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ABSTRACT 
Understanding decision-making in dynamic and complex settings is 
a challenge yet essential for preventing, mitigating, and responding 
to adverse events (e.g., disasters, fnancial crises). Simulation games 
have shown promise to advance our understanding of decision-
making in such settings. However, an open question remains on 
how we extract useful information from these games. We contribute 
an approach to model human-simulation interaction by leverag-
ing existing methods to characterize: (1) system states of dynamic 
simulation environments (with Principal Component Analysis), (2) 
behavioral responses from human interaction with simulation (with 
Hidden Markov Models), and (3) behavioral responses across sys-
tem states (with Sequence Analysis). We demonstrate this approach 
with our game simulating drug shortages in a supply chain context. 
Results from our experimental study with 135 participants show 
diferent player types (hoarders, reactors, followers), how behavior 
changes in diferent system states, and how sharing information 
impacts behavior. We discuss how our fndings challenge existing 
literature. 

CCS CONCEPTS 
• Human-centered computing → Empirical studies in HCI. 
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1 INTRODUCTION 
When the COVID-19 pandemic started, many experts were con-
cerned about shortages in medical equipment [60] and drugs [62, 
63]. Perhaps the last thing everyone could predict was a toilet paper 
shortage, which was a direct result of panic-buying and hoarding 
behavior of people [16]. Understanding such behaviors has been the 
core focus of many psychological [2] and supply chain research [69]. 
While a toilet paper shortage may not sound very crucial, the same 
type of behavior can signifcantly impact the supply of many critical 
products, including pharmaceutical drugs. Therefore, it is essential 
to investigate the role of human behavior and decision-making in 
critical systems and especially in the presence of adverse events 
(e.g., natural disasters, health crises, fnancial crises). 

Simulation games have been increasingly used as a research envi-
ronment to study human decisions in critical contexts. In particular, 
methods such as gaming simulation [44] and participatory simu-
lation [1, 29], and game-based simulation environments such as 
gamettes [47] have shown promise for advancing our understand-
ing of human behavior. Researchers create these environments to 
validate and improve the underlying simulation by observing or 
modeling human behavior. However, a key challenge in modeling 
human behavior in such environments is the system’s dynamic 
nature. While the system’s state afects humans’ behavior, this state 
can change due to human interaction with the simulation. In addi-
tion, researchers often use these environments to generate hypothe-
ses and test them [44]; hence, they create manipulations that may 
have unexpected efects on human behavior [28]. When coupled 
with a dynamic system, teasing out the efect of such manipulations 
becomes more complicated, making behavioral modeling in such 
environments challenging. We aim to extend existing research in 
behavioral modeling within game-based simulation environments 
by characterizing the human-simulation interaction. 

To this end, we propose an approach to characterize (1) the 
system’s states, (2) the behavioral responses from human partic-
ipants interacting with the simulation, and (3) the interaction of 
humans with the simulation through analyzing their behavioral 
responses across the system’s states while taking manipulations 
into account. We use existing methods for our characterization in 
each step. In addition, we use a gamette environment as described 
in our previous work [47] and conduct an experimental study to 
put human participants into the loop of an agent-based simulation, 
replicating a drug delivery supply chain. Our simulation models a 
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shortage scenario capturing interdependencies in a supply chain. 
By characterizing the system, we identify diferent supply chain 
states for our participants’ roles. We show how to characterize the 
state of such a high dimensional system by leveraging: (1) Principal 
Component Analysis (PCA) to reduce the dimensionality of our 
supply chain simulation and (2) hierarchical cluster analysis to fnd 
representative system’s states. 

A gamette environment creates an authentic decision context for 
human players [47]. We use telemetry data provided by the gamette 
environment for modeling player behavior. According to a recent re-
view [33], Hidden Markov Models (HMMs) are employed for player 
behavioral modeling, and are especially promising for modeling 
players’ diferences in their sequential decisions [8]. Prior studies 
outside the realm of player modeling also utilized HMMs for analyz-
ing sequential data [48] and modeling cognitive processes [42]. We 
use HMMs to characterize player response modes in their decision-
making within our supply chain decision task. We further show 
how these response modes can be used for player profling and 
identifying diferent player types by leveraging sequence analysis. 
We identify distinct decision patterns by comparing players’ devi-
ations from system recommendations in their ordering decisions. 
Finally, we analyze the sequences of response modes across the sys-
tem’s states to characterize the interaction of human participants 
with our supply chain simulation. In particular, we show how the 
behavior changes in diferent system’s states. We also show how 
our manipulation of the environment (i.e., information sharing in 
the context of supply chains) impacts behavior. 

The contributions of this work are as follows: 
• We re-institute human-simulation interaction as a research 
avenue within HCI research with an emphasis  

 simulation, 
 well as envi-
ral modeling. 
e states of a 

on charac-
terizing the interaction between the human and
hence, taking the dynamic state of the system as
ronment manipulation into account for behavio
We do this by showing how to (1) characterize th
simulation environment and (2) characterize the behavioral 
responses of humans interacting with the simulation. 

• We identify three player types (hoarders, reactors, followers) 
with distinct decision-making patterns in interaction with a 
supply chain simulation game replicating drug shortages. 

• We provide evidence for the efect of information sharing on 
each player type through characterizing human-simulation 
interaction. 

2 RELATED WORK 
In our review of the related research, we frst summarize the studies 
around using games for involving humans in the simulation. We 
then look into modeling human behavior and decision-making, 
especially in the context of supply chain decisions. Finally, we 
review the studies focusing on player modeling and the methods 
used for modeling player behavior in games. 

2.1 Game-Based Simulation Environments 
The involvement of humans with simulations and using games as a 
medium to facilitate their interaction is an old but ongoing concept. 
At a high level, it is referred to as participatory approaches, which 
involve the inclusion of humans during the design, implementation, 

execution, and analysis of a simulation [4]. For example, Guyot and 
Honiden [29] introduced a specifc form of a participatory approach 
called agent-based participatory simulation which involves merging 
role-playing games (RPGs) and multi-agent systems (MAS). Such a 
combination aims to have human participants control some of the 
agents in the simulation rather than involving participants in the 
design process, which allows analyzing participants’ behavior in 
detail. In particular, Anand et al. [1] used this approach for validat-
ing agents in an agent-based simulation through engaging human 
participants with the simulation. Other work in this area involves 
using agent-based participatory simulation to improve students’ 
understanding of diferent components in complex systems [61]. 

In our previous work [47], we proposed a similar approach by 
introducing a game-based methodology called gamettes for involv-
ing human participants in the simulation. The diference between 
our approach and agent-based participatory simulation is that ga-
mettes target a short and specifc part of the simulation instead of 
the whole simulation. We tested our approach in a supply chain 
simulation replicating the Beer Distribution Game and showed 
that the gamette could capture supply chains’ expected behavioral 
patterns. Similarly, Meijer [44] introduced gaming simulation as a 
research method for allowing humans to enact a role in a simulated 
environment. Gaming simulation has been used to test hypothe-
ses and validate the simulation [79], and also expanded to use in 
engineering systems research [27]. 

We refer to all these approaches (i.e., agent-based participatory 
simulation, gamettes, gaming simulation), which aim to incorporate 
human behavior with a simulation to collect data on how humans 
interact with a simulated environment, as “game-based simulation 
environments”. In this work, we use gamettes as our approach 
for involving humans with a simulation through an experimental 
study replicating supply chain shortages. We use gamettes again as 
it has shown promise in our prior work for conducting behavioral 
experiments in the context of supply chains [47]. Here, however, 
we leverage this game-based simulation environment to advance 
our understanding of human decision-making in a dynamic system. 

2.2 Behavioral Modeling 
Humans make decisions by reasoning about their complex environ-
ments. Behavioral modeling aims to improve the decision processes 
by investigating the patterns of reasoning and making sense of 
those patterns [57]. Researchers in various felds have dedicated 
years to understanding human decision-making. In the context of 
supply chains, operations researchers have attempted to model hu-
man behavior using behavioral research methods [41, 73] or system 
dynamics [68, 69]. Prior research in this area involve studies that 
aimed at modeling: the mental models of decision-makers, including 
models of rationality [30, 49] and judgment [22, 74]; decision strate-
gies [17]; individual traits and demographics [77]; emotions [50]; 
or decision patterns [69]. In this study, we consider modeling order-
ing decisions by characterizing behavioral responses from human 
participants. Our goal is to fnd response modes that explain the 
decision patterns of our participants. 

Supply chains are dynamic systems, and modeling human behav-
ior in this context can be regarded as modeling dynamic decision-
making. Prior research used computer simulations referred to as 
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“microworlds” to study dynamic decision-making in a laboratory 
setting [26] or leveraged serious games for analyzing dynamic de-
cisions [51]. However, using game-based simulation environments 
in a dynamic system adds a level of challenge to modeling behavior. 
Previous research has provided evidence for how only a slightly 
diferent individual behavior can impact the system, resulting in 
very diferent trajectories in the state that players fnd themselves 
in [70]. Therefore, we use an approach for behavioral modeling 
where we characterize the dynamic state of the system. Through 
such characterization, we provide an opportunity to zoom in on 
the interaction of human behavior with the system. Prior studies 
also investigated ways in which decision-making can be supported 
in dynamic settings [25]. In our experiment, we provide such de-
cision support to our participants by providing them with order 
suggestions according to a base stock policy [67]. We attempt to 
explain decision patterns by considering the participants’ level of 
deviation from these order suggestions. 

2.3 Player Modeling 
As we rely on games as our medium to engage human participants 
with a simulation, we can leverage the research around player mod-
eling to characterize our participants’ behavior. Player modeling is 
aimed at understanding how players experience their interaction 
with the game by focusing on their patterns of behavior through 
modeling cognitive or afective states [83]. Previous studies in the 
realm of player modeling used various methods for modeling and 
imitating player actions, including clustering techniques [20, 21], 
imitation learning [46, 53], neural networks [9], and Bayesian mod-
els [52, 71]. Other researchers used Hidden Markov Models (HMM) 
for modeling player actions in the game [8, 56]. HMMs have shown 
great promise, especially for analyzing sequential data [48] and mod-
eling cognitive processes [42]. Therefore, we use HMM to model 
player response modes in their ordering decisions, specifcally their 
deviations from order suggestions provided by the system. In addi-
tion, previous work demonstrated the potential of using sequence 
analysis in gameplay analysis [40]. We leverage such methods to 
analyze response modes’ sequences and profle players. The lit-
erature on player modeling also includes studies that focus on 
clustering game states and players’ responses while mapping state-
response clusters for generating player models [6]. Our work is 
distinguished from these prior studies and existing player modeling 
research in the sense that our focus is on characterizing the human-
simulation interaction. We do not model behavioral response in 
isolation. Rather, we characterize the interaction of human behavior 
by analyzing response modes over system states and focusing on 
how the interaction with the simulation environment forms human 
behavior. 

3 GAMETTES 
As described in our previous work [47], gamettes is a methodology 
to capture behavioral aspects of human decision-making. Gamettes 
are short game-based scenarios where individual decision-makers 
are immersed in a specifc situation and make decisions by respond-
ing to a dialog or taking action. The term gamette is a contraction of 
“game” with “vignette”. Similar to a vignette, a gamette aims to pro-
vide a brief description of a situation as well as to portray someone. 

Here, we focus on modeling human behavior and decision-making 
in a drug delivery supply chain. For this, we use the integrated sim-
ulation framework proposed by [18]. This framework encompasses 
a Flow Simulator for simulating the supply chain dynamics and a 
gamette environment for engaging human decision-makers with 
the simulation through immersing them into a specifc role and 
particular state of the supply chain. 

The Flow Simulator is the core of this framework that simulates 
the information and physical fow in the drug delivery supply chain 
over time. The decisions and actions taken by the agents of the 
system (i.e., manufacturers, wholesalers, and health centers) drive 
these information and physical fows. Such decisions and actions 
can be the result of running the Flow Simulator in a standalone 
mode. In that case, the Flow Simulator simulates the evolution of the 
supply chain system with predefned policies informing decision-
making—therefore, without any human agents. Conversely, the 
Flow Simulator can simulate by fetching information from the 
gamette clients, which capture decisions of human players. Here, 
the evolution of the supply chain system is a result of human input. 
Figure 1 illustrates the architecture of our simulation framework 
and the interaction of its components. 

We created the gamette with StudyCrafter1, a platform where 
users can easily create, play, and share gamifed projects. Using 
StudyCrafter, we designed a gamette where players take the role 
of a wholesaler in a drug delivery supply chain. For more details 
on gamette design, we refer to our previous work [47]. We con-
sidered fve phases in the design of our wholesaler gamette: (1) 
briefng, (2) tutorial, (3) gameplay, (4) survey, and (5) debriefng. 
Each game starts with a briefng scene (see Figure 2a) where players 
learn how to play and are informed about the purpose of the study. 
Next, the tutorial phase starts where players see their character 
(Kate) and an NPC (Kate’s boss) that informs them, through dia-
log, about their task and the goal of the game (see Figure 2b). The 
tutorial lasts for four game-weeks. During the game, players can 
interact with a laptop computer to observe information and make 
decisions. In particular, by clicking on the laptop, they will enter 
a management system where they can click on diferent buttons 
to observe information (inventory level, current demand, received 
shipments, allocation and ordering policies) and make decisions 
(allocate inventory or place orders). 

After the tutorial phase, the NPC informs players that their train-
ing is over, and the gameplay phase starts (see Figure 2c). This 
phase continues for 35 weeks, and each week players can review 
their inventory, demand, shipments, sales revenue, and costs, then 
allocate their inventory and place an order. During the gameplay, 
players receive feedback on their performance through interaction 
with other NPCs in the form of a meeting scene. This feedback 
includes factual information without presenting any form of bias 
on players’ performance. We also inform players about the disrup-
tion scenario during this phase through interaction with the boss 
character. After Week 55, the survey phase starts, where players 
are asked to answer some questions about their experience and 
complete a demographics survey. Finally, in the last phase, the de-
briefng, players are informed about their performance, and an NPC 
explains the purpose of the game and experimental conditions. 

1https://studycrafter.com 

https://studycrafter.com
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Figure 1: The integrated simulation framework. 

(a) Briefng (b) Tutorial 

(c) Gameplay 

Figure 2: Gamette design: (a) Briefng player about their role 
and their task, (b) Tutorial through interacting with NPC, 
and (c) Interacting with laptop computer to make order and 
allocate decisions. 

4 METHODS 
We are interested in studying the role of human behavior in pharma-
ceutical supply chains. In particular, we are studying supply chain 
resiliency by focusing on how human decision-making afects or 
is afected by drug shortages. To accomplish this, we simulated a 
pharmaceutical supply chain network using the Flow Simulator 
and used a gamette to immerse human participants into a specifc 
role within this network. We considered a supply chain network 
consisting of two manufacturers, two distributors, and two health 
centers. Figure 3 illustrates the network structure as well as the fow 
of shipments between each entity in this supply chain. Compared 
to the network in Figure 3, pharmaceutical supply chains are more 
complex with more interdependent roles. However, this network is 
still complex enough to represent the behavioral dynamics of the 

pharmaceutical supply chains by allowing multiple agents in each 
echelon [19]. 

Figure 3: Supply chain network structure including two 
manufacturers, two wholesales and two health centers. Play-
ers play the wholesaler role using gamette. 

4.1 Hypotheses 
While diferent reasons cause drug shortages, most of them can be 
traced back to supply chain disruptions [76]. In the past two decades, 
numerous studies focused on reducing the impact of disruptions of 
drug shortages and increasing supply chain resiliency [75], through 
implementing decision support systems [14] and developing op-
timal inventory management and ordering policies [3]. However, 
as described by [19], human behavior can prolong or aggravate 
disruptions. In our prior work [47], we also showed that people 
tend to deviate from optimal order suggestions in the context of 
the Beer Game [68]. Such behaviors can be attributed to hoarding 
or panic buying as an emotional response to scarcity [69], or the 
decision-maker’s lack of trust in the system recommendations [80], 
especially when the decision-maker is in the early phases of inter-
acting with the system. As uncertainty is one of the main factors 
afecting trust [15], we expect the deviations to be higher during a 
shortage. Therefore, we hypothesize: 

H1. People deviate more from the order suggestions when facing a 
shortage compared to a normal condition. 

On the other hand, the literature around drug shortages points 
to insufcient information sharing among diferent stakeholders in 
pharmaceutical supply chains [81], and that we can mitigate much 
of the workload associated with managing shortages in such supply 
chains by increasing collaboration and sharing information [54]. 
Prior research around the Beer Game showed that sharing infor-
mation can reduce order fuctuations and the bullwhip efect [82]. 
Thus, we expect that sharing information on supplier inventory 
level reduces the deviation of our participants from the system’s 
order suggestions. Hence: 

H2. Information sharing reduces the amount of deviation from 
order suggestions. 
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Of course, we cannot simply assume everyone behaves simi-
larly. For this reason, we treat participants separately and seek to 
characterize their behavior in answering the above hypotheses. 

4.2 Experimental Design 
The experimental setting for our study is described in Table 1. All 
human players play the role of Wholesaler 1, and all other agents 
are controlled via the Flow Simulator. The simulation agents make 
decisions based on order-up-to-level policy. According to this pol-
icy, each agent orders or produces enough product to bring their 
inventory position to a predefned level based on a periodic review 
policy with zero fxed costs [67]. In our prior pilot study [45], we 
found initial evidence for the efect of disruption on human behav-
ior. Hence, we are interested in studying human decision-making 
in the presence of disruption. In both conditions we considered 
Manufacturer 1 to be disrupted through a manufacturing shutdown 
which reduces its production capacity by 95%. 

Table 1: Summary of the experiment settings. 

Condition 1 
(No-Info) 

Condition 2 
(Info) 

Player Role WS1 WS1 

Disrupted Manufacturer MN1 MN1 

Information Sharing No Yes 

We are also interested in testing the efect of information sharing 
on human decision-making, as it is one of the essential strategies 
to improve the resiliency of supply chains [34]. We considered two 
options for the level of information shared with players during the 
ordering process: (1) without and (2) with information sharing. Prior 
work on supply chains studied diferent types of information shar-
ing, including downstream and upstream information sharing [82]. 
Here, we focus on upstream information sharing. In particular, in 
condition 2, we inform players about their upstream manufacturer’s 
inventory (i.e., inventory of MN1 in Figure 3). 

Regarding the rest of our experimental design, both health-
centers receive a constant demand. However, they split their orders 
between wholesalers diferently. The HC1 agent splits its orders 
to its upstream agents, considering a trustworthiness measure in 
both conditions, meaning that HC1 orders less from the upstream 
wholesaler that fails to deliver drugs consistently. HC2, on the other 
hand, splits its orders always equally regardless of its wholesalers’ 
trustworthiness. This trust-based behavior of HC1 particularly af-
fects players during the disruption period (weeks 28-33), where the 
players who do not have enough inventory fail to satisfy HC1’s 
demand completely. Therefore, during the disruption, in addition 
to incurring stockout cost for not satisfying demand, players will 
also experience a decrease in HC1’s demand. 

4.2.1 Participants and Material. We recruited 135 online partici-
pants through Prolifc 2. We limited participation to working pro-
fessionals who reported (1) English as their frst language or being 

2www.prolifc.co 

fuent in it; and (2) having an undergraduate degree or higher. Each 
participant spent on average 58 minutes (SD=19) to play and re-
ceived $7.5 reward for their participation. Participants could access 
the gamette online on a web page that we created. The web page 
included a description of the study’s purpose and a link that the 
gamette could be played on. Each participant was required to use 
a laptop or a desktop to access this web page. At the end of each 
gamette, we included a short survey querying participants about 
their experience and strategy in playing the game. 

After the initial inspection of the data, we found that some partic-
ipants performed extremely poorly in their game proft. Therefore, 
we performed outlier analysis by applying three standard deviations 
of game profts as the outlier threshold and observed 14 extreme 
outliers. The poor proft of these participants was due to incurring 
a high inventory cost (seven participants) as a result of ordering 
large amounts (i.e., an order of magnitude more than other players); 
high stockout cost (six participants) as a result of ordering less than 
the received demand for multiple periods; or both a high inventory 
and stockout cost (one participant) as a result of ordering less than 
the demand in the middle of the game and ordering large amounts 
towards the end. Although the specifc behavior of these players 
is of interest, the methods we used in our analyses (i.e., PCA and 
HMM) are known to be sensitive to outliers. Thus, we decided to 
remove these players to avoid distorting our data and analyses and 
performed our analyses with 121 participants (47 males, 70 females, 
two non-binary, two preferred not to answer). The age range is 21 
to 71 years (M=34, SD=9.9). 

4.2.2 Incentive Design. Previous research points to the importance 
of incentives in conducting experimental research [37]. To motivate 
participants to engage with the task to perform well, we ofered 
them a monetary incentive ($50) which was gifted through a rafe. 
Players who performed better had a higher chance in the rafe. 
Each participant received one ticket for completing the game plus 
one ticket for every $1000 in-game proft that they made, more than 
the average proft of all other players. Before starting the game, 
we provided each participant with instructions about how better 
performance could increase their chances of winning. 

4.2.3 Procedure. All participants frst visited the study website, 
where they were formally briefed about the experiment and its 
purpose. Then, by starting the game, they were randomly assigned 
to one of the two conditions (NNo−Inf o =61, NInf o =60). The ga-
mette in both conditions looked the same in all scenes except for 
the ordering scene. Participants in Condition 2 were provided with 
the inventory of their manufacturer, whereas the participants in 
Condition 1 did not receive such information (see Figure 4). Partici-
pants played the role of a character named Kate who was hired as 
a supply chain director in a wholesaler company. At the beginning 
of the game, an NPC (Kate’s boss) expresses that the game’s goal 
is maximizing the company’s proft by minimizing the inventory 
and stockout costs and maximizing sales revenue. The NPC also 
informs players, through dialogue, about the sales revenue and cost 
breakdown ($1 cost for each unit of inventory, $10 cost for each unit 
of stockout, and $5 revenue for each unit of sales), and the lead time 
of two weeks for orders (one week for orders to be processed by 
the manufacturer and one week for players to receive shipments). 

www.prolific.co
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(a) No information sharing on MN1 inventory 

(b) Sharing MN1 inventory 

Figure 4: The ordering scene in each condition. Note that in 
(b) "Manufacturer’s Inventory" is mentioned at top while in 
(a) this information is not displayed. 

Each participant frst played four weeks of tutorial to familiarize 
themselves with the game (i.e., how to gather information) and 
was given instructions about ordering from the manufacturer and 
allocating to health-centers. Participants were asked to make an 
ordering decision at each period but only make allocation decisions 
when their inventory level was lower than their total demand. In 
cases where they had enough inventory, the game automatically 
allocated drugs to each health-center. After fnishing the tutorial, all 
sales and cost data was reset, and they played the game for 35 game 
weeks starting at Week 21 of the simulation. The disruption started 
on Week 28 and ended on Week 33. We framed the disruption as a 
manufacturing shutdown due to COVID-19. 

At each period, participants received a shipment from their up-
stream manufacturer and could review the inventory, demand, and 
backlog information. Next, if they had limited inventory compared 
to demand, they were asked to select one of the presented allocation 
policies: (1) allocate to HC1 frst, (2) allocate to HC2 frst, or (3) 
allocate proportionally. Finally, they received an order suggestion 
according to the order-up-to-level policy for making an ordering 
decision. They had the option to order the suggested amount or 
modify that. The gamette sends player decisions to the Flow Sim-
ulator, which moves the simulation to the next period and sends 
back the updated parameters for the next round to the gamette. 
After playing for 35 weeks, participants completed a survey. Then, 
through dialogue, an NPC debriefed them about the study, experi-
mental setting, and their performance. 

4.3 Data Analysis 
For extracting behavioral patterns, explaining the interaction of 
players with the simulation, and showing the efect of our imple-
mented stimuli (i.e., information sharing), we attempt to abstract 
the decision space by frst characterizing the system’s states and 
then characterizing players’ responses. Our goal is to fnd com-
mon response patterns in groups of people. Next, we describe our 
approach for characterizing the system and the players’ responses. 

4.3.1 Characterizing the System. For each agent within the Flow 
Simulator, the state of the system at each time step t is described 
by a set of supply chain parameters i(Invt , Dem , Blдt , Shpt t , Oort )
where: 

• Invt is the inventory level of the agent at time t after receiv-
ing shipments from upstream supplier (or from production 
for a manufacturer agent) and satisfying all downstream 
demand. 

• i Dem is the demand from downstream agent i at time tt .
• Blдt is the total backlog amount (i.e. unsatisfed downstream 
demand) by time t . 

• Shpt is the received shipment/production amount at time t . 
• Oort is total on-order amount which is the amount that 
has been ordered from the upstream supplier by time t − 1 
and has not been received. For a manufacturer agent this is 
equivalent to the in-production amount. 

We used Principal Component Analysis (PCA) to reduce the 
dimensionality of the state space for the players’ role (i.e., the 
wholesaler). We did this by frst standardizing the parameters men-
tioned above for all players and across all periods. For applying 
PCA, we used the scikit-learn in Python [55]. Then, we performed 
hierarchical cluster analysis [36] on the scores from the emerged 
components to characterize the states of the system. 

4.3.2 Characterizing the Behavior. Hidden Markov Models (HMMs) 
are useful for characterizing sequential patterns [58] and partic-
ularly for behavioral modeling of game players [33]. An HMM is 
defned by a set of parameters (St , Ot , A, B, π ) where: 

• St is the fnite set of hidden states. 
• Ot represents the fnite set of observed outputs. 
• A is the transition probability matrix that indicates the prob-
ability of moving from one state to another. 

• B is the emission matrix (i.e., observation probability matrix) 
that indicates the probability of seeing each observation in 
each state. 

• π is the initial state probability matrix which represents 
the probability of being in a given state at the start of the 
sequence. 

We used HMM for characterizing the players’ behavior in their 
sequential decisions during their gameplay. In particular, we consid-
ered players’ order deviations from the suggested order amounts as 
the observed outputs (Ot ) of HMM. Figure 5 shows the distribution 
of players’ order deviations in the form of density curves in each 
period during the game. Our goal is to fnd the optimal sequence 
of hidden states that can best explain the observed decisions by the 
players, where the hidden states (St ) represent the players’ response 
mode at time t . 
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We adopted the approach used by prior researchers for learning 
the model parameters and fnding the optimal sequence of hid-
den states [8, 10]. According to this approach, we frst used an 
implementation of the Expectation-Maximization (EM) algorithm, 
known as the Baum-Welch algorithm [5], in Python to learn the 
HMM parameters from the players’ data. The algorithm iteratively 
re-estimates the model parameters to maximize the likelihood that 
the HMM generates the observed data. Next, using the estimated 
model parameters, we used an implementation of the Viterbi algo-
rithm [24] in Python to obtain the sequence of hidden states that 
best explain each player’s decision. The obtained sequence is a list 
of labels representing the response modes of players at each period 
that led to a specifc decision. To determine what number of hidden 
states (S) is optimal, we ran the Baum-Welch algorithm multiple 
times with diferent numbers of states. Then, we calculated the 
Bayesian Information Criterion (BIC) to identify what number of 
hidden states minimizes the BIC and maximizes the model likeli-
hood. BIC has shown to be an efective measure for calculating 
the number of states in HMM, especially when the observed data 
are independent [11]. We calculated the BIC using the following 
equation: 

BIC = −2 log Likelihood + p log(D) (1) 

where the Likelihood is the likelihood of the model given ob-
served data, p is the number of free parameters in the model, and 
D is proportional to the size of the data. The number of free pa-
rameters is the sum of the free parameters for each model com-
ponent (i.e., transition probabilities, emission matrix, and initial 
state probabilities) [43]. Figure 6 illustrates BIC scores for running 
the Baum-Welch algorithm on observed data for various numbers 
of hidden states. BIC scores suggest that considering eight hid-
den states maximizes the likelihood of the model for the observed 
players’ decisions. 

4.3.3 Analyzing Survey Responses. In our survey at the end of 
each game, we asked players about their experience (“Can you 
elaborate on how you experienced playing this game?”) and strategy 
(“What was your strategy in playing this game?”) in playing the 
game. Using Initial and Axial Coding [64], we qualitatively coded 
the open-response comments from players. This analysis served 
to triangulate the results from the aforementioned analyses. In 
particular, we frst coded players’ responses independently from 
other analyses. We then triangulated the results by linking the 
outcomes of this coding to the player types we identifed through 
HMM. We performed this process separately for the experience 
question and the strategy question. We use the results from the 
strategy question to describe player types in Section 5.2. As for the 
experience question, while we did not fnd much insight from the 
triangulation, we identifed how diferent players experienced the 
game, which we discuss in Section 6.2. 

We followed an inductive approach in our coding practice, where 
we used a combination of in vivo and constructed codes. After famil-
iarizing ourselves with the data, one researcher coded the comments 
and generated initial categories. Then, another researcher refected 
on the codes and reviewed the generated categories. Finally, we 
triangulated the generated categories across identifed player types 

(i.e., hoarders, reactors, followers). Players’ comments and gener-
ated categories are available in the supplementary materials. In 
Section 5, we refer to participant quotes as "(Player ID, gender, 
age)". For example, a female participant with age 22 and player ID 
44 would be displayed as "(PL44, female, 22)". 

5 RESULTS 

5.1 Characterizing the System 
We frst applied Principal Component Analysis (PCA) to reduce the 
dimensionality of the state space including inventory (Inv), demand 
of HC1 (DemHC1), demand of HC2 (DemHC2), backlog (Blд), received 
shipment (Shp), and on-order (Oor ) for all players and across the 
35 game-weeks they played. A scree plot of the eigenvalues (see 
Figure 7) suggested two components explain 77% of the variance 
in data with the frst component explaining 52% and the second 
component 25% of the variance. Table 2 shows the correlations 
of the principal components with each supply chain parameter. 
Component 1 shows positive correlation with backlog and on-order 
and negative correlation with demand from both health-centers. 
Therefore, an increase in Component 1 scores is indicative of a 
supply problem where players cannot satisfy demand, hence, face 
an increase in their backlog and on-order, and decrease in their 
customers’ demand. Thus, Component 1 can be considered as a 
measure of supply-side disruption. Component 2, on the other hand, 
shows positive correlation with inventory and received shipment, 
suggesting an increase in Component 2 scores is indicative of an in-
crease in the level of inventory and received shipment. Therefore, we 
consider Component 2 to be a measure of recovery after disruption 
where participants start to receive large shipments after a period 
of shortage. 

igure 7: Scree plot of eigenvalues and explained variance of 
rincipal components. The plot shows the frst and second 
rincipal components explain 77% of the variance in data. 

F
p
p

Next, we performed hierarchical cluster analysis using the scores 
from the two principal components, where three distinct clusters 
emerged. Figure 8 displays component scores and the emerged 
clusters. These clusters represent specifc states of the system that 
players experienced. We call these states stable, supply disruption, 
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Figure 5: Distribution of players’ deviation from suggested order amounts over time. At each period, the left density curve 
shows the distribution of order deviations for players in the No-Info condition and the right density curve shows the same for 
players in the Info condition. 

Figure 6: BIC score for diferent number of hidden states. 
The plot suggests that considering eight hidden states max-
imizes the likelihood of the model for our observed data. 

Table 2: Pearson correlation coefcients between principal 
component scores and each supply chain parameter. 

Inv H C1 Dem HC2 Dem Blд Shp Oor 

0.86 

-0.24 

Component 1 -0.11 -0.88 -0.9 0.89 -0.05 

Component 2 0.51 -0.38 -0.33 -0.37 0.9 

Note: Correlations greater than 0.4 or less than -0.4 are in bold. All correlations 
are signifcant at α = 0.01. 

and recovery from disruption. The stable state represents the sit-
uation where players consistently receive shipments from their 
supplier and satisfy the demand from health centers. As can be 
observed in Figure 8, supply disruption state corresponds to an in-
crease in the scores of Component 1. Therefore, in this state, players 
experience an increase in their backlog and on-order meaning they 

do not receive enough shipments from MN1 to satisfy their de-
mand. An increase in Component 1 scores also indicates a decrease 
in demand from both health centers. It is intuitive as HC1 holds a 
trustworthiness measure and orders less from players when they 
fail to deliver. The HC2 agent also slightly reduces its orders from 
players since it follows the order-up-to-level policy. Finally, the 
recovery from disruption state corresponds to an increase in Com-
ponent 2 scores, suggesting an increase in received shipments and 
inventory. 

Figure 8: Principal components and their scores. Increase 
in Principal Component 1 scores correlates with increase in 
backlog and on-orders representing a state of supply disrup-
tion. Increase in Principal Component 2 scores correlates 
with increase in inventory and received shipments repre-
senting recovering from disruption. 

To characterize the systems’ states temporally, we counted the 
number of players in each state over time. We plotted these counts 
in Figure 9. According to this plot, the majority of players experi-
ence a stable system state until Week 32. Then, the players start 
to experience the impact of disruption in Manufacturer 1 (i.e., the 
supply disruption state) starting Week 33 and until Week 36. At 
Week 37 and 38, the system transits to the recovery from disruption 



To Trust or to Stockpile: Modeling Human-Simulation Interaction in Supply Chain Shortages CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA 

state, where the majority of players start to receive large shipments 
from the recovered manufacturer. Finally, with the start of Week 
39, the system transits back to the stable state for the majority of 
players. We also noticed that the described pattern does not hold 
for a few players. For example, there are a few players who experi-
enced a supply disruption state before Week 33 or after Week 39. In 
addition, the system state for player PL77 was stable throughout 
the whole game. 3 The reason for such patterns is that players’ 
behavior also afects the state of the system. It is intuitive consid-
ering that the underlying system is a dynamic simulation where 
individuals can experience a unique trajectory depending on their 
behavior. However, the impact of the manufacturing disruption is 
so strong that the majority of players experience the supply dis-
ruption and recovery from disruption states. Therefore, we base our 
system characterization on the states realized by the majority of 
the players. 

We considered fve phases in which the system is in one of the 
described states (see Figure 9). We will use these fve phases to 
characterize the interaction of players with the simulation. We 
intentionally divided Weeks 21-32 into two phases because at Week 
28 we inform the players about the manufacturing disruption. We 
hypothesize that this information afects the players’ interaction 
even though they are still in the stable state. Next, we describe our 
characterization of the players’ behavioral responses. 

Figure 9: Count of players in each system’s states and the 
corresponding system phases based on PCA cluster analy-
sis. Each phase represents a specifc state. Note that Phase 2 
starts with Week 28 which is when MN1 is disrupted. 

5.2 Characterizing the Behavior 
We modeled an HMM with eight hidden states using the normalized 
deviations from the suggested order amounts as the observation se-
quences, where each hidden state represents a behavioral response 
mode. According to this model, we found two modes of negative 
adjustment (N1 and N2), a control mode (C), and fve modes of pos-
itive adjustment (P1, P2, P3, P4, P5). Figure 10 shows the emission 
distributions for each response mode, and Figure 11 illustrates the 

3These behaviors are attributed to the specifc decisions of players, which can be 
replicated. For example, PL77 over-ordered from the beginning and for every week 
leading up to disruption, and as a result, had enough inventory to avoid any backlog 
during the disruption period. 

transition rates of moving from one response mode to another. Next, 
we obtained the sequence of response modes that best described 
each player’s decisions by running the Viterbi algorithm over the 
observed data. We used the obtained sequences of response modes 
across all players to characterize the behavior. 

Figure 10: HMM emission distributions for deviations from 
order suggestions in each hidden state (i.e., response mode). 
Each response mode corresponds to a certain level deviation 
from order suggestions. 

Figure 11: Transition rates of the HMM hidden states (i.e., 
response modes) for all players. Each mode corresponds to 
a certain level of deviation from order suggestions. 

We analyzed all players’ sequences of response modes by com-
puting the similarities between their sequences. Our goal was to 
fnd similar patterns in the sequences of response modes to clas-
sify players into diferent types. We used the length of the longest 
common prefx (LCP) proposed by [23] as the similarity measure 
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Table 3: Contingency table of frequency of players who con-
tained each response mode in their sequences. 

Response Mode 
N2 N1 C P1 P2 P3 P4 P5 Total Player Type 

Hoarder 
(n = 56) 

Count 
Expected 

Reactor 
(n = 48) 

Count 
Expected 

Follower 
(n = 17) 

Count 
Expected 

Total 
(n = 121) 

Count 
Expected 

28 24 55 43∗ 32 41∗∗ 34 32 289 
34.4 24.7 68.9 39 29.3 31 31.6 

20 
21.2 

1∗ 
2.1 
55 
55 

29.8 289 
30 

23.1 
2∗ 

2.4 
60 
60 

19 
16.5 

0∗ 
1.7 
43 
43 

48 
46.2 
17 
4.7 
120 
120 

25 19 
19.6 

0∗ 
2.02 
51 
51 

13 20 194 
26.2 20.8 20 

0∗ 
2 
52 
52 

194 
0∗ 

2.7 
68 
68 

0∗ 
2.1 
54 
54 

20 
20 
503 
503 

Counts show the presence of each response mode in sequences of players. 
∗Chi-square test of independence shows signifcant association between player type and response 
mode at α = 0.05. 
∗∗Chi-square test of independence shows signifcant association between player type and response 
mode at α = 0.01. 

and applied agglomerative hierarchical clustering [38] on the ob-
tained similarity matrix. We found three clusters of players based 
on their sequences of response modes (see Appendix A for more 
details). We compared their response mode patterns and frequency 
of response modes in the sequences of each group to characterize 
the behavior of each type of player. Below we provide details of 
our characterization where we call these players: (1) hoarders (i.e., 
players who stockpile more frequently), (2) reactors (i.e., players 
who follow the systems’ order suggestions before the disruption 
but react to the news about the disruption and transit to other re-
sponse modes), and (3) followers (i.e., players who almost always 
follow order suggestions). Figure 12 displays the response mode 
sequences, and Figure 13 shows the transition rates between re-
sponse modes for each player type. We also qualitatively coded 
the players’ responses in our survey, asking about their playing 
strategy, and compared the codes between each type of player. In 
what follows, we characterize the behavior of each type of player 
by comparing their sequences of response modes and connecting 
them with players’ open responses. 

5.2.1 Hoarders. We call the frst group hoarders as they over-order 
more frequently. Hoarders include 46% of the players (n = 56). 
Half of the hoarders start the game in a positive adjustment mode 
(nP 1 = 19, nP 2 = 5, nP 4 = 3, nP 5 = 1), and the rest in control mode 
(nC = 27) and negative adjustment mode (nN 2 = 1). According 
to transition rates (see the left transition matrix in Figure 13), in 
general, hoarders stay in or transit to other positive adjustment 
modes with a higher probability compared to reactors. The analysis 
of response modes’ presence in player sequences also suggests that 
hoarders tend to be more frequently in positive adjustment mode of 
P1 (p = .048) and P3 (p = .002) compared to reactors and followers 
(see Table 3). This behavior is consistent with our qualitative data 
analysis, suggesting that hoarders tend to over-order. Although the 
strategy of some players in this group was to “follow suggestions” 
(n = 7), many others expressed that their strategy was to “stockpile” 
(n = 22), “keep safety stock” (n = 7), “ignore suggestions” (n = 2), 
or “adjust suggestions” (n = 2), as exemplifed by the quotes below: 

“My strategy was to stock up on the supplies for at least 
an extra month in anticipation of supply chain issues. 
The saline does not cost much compared to the revenue”– 
(PL87, female, 27) 

“Have a 2 weeks supply of spare inventory and order 
10% more than the current request volume. Ignor [sic] 
the recommended order amounts.”–(PL95, male, 33) 

The reason for such behavior can be attributed to players’ efort 
to “avoid backlog” (n = 7) or to prepare for “uncertainties” (n = 2): 

“You are punished [sic] more for backlogs than for hav-
ing excess stock on hand so I tried to have extra stock 
to avoid the punishment [sic] of backlogs.”–(PL6, male, 
30) 
“..I tried to predict what would happen in the next couple 
of weeks as the manufacturer sometimes goes down...”– 
(PL54, female, 35) 

Only a few players indicated they were “experimenting” (n = 2) 
to learn how the game works: “At frst, I was just trying to order and 
get the hang of it.”–(PL93, female, 35). 

5.2.2 Reactors. Reactors follow order suggestions, but as their 
name suggests, react to the disruption. Reactors include 40% of 
the players (n = 48). They all start the game in control mode (C) 
and stay in control mode until Week 28 where the NPC character 
informs them about the manufacturing disruption. Some of these 
players (n = 22) react to the news about the disruption and transit 
to a diferent response mode (nN 2 = 3, nN 1 = 1, nP 1 = 6, nP 2 = 2, 
nP 3 = 1, nP 4 = 8, nP 5 = 1) instantly on Week 28 (see Figure 12). 
The rest (n = 26) show this reaction at a later time during the 
disruption period. The frequencies in Table 3 do not show any 
response mode to be signifcantly more or less frequent across 
reactors. However, compared to hoarders, reactors stay in positive 
adjustment modes (specifcally P2, P3, P4) with less probability and 
move back to the control mode with a higher probability (see the 
middle transition matrix in Figure 13); indicating reactors tend to 
follow order suggestions with a higher probability. Our qualitative 
data analysis shows similar results. Reactors’ strategy was to “follow 
suggestions” (n = 15): 

“My strategy was the follow the sugesstions [sic].”– 
(PL18, female, 25) 
“..eventually I realized ordering the suggested amount 
was getting me a higher proft so I kept with that.”– 
(PL25, female, 27) 
“Looking at what we had on hand and what the trendsw 
[sic] were plus knowing there could be a supply short-
age. I realized later, just trust the software. that worked 
better”–(PL117, male, 58) 

Reactors were also trying to “keep safety stock” (n = 5), and 
“stockpile” (n = 3), however, a dominant response in their comments 
was to “balance inventory and backlog” (n = 6): 

“To minimize the losses incurred from the backlog while 
not keeping too much in the inventory...”–(PL8, male, 
29) 
“..I ordered less if I had a larger inventory, and more as 
my inventory began to dwindle, to try and balance out 
my backlog with how much I had to feed demand.”– 
(PL29, male, 22) 

Finally, an interesting fnding was the reasons provided by some 
reactors for deviating from the suggestions after the disruption, 
which implied a feeling of “regret” (n = 3): “..I should have ordered 
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Figure 12: Sequences of response modes for the three players types. Each row illustrates the sequences of response modes for 
one player. Darker shades correspond to higher level of deviation. 

Figure 13: Transition rates between response modes for the three player types. Followers stay in control mode with a high 
probability. Hoarders stay in or transit to other positive adjustment modes with a higher probability compared to reactors. 

a lot more straight away rather than wait to see how things would 
work.”–(PL42, male, 43). 

5.2.3 Followers. The last group of players comprises a small frac-
tion of the players (14%, n = 17). Followers consistently follow 
the order suggestions throughout the game and stay in the control 
mode with the highest probability compared to the other player 
types (see the right transition matrix in Figure 13). Figure 12 shows 
that only three players in only a few occurrences are in positive 
or negative adjustment modes. In addition, the results from the 
chi-squared test of independence (see Table 3) suggests that the 
frequencies of most response modes among followers are signif-
cantly less frequent, including negative adjustment modes of N2 
(p = .034) and N1 (p = .019), as well as positive adjustment modes 
of P1 (p = .003), P2 (p = .011), P3 (p = .009), P4 (p = .021), and 
P5 (p = .01). We frst suspected that followers were not engaged 
with the game and merely clicked through the experiment. How-
ever, after analyzing their interactions with the game’s interface, 
time spent making decisions, and total playtime, we could not fnd 
grounds implying that these players were not engaged. Therefore, 

we considered their play pattern to be the result of their behavior. 
We think followers are very compliant with the order suggestion 
as they believed this would be the best strategy: 

“I was following the instructions”–(PL5, male, NA) 
“I followed the system instructions and the software pol-
icy.”–(PL45, male, 39) 

5.3 Characterizing the Interaction 
We attempted to characterize the interaction of players with the 
simulation by focusing on the behavioral response modes in each 
phase of the system described in section 5.1. Our goal is to fnd how 
the system states, player types, and our implemented manipulation 
(i.e., Info vs. No-Info) afected the interaction of players with the 
system. Figure 14 illustrates the frequencies of players for each re-
sponse mode over the system phases, experimental conditions, and 
for each player type. We considered each system phase separately 
and calculated the Pearson residuals of the chi-square test to fnd 
response modes that are more/less frequent. 
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5.3.1 Phase 1. Phase 1 includes Week 21-27 of the gameplay where 
the system is stable. In this phase, both reactors and followers are in 
control mode. Therefore, we focus on and hoarders as they contain 
various response modes in their sequences (see Hoarders/Phase 1 
in Figure 14). Pearson residuals of the chi-square test suggest that 
response modes corresponding to higher deviation levels are more 
frequent among hoarders who did not receive any information on 
their supplier inventory. In particular, response modes N2 (p = .003), 
P1 (p = .032), P3 (p = .022), and P4 (p = .021) are more frequent in 
hoarders in the No-Info group and response modes N1 (p = .042), 
P1 (p < .001) and P2 (p = .012) are more frequent in the Info group. 
Although one can argue that these players were experimenting with 
the game in Phase 1, this result suggests that information sharing 
can afect the behavior of hoarders by reducing their uncertainty 
and causing them to show less deviation from the order suggestions. 

5.3.2 Phase 2. Phase 2 starts on Week 28 by delivering the news 
about the manufacturing shutdown to players and ends on Week 
32. The system is still in a stable state in this phase, and followers 
continue to stay in the control mode. Reactors start to react to 
the news about the disruption in this phase (see Reactors/Phase 2 
in Figure 14). However, this transition out of the control mode is 
not signifcant enough to place reactors more frequently in other 
response modes compared to hoarders. Hoarders in the Info group 
show P1 more frequently in their sequences (p = .013), and reac-
tors show P2 in their sequences less frequently (p = .038). The 
implication is that, to a great extent, both hoarders and reactors be-
have similarly in the face of uncertainties and regardless of sharing 
information. 

5.3.3 Phase 3. Phase 3 includes Weeks 33-36 and corresponds to 
the supply disruption state. Most players experience the impact of 
manufacturing disruption during this phase by receiving fewer 
shipments from Manufacturer 1. In Phase 3, followers continue to 
stay in the control mode. At the same time, hoarders and reactors 
show positive and negative adjustment modes in their sequences 
(see Phase 3 in Figure 14). Pearson residuals of the chi-square test 
did not suggest any signifcant association between player types 
and information sharing in Phase 3. However, this is consistent with 
our previous fnding, suggesting that both hoarders and reactors 
show the same level of uncertainty in facing disruptions regardless 
of sharing information. 

5.3.4 Phase 4. Phase 4 is a short period (Week 37-38); however, 
it marks the recovery from disruption state where Manufacturer 1 
starts sending shipments to Wholesaler 1 (i.e., the players’ role). 
Players start to reduce the backlog they carried from the supply-
disruption state. While followers are in control mode, hoarders 
and reactors show all response modes in their sequences. Pearson 
residuals of the chi-square test suggest P3 response mode to be 
signifcantly more frequent in the sequences of hoarders in the 
No-Info condition (p = .007), suggesting that hoarders tend to 
over-order even after supply disruption phase. However, a more 
interesting fnding is the P5 response mode, which is signifcantly 
more frequent among hoarders who received information on their 
supplier inventory (p < 0.001). Such behavior is unexpected for sev-
eral reasons. First, these players could see their supplier inventory, 
knowing their supplier has recovered from the disruption. Second, 

the P5 mode corresponds to the highest level of deviation from the 
order suggestions (see Figure 10). While we expected hoarders to 
tend to over-order, we did not expect such behavior among the 
group who receives information sharing and especially during the 
recovery from disruption state. 

5.3.5 Phase 5. The fnal phase starts at Week 39, where for the ma-
jority of players, the system transits back to the stable state. A few 
followers exhibit positive and negative adjustment modes; however, 
they mostly stay in the control mode. Reactors seem to show higher 
frequencies for negative adjustment modes (N1 and N2). Although 
the presence of such response modes in the sequences of reactors 
is not signifcantly more frequent than hoarders or followers, it 
suggests these players tend to under-order to reduce their excess 
inventory. Reactors in the Info condition do show signifcantly less 
frequency for P3 adjustment mode (p = .038). Interestingly, hoard-
ers in the Info condition show N1 (i.e., slight negative adjustment) 
more frequently (p = .022), but also for positive adjustment modes 
of P3 (p < 0.001) and P4 (p = .01). Hoarders continue to over-order, 
especially after recovering from uncertainties and when they have 
access to supplier inventory. 

6 DISCUSSION 
Our results demonstrated the importance of characterizing the 
human-simulation interaction for advancing behavioral modeling 
and understanding of human decision-making. In what follows, 
we describe the main takeaways from our study by focusing on 
human-simulation interaction as a modeling approach when us-
ing game-based simulation environments. We further explain the 
most important aspects of our fndings regarding the supply chain 
decisions. 

6.1 Characterizing Human-Simulation 
Interaction 

We attempted to characterize human-simulation interaction using 
the data collected from a gamette environment in an experimen-
tal study replicating a shortages scenario within a pharmaceutical 
supply chain. We also included a manipulation in our experiment 
where we shared supply chain information with some participants 
to test how information sharing afects human behavior. We fo-
cused on characterizing three main components involved in human-
simulation interaction in our work. We frst characterized the dy-
namic states of the system by using Principal Component Analysis 
(PCA) to reduce the dimensionality of the simulation and hier-
archical cluster analysis to fnd similar system states. Second, we 
leveraged Hidden Markov Models (HMM) to characterize the behav-
ioral responses of our human participants. Finally, we characterized 
the interaction of human players with the simulation by focusing 
on the behavioral responses across the system’s states and consid-
ering our implemented manipulation. Below, we describe our main 
fndings and the importance of characterizing each component. 

6.1.1 The Impact of the System. In our characterization of the sys-
tem, we found three states: stable, supply disruption, and recovery 
from disruption. Each of these states represented specifc situations 
in our supply chain simulation. While these states were mainly the 
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Figure 14: Frequency of players who contained each response mode in their sequences across system phase and experimental 
conditions. An unexpected fnding is that information sharing seems to afect the behavior of hoarders in Phase 4 where they 
show higher range of over-ordering (i.e., P5). 

result of our simulated shortage scenario, we showed how the be-
havior of individual players impacted the system state. For example, 
player PL77 never experienced the supply disruption and recovery 
from disruption states as the result of their decisions. Therefore, the 
system state afects human behavior, but players’ behavior can also 
change the system’s dynamic. Prior research provided evidence for 
similar reciprocal efects, especially in complex simulation environ-
ments where the individual decisions afect the system trajectories 
experienced by the player [70]. Gundry and Deterding [28] refer to 
such dynamics as variance, which is one of the validity issues in 
the use of games for data collection in research. Removing variance 
by adding control contradicts the dynamicity of a simulation that 
aims to model real-world phenomena. Thus, it is important to have 
a system characterization as demonstrated in this paper. It can shed 
light on how diferent players experience the system, especially 
when using games as a medium for human-simulation interaction. 

6.1.2 The Impact of Human Behavior. The main goal of many 
player modeling research is to characterize the cognitive, afective, 
and behavioral responses of human players [83]. Using HMM, we 
found diferent behavioral response modes for how much players 
deviated from order suggestions in our experiment. In particular, 
we found positive, control, and negative adjustment modes with 

diferent levels of deviations from the system’s suggestion. Such 
behavioral responses can be partially attributed to the anchoring 
and adjustment heuristics [78]. Prior research suggests humans 
make decisions by starting from an initial estimate (i.e., anchor) 
and then making adjustments for a fnal decision. The initial value 
can result from mental calculations or be suggested to the decision-
makers (similar to the order suggestions in our experiment). In 
either case, the adjustments are expected to be insufcient and the 
fnal decision to be biased toward the anchor. 

Through sequence analysis of the behavioral response modes 
for each player, we found three types of players (hoarders, reactors, 
followers) based on how they adjusted the system’s suggestions. 
In particular, hoarders showed to be more frequently in positive 
adjustment modes, while followers barely made any adjustments. 
As their name suggests, reactors reacted to the disruption news 
and made adjustments when faced with a shortage. This result is 
in line with previous work suggesting that some individuals have 
a higher tendency to hoard compared to others and that hoarding 
and panic buying are behavioral responses to scarcity [69]. We 
can also study players’ deviations from order suggestions from the 
perspective of trust in decision support recommendations. Prior 
research showed that trust plays an essential role in how humans 
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adjust recommendations of decision support agents [80]. In addi-
tion, trust is a direct output of uncertainty [15]. As a result, we 
expect deviations to be higher when players face uncertainties. In 
conclusion, we hypothesized that players deviate more from the 
system’s suggestion during the shortage compared to a normal 
situation (H1) and found support for this hypothesis among hoard-
ers and reactors. However, followers did not seem to lose trust in 
systems’ suggestions when the supply chain was disrupted. While 
further research is warranted, especially into these followers, our 
results suggest that human behavior difers. 

6.1.3 The Impact of the Manipulation. We tested the efect of infor-
mation sharing on players’ behavioral responses by giving access 
to supplier inventory to some players. We used information sharing 
as our manipulation because it is considered an important strat-
egy to mitigate disruptions and increase collaboration between 
stakeholders in supply chains [34, 84]. While there are diferent 
types of information sharing such as upstream, downstream, or ad-
vanced information on drug shortages [54], we opted for upstream 
information sharing (i.e., supplier inventory) as it was the most 
straightforward to implement in terms of system manipulation. In-
vestigating other types of information sharing is a point of interest 
in our future work. Prior work suggests information sharing helps 
reduce order fuctuations in the context of supply chains [82], and 
we hypothesized that information sharing reduces the amount of 
deviation from order suggestions (H2). While we found some evi-
dence for this hypothesis for hoarders in Phase 1 of the simulation 
(i.e., the stable state), our fndings were entirely unexpected for the 
same group of players in Phase 4, which is when the players start to 
recover from the disruption. Hoarders who received information on 
their supplier inventory were more signifcantly in a high deviation 
response mode (P5) after the disruption period than those who did 
not receive this information. 

Such over-ordering behavior can be attributed to uncertainties 
about a future shortage. In addition, in our gamette, we framed 
the disruption scenario as a manufacturing shutdown due to the 
COVID-19 pandemic. We suspect that this behavior of hoarders, 
to some extent, could be related to their personal experiences of 
shortages in real life (i.e., toilet paper) and that they overestimated 
the demand in our game. However, it is important to note that 
this behavior was especially triggered with one type of players, 
the hoarders, and only when they received information—so certain 
people are more susceptible to over-ordering in certain contexts 
than others, again highlighting how human behavior difers. Prior 
work provides examples of similar situations in which stopping 
information sharing would be more benefcial by using system 
dynamics models [85]. Future research can extend current work 
by investigating such behaviors in an experimental setting and 
considering other forms of information sharing. 

6.2 Re-instituting Human-Simulation 
Interaction 

Simulations are an abstracted version of reality [41]. However, most 
simulations are composed of a high dimensional space, especially 
when they are a model of complex systems such as supply chains. 
We showed how to reduce the dimensionality of a simulation by 
characterizing its diferent states. However, one might wonder why 

we need to characterize a simulation in the frst place, especially 
one that we developed because we should be fully aware of its 
design. The answer is that we design simulations with predefned 
processes that can generate unexpected dynamics. Whether we 
model real-life processes (e.g., system dynamics), the fow of events 
or entities (e.g., discrete event simulation), or individuals’ behav-
iors (e.g., agent-based simulation similar) [41], we cannot easily 
predict the generated dynamics of any of these simulations due 
to their high dimensionality. The emerged states from our system 
characterization refect the generated dynamics resulting from our 
simulation’s predefned processes. In particular, we did not design 
our simulation with the stable, supply disruption, and recovery from 
disruption states. These states are the outcomes of the fow of prod-
ucts within our system, summarizing what happened at specifc 
points in time. Our results indicate that such characterizations are 
useful for making sense of the players’ behavior and their interac-
tion with the system. 

We used games as a medium for involving humans in the sim-
ulation. Games are complex systems and can generate a range of 
experiences that result in diferent behaviors. When coupled with a 
dynamic simulation, games can become even more complex, present 
cognitive overload, or introduce learning efects [28]. We have evi-
dence for such complexities in our experiment where some players 
expressed “frustration” (n = 10) because of the game dynamics. 
Others “experimented” (n = 6) with the game to learn how it works. 
However, not all of our players shared the same experience. Others 
thought the game was “easy” to understand or control (n = 16). The 
reason for such diferent experiences lies within how diferent play-
ers play a game. From the perspective of Triadic Game Design [31], 
players play a game diferently because of how they relate to the 
game (Reality), how they make sense of the game (Meaning), and 
how they play the game as players (Play). These are all reasons 
to avoid simplifying human behavior when modeling with data 
collected from game-based simulation environments. Although this 
has been the focus of player modeling for years, our goal is to shift 
the focus to how the interaction of humans with the environment 
forms human behavior. Therefore, when modeling player behavior, 
we need to consider the dynamic nature of the system as well as 
the intended manipulations. 

Manipulating the context to test hypotheses is one of the ap-
peals of the use of game-based simulation environments [44, 47]. 
Gundry and Deterding [28] explained how any manipulation might 
result in unexpected interactions and emergent efects on player 
experience. Therefore, testing the efect of such manipulations in a 
dynamic environment may not be as straightforward. We showed 
how characterizing the interaction between players and the system 
allows us to investigate the efect of manipulations. Our proposed 
approach is one way to extract useful information from game-based 
simulation environments. It requires (1) characterizing the under-
lying simulation, (2) characterizing behavioral responses, and (3) 
characterizing the interaction between humans and the simulation 
while considering the manipulations. One can extend each step 
or use alternative techniques. For example, future research can 
further scrutinize the system characterization by decomposing the 
simulation into components, such as decomposing it into (1) the 
consequences of predefned processes in the simulation and (2) the 
dynamic changes of the system as the result of human behavior. For 
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instance, in our characterization of the system states with PCA, a 
few players were characterized with a supply disruption state before 
the actual disruption period (i.e., before week 28). While the supply 
disruption states before and after week 28 share similar characteris-
tics, they result from diferent dynamics. A decomposition allows 
us to better understand these observed outcomes by diferentiat-
ing the states that may result from diferent dynamics. Alternative 
techniques to PCA such as Koopman Mode Analysis (KMA) and 
Dynamic Mode Decomposition (DMD) can also be considered, es-
pecially because these techniques are well-suited for characterizing 
temporal data [32]. 

Similarly, one can further scrutinize the characterization of play-
ers’ behavior by analyzing observable responses (e.g., in-game ac-
tions) and non-observable responses (e.g., mental models, strate-
gies, belief updates). In their review of player modeling literature, 
Snodgrass et al. [66] point to various techniques for modeling 
player actions (i.e., observable), as well as afective states (i.e., non-
observable). Deciding on which technique to use depends on the 
research question and the type of data available. We used HMM and 
sequence analysis, along with triangulating open response com-
ments, as they suited our research question (i.e., hoarding in the 
context of drug shortages) and the sequential nature of decisions 
in our experiment. However, future research can leverage other 
techniques, such as inverse Bayesian inference for inferring behav-
ioral tendencies [65]. Alternatively, it is possible to complement 
behavioral data with biometric data, and apply Partially Observable 
Markov Decision Process (POMDP) and Bayesian belief updates as 
demonstrated by Chen et al. [13]. 

6.3 Limitations 
We recruited online participants who did not necessarily have 
knowledge of supply chains. Therefore, some of the behaviors we 
observed could be associated with participants’ lack of knowledge 
about how supply chains work. In our future studies, we plan to 
recruit supply chain experts and students with knowledge of supply 
chains to test the diferences in their behavior. We also identifed 
14 players who were extreme outliers in their ordering decisions. 
While we decided to exclude these players from our analyses, their 
ordering strategy can be considered optimal under certain con-
ditions. For example, some of these players ordered very large 
quantities and stopped ordering in subsequent weeks. Previous 
work also refers to situations in which the optimal ordering policy 
is to order one large quantity and then stop ordering for the subse-
quent periods [35]. To scrutinize such behaviors, future research 
can focus on using methods that are robust to outliers [12, 59]. 

We also acknowledge that the diference between inventory and 
backlog cost in our simulation could have triggered the hoarding 
behavior in our participants. Players realized that facing backlog 
could cost them ten times more than holding extra inventory. We 
also only focused on deviations from order suggestions and did not 
include players’ allocation decisions to reduce the complexity of our 
current analyses. Future research should analyze multi-dimensional 
decisions while characterizing human behavior in their interaction 
with the simulation. Finally, generalizing fndings from game-based 
environments always requires certain scrutiny, especially given the 
inherent complexity of conducting research with games [28] that 

we just discussed. However, research has demonstrated that human 
behavior is by and large similar in games or virtual environments 
versus the real world [7]. Additionally, our work is based on [47] 
where the gamettes methodology was validated with regards to the 
established Beer Game. 

7 CONCLUSION 
In this paper, we proposed an approach for characterizing human-
simulation interaction when using game-based simulation envi-
ronments. We described how to characterize (1) the system state 
of the dynamic simulation environment, (2) behavioral responses 
from humans interacting with the simulation, and (3) characterizing 
the interaction by analyzing behavioral responses across system 
states. We provided empirical results from applying our approach 
to an experimental study on drug shortages in the context of supply 
chains. We found diferent player types (hoarders, reactor, follower) 
and showed how information sharing could exacerbate hoarding 
behavior after a period of shortage. Our work helps advance human-
simulation interaction in characterizing diferent aspects of such 
environments and sheds light on the role of human behavior and 
decision-making. The latter is pertinent for addressing real-world 
problems because just as new drug shortages are bound to hap-
pen again, one and a half years from the start of the COVID-19 
pandemic, people are stocking up on toilet paper again [72]. 
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A OPTIMAL NUMBER OF CLUSTERS FOR 
CLASSIFYING PLAYERS 

To determine the optimal number of clusters for classifying players 
into diferent types, we frst calculated the total within-cluster 
sum of square (WSS) and average silhouette width of observations 
for diferent values of k [39]. While WSS suggested three clusters 
are optimal (see Figure 15), silhouette measure suggested a two 
clusters solution (see Figure 16). We also visually investigated the 
dendrogram of hierarchical cluster analysis (see Figure 17) and 
explored the player types with two and three clusters. Finally, We 
decided to choose k = 3 as our optimal number of clusters as three 
clusters provided a better representation for diferent behaviors 
(see Figure 12). 

Figure 15: Total within-cluster sum of square (WSS) calcu-
lated and plotted for diferent number of clusters. The plot 
suggests k = 3 is optimal. 

Figure 16: Average silhouette width calculated and plotted 
for diferent number of clusters. The plot suggests k = 2 is 
optimal. 
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Figure 17: Dendrogram representing the arrangement of 
players within each cluster and their relative distance ac-
cording to hierarchical cluster analysis. 
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