusing on the challenges experi-
enced by authors in making strategic programming knowledge ex-
plicit, the challenges experienced by users in using this knowledge
to complete programming tasks, and the challenges experienced by
authors in using feedback from users to improve their strategies.

4.1 RQ1: Challenges Authoring Strategies
To understand the difculties authors faced in explicitly expressing
their strategic knowledge, we analyzed the free responses given by

authors in phase one to prompts to refect on the authoring chal-
lenges they faced. We received 144 free responses, which included
responses from each of the 19 authors to the 7 prompts as well as
11 responses to the other difculties prompt.

The ordinal-scale agreement responses to the prompts are shown
in Table 1. Most authors agreed that the strategy writing guidelines
were helpful and that writing strategies took substantial concentra-
tion, efort, and energy. Responses to the remaining prompts were
more varied, refecting diferences between authors in what they
found to be challenging.

Through an analysis of authors’ free responses, we identifed
22 challenges in authoring explicit strategies, organized into fve
categories: fnding the right scope, approaching writing a strategy,
using the Roboto strategy language, the efort required, and taking
the user’s perspective. We discuss each in the following subsections.

4.1.1 Finding the right scope. Strategy authors reported six chal-
lenges in fnding the right scope for their strategy (Table 2). Some
found it difcult to be neither too general nor too specifc. Oth-
ers reported difculties imagining the range of scenarios it should
cover and not forgetting steps that might have become habitual
and tacit for them. Other challenges included writing a strategy
to address the large and complex problems that might be encoun-
tered and how to test that a strategy works in all cases. Authors
also expressed challenges with writing the strategy to be fexible
and appropriately respond to new information, which users might
uncover while executing the strategy. We report two particularly
interesting difculties below.

Generalization. Authors mainly reported concerns that strate-
gies could become too general to be helpful or too specifc to be
relevant to the the wide range of tasks and situations that might
occur. These challenges were refected in the widely varying level
of detail authors chose to include in their strategies. For instance,
Figure 5 lists a strategy where A8 included a number of details
and handled several edge cases. Based on their experience, they
reported:

“Some edge cases is hard to include in a strategy as
a general recipe. Also, sometimes you need to show a
demo or some sort of an example to make your point.”
(A8)

Others reported that choosing a specifc domain could reduce
these difculties. As many tools, languages, frameworks, and tech-
nologies vary across contexts, specifying a narrower context might
simplify the difculty in generalizing across contexts.

Testing. Few authors reported challenges testing that their strat-
egy worked well in all possible cases:

“It’s hard to know how one would safely conclude they’ve
tested for all possible errors.” (A11)

Authors suggested that including a program to test their strategy
might help identify missing steps, conditions, and details.

4.1.2 Efort required. Most of the authors reported that strategies
were hard to write because of the time and efort required (Table 2).
Some felt that creating a written strategy was more time consuming
than verbal communication, while others found the required in-
tense focus and concentration challenging. Authors varied in their
response to this challenge, with one reporting that this work was

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Arab, et al.

Prompts Agree Neutral Disagree

Strategy writing guidelines helps to efectively express strategies
Took a lot of concentration, efort and energy
Articulating is time consuming and boring
It’s hard to write strategies in a way which are understandable for novice developers
Hard to translate thoughts & strategies to words
The Roboto language supports your ability to efectively express strategies
Terminating the strategy is hard. Recognizing what would be the last statement is hard

79
74
47
47
47
42
26

21
21
16
26
11
32
21

0
5
37
26
42
26
53

Table 1: The percentage of strategy authors agreeing or disagreeing with prompts. "Agree" and "Disagree" include Strongly
Agree and Strongly Disagree.

This Strategy helps developer fix the issue of an element with undesired visual/position style.
#Required Tool and Environment
Web Browser(Google chrome is preferred)
#Required Knowledge
Basic Knowledge of css and html
STRATEGY DebugCss()
Open your web app and go to the page with undesired element
SET 'buggedElement' TO element with undesired style and positioning
The "inspect" action name might be different from Browser to Browser
Right click on 'buggedElement' and click on inspect
An extra window opens with some tabs like Element, Console and Styles
Click on Styles tab in the inspect window
Make sure your buggedElement is highlighted or chosen
you will be able to see a list of stylings applied to element
IF 'buggedElement' has issue when hovering or focusing on it
 # When clicking on:hov, few checkboxes appears
 # :hover, :focus, :active are amongst them
 Click on ":hov" and check all the boxes that applies
IF 'buggedElement' issue is positioning
 SET 'position' TO 'buggedElement' position property value
 IF 'position' is not absolute
 DO FixCss('buggedElement')
 RETURN nothing
 # element with position absolute is positioned relative to the nearest
 positioned ancestor
 # A "positioned" element is one whose position is anything except static.
 IF 'position' is absolute
 # desired parent means the parent element that buggedElement was supposed to be relative to
 Look up at element's ancestors and find the desired parent
 SET 'parent' TO desired parent element
 Change the 'parent' position property to relative
 RETURN nothing
IF 'buggedElement' issue is styling
 DO FixCss('buggedElement')
 RETURN nothing

STRATEGY FixCss(buggedElement)
You can use filter input to search for it
Or you can scroll through the styles manually
Search through the stylings to find where it gets its undesired value
SET 'undesiredStyling' TO the line number and css file found in the search
IF 'undesiredStyling' is not found
 # You will find all stylings applied to the element here
 # Once you found the stylings you were looking for
 # You can click small arrow to jump to the place it gets its value
 Click on Computed tab and use filter to search
 SET 'undesiredStyling' TO line number found here
SET 'perfectStyleList' TO an empty list of css properties
UNTIL buggedElement has desired styling
 # you can add or change different css styles to the element
 # it then applies instantly to element stylings
 Use element.Style to apply css to buggedElement
 add the style proptery to 'perfectStyleList'
 DO ApplyCssToElement(buggedElement, 'perfectStyleList')

Figure 5: Two of the sub-strategies included in the CSS De-
bugging strategy written by A8.

inherently boring while many others reported fnding it exciting.
Authors felt that strategy authoring, similar to programming skills,
requires time and efort to learn. These results are consistent with
authors’ responses in Table 1.

4.1.3 Perspective taking. Some authors found it hard to select an
expected level of knowledge for the strategy user while ignoring
their own knowledge level:

“It’s difcult to know if somebody else would understand
the instructions.” (A9)

A few authors felt that they needed to guess what questions users
might ask frst in approaching the problem and address this in their
strategy. The ordinal agreement results show that about half of the
authors found it challenging to write strategy in an understandable
way for the novice developers.

4.1.4 How to approach writing a strategy. Authors expressed chal-
lenges with the cognitive process of explicitly articulating their
knowledge, demonstrating the strategy to users without the use of
external resources or aids, determining how to efectively frame
solving the problem, and explaining choices between alternative
approaches (Table 2). Two were particularly revealing.
Level of detail. Some authors found it hard to fnd and express
the strategy with the right amount of detail for the level of user
expertise. This mirrors substantial diferences between strategies
in the level of detail they included. Some posed the challenge as
balancing brevity and detail:

“To make the description easy to follow and understand,
I’d probably be leaving out a lot of edge cases and es-
sential information.” (A11)

Others wished for examples to guide them in understanding the
appropriate level of detail needed for diferent users:

“More examples targeted at various expertise levels
would help.” (A9)

Externalizing strategic knowledge. Few authors found it hard
to translate their thoughts into words. Some expressed challenges
recalling past strategies they had used:

“I just need to remember all the situations I was in and
how I resolved the issues.” (A2)

Some felt that describing strategies verbally for a specifc audience
would be much easier than writing them down:

“It is hard because, for many developers, we do not spend
time to write; instead, we are focusing more on coding.
If we are in a meeting and explain the way we do things
will much easier than write them out in a document.”
(A10)

4.1.5 Using a strategy description notation. While authors were not
required to follow the strategy description notation’s syntax, most
tried to use it, and some found this difcult (Table 2). One reported
that, just as with learning a new programming language, its novelty
made it hard to learn within a limited time. Many reported that
the incompleteness of the language constructs made it hard to
express some aspects clearly and concisely. Others felt it would be
simpler to express programming strategies using natural language.
Two were unsure what value a structured notation ofered, when it
still needed to rely on natural language comments to explain steps.
Others reported missing features in the editor, including a desire for
it to include syntax highlighting. Among the challenges reported,

An Exploratory Study of Sharing Strategic Programming Knowledge CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Difculty Description

Finding the right scope

Generalization

Abstraction
Completeness

Scalability

Testing
New Information

Concerns about strategies being too general to be helpful or too specifc to be
relevant to many cases
Challenges imagining the range of scenarios to cover in a strategy
Being consistent, structured, and planned and not forgetting steps that are
habitual and tacit
Scaling to large and more complex problems, which may make strategies hard
to understand and use
Ensuring the strategy works well in all cases
Responding to new information during the task

Efort required

Time
Concentration

More time consuming than verbal communication
Cognitively demanding, which requires freedom from
frustrating and exhausting

distraction and can be

Perspective taking

Knowledge
Perspective

Level Selecting
Adopting
required

the
the

target knowledge
perspective of the

level of the strategy user
strategy user, with the necessary level of detail

Approach writing a strategy

Level of Detail
Process
Demonstration

Tool Use
Externalization

Organization

Usability
Choice & Repetition

Finding and expressing the right level of detail to efectively explain the strategy
Determining how to efectively frame solving the problem
Illustrating the strategy without demonstrating it on a real task or support for
communicating necessary concepts
Communicating terminology and concepts necessary to use referenced tools
Recalling strategies used in the past, externalizing and translating thoughts
into words
Learning how to correctly structure the strategy with insufcient strategy
examples
Ensuring that the authored strategy works well with real programs
Explaining choices between alternative approaches and generalizing similar
steps to reduce repetition

Strategy description notation

Expressiveness

Formal Notation

Novel language
Authoring Tools

Expressing strategy in a way that is clear and concise with inadequate language
constructs to do so
Expressing ideas that are simple to say in natural language more formally in
strategy description language
Learning and using the novel strategy description language
Using language with missing support in strategy editor for syntax highlighting,
code formatting, line breaks, toolkit

Table 2: Reported challenges explicitly articulating strategic programming knowledge, sorted from most to least frequently
reported.

some authors included unsolicited positive feedback about their
experiences writing programming strategies:

“It helps to communicate problems more clearly. Shows
experience, makes us think out of [the] box.” (A4)
“It helped me think [about] what I should do for my
work project.” (A10)

“Roboto gives it a standardized and structured format
which could be easier for any developer to follow. ” (A1)
“Roboto language can make it more opinionated to write
strategies. It is some kind of standardizing for writing
strategies.” (A8)

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Arab, et al.

4.2 RQ2: Challenges Using Strategies
To characterize the challenges developers face in using program-
ming strategies written by other developers, we analyzed the 150
comments we received from strategy users. Through an analysis of
user’ feedback, we identifed 11 challenges in using explicit strate-
gies, organized into two broad categories: challenges related to the
strategy and challenges related to the user’s knowledge.

4.2.1 Strategy-related usage dificulties. Users reported eight chal-
lenges related to understanding and using strategies (Table 3). Some
found it hard to understand what the strategy asked them to do and
the relationship of this to their overall task. Most users needed more
precise descriptions of how to take specifc steps in the strategy.
Some reported that they needed to read the strategy multiple times
to understand what it asked them to do. Others found it challenging
to understand if the strategy would work for the programming task
at hand, as the strategy seemed to miss relevant edge cases. For ex-
ample, Figure 6 displays challenges U3 expressed in their feedback
(violet font) in understanding unfamiliar terminology (list-boxes,
alpha, special characters), several challenges with imprecise steps
lacking detail on how to perform the step, and ambiguity about
why a step is required or where they need to perform the action.

Several of the challenges users experienced were directly related
to those reported by the strategy authors:

• Ambiguity. Most users expressed confusion understanding
the rationale behind performing actions in the strategy. They
reported being confused about what each step tried to ac-
complish and why it was necessary. This refects diferences
between authors in the amount of rationale and detail they
chose to include. Other users were confused about the termi-
nology that the authors used in the strategy. In other cases,
there were errors in the strategy. In one case, a user was
confused by a strategy which invoked a sub-strategy that
was never defned.

• Imprecise Steps. Almost most of the users reported need-
ing more detail to understand how to perform a strategy
step, such as what code to refer to or how to take an action.
This mirrors diferences in the level of detail authors chose
to include and the difculties authors reported in choosing
an appropriate level of detail (Section 4.1.4).

• Tool Use. Some users found it hard to use a required tool
to perform the described action. They reported problems
fnding the features the strategy instructed them to use in
the tools. This mirrors difculties authors experienced de-
scribing the tool use actions that they wished users to take
(Section 4.1.4.)

4.2.2 Knowledge-related usage dificulties. Several challenges re-
fected a mismatch between the level of knowledge assumed by
the strategy and possessed by the user (Table 3). Some users felt
that they had more knowledge and experience than the author and
suggested strategies or steps they felt better accomplished the task.
Others lacked sufcient knowledge and felt that the strategy lacked
detail. This mirrors diferences in the level of detail authors included
as well as the challenges authors reported in fnding the right level
(Section 4.1.4) and adopting the user’s perspective (Section 4.1.3).

4.3 RQ3: Challenges Improving Strategies
After returning users’ feedback to the strategy authors, authors
were asked to refect on how feasible the issues would be to fx and
what they believed had caused each of the challenges. An analysis
of the refections yielded seven challenges in revising strategies.
Beyond the challenges reported, authors also reported that some
of the feedback was constructive, comprehensive, and helpful. Au-
thors sometimes agreed with the limitations users reported, such
as suggestions on how to make their strategy more comprehensive.

Authors sometimes felt that the goal and scope of the strategy
they were asked to write were not well-defned, leading to a mis-
match between what they wrote the strategy to do and what the
user expected. They suggested that ofering an example or an im-
age of the step could ofer clarifcation by helping users fnd a
mentioned section in the strategy. For example, Figure 7 lists A3’s
strategy for profling in Chrome, for which U2 gave feedback:

“I used chrome but still I was not able to fnd the NET
section to fnd the CSS component. It took me a long
time to fnd the component.”

A3 agreed, explaining that they “ did not consider all the diferent
sections the user would be looking for. There are a lot of sections in
the profle, so it could be challenging and time-consuming to consider
every deviation.” They believed that this would not be difcult to
address in revising their strategy.

In the rest of this subsection, we discuss the seven strategy
revision difculties.

4.3.1 Incorrect use. Some authors disagreed with user feedback,
viewing it as refecting a mistake or misinterpretation in following
their strategy. For example, A14 received feedback:

“The main challenge that I observed was knowing which
css properties to look for, as I usually use libraries to
style my work, instead of using custom css. The other
challenge was that sometimes a property with a strike
through could not be overwritten.” (U13)

In response, they reported:
“The frst part of this comment is not valid because the
[strategy] tester missed reading the comment for all css
fles. The second part also might have been misunder-
stood by [the] tester.” (A14)

4.3.2 Generalizability. Some authors realized that the context for
which they wrote the strategy difered from the user’s context when,
for example, a tool did not support necessary steps. Some authors
also understood that the goal and scope of the strategy they wrote
were not well defned, leading to a mismatch between what they
wrote the strategy to do and what the user expected. For example,
U10, who used the error handling strategy in Figure 4, stated:

“The point of view of the strategy writer as a tester [is
missing]. It was also too general as I said like a pseudo
code for me.” (U10)

A11 responded that:
“It was hard to consider how to make my instructions
specifc when the scenario was so abstract. Mostly [the
feedback makes sense], though I don’t know how pseudo

An Exploratory Study of Sharing Strategic Programming Knowledge CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Difculty Description

Strategy-related

Missing Steps Missing instructions or steps to solve the problem.
Ambiguity Difculty understanding why a step is necessary to reach the goal (missing the rationale

behind a step)
Imprecision Need for more detail in describing specifc steps or what is required to use the strategy
Generality Inapplicability to specifc contexts, situations, or edge cases
Unfamiliar Terminology Unfamiliar words without defnition or description
Tool Use Difculty determining how to use a tool to perform a described action, including located

referenced features in the tool
Environment Difculty reading and using strategy for the lack of environment features and strategy

syntax highlighting
Rereading Need to read strategy multiple times to understand it
Knowledge-related

Inefcient More efective ways to accomplish the strategy goal than that described
Unfamiliar concepts Lack of familiarity with concepts used by the strategy
Inapplicable approach Using a strategy that does not address the problem

Table 3: Reported challenges using programming strategies, from most to least frequently reported.

STRATEGY UserInput()
Goal is to limit free-hand input and use strong typing
Use list-boxes as much as possible
Use Try-Catch and log errors
IF list-boxes cannot be used, validate textboxes
 Validate datatypes for all entries
 IF numeric reject alpha
 IF date, validate dates and reject invalid dates
 IF character, check for injection (SQL and script) AND
 Check for special characters
 FOR EACH 'textbox' On Page
 Validate
 IF Error Found, RETURN Error
 ELSE, Submit Page
STRATEGY Database()
Handle null values, data truncation, invalid datatypes
In Queries check values before performing Substring functions
Use stored procedures to limit SQL injection

Use IsNull (or NVL) for nulls.
Check for blank values using len(trim(<columnName>)) = 0
DO NOT USE "where 1 = 1" in queries as this allows for SQL injection
Use Try-Catch and log all errors

What’s a list

-box?

It seems like it would be ok here to specify

“alphabetic characters”. Alpha can also mean a specific

How? Probably by parametrizing queries/stored procedures?

symbol

 if I'm being nitpicky.

Like What?

To user? Where?

Check what about the value? Too vague to be helpful.
Don't just limit SQLi. Prevent it entirely using prepared statements
or parameterized queries, which actually can prevent it. Stored procedures
do not prevent SQLi by default

Why? In what situation? Does this mean put a string "IsNull" in values that will be null in the
database instead of leaving them empty?

Factually incorrect, see below.
Where? To console? To an internal error log? To somewhere only

Figure 6: An Error Handling strategy written by A7 and used by U3 and U4. The feedback from U3 is displayed in violet.

code would help the problem of the code being too gen- knowing the language (or at least a family of languages)

eral.” (A11) used, and especially without knowing the architecture.

This is a problem that also happens in the real world.
It was hard for authors to describe what to do in every possible situ-

Gaining context about the exact problem being solved
ation

 when there were many possible situations. Some authors also is key when mentoring a less experienced programmer.”
felt

 that they could not provide additional detail without reducing (A5)

the generality of their strategy. Author A5 stated:

“I felt that the original assignment asked me to be
generic as possible. I could not be more specifc without

How? Probably by parametrizing queries/stored procedures?

developers can see? No consideration for what errors to be logged.

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Arab, et al.

STRATEGY ProfileComponent()
#Open your chosen web appliation in the Chrome Browser
Open the Chrome Browser
Navigate to your Web Application
Right Click and select 'Inspect'
Click on the Performace Tab
Click the Record Button as indicated
Perform Task on the web application utilizing the component
Click Stop
#A peak is a section of the flame chart where CPU is high
IF there are peaks in the flame chart
 FOR EACH peak
 Click on the peak
 Drag your mouse to highlight the entire peak
 Hover over the NET section to view the CSS component utilized
 Click on the Event Log in the bottom
 Select the longest Task
 Expand the Task
 Click on the Function Call to identify the component
 Look at the current frame state, network requests, animations
 in order to come to a conclusion of why the component is slow
RETURN NOTHING

Figure 7: A Chrome Profler strategy written by A3 and used
by U1 and U2

4.3.3 Mismatched level of knowledge. Authors sometimes realized
that they had misjudged the user’s prior knowledge and faced dif-
culties writing strategies without knowing it. Assuming background
knowledge made some steps easier to understand or unnecessary
to explain. For example, the strategy in Figure 6 leaves most state-
ments as fairly vague, leading the user to ofer feedback on several
statements (violet font). The author refected:

“It tells me that the reader is not a web developer and not
familiar with web control objects like list-boxes (drop-
down list boxes) and the term alpha for alphabetical.”
(A7)

Other authors stated that users should gain background knowl-
edge through their investigation rather than through the strategy.

4.3.4 Unneeded or unrealizable situations. Some authors reported
that some users’ comments asked for a strategy to address situations
or contexts that cannot occur and were not necessary. For example,
U3 who used the strategy in Figure 6 believed there are some steps
missing in the strategy, “More detail on what to do, ex. "check" what?
Security depth of knowledge is also missing, especially around SQL
injection.” Author A7, however, reported that it is not necessary:
“What to do next is up to the developer as each situation is diferent.”

4.3.5 Hard-to-address feedback. Some authors viewed some of the
users’ feedback to be hard to address. Some reported that some
aspects of the strategy were hard to explain or would take too
much time. Other requests were impossible for authors to imme-
diately satisfy in the strategy editor, such as requests for syntax
highlighting or adding links to images. For instance, Strategy user
U5 said:

“I believe color-coding would be extremely crucial as it would
be visibly easier to see for the user in terms of what is code,
preconditions, statements, and actions.” (U7)

4.3.6 Resistance to increasing detail. Users sometimes requested
further detail about specifc steps. Authors sometimes felt that
adding this detail would make their strategy too long and thus
harder for users to follow, signaling a tension between detail and
assumed level of expertise.

“It is hard to write [a] set of instructions so thoroughly to
address all types of scenarios in simple words so everyone can
understand, especially in the frst try.” (A8)

4.3.7 Ambiguous feedback. Authors sometimes felt comments left
ambiguous exactly what the user requested. Authors often viewed
broad requests for additional detail to be excessively vague. For
example, one author wanted a more concrete example of the types
of detailed information requested or the exact line number in the
strategy where the user had gotten stuck.

“Not being specifc and providing enough details in the com-
ment about why the strategy action was ambiguous and didn’t
make much sense to them makes it hard to address.” (A1)

In other cases, users used a term or reference that the author did
not understand. Some authors had difculty understanding how
the user was interpreting specifc statements they wrote. Some
proposed including a screenshot of users’ work to help them un-
derstand what they were doing and where they were getting stuck.

5 LIMITATIONS
External validity. Our study difered from a work context in sev-
eral ways. In using programming strategies to problem solve, par-
ticipants did not use other resources they might normally use, such
as asking a teammate for help [25]. Participants may face diferent
types of challenges in their programming tasks. Authoring strate-
gies in a known context is easier and less challenging. Finally, in
simulating the characteristics of a hypothetical platform for shar-
ing strategies, the ways users and authors interacted in the study
may difer from a real-world platform. Users might experience dif-
fculties that they did not experience in our study when working
with longer or more challenging programming tasks. Platforms
might incorporate diferent feedback mechanisms, such as multiple
rounds of interactions between authors and users or diferent ways
of incorporating feedback. Our results are thus limited in partially
refecting characteristics of the specifc platform we simulated.

Construct validity. There are no widely accepted measures of
prior knowledge in programming. This may have caused variations
in authoring expertise, causing participants to write strategies for
tasks where they had insufcient expertise. The ordinal survey
questions proposed possible difculties, which may potentially bias
the authors to focus on the proposed challenges and forget to report
other categories of challenges. Some of the challenges were reported
only by one participant and may not be broadly applicable.

Authors were asked to use Roboto to help better structure their
strategies, and as the results showed, it helped authors meet this
goal. Using Roboto may be particularly benefcial for complex strate-
gies with multiple edge cases and scenarios. However, the authors
did experience challenges using the notation, which might be ad-
dressed through better tool support, tutorial materials, or language
improvements. The Roboto syntax did not contain all constructs
participants wished to use (e.g., else statement). Some statements
occupied multiple lines, making them difcult to separate. Syn-
tax denoting the end of a line might help address this issue. More
broadly, Roboto inherently encourages a procedural approach to
describing strategies step by step. Other alternative representations
of a strategy, such as a more declarative, event, or rule-oriented
approach, might lead to diferent ways to express strategies, which
might vary in some of the challenges authors or users experience.
However, in our study, we saw little evidence for authors themselves
preferring an alternative notation, with most using an imperative

An Exploratory Study of Sharing Strategic Programming Knowledge CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

style to describe strategies step by step with Roboto or using com-
pletely unstructured natural language.

Internal validity. We did not directly observe users as they
examined how closely or carefully they followed the strategies.
Strategy users might have abandoned a strategy, using alternate
strategies, potentially limiting the validity of their feedback. Addi-
tionally, authors may have forgotten or misremembered some of
the challenges they faced after writing the strategy. Similarly, when
a user got stuck in a step in the strategy, they might have discon-
tinued using it, limiting the difculties they reported. In our design,
the authors wrote a strategy for a specifc type of task, which users
then performed. We did not examine difculties in identifying or
choosing relevant strategies for a specifc task. Some participants
were unfamiliar with the concept of a strategy, and we, therefore,
provided training materials. While more experienced developers
might not need this training, inexperienced developers might have
benefted from further training, which might have reduced the
difculties they experienced.

6 DISCUSSION
This paper examined the challenges of sharing strategic program-
ming knowledge. We found that it is possible for experienced de-
velopers to share their programming strategies explicitly, consis-
tent with the prior work that suggests that programming is a self-
regulated and highly conscious activity [28, 39]. We found that
strategic knowledge is, to some extent, tacit, as the authors often
found strategies difcult to express with sufcient detail. It is also
challenging to be used generality by users with varying expertise
and needs. However, we found that, with sufcient efort, authors
can succeed. Many factors may impact this difculty, including au-
thors’ pedagogical skill in teaching, the complexity of the task, the
frequency or recentness in which authors have used the strategy.
More work is necessary to better understand these factors and their
ultimate impact, particularly across authors with varying levels of
expertise.

The authors’ strategies varied greatly in detail, from high-level
descriptions of processes captured in a few lines to elaborate proce-
dures containing multiple sub-strategies focused on separate sub-
goals. Authors experienced challenges generalizing their strategies
to cover variation in strategy users’ expertise, mirroring challenges
by users, including strategy ambiguity, imprecision, scope, and clar-
ity. Many reported needing to re-read strategies multiple times to
comprehend them. Authors were often surprised by strategy users’
feedback, not anticipating gaps in knowledge, misinterpretations,
and desire for additional detail. Strategy authors found the feed-
back they received from users helpful in improving their strategy,
particularly in helping highlight expert blind spots. These results il-
lustrate the potential for sharing strategic programming knowledge
to harness the knowledge of experienced developers.

Alternative mechanisms for eliciting strategies might help to
address some of the challenges that authors experience. For ex-
ample, authors might instead be asked to write several concrete
strategies for specifc tasks and, only after doing so, be asked to
generalize them into a single, more general strategy. Alternatively,
strategy writing might be crowdsourced, where similar strategies
might frst be written by diferent authors and then combined and

generalized. Exploring more efective prompts and workfows for
eliciting strategies is essential for future work.

One interpretation of these fndings is that strategy authoring is
less like sharing code and more like instructional design in teaching
[13]: it appears to require a strong awareness of users’ prior knowl-
edge, knowledge of variation in that prior knowledge, and careful
attention to scafolding skill development. From this perspective, it
becomes clearer why the authors in our study faced the difculties
they did: they did not know whom they were teaching and what
knowledge they had. Perhaps more importantly, they likely had
no instructional design expertise. This interpretation of the results
would suggest that the ideal skill set for authoring programming
strategies would be those who both know the strategies well and
have the instructional design expertise to carefully craft various
strategies that serve audiences with diferent levels of prior knowl-
edge. In educational research, such expertise is called pedagogical
content knowledge (PCK), which simply refers to the knowledge
required to teach a particular knowledge [16]. This might suggest
that there is PCK for successfully authoring programming strate-
gies, much like there is PCK for teaching math, science, writing,
and other subjects. Future work might consider studying devel-
opers who have experience supervising teams, where they might
have been likely to develop programming strategies PCK while
mentoring and guiding more junior developers.

Another interpretation of our fndings is that, while program-
ming strategies may not be tacit, developers do not represent them
in a formal, rigid, or structured fashion that is easy to translate
into explicit forms. Authors in our study expressed difculty in
concentration and writing, suggesting that while developers are
aware of strategic knowledge to the degree that makes it share-
able, there is an efort to fnd words, ideas, concepts, and structures
that faithfully capture strategic knowledge in a form that others
can use. In contrast to the instructional design interpretation, this
translation interpretation suggests that knowledge cannot simply
be “exported” to text but must be recalled, organized, articulated,
and revised. This suggests that, unlike sharing code, which may
require less generalization and synthesis, sharing strategies may be
a highly efortful cognitive process requiring motivation, practice,
and focus.

If either or both of these interpretations are true, there are several
implications for designing mechanisms and platforms for sharing
programming strategies. Future work might explore tools that help
authors brainstorm, structure, evaluate strategies, and better lever-
age multiple forms of media to clarify strategic procedures. Future
work could continue refning notations like Roboto [24], which
allow for some degree of informality and fexibility in specifying
strategies. Future platforms for sharing strategies may need sophis-
ticated support for soliciting user feedback, ofering strategies with
multiple levels of detail, and helping address gaps in users’ prior
knowledge for a strategy, perhaps by linking to other strategies
or other resources. Authors may also vary in their pedagogical
styles, suggesting the need for a diversity of strategies for the same
programming problems, allowing users to fnd strategy authors
whose voice and teaching resonate. Moreover, all of this diversity
suggests the need for novel forms of strategy search, helping con-
nect users with strategies that match the programming problem
they are facing and their prior knowledge.

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Arab, et al.

If future work can address these challenges, there is substan-
tial potential for developers to share their strategic programming
knowledge, enabling hard-won knowledge and expertise created
through years of experience to be broadly shared for others’ beneft.

REFERENCES
[1] Mark S. Ackerman and Thomas W. Malone. 1990. Answer Garden: A tool for

growing organizational memory. ACM SIGOIS Bulletin 11, 2-3 (1990), 31–39.
https://doi.org/10.1145/91474.91485

[2] Mark S. Ackerman and David W. McDonald. 1996. Answer Garden 2: Merging
organizational memory with collaborative help. In ACM Conference on Computer-
Supported Cooperative Work. 97–105.

[3] Nicolette Bakhuisen. 2012. Knowledge sharing using social media in the work-
place. Unpublished Master thesis. University Amsterdam, Amsterdam (2012).

[4] Sebastian Baltes and Stephan Diehl. 2018. Towards a theory of software devel-
opment expertise. In ACM Joint Meeting of the European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 187–200.
https://doi.org/10.1145/3236024.3236061

[5] Len Bass, Paul Clements, and Rick Kazman. 2003. Software architecture in practice.
Addison-Wesley Professional.

[6] Kent Beck. 2003. Test-driven development: By example. Addison-Wesley Profes-
sional.

[7] Marcel Böhme, Ezekiel O. Soremekun, Sudipta Chattopadhyay, Emamurho
Ugherughe, and Andreas Zeller. 2017. Where is the bug and how is it fxed?
An experiment with practitioners. In ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 117–128.
https://doi.org/10.1145/3106237.3106255

[8] Thomas Chau and Frank Maurer. 2004. Knowledge sharing in Agile software teams.
Springer Berlin Heidelberg. 173–183 pages.

[9] Wai-Fah Chen and JY Richard Liew. 2002. The civil engineering handbook. Crc
Press.

[10] Richard A. DeMillo, Hsin Pan, and Eugene H. Spaford. 1996. Critical slicing for
software fault localization. In ACM International Symposium on Software Testing
and Analysis. 121–134. https://doi.org/10.1145/226295.226310

[11] Davide Falessi, Giovanni Cantone, Rick Kazman, and Philippe Kruchten. 2011.
Decision-making techniques for software architecture design: A comparative
survey. Comput. Surveys (2011), 33:1–33:28. https://doi.org/10.1145/1978802.
1978812

[12] Margaret Ann Francel and Spencer Rugaber. 2001. The value of slicing while
debugging. Science of Computer Programming (2001), 151–169. https://doi.org/
10.1016/S0167-6423(01)00013-2

[13] Robert M. Gagne, Walter W. Wager, Katharine C. Golas, John M. Keller, and
James D. Russell. 2007. Principles of instructional design. Wiley Online Library.
44–46 pages.

[14] Erich Gamma, Richard Helm, Ralph E. Johnson, John M. Vlissides, and Grady
Booch. 1994. Design patterns: Elements of reusable object-oriented software.
Addison-Wesley Professional.

[15] Atul Gawande and John Bedford Lloyd. 2010. The checklist manifesto: How to get
things right. Vol. 200. Metropolitan Books New York.

[16] Julie Gess-Newsome. 1999. Pedagogical content knowledge: An introduction and
orientation. Springer, Dordrecht. 3–17 pages. https://doi.org/10.1007/0-306-
47217-1_1

[17] David J. Gilmore. 1990. Expert programming knowledge: A strategic approach.
In Psychology of Programming. Elsevier, 223–234. https://doi.org/10.1016/B978-
0-12-350772-3.50019-7

[18] Robert M. Grant. 1996. Toward a knowledge-based theory of the frm. Strategic
Management Journal (1996), 109–122. https://doi.org/10.1002/smj.4250171110

[19] Thomas R.G. Green and R. Navarro. 1995. Programming plans, imagery, and
visual programming. Springer. 139–144 pages. https://doi.org/10.1007/978-1-
5041-2896-4_23

[20] David Hammer and Leema K. Berland. 2013. Confusing claims for data: A critique
of common practices for presenting qualitative research on learning. Journal of
the Learning Sciences 23, 1 (2013), 37–46. https://doi.org/10.1080/10508406.2013.
802652

[21] James Herbsleb and Deependra Moitra. 2001. Global software development. IEEE
Software 18 (2001), 16 – 20. https://doi.org/10.1109/52.914732

[22] R.K. Kavitha and M.S. Irfan Ahmed. 2011. A knowledge management framework
for agile software development teams. In International Conference on Process
Automation, Control, and Computing. IEEE, 1–5. https://doi.org/10.1109/PACC.
2011.5978877

[23] Amy J. Ko, Thomas D. LaToza, Stephen Hull, Ellen A. Ko, William Kwok, Jane
Quichocho, Harshitha Akkaraju, and Rishin Pandit. 2019. Teaching explicit pro-
gramming strategies to adolescents. In ACM Technical Symposium on Computer
Science Education. 469–475. https://doi.org/10.1145/3287324.3287371

[24] Thomas D. LaToza, Maryam Arab, Dastyni Loksa, and Amy J. Ko. 2020. Explicit
programming strategies. Empirical Software Engineering 25 (2020), 2416–2449.
https://doi.org/10.1007/s10664-020-09810-1

[25] Thomas D. LaToza, Gina Venolia, and Robert DeLine. 2006. Maintaining mental
models: a study of developer work habits. In IEEE/ACM International Conference
on Software Engineering. 492–501. https://doi.org/10.1145/1134285.1134355

[26] Leonard, Dorothy A., Walter Swap, and Garvin Barton. 2014. Critical knowledge
transfer: Tools for managing your company’s deep smarts. Harvard Business
Review Press.

[27] Paul Luo Li, Amy J. Ko, and Jiamin Zhu. 2015. What makes a great software
engineer?. In IEEE/ACM International Conference on Software Engineering. 700–
710. https://doi.org/10.1109/ICSE.2015.335

[28] Dastyni Loksa, Amy J. Ko, Will Jernigan, Alannah Oleson, Christopher J. Mendez,
and Margaret M. Burnett. 2016. Programming, problem solving, and self-
awareness: efects of explicit guidance. In ACM Conference on Human Factors in
Computing Systems. 1449–1461. https://doi.org/10.1145/2858036.2858252

[29] Lena Mamykina, Bella Manoim, Manas Mittal, George Hripcsak, and Björn Hart-
mann. 2011. Design lessons from the fastest Q&A site in the west. ACM Conference
on Human Factors in Computing Systems (2011), 2857–2866.

[30] Lena Mamykina, Bella Manoim, Manas Mittal, George Hripcsak, and Björn
Hartmann. 2011. Design lessons from the fastest Q&A site in the west. In
ACM Conference on Human Factors in Computing Systems. 2857–2866. https:
//doi.org/10.1145/1978942.1979366

[31] Matthew B. Miles and A. Huberman. 1994. Qualitative data analysis: An expanded
sourcebook. Journal of Environmental Psychology 14 (1994), 336–337. https:
//doi.org/10.1016/S0272-4944(05)80231-2

[32] Emerson Murphy-Hill, Gail C. Murphy, Joanna McGrenere, et al. 2015. How
do users discover new tools in software development and beyond? Computer-
Supported Cooperative Work 24, 5 (2015), 389–422.

[33] Greg L Nelson, Benjamin Xie, and Amy J. Ko. 2017. Comprehension frst: Evalu-
ating a novel pedagogy and tutoring system for program tracing in CS1. In ACM
Conference on International Computing Education Research. 2–11.

[34] Sirous Panahi, Jason Watson, and Helen Partridge. 2012. Social media and tacit
knowledge sharing: Developing a conceptual model. World academy of science,
engineering and technology 64 (2012), 1095–1102.

[35] Chris Parnin and Christoph Treude. 2011. Measuring API documentation on the
web. In ACM International Workshop on Web 2.0 for Software Engineering. 25–30.
https://doi.org/10.1145/1984701.1984706

[36] Elizabeth Poché, Nishant Jha, Grant Williams, Jazmine Staten, Miles Vesper, and
Anas Mahmoud. 2017. Analyzing user comments on YouTube coding tutorial
videos. In IEEE/ACM International Conference on Program Comprehension. IEEE,
196–206.

[37] Michael Raadt, Richard Watson, and Mark Toleman. 2006. Chick sexing and
novice programmers: Explicit instruction of problem solving strategies. In Aus-
tralasian Conference on Computing Education. 55–62.

[38] Arthur S Reber. 1989. Implicit learning and tacit knowledge. American Psycholog-
ical Association. 219 pages.

[39] Martin P. Robillard, Wesley Coelho, and Gail C. Murphy. 2004. How efective
developers investigate source code: an exploratory study. Transactions on Software
Engineering 30, 12 (2004), 889–903. https://doi.org/10.1109/TSE.2004.101

[40] Tobias Roehm, Rebecca Tiarks, Rainer Koschke, and Walid Maalej. 2012. How
do professional developers comprehend software?. In IEEE/ACM International
Conference on Software Engineering. 255–265.

[41] Johnny Saldaña. 2009. The coding manual for qualitative researchers. Sage Publi-
cations Ltd (UK).

[42] Mary Shaw and David Garlan. 1996. Software architecture: Perspectives on an
emerging discipline. Prentice-Hall, Inc.

[43] Xiaobai Shen. 2005. Developing country perspectives on software: Intellectual
property and open source - A case study of Microsoft and Linux in China. In-
ternational Journal of IT Standards and Standardization Research 3 (2005), 21–43.
https://doi.org/10.4018/jitsr.2005010102

[44] Leif Singer, Fernando Marques Figueira Filho, and Margaret-Anne D. Storey. 2014.
Software engineering at the speed of light: how developers stay current using
twitter. In IEEE/ACM International Conference on Software Engineering. 211–221.
https://doi.org/10.1145/2568225.2568305

[45] Elliot Soloway and Kate Ehrlich. 1984. Empirical studies of programming
knowledge. IEEE Transactions on Software Engineering SE-10, 5 (1984), 595–609.
https://doi.org/10.1109/TSE.1984.5010283

[46] Margaret-Anne D. Storey, Leif Singer, Brendan Cleary, Fernando Marques Figueira
Filho, and Alexey Zagalsky. 2014. The (R)evolution of social media in software
engineering. In IEEE Future of Software Engineering. 100–116. https://doi.org/10.
1145/2593882.2593887

[47] Jefrey Stylos and Brad A. Myers. 2006. Mica: A web-search tool for fnding
API components and examples. In IEEE Visual Languages and Human-Centric
Computing. 195–202. https://doi.org/10.1109/VLHCC.2006.32

[48] Visvalingam Suppiah and Manjit Singh Sandhu. 2011. Organisational culture’s in-
fuence on tacit knowledge sharing behaviour. Journal of Knowledge Management
15 (2011), 462–477. https://doi.org/10.1108/13673271111137439

https://doi.org/10.1145/91474.91485
https://doi.org/10.1145/3236024.3236061
https://doi.org/10.1145/3106237.3106255
https://doi.org/10.1145/226295.226310
https://doi.org/10.1145/1978802.1978812
https://doi.org/10.1145/1978802.1978812
https://doi.org/10.1016/S0167-6423(01)00013-2
https://doi.org/10.1016/S0167-6423(01)00013-2
https://doi.org/10.1007/0-306-47217-1_1
https://doi.org/10.1007/0-306-47217-1_1
https://doi.org/10.1016/B978-0-12-350772-3.50019-7
https://doi.org/10.1016/B978-0-12-350772-3.50019-7
https://doi.org/10.1002/smj.4250171110
https://doi.org/10.1007/978-1-5041-2896-4_23
https://doi.org/10.1007/978-1-5041-2896-4_23
https://doi.org/10.1080/10508406.2013.802652
https://doi.org/10.1080/10508406.2013.802652
https://doi.org/10.1109/52.914732
https://doi.org/10.1109/PACC.2011.5978877
https://doi.org/10.1109/PACC.2011.5978877
https://doi.org/10.1145/3287324.3287371
https://doi.org/10.1007/s10664-020-09810-1
https://doi.org/10.1145/1134285.1134355
https://doi.org/10.1109/ICSE.2015.335
https://doi.org/10.1145/2858036.2858252
https://doi.org/10.1145/1978942.1979366
https://doi.org/10.1145/1978942.1979366
https://doi.org/10.1016/S0272-4944(05)80231-2
https://doi.org/10.1016/S0272-4944(05)80231-2
https://doi.org/10.1145/1984701.1984706
https://doi.org/10.1109/TSE.2004.101
https://doi.org/10.4018/jitsr.2005010102
https://doi.org/10.1145/2568225.2568305
https://doi.org/10.1109/TSE.1984.5010283
https://doi.org/10.1145/2593882.2593887
https://doi.org/10.1145/2593882.2593887
https://doi.org/10.1109/VLHCC.2006.32
https://doi.org/10.1108/13673271111137439

An Exploratory Study of Sharing Strategic Programming Knowledge

[49] Kyle Thayer, Sarah E Chasins, and Amy J. Ko. 2021. A theory of robust API
knowledge. ACM Transactions on Computing Education 21, 1 (2021), 1–32.

[50] Christoph Treude and Lars Grammel. 2012. Crowd Documentation : Exploring
the Coverage and the Dynamics of API Discussions on Stack Overfow.

[51] Christoph Treude and Margaret-Anne D. Storey. 2011. Efective communication
of software development knowledge through community portals. In ACM Joint
Meeting of the European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 91–10. https://doi.org/10.1145/2025113.
2025129

[52] Jason Tsay, Laura Dabbish, and James Herbsleb. 2014. Infuence of social and tech-
nical factors for evaluating contribution in GitHub. In International Conference
on Software Engineering. 356–366.

[53] Jaw-Kai Wang, Melanie Ashleigh, and Edgar Meyer. 2006. Knowledge sharing and
team trustworthiness: It’s all about social ties! Knowledge Management Research

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

& Practice (2006), 175–186. https://doi.org/10.1057/palgrave.kmrp.8500098
[54] Douglas Wieringa, Christopher Moore, and Valerie Barnes. 1998. Procedure

writing: Principles and practices. IEEE.
[55] Jeong-Han Woo, Mark J. Clayton, Robert E. Johnson, Benito E. Flores, and

Christopher Ellis. 2004. Dynamic knowledge map: Reusing experts’ tacit knowl-
edge in the AEC industry. Automation in Construction 13 (2004), 203–207.
https://doi.org/10.1016/j.autcon.2003.09.003

[56] Benjamin Xie, Dastyni Loksa, Greg L. Nelson, Matthew J. Davidson, Dongsheng
Dong, Harrison Kwik, Alex Hui Tan, Leanne Hwa, Min Li, and Amy J. Ko. 2019.
A theory of instruction for introductory programming skills. Computer Science
Education 29, 2-3 (2019), 205–253. https://doi.org/10.1080/08993408.2019.1565235

[57] Benjamin Xie, Greg L. Nelson, and Amy J. Ko. 2018. An explicit strategy to
scafold novice program tracing. In ACM Technical Symposium on Computer
Science Education. 344–349. https://doi.org/10.1145/3159450.3159527

https://doi.org/10.1145/2025113.2025129
https://doi.org/10.1145/2025113.2025129
https://doi.org/10.1057/palgrave.kmrp.8500098
https://doi.org/10.1016/j.autcon.2003.09.003
https://doi.org/10.1080/08993408.2019.1565235
https://doi.org/10.1145/3159450.3159527

	Abstract
	1 Introduction
	2 Background
	3 Method
	3.1 Tasks
	3.2 Strategy Description Notation
	3.3 Participants
	3.4 Data
	3.5 Procedure
	3.6 Analysis

	4 Results
	4.1 RQ1: Challenges Authoring Strategies
	4.2 RQ2: Challenges Using Strategies
	4.3 RQ3: Challenges Improving Strategies

	5 Limitations
	6 Discussion
	References

