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Figure 1: BIGexplore framework overview: (a) A user is searching for a chair design with an initial design objective. BIGexplore 
predicts the user’s target chair; (b) The user updates the design objective after seeing the initial target chair. BIGexplore detects 
the user’s target change point; (c) BIGexplore predicts the user’s newly refned design objective. 

ABSTRACT 
The Bayesian information gain (BIG) framework has garnered sig-
nifcant interest as an interaction method for predicting a user’s 
intended target based on a user’s input. However, the BIG frame-
work is constrained to goal-oriented cases, which renders it difcult 
to support changing goal-oriented cases such as design exploration. 
During the design exploration process, the design direction is often 
undefned and may vary over time. The designer’s mental model 
specifying the design direction is sequentially updated through the 
information-retrieval process. Therefore, tracking the change point 
of a user’s goal is crucial for supporting an information exploration. 
We introduce the BIGexplore framework for changing goal-oriented 
cases. BIGexplore detects transitions in a user’s browsing behavior 
as well as the user’s next target. Furthermore, a user study on BIGex-
plore confrms that the computational cost is signifcantly reduced 
compared with the existing BIG framework, and it plausibly detects 
the point where the user changes goals. 
∗Co-frst author. 
†Corresponding author. 
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1 INTRODUCTION 
Information exploration is a prerequisite for efective design de-
cision making [7]. In the early phase of a design, designers focus 
on acquiring the design information to gain inspiration or develop 
a design [4]. In particular, designers look for images that provide 
information such as market trends or competing products to de-
termine the overall design direction [12]. Information exploration 
during the design process is used to determine that the design direc-
tion consists of not only of goal-oriented actions, such as looking 
for a specifc target direction, but also of sequentially connected 
actions for specifying the target direction(s) or looking for alterna-
tives. In other words, a design exploration can be understood as a 
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complex cognitive process that results in a continuous update of 
a designer’s design goals through sequential data acquisition and 
interpretation. 

Researchers have extensively studied information-retrieval pro-
cesses to support design exploration. Swire [11], C-Space [25], and 
VINS [4] provide the user with similar design information as they 
input the design features of interest. Matejka et al. [22] proposed a 
Dreamlens system that maps massive design images to the informa-
tion space with the design features as the respective axes, allowing 
designers to explore the design space more efectively. Similarly, 
Hyun and Lee [12] also provided the user with a design space that, 
with each design feature as the axes, generates a specifc design if 
the user clicks a point of interest in the design space. In the previous 
literature, the systems provided the user with design information as 
they enter the user input, making them passive learners. However, 
in design exploration, the design goal(s) may change or remain 
undefned. Therefore, the role of the exploration support system is 
to continuously update the designer’s mental model by providing 
a series of feedback based on sequential user actions to specify 
the design goal(s). However, an interaction design that updates the 
user’s mental model sequentially has yet to be realized. 

In a complex information retrieval process, the system needs to 
understand the user’s needs in real-time and provide information 
accordingly [23]. As the support system updates the user’s mental 
model, the user is provided with real-time support for browsing or 
specifying the design goals. In this sense, the interaction between 
the system and the user is crucial [3], and interaction techniques 
based on computational methods have recently attracted signif-
icant interest in the HCI community. The Bayesian Information 
Gain (BIG) framework [19] is a computational interaction design 
based on the Bayesian experimental design, which combines Bayes’ 
theorem and information theory. In the BIG framework, the system 
iteratively interacts with the user by updating its belief in the in-
formation space based on the current user action and by providing 
a view accordingly. Because these iterative processes stochastically 
quantify where the user’s intended target is and support the user 
in achieving their goal, the BIG framework has been applied to 
target navigation situations [19, 21]. The BIG framework sequen-
tially adapts itself to the individual browsing behavior of the user, 
making it suitable for the design exploration process where the 
nature of the designer’s search varies. 

However, the following limitations of the BIG framework must 
be solved to support the information exploration scenarios where 
the user does not know the location of the target and the intended 
target is changed. First, the BIG framework cannot provide real-
time feedback in a large information space, owing to an excessive 
computational burden. Although Liu et al. [21] introduced the BIG-
FileFast algorithm to solve this problem, it requires hierarchical 
data structures such as fle data. Second, in certain situations, the 
BIG framework provides discontinuous views to the user. The BIG 
framework provides the user with the next view, which is expected 
to provide the system with the maximum information on the in-
formation space as the user takes the next action. In the process 
of providing the next view, the system calculates the information 
gain (IG) of all possible views at once. Therefore, the next view, 
which is an optimal view from the perspective of the system, may 
seem arbitrary to the user, as evidenced in an in-depth interview 

conducted after the experiment by Liu et al. [19]. Third, the BIG 
framework only focuses on cases where the intended target of the 
user is single, fxed, and predetermined. There is no method in 
the BIG framework for detecting the target change point when 
the user explores another target after selecting an initial target. 
As mentioned in [20], incorporating pure exploration situations 
of changing targets or more than one target will expand the BIG 
framework into a more general framework that efciently supports 
the information exploration. 

Therefore, we introduce the BIGexplore framework, a general-
ization of the BIG framework to support the user’s information 
exploration process. The BIGexplore can provide a continuous next 
view based on the user’s search action by employing the Sequen-
tial_Search algorithm, and it incurs a low computational cost. Also, 
as illustrated in Figure 1, the BIGexplore framework can predict 
the user’s newly refned design objective by detecting the user’s 
target change point by applying the Initialize_Detect algorithm. 
The remainder of the paper is structured as follows. After a review 
of related work, the BIGexplore’s exploration scenario, interface, 
and two main algorithms are explained. We then introduce four 
diferent frameworks used in the experiments: non-BIG, BIGbase, 
semi-BIGexplore, BIGexplore. In the user study section, three dif-
ferent comparative experiments are conducted to validate the Se-
quential_Search and Initialize_Detect algorithms, which constitute 
the BIGexplore framework. Finally, the possibilities of applying 
BIGexplore to various domains as interaction designs are discussed. 

2 RELATED WORKS 

2.1 Design Exploration and Information 
Retrieval 

Several retrieval systems have been introduced in various domains 
to support designers in the early phase of design reference im-
age exploration. Swire [11] and VINS [4] have been introduced as 
graphical user interface (GUI) retrieval systems, suggesting similar 
designs to the GUI made by the user. Similarly, to support a de-
sign exploration, Sketchplore [26] generates various layout designs 
based on user sketching by inferring the design task. In industrial 
design, Matejka et al. [22] proposed a Dreamlens system that sug-
gests desk designs similar to that of the user’s interest. Dreamlens 
allows users to explore desk designs by customizing desk features. 
Son et al. [25] proposed a C-Space system that provides the most 
analogous foor plan design when the user provides the system 
with the foor plan information. Parallel design exploration systems 
have also been used in spatial designs [9]. Recent design explo-
ration support systems are designed to provide design information 
to users based on the user input. However, recent systems have 
made users passive in the sense that they are unilaterally provided 
with design information from the system. To support designers in 
exploring a massive design space for specifying the design goal(s) 
by providing real-time feedback, an interaction design that enables 
an appropriate human-system interaction is necessary. 

Similarly, Shen and Zhai [23] insisted that the information re-
trieval process should understand the user’s needs and then provide 
information through interactions with the user. Taking this a step 
further, we believe that systems that support information explo-
ration should help users reach their goals by providing interactive 
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feedback based on user input. Accordingly, numerous studies have 
been conducted by assigning diferent levels of importance to the 
information depending on the user’s exploration patterns. Fitchett 
et al. [8]’s fle navigation interface uses the AccessRank predic-
tion algorithm to highlight folders that can be the user’s target 
and suggests the expected navigation path for the target. Henda-
hewa and Shah [10] introduced a system suggesting an appropriate 
search path for the user based on the number of clicks and the 
time spent on a given web page visited by the user. Dynamic maps 
[15] were proposed to support users in exploring the image space 
by providing similar images based on the user’s panning actions. 
Besides, Sherkat et al. [24] made appropriate clusters of documents 
available to the user by providing confdence levels for the key 
terms that the user considered are important. However, informa-
tion retrieval systems that (1) predict the user’s target based on the 
user action and (2) detect the transition of the target are yet to be 
developed. BIGexplore is an information retrieval framework that 
accommodates these two features to support more efective infor-
mation exploration in the changing goals. Specifcally, by adopting 
the BIG framework, the BIGexplore framework provides the user 
with user-action-based feedback to sequentially update the user’s 
mental model, enabling the user to specify the target. 

2.2 Bayesian for Optimization 
Bayesian optimization is a design strategy for optimizing the design 
and model parameters [17]. Bayesian optimization can be conceptu-
alized as a two-fold strategy. Once an objective function is suggested 
by the system, numerical optimization is performed to provide an 
optimal point for the model parameters in the information space. In 
the HCI feld, it has been used to sequentially improve the design 
and model parameters with human(s)-in-the-loop [6, 13, 14, 16, 18]. 
It is expected to become more popular in HCI because the objective 
function defned in the information space is unknown. However, 
in situations such as design exploration where the parameter(s) to 
be optimized is(are) unclear [1], applying Bayesian optimization 
may be difcult. The BIG framework [19] is slightly diferent. The 
objective function is no longer a black box: the expected IG can be 
understood as an objective function. 

The BIG framework, based on the Bayesian experimental design 
(BED), has been introduced in HCI as a computational interaction 
design between the computer and the user with the purpose of fnd-
ing the prespecifed target. The BIG framework can be understood 
as an iterative three-step process, and the process continues until 
the user achieves their goal. The three-step process described by 
Liu et al. [19] is as follows: 

(1) The system quantitatively interprets the intention of the 
user action from a probabilistic standpoint based on the user 
behavior model, likelihood. 

(2) The system updates its belief regarding the information space 
using Bayes’ theorem. 

(3) The system presents the user with the next view under the 
maximization of the expected IG criterion. 

However, as Liu mentioned in Bi et al. [3], the BIG framework 
incurs a higher cognitive load for users, which leads researchers 
to consider more balanced interaction and shared control by lever-
aging the expected IG. A higher cognitive load occurs because the 

expected IG criterion is solely for the maximal reduction of the 
system’s uncertainty in the information space. Mathematical op-
timality does not always imply the optimality for the user. One 
of the key points to consider when applying computational tech-
niques to an interaction design is to ensure a smooth coevolution 
of the user and the system to a state of improved interaction [3]. 
Thus, in BIGexplore, the system ensures a smoother interaction 
between the human and the machine by providing the user with a 
series of user-input-dependent sequential views. BIGexplore’s Se-
quential_Search algorithm adopts the expected IG criterion from a 
restricted number of possible views that seem to be relevant to the 
current action phase of the user (a detailed explanation is provided 
in Section 3.3.1.). In other words, the system considers both the 
mathematical optimality and the current behavior of the user. Ad-
ditionally, the BIG framework sufers from a computational burden 
as the size of the information space increases. To circumvent the 
excessive computation time when applying the BIG framework 
to the fle retrieval process on a database of tree structures, the 
BIGFileFast algorithm [21] was proposed. Although it is an efcient 
fle search algorithm for hierarchical structures, the BIGFileFast 
algorithm does not suit sequential data structures as in the design 
exploration process. Finally, the BIG framework proposed by Liu 
et al. [19] and its applications [19, 21] support only goal-oriented 
cases [20], which can be defned as cases that satisfy the following 
three conditions: 

• Condition 1: The user has a prespecifed target in mind and 
knows its location in the information space. 

• Condition 2: The user looks for a single target in a given 
information retrieval process. 

• Condition 3: The target does not change in that information 
retrieval process. 

For simplicity, we defne cases that violate at least one of the 
aforementioned three conditions as changing goal-oriented cases 
in the rest of the paper. In the design exploration process, where the 
designer is in the process of exploring an unspecifed design direc-
tion, the assumption of fnding a single goal is unrealistic [27]. Even 
if the designer has the target design direction in mind, the direction 
may vary as the exploration phase continues, or the designer may 
be looking for multiple target directions. BIGexplore makes the BIG 
framework applicable to changing goal-oriented cases by applying 
our Initialize_Detect algorithm (a detailed explanation is provided 
in Section 3.3.2.) that detects changes in the exploration phase of 
the designer. 

3 BIGEXPLORE FRAMEWORK 

3.1 Overview 
In this section, we provide an overview and core of the BIGexplore 
framework. The information search scenario and the vanilla inter-
face of the BIGexplore are also introduced. As mentioned in Section 
2.2, BIGexplore adopts our newly proposed Sequential_Search algo-
rithm, a constrained version of the expected IG criterion for a con-
tinuous interaction. Moreover, by employing the Initialize_Detect 
algorithm, BIGexplore supports changing goal-oriented cases by 
initializing a belief in an information space with a uniform distri-
bution when it is determined that the user’s browsing behavior has 
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changed. The two main algorithms are described in detail in this 
section. 

3.1.1 Information Searching Scenario. BIGexplore focuses on an 
information exploration situation that is most closely related to 
the design reference image exploration. Because the user does not 
know the location of the target information in the changing goal-
oriented case, the user engages in browsing behaviors to fnd the 
target. In this process, scanning the information space at the macro 
level and refning the information at the micro level are essential 
and natural browsing behaviors. The intended target that the user 
wants to see also frequently changes during the exploration pro-
cess. Although the intended target may not be clearly defned, the 
user considers the intended target. Therefore, we hypothesized the 
following information searching scenarios in BIGexplore: 

• The user knows the intended target, although the target may 
not be clear. 

• The user cannot know the location of the intended target. 
• The user selects a target by repeating the following actions. 
– Scanning the information spaces at the macro-level. 
(i.e., Moving to another search area to fnd more informa-
tion) 

– Refning the information spaces at the micro-level. 
(i.e., Observing closely to determine whether the informa-
tion is the intended target or not) 

3.1.2 Vanilla Interface. The BIGexplore vanilla interface consists of 
three main components (Figure 2): the minimap is presented on the 
left, information space in the middle, and user command indicator 
on the right. 

Information space. The information space is where the infor-
mation exploration process is performed. In general, the user cannot 
specify the location of the target in the information retrieval. The 
information space of BIGexplore is randomly distributed without a 
specifc dimension. If there are dimensions that can map informa-
tion to a specifc location within a space, the user can determine the 
approximate target location. For example, suppose that chair im-
ages are mapped according to the main color in a three-dimensional 
space composed of three RGB axes. If the intended target is a blue 
chair, the user is more likely to conduct the exploration action only 
in the area where the blue value is high. Thus, the system can more 
easily predict the target of the user. In other words, if a dimension 
exists in the information space, the user’s searching action is mainly 
performed on the target location; thus the BIG framework performs 
a biased update. The BIG framework can be evaluated better than 
the actual performance owing to biased updates. This means that 
it is difcult to accurately analyze how well the BIG framework 
predicts the user’s target only with the searching actions in the 
information space. Therefore, we designed an information space 
without dimensions in a vanilla interface (Figure 2-b). 

Four user actions. Users can conduct four search actions within 
the BIGexplore framework: zoom-in (+), zoom-out (-), pan (↔), and 
click (∗). These four actions are also provided by default in a general 
image search interface. For example, Windows File Explorer pro-
vides a zoom action using the mouse scroll and control key within 
a folder. Mackintosh’s Finder provides a panning and zoom action 

using a trackpad. Similarly, a zoom and scroll are provided for nav-
igation in the image gallery of the smartphones. When searching 
for images on the web, the user selects the desired image result 
using the scroll and zoom functions. In the image search process, a 
panning action for scanning the image information, a zoom action 
for refnement, and a click action for selecting a target are gen-
eral and fundamental actions. Therefore, BIGexplore utilizes these 
four actions in the image exploration process and highlights the 
corresponding action on the user command indicator (Figure 2-d). 

Minimap and next view. After a certain loading time, BIGex-
plore provides the user with the next view of the information space 
and updates the minimap based on the current user action. The 
minimap visualizes the system’s updated belief in the information 
space by providing diferent transparency levels (Figure 3-a). Images 
with higher probabilities are expressed more intensely. Apart from 
the transparency level, images within the next view are colored 
purple, and the others are colored light gray. Also, when BIGex-
plore provides the next view to the user in the information space 
(Figure 2-b), images included in the next view are drawn with a 
purple border, and those not included in the next view are faded 
out (Figure 3-b). The interaction process of the system providing 
the next view to the user is illustrated on Figure 3-b. An example 
of the minimap and the next view in the interface are illustrated on 
Figure 3-c. With the aid of the next view and the updated minimap, 
the user continues to explore the information space until reaches 
the target. 

3.2 Core Components 
3.2.1 Notations for the BIGexplore Framework. We now describe in 
detail how BIGexplore modifes the three-stage navigation process 
from the BIG framework [19] to accommodate information retrieval. 
First, we defne the following. 

• Θ = {1, 2, . . . , n} where n = card(Θ) represents a discrete 
information space that consists of a set of all possible im-
ages that the user can choose. θ means an image, and the 
probability that it is an intended target is P(Θ = θ ). 

• t refers to the number of iterations performed on a given 
information retrieval process. 
(t )• x , a subset of the information space Θ, is the view that 

BIGexplore provides to the user on the t-th iteration. 
• X (t ) refers to a set of all possible views x that the system 
can provide to the user as (t x ). 

• y(t ) refers to a user command made in the t-th iteration. Y (t )

refers to a set of all possible user commands that the user 
can make in the t-th iteration. 

• Y (t ) depends on card(x (t )). Input space Y (t ) = 
Range(Y (t )) ⊂ {+, −, ↔, ∗} changes sequentially, since 
some inputs are not possible given the current view x (t ) as 
follows: 
– card(x (t )) = 1: Y (t ) = {−, ↔, ∗}; 
– card(x (t )) = n: Y (t ) = {+, ∗}; 
– 1 < card(x (t )) < n: Y (t ) = {+, −, ↔, ∗}. 
(t ) (t )• yspec refers to the remaining images on the screen after y . 

3.2.2 Likelihood and Prior Modeling. Next, the browsing behavior 
of the user and the system’s prior belief in the information space, Θ, 
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Figure 2: Vanilla interface of the BIGexplore framework: (a) minimap, (b) information space, (c) design objective, and (d) user 
action. 

Figure 3: Example of the minimap and next view: (a) minimap, (b) next view providing process, and (c) actual examples in the 
vanilla interface. 

must be specifed before applying the BIG framework. Likelihood 
can be understood as the system’s interpretation of the intention 
of the user command, y(t ) [19]. The Bayes’ theorem then combines 
likelihood and prior to update the system’s belief in information 
space Θ, P (t )(Θ = θ ). The system’s initial belief on the information 
space Θ is set to a uniform distribution. The likelihood and prior 
are defned as follows: 

Modeling the user behavior (likelihood). We have modeled 
the user behavior on the BIGexplore interface into six cases 

θ (true)based on (1) whether the user’s intended target is 
in x (t ) and (2) card(x (t )) (see Equations (1)-(6) in Appendix). 
We also assumed that a user command can be performed by mistake. 

• User Model Defned by BIGexplore: 

– Zoom-in (+), zoom-out (-), pan (↔), and click (∗) are four 
possible user commands on the BIGexplore interface. 

– Click (∗) is possible regardless of the size of card(x (t )) and 
of positional relationship between (true) θ and x (t ) if the 
user wants to click the image in the current view. 

– When  t θ (true) is in x ( ), zoom-in (+) and click (∗) com-
mands are assigned with relatively high probabilities; 
zoom-out (-) and pan (↔) have relatively high probabilities 
for the opposite case. 

– The size of card(x (t )) is considered while modeling user be-
havior. When θ (true) is in x (t ), for instance, the probability 
of zoom-in (+) is directly proportional and that of click (∗) 
is inversely proportional to the size of card(x (t )), respec-
tively. However, this is the case in which the card(x (t )) is 
relatively large (Case 2). When card(x (t )) is small, there 



IG(Θ|X (t +1) = x , Y (t +1)) = IG(Θ; Y (t +1) |X (t +1) = x)Õ Õ 
= P (t )(Θ = θ , Y (t +1) = y |X (t +1) = x)×

θ ∈Θ y ∈Y (t +1) (1) � � 
P (t )(Θ = θ , Y (t +1) = y |X (t +1) = x)

log 
P (t )(Θ = θ |X (t +1) = x)P (t )(Y (t +1) = y |X (t +1) = x) 
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is an equal possibility that the user may zoom-in or click 
(Case 3). 

Our proposed user behavior modeling on the BIGexplore interface 
is as follows: 

• Case 1: When θ (true) ∈ x (t ) and card(x (t )) = 1, a probability 
of 0.9 is assigned to click (∗). A probability of 0.05 is assigned 
to both (-) and pan (↔) actions, respectively (Equation (1) in 
Appendix). 

 Cases 2, 3: When (true)  (t ) and 1  (t θ x < card x )• ∈ ( ) < n, 
two diferent modelings are considered based on the size 

of card )(x (t ). The probability card (t ))−1 (x of zoom-in (+) is n 
proportional to the size of card(x (t )) and the other actions 
are assigned an equal probability of n 1 card t 

      + − (x ( )) . 3n However, 
this is the case in which the card(x (t )) is relatively large 
(Equation (2) in Appendix). We considered (t card(x )) is large 

if card (x (t ))−1 n 1 card x (t )  + − ( ) . When card x (t )≥ ( ) is small, n 3n 
the user zooming in as likely as they clicking (Equation (3) 
in Appendix). 

• Case 4: When θ (true) ∈ x (t ) and card(x (t )) = n, a probability 
of 0.95 is assigned to zoom-in (+). Because x (t ) is information 
space Θ itself, a probability of 0.05 is assigned to click (∗) 
(Equation (4) in Appendix). 

• Case 5: When θ (true) < x (t ) and card(x (t )) = 1, a probability 
of 0.9 is assigned to zoom-out (-). The pan (↔) and click (∗) 
commands are understood as mistakes, and they are assigned 
a probability of 0.05 (Equation (5) in Appendix). 

• Case 6: When θ (true) < x (t ) and 1 < card(x (t )) < n, prob-
abilities of 0.45 are assigned to zoom-out (-) and pan (↔), 
respectively. Zoom-in (+) and click (∗) commands are un-
derstood as mistakes and are assigned a probability of 0.05 
(Equation (6) in Appendix). 

Interpreting user input. BIGexplore framework interprets user 
behavior in six changing goal-oriented cases. The probability dis-
tribution of the user behavior modeling represents the system’s 
interpretation of user input. For example, when card(x (t )) = n, the 
system believes that the user is most likely to zoom in (Case 4). 
If the intended target exists in the current view but card(x (t )) is 
large, the user will have the highest probability of zooming in to see 
the target larger (Case 2). On the other hand, if card(x (t )) becomes 
smaller, a high probability will be assigned to the click action (Case 
3). Even when card(x (t )) is 1 and the target exists in the view, our 
model considers a mistake and does not give a probability of 1 to 
the click action (Case 1). The system believes that the user would 
want to zoom-out to see other images if the user’s intended target 
is not in the current view, and there is only one image (Case 5). If 
there are multiple images in the view without the target image, the 
system predicts a high probability of moving to another search area 
by zooming out or panning action (Case 6). In summary, BIGexplore 
considers card(x (t )) and the user’s mistake command for a proper 
interpretation of the user input in a large information space. 

3.2.3 Expected Information Gain. By using the updated belief of 
the system on information space Θ at iteration t and the like-
lihood P(Y (t +1) |X (t +1) = x , Θ = θ ), the system calculates ex-
pected information gain IG(Θ|X (t +1) = x , Y (t +1)) for all x ∈ X (t +1) 
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and provides the user the view x (t +1) at iteration (t + 1), which 
is the maximizer of IG(Θ|X (t +1) = x , Y (t +1)). The defnition of 
IG(Θ|X (t +1) = x , Y (t +1)) is as follows: 

By defnition, IG(Θ|X (t +1) = x , Y (t +1)) is the average degree 
of dependence between two random variables Θ and Y (t +1) when 
x is presented as a view to the user at iteration (t + 1). From the 
perspective of the information retrieval process, IG(Θ|X (t +1) = 
x , Y (t +1)) can be understood as the average decrease in the system’s 
uncertainty in the information space at iteration (t +1). One thing to 
note in the calculation of IG(Θ|X (t +1) = x , Y (t +1)) is that P (t )(Θ = 
θ |X (t +1) = x) = P (t )(Θ = θ ), considering the workfow of the BIG 
framework that provides x (t +1) using P (t )(Θ = θ ). 

3.3 Core Algorithms and the Hyperparameters 
3.3.1 Sequential_Search Algorithm. We propose the Sequen-
tial_Search algorithm (Algorithm 1) that mediates the excessive 
cognitive load on the user and enables a continuous interaction 
between the user and the computer to increase the efciency of the 
information retrieval process. The previous BIG framework [19] 
provides the next view with the maximum IG among all possible 
views, X (t ). Thus, the next view may not be continuous to the 
user’s search action. Furthermore, the next view can be interpreted 
as arbitrary from the user’s point of view. To solve this problem, 
the Sequential_Search algorithm aims to provide a view with the 
maximum IG while continuous to the search action. To this end, the 
Sequential_Search algorithm provides the next view in two steps: 
1) Create a set of views (X (t +1)) that is continuous to the user’s 

(t )search action by considering y(t ) and y ; 2) In X (t +1), a view spec 

with the largest expected IG is provided as the next view, (x (t +1)). 
In the Sequential_Search algorithm, X (t +1) is dependent on the user 

(t )commands y(t ) and yspec . Specifcally, the Sequential_Search al-
gorithm constrains the support X (t +1) of the objective function 
IG(Θ|X (t +1) = x , Y (t +1)) based on the action behavior of the user 
at iteration t as follows: 

• When the user zooms in, considering the user’s convergent 
(t )search behavior to take a detailed look at the subset yspec 

(t ) (t )of x , X (t +1) is defned as the set of all the subsets of yspec 
(t )of size card(y ) − 1.spec 

• When the user zooms out, considering the user’s divergent 
search behavior of taking a look at another region of informa-

(t )tion space Θ including x , X (t +1) is defned as the set of all 
(t )the subsets of the information space Θ of size card(y )+1spec 

(t )having yspec as a subset. 
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• Because pan (↔) and click (∗) can be understood as actions 
in which the user’s active intervention takes place, (t     )

y  spec is
given as x (t +1) when the user pans or clicks. 
– Unlike the zoom-in (+) and zoom-out (-) actions where a 

subset (t  of )
x (t ) or x (t ) itself is a subset of yspec , the user 

can pan to any region of the information space Θ. 
– Clicking particular image on x (t ) excludes all the images 
of (t  )

x (t ) except for yspec . 

� 

Algorithm 1: Sequential_Search 

Input: y(t ),y(t ) = {c1, . . . , ck }, P(Y (t +1) |X (t +1) = x , Θ = spec 
θ ), P (t )(Θ = θ )

(t +1)Output: x 
1 n := card(Θ)

(t )
2 k := card(y )spec 

(t )3 if y = + then 
4 if k=1 then 
5 X (t +1) = {{ck }} 

6 else 
(t )

7 Set of all possible k Ck−1 = k subsets of yspec of 
images of size k − 1, 

8 which is X (t +1) = {{c1, . . . , ck−1}, . . . , {c2, . . . , ck }} 

(t )9 else if y = − then 
10 if k=n then 
11 X (t +1) = {{c1, . . . , ck }} 

12 else 
13 Set of all possible n−k C1 = n − k sets of size k + 1 

(t )having yspec as a subset, which is 
X (t +1) = {{c1, . . . , ck , c1 

∗}, . . . , {c1, . . . , ck , c 
∗ }},n−k 

where {c1 
∗ , . . . , c ∗ } = Θ ∩ y(t ) 

�c 
n−k spec 

14 else 

X (t +1) (t )
15 = {y }spec 

16 x (t +1) := argmax IG(Θ|X (t +1) = x , Y (t +1))
x ∈X (t +1) 

3.3.2 Initialize_Detect Algorithm. In changing goal-oriented cases, 
Compared compared with goal-oriented cases where user com-
mands, except user inputs made by mistake, converge to the user’s 
intended target θ (true) for all t , user commands show not only con-
vergent search behavior to a particular image i but also divergent 
search behavior that explores the information space Θ in changing 
goal-oriented cases. The main problem in adopting a goal-oriented 
framework to changing goal-oriented cases as an interaction design 
between the user and the computer is updating the system’s belief 
on information space Θ: there exist cases where P (t )(Θ = θ ) "gets 
stuck". "Getting stuck" refers to situations where Bayes’ theorem 
does not update P (t )(Θ = θ ) well when the behavior of the user 
changes from convergent to divergent search process. Then the 
minimap will highlights the regions in which the user was previ-
ously interested. Therefore, we introduce our novel Initialize_Detect 

algorithm (Algorithm 2) detecting the changing point of the user’s 
behavior from the convergent to divergent phase. BIGexplore ini-
tializes the system’s belief on the information space Θ to a uniform 
distribution when the Initialize_Detect algorithm detects the case 
for a specifed number of times, β . The Initialize_Detect algorithm 
believes that user behavior has changed from the convergent to 
divergent search phase in terms of two cases: consequential and 
behavioral aspects. In Algorithm 2, max_prob_which refers to the 
set of image(s) on the information space Θ with the maximum 
P (t −1)(Θ = θ ). The consequential and behavioral aspects are as 
follows: 

t (1) Consequential aspects: Cases where the set of images ( )
yspec 

that the user has seen at the t-th iteration does not contain 
any images in max_prob_which; 

(2) Behavioral aspects: Cases where x (t ) contain at least one of 
the images in max_prob_which but the user zooms-out or 
pans. 

Algorithm 2: Initialize_Detect 
(t ) (t ) (t )Input: y ,yspec , P

(t −1)(Θ = θ ), x 
Output: count_detect (True or False) 

1 max_prob_which := {θ ∈ Θ | argmax P (t −1)(Θ = θ )} 
θ ∈Θ 

(t ) (t )2 if y = + or y = ∗ then 
(t )

3 if max_prob_which ∩ yspec = ∅ and 

card(max_prob_which) < α × card(Θ) then 
4 count_detect = True 

5 else 
6 count_detect = False 

7 else 
(t )8 if max_prob_which ∩ x , ∅ and 

card(max_prob_which) < α × card(Θ) then 
9 count_detect = True 

(t )
10 else if max_prob_which ∩ yspec = ∅ and 

card(max_prob_which) < α × card(Θ) then 
11 count_detect = True 

12 else 
13 count_detect = False 

3.3.3 Hyperparameters in the BIGexplore (α , β). In the proposed 
BIGexplore framework, we set the hyperparameters α and β as 0.2 
and 3, respectively. First, α is a hyperparameter used to determine 
whether the card(max_prob_which) value is signifcant in the in-
formation space. In the Initialize_Detect algorithm (Algorithm 2), 
card(max_prob_which) < α × card(Θ) indicates when the number 
of images currently having the maximum P (t −1)(Θ = θ ) is less than 
α × card(Θ). If the information space with card(Θ) = 200 is in 
a uniform distribution, card(max_prob_which) = card(Θ) means 
that the user’s target is not specifed at all. If α becomes too large, 
the Initialize_Detect algorithm will determine that the user’s search 
phase changes even when there are a lot of max_prob_which. Con-
versely, if α is too small, the conditional statement is passed only 
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when card(max_prob_which) is extremely small. By setting α to 
0.2, we defne a situation in which the user’s target is specifed 
only when card(max_prob_which) was less than 20% of the entire 
information space. 

Next, for predefned β as 3, the BIGexplore framework initial-
izes the information space when the user changes the searching 
behavior three times. The frst and second behaviors are assumed 
to involve leaving the area the user is currently focusing on. The 
behaviors after the second behavior are assumed to explore the next 
target. If β is 1 or 2, the framework is more likely to perform an 
incorrect initialization by reacting sensitively to the user’s mistaken 
action. If β is 4 or more, the initialization may not be performed 
yet despite moving to the next target in the information space with 
card(Θ) = 200. To avoid such situations in information spaces with 
card(Θ) = 200, we set β to 3. 

4 USER EXPERIMENT 
Three diferent experiments were conducted to validate the two 
main algorithms (Sequential_Search, and Initialize_Detect) which 
comprise the BIGexplore framework in the changing-goal oriented 
case. Table 1 shows the conditions of each experiment briefy. The 
task and frameworks of each experiment are described in detail in 
the subsequent sections. All the experiments were conducted web-
based system with the vanilla interface (Client framework: vue.js, 
hardware: Windows OS with an Intel® CoreTM i9 11900KF(3.5GHz), 
128GB of RAM; Monitor: 24 Inch, 144 Hz, FHD; Server framework: 
Python fask server; Hardware: Linux OS with an Intel® CoreTM 
i7-7700 CPU, 64 GB of RAM). 

4.1 Experiment Design 
4.1.1 Frameworks to compare. Four diferent frameworks were 
used in the experiments (Table 2): non-BIG, BIGbase, semi-
BIGexplore, and BIGexplore. We implemented the original BIG 
framework of Liu et al. (named BIGbase) [19]. The BIGbase frame-
work, without the application of any algorithms proposed in this 
study, only shared the user behavior modeling. BIGbase and semi-
BIGexplore were compared in Experiment 1 to validate the perfor-
mance of the Sequential_Search algorithm. Semi-BIGexplore used 
only the Sequential_Search algorithm, and BIGexplore used both 
algorithms. These two frameworks were compared in Experiments 
2 and 3 to validate the performance of the Initialize_Detect algo-
rithm. Non-BIG is a simple zoom-and-pan search framework that 
does not provide a BIG update. The non-BIG framework was also 
compared with the proposed BIG frameworks (semi-BIGexplore, and 
BIGexplore) throughout the experiments. 

4.1.2 Experiment Seting. Twenty-one participants (Aдemean =26.7; 
Aдemin =23; Aдemax =37; 12 males and 9 females) participated in 
the experiments. All the participants had normal or corrected-to-
normal vision. The experimental procedure was conducted in two 
parts. First, the three experiments (Table 1) were conducted us-
ing BIGexplore, semi-BIGexplore, and BIGbase. Second, after three 
months, we conducted the three experiments again using non-BIG 
with the same participants to analyze the efect of the BIGexplore 
and semi-BIGexplore. Each experiment was fnished when the user 
found all of the correct answers without a time limit. Every par-
ticipant was instructed to participate in all three experiments, and 

no dropouts occurred, except for fve participants who quit the 
task of fnding the target images in Experiment 1 using BIGbase. To 
minimize the ordering efects, the order of the experiments, frame-
works, datasets, and design briefs were randomly assigned. The 
target images were also randomly determined from all possible im-
ages. Each time the participants completed a given task using one of 
the frameworks, they participated in a NASA-TLX and satisfaction 
survey. In addition, an in-depth interview was conducted before 
the end of each experiment. The experiments took an average of 
1.5 h per participant. 

4.1.3 Experiment Objective. As shown in Table 1, three changing 
goal-oriented cases were designed. The objectives of the three ex-
periments were as follows. 

Experiment 1. Three diferent frameworks were compared in 
Experiment 1: semi-BIGexplore, BIGbase, and non-BIG (Tables 1 and 
2). This experiment aims to determine how the Sequential_Search 
algorithm afected the user experience and task performance in 
the prespecifed single-target search scenario. Participants were 
asked to fnd the correct SIGCHI logo from among 13 diferent 
images in the information space (Figure 4-a). A relatively small in-
formation space of card(Θ) = 13 was considered to enable BIGbase 
to provide real-time feedback. When card(Θ) > 13 was without 
the Sequential_Search algorithm, the loading time exceeded 24 s, 
making BIGbase an extremely inefcient system (Figure 5). There-
fore, we made modifcations to the SIGCHI logos, except for that in 
the answer, to encourage users to actively explore the information 
space (Figure 4-a). 

Experiment 2. In Experiment 2, we aimed to evaluate the 
impacts of the Initialize_Detect algorithm. Thus, a prespecifed 
multiple-target search scenario was designed to observe whether 
the Initialize_Detect algorithm appropriately detects the user’s in-
tended target by capturing the changing point of the user’s brows-
ing behavior. For the task in the experiment, participants were 
asked to fnd fve prespecifed human face images from 200 difer-
ent human face images (Figure 4-b). We used open-source image 
data from Kaggle [5], which provides various human face images of 
diferent sexes, ages, and ethnicities, to create datasets having a size 
of 200 (card(Θ) = 200). Five prespecifed human face images are 
presented on the right side of the interface: when the user clicked 
the answer, a red border was drawn around the image in the infor-
mation space, and the word "Find" was written above the answer 
on the right. 

Experiment 3. In Experiment 3, we assumed unspecifed 
multiple-target search scenarios in a changing goal-oriented case. 
Similar to Experiment 2, this experiment’s objective was to evalu-
ate the impact of the Initialize_Detect algorithm on an unspecifed 
target search. The user’s browsing behavior in the information 
space was diferent from that in Experiment 2 because no specifed 
answers were provided. In Experiment 3, a design brief was given, 
and participants were asked to fnd a maximum of fve chair images 
from 200 diferent options (Figure 4-c). We used the rendered chair 
images from Aubry et al. [2] to create two diferent datasets having 
a size of 200 (card(Θ) = 200). We prepared two design briefs, each 
having an image with an empty box (in supplemented materials). 
The task of the participants were to choose a chair design that 
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Table 1: Each condition of the three experiments. 

Algorithm for Validation card(Θ) Number of Answers Frameworks to compare 

Exp.1 Sequential_Search 13 1 (prespecifed) non-BIG; BIGbase; semi-BIGexplore 
Exp.2 Initialize_Detect 200 5 (prespecifed) non-BIG; semi-BIGexplore; BIGexplore 
Exp.3 Initialize_Detect 200 maximun 5 (unspecifed) non-BIG; semi-BIGexplore; BIGexplore 

Table 2: Details of each framework used in the experiments (✓for with algorithm). 

non-BIG BIGbase[19] semi-BIGexplore BIGexplore 

BIG update - ✓ ✓ ✓ 
Sequential_Search - - ✓ ✓ 
Initialize_Detect - - - ✓ 

Figure 4: Stimuli of (a) Experiment 1, (b) Experiment 2, and (c) Experiment 3. 

Figure 5: Computation times with respect to card(Θ). 

stylistically ft the given image. The experiment ended when the 
participant found the item. 

4.2 Results and Discussion 
In this section, we provide an overview of the experiment results. 
After the overview, four main aspects of the results and real-world 
applications of BIGexplore are discussed. 

4.2.1 Overview of the Results. Both algorithms (Sequential_Search, 
and Initialize_Detect) showed a signifcant performance in the 

changing goal-orientation cases. First, the semi-BIGexplore with 
the Sequential_Search algorithm provided better results than BIG-
base in terms of the overall user experience and task completion 
time in Experiment 1 (Figures 5 and 6). In the case of BIGbase, fve 
participants quit the task of fnding the correct SIGCHI logo ow-
ing to the long system loading time and the next view providing 
time. Second, BIGexplore, which used the Initialize_Detect algorithm, 
outperformed semi-BIGexplore in terms of the target prediction. Al-
though the search patterns of the user were diferent during both 
experiments, the Initialize_Detect algorithm predicted the user’s 
intended target and the change point of the target. More details 
regarding the efectiveness of both algorithms are described in Sec-
tions 4.2.2 and 4.2.3. In Section 4.2.4, the diferences between the 
non-BIG and BIG frameworks (semi-BIGexplore and BIGexplore) 
are described. Both semi-BIGexplore and BIGexplore signifcantly 
reduced the user’s mental load and total number of commands com-
pared with non-BIG. Furthermore, we analyzed IG values for each 
framework in Section 4.2.5. This section explains how BIGexplore 
efectively reduced the uncertainty of the information space Θ. 

4.2.2 Impact of Sequential_Search Algorithm. In Experiment 1, 
the Initialize_Detect algorithm signifcantly afected the task com-
pletion time (Figure 7; MeanBIGbase = 248 s (SD = 65 s) and 
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Figure 6: User experience results from the three experiments. 

Figure 7: Iteration and task completion time results for the 
three experiments. 

Meansemi−BIGexplore = 64 s (SD = 45 s); p < 0.001). Because BIG-
base required excessive computations to provide the next view, the 
participants had difculty receiving real-time feedback. A signif-
cant loading time before the next view was provided led to more 
stress and less satisfaction when using BIGbase as an interaction de-
sign. As observed in the responses from the NASA TLX worksheets 
(Figure 6), BIGbase requires high degrees of mental demand (3.14 
(SD = 1.10) > 1.57 (SD = 0.68)) and physical burden (2.48 (SD = 1.31) 
> 1.62 (SD=0.75)) as well as duration (2.62 (SD = 0.99) > 1.71 (SD = 
1.02) for single target searche (p < 0.05). In terms of the satisfaction 
with the task completion time, semi-BIGexplore was preferred over 
BIGbase (4.19 (SD = 0.86) > 2.05 (SD = 1.00); p < 0.001). Similar to the 
survey results, negative feedback on BIGbase was dominant in the 
in-depth interviews. Participants P3 and P4 responded that a long 
loading time frustrated them. In addition, P7 and P8 expressed a 
decrease in satisfaction owing to the long loading time, and pointed 
out that the delay in time also afected the exploration process. Most 
of the participants were satisfed with the fast next view feedback 
of the Sequential_Search algorithm. 

The participants also revealed diferent levels of satisfaction 
with the next view. Semi-BIGexplore using the Sequential_Search 
algorithm provided a continuous view of the user’s search action, 
whereas BIGbase provided the next view considering only IG. Five 
of the participants showed frustration in using BIGbase because 
they fell into in "got stuck" situation in a particular view, which was 
not the view of the images they were interested in. "Getting stuck" 
refers to a situation in which the BIG framework does not update 
P (t )(Θ = θ ) when the intended target of the user changed. Thus, 
when a "getting stuck" occurred, BIGbase provided a fxed view 
regardless of the searching actions. The log result from P15 (Figure 
8) demonstrates this case. In the in-depth interview, P14 responded 
that after clicking an incorrect answer, the system continued pre-
senting the same image repetitively, regardless of their action. P21 
had difculty completing the tasks owing to the provisioning of 
views with unwanted images that were against the participant’s 
commands. The results of the survey (Figure 6) also indicate dis-
satisfaction with the way BIGbase provided feedback compared 
with that for Semi-BIGexplore (Satisfaction Q1: MeanBIGbase = 
2.33, Meansemi−BIGexplore = 3.81, p < 0.001; Q3: MeanBIGbase = 
2.19, Meansemi−BIGexplore = 3.38, p < 0.001; Q4: MeanBIGbase = 
2.57, Meansemi−BIGexplor e = 3.62, p < 0.05; Q5: MeanBIGbase = 
2.33, Meansemi−BIGexplor e = 3.57, p < 0.001). Using BIGbase, partic-
ipants had to put in more efort, but were more frustrated at the out-
come (NASA-TLX Q5: MeanBIGbase = 3.05, Meansemi−BIGexplor e 
= 2.0, p < 0.001; Q6: MeanBIGbase = 2.67, Meansemi−BIGexplor e = 
1.43, p < 0.001). 

To quantitatively compare the appropriateness of the two difer-
ent view provisioning methods, we analyzed all views provided by 
the system to determine whether the target image was within the 
view (x (t )) during the last six iterations (Table 3). The percentage 
of the last six views containing the target image was 65.4% for semi-
BIGexplore and 23.2% for BIGbase. The average sizes of the view 
during the last six iterations were 2.05 and 6.17 for BIGbase and 
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Figure 8: Log data of Experiment 1 using BIGbase (above) and semi-BIGexplore (below) frameworks. 

Table 3: Summary results of the last six views. The second 
row represents the proportion of the last six views con-
taining the target image for each framework; the third row 
shows the average view size of the last six views for each 
framework. 

BIGbase semi-BIGexplore 

Target in View 23.2% 65.4% 
View Size (Mean) 2.05 6.17 

Table 4: Results of Experiments 2 and 3 on the average of 
max_prior_ratio and target_prediction_rate 

semi-BIGexplore BIGexplore 

max_prior_ratio 2.6% 49.1% Exp.2 
target_prediction_rate 11.4% 65.7% (6.6%) 

max_prior_ratio 7.2% 47.3% Exp.3 
target_prediction_rate 18.6% 68.7% (16.5%) 

semi-BIGexplore, respectively. As shown in the log results of P15 
(Figure 8), semi-BIGexplore using the Sequential_Search algorithm 
provides continuous views in terms of previous user actions and 
continuously includes the target image in the view. By contrast, 
BIGbase continuously provides the user with a view of size one 
with no target image (red boxes in Figure 8). This discontinuous 
and inaccurate provisioning of views would lead to a distrust in 
the system because the system would appear to be making a wild 
guess. In summary, the Sequential_Search algorithm contributed 
twofold to the exploration process: the task completion time and 
user experience. However, Sequential_Search ostensibly solved the 
problem of "getting stuck" by providing the next view related to 
the user’s actions. To solve the problem of updating the prior for 
changing targets, the Initialize_Detect algorithm is required for the 
BIG framework. 

4.2.3 Impact of Initialize_Detect Algorithm. Experiments 2 and 
3 were conducted to validate the Initialize_Detect algorithm by 
comparing BIGexplore and semi-BIGexplore in diferent changing 
goal-oriented settings. Despite the diferent settings, the Initial-
ize_Detect algorithm appropriately detected the user’s current tar-
get by capturing the target changing point of the user’s browsing 
behavior in both experiments. To quantify the performance of the 
Initialize_Detect algorithm, two evaluation indices were considered: 
(1) whether the probability assigned to the answer target was the 

maximum over the information space Θ when the participant had 
clicked that image (target_prediction_rate), and (2) the number of 
times the system assigned the changed target with the maximum 
probability until the participant clicked it (max_prior_ratio). The 
target_prediction_rate returned a value of "True" only if the maxi-
mum probability over the information space equaled the probability 
assigned to the current chosen target. By averaging the rate of the 
"True" count, we calculated the target_prediction_rate value in each 
framework. The max_prior_ratio represented to the number of iter-
ations between clicking the (k)-th and (k + 1)-th answers, assigning 
the largest probability to the (k + 1)-th answer image for all values 
of k = 1, 2, 3, 4. Taking Figure 9 as an example, the max_prior_ratio 
values are 4/6 and 0/7 for the two log data. 

In both experiments, the Initialize_Detect algorithm showed an 
outstanding performances in terms of the target_prediction_rate 
and max_prior_ratio (Table 4). The BIGexplore and semi-BIGexplore 
frameworks showed diferent updating behaviors for the system’s 
belief in the information space when the target image is changed 
(Figure 9). Specifcally, unlike BIGexplore that assigned the maxi-
mum probability to the next target since the system’s belief on the 
information space has been initialized, the system’s belief on the in-
formation space became stuck in the region near the previously cho-
sen target in the case of semi-BIGexplore. This indicates that a stuck 
problem occurred when exploring a changing goal-oriented case 
using semi-BIGexplore. Table 4 presents this problem. The values 
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Figure 9: Log data of experiment 2 using semi-BIGexplore (above) and BIGexplore (below) frameworks. 

Figure 10: Log data of Experiment 3 where a late initialization has occurred. 

of semi-BIGexplore in Table 4 indicate that the framework assigns 
a lower probability value to the user’s intended target more accu-
rately and more often in Experiments 2 and 3. A max_prior_ratio 
value close to 100% implies that the framework adapts appropriately 
to the change in the user’s intended target by solving the "got stuck" 
situation. In this respect, the Initialize_Detect algorithm contributes 
to an accurate BIG probability update in the changing goal-oriented 
case. The values in parentheses in Table 4 refer to the case in which 
the initialization of the system’s belief is conducted when the par-
ticipant has clicked the changed target. These are cases in which 
the prior initialization is applied a step later and a diference exists 
between the values (Experiment 2, 6.6%; Experiment 3, 16.5% in 
Table 4). The moment of initialization is considered appropriate, at 
least when it has occurred before clicking the next target. The user 
behavior in Experiment 3 may be the reason for the slightly late 
initialization (Figure 10). Unlike the prespecifed answer cases in 
Experiment 2 where the users click the target as soon as they fnd it 
in the view, in the unspecifed answer cases, the participant may not 

click the intended target immediately even if it is provided in the 
current view. In this way, the participants memorize the location 
of the target chair in their minds and explore more designs. Then, 
when the participant cannot fnd a better chair for their task, they 
selected the memorized target (Figure 10). 

4.2.4 Non-BIG vs. The Proposed BIG Frameworks. Unlike the pro-
posed BIG frameworks, the non-BIG framework provides the result 
of the user’s action input as it is. By comparing the non-BIG with 
the proposed BIG frameworks, we analyzed the contribution of 
the proposed BIG-based feedback (BIGexplore and semi-BIGexplore). 
The result of the comparison showed that the BIG frameworks 
had longer task completion time than the non-BIG. However, the 
number of user commands with non-BIG was signifcantly higher 
than those of the BIG frameworks. Specifcally, both BIGexplore and 
semi-BIGexplore feedback reduced the number of user commands 
by up to three times in the all experiments (iterations in Figure 7; p 
< 0.001). Considering that the system loading time (response time 
between server and client) was included when measuring the task 
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completion time for the proposed BIG frameworks (Figure 7), it can 
be said that the BIG frameworks assisted the users to reduce both 
mental and temporal demands during the information exploration 
process. This was supported by the in-depth interview with the 
non-BIG users, "I conducted many meaningless search actions, be-
cause I was conducting the task without the support of the system" 
(P6–P7, P10, and P20). Specifcally, in Experiments 2 and 3, where 
the information space was large, participants replied, "Unlike the 
task with the BIG framework, experiment using non-BIG is too hard 
and frustrating" (P1–P3, P6–P8, P10, P12, P15, P18, P20, and P21). 

In the survey results (Figure 6), similar to the overall in-depth 
interview, the participants answered that semi-BIGexplore and BIG-
explore were more useful than non-BIG in exploring (Satisfaction 
Q3 and Q4) and setting the search direction (Satisfaction Q5) in the 
information space. Specifcally, the participants (P1–P3, P6, P7, P10, 
P12, P13, and P15) stated that, "In Experiments 1 and 3, it was impos-
sible to determine whether the image was correct or not immediately. 
Because it was a task to consider slight diferences between images, the 
next view feedback of the BIG framework reducing the image options 
could be a signifcant support in setting the search direction." However, 
in Experiment 2, no signifcant diference was observed between 
non-BIG and BIGexplore in determining the next search direction 
(Satisfaction Q5: Meannon−BIG = 2.33, MeanBIGexplor e = 2.71, p > 
0.05). Participants (P4, P11, P14, and P17) described the reason as, 
"Experiment 2 aims to fnd the answer among 200 images, so I set the 
search direction from when I started the task. Therefore, the feedback 
(of BIGexplore) did not signifcantly afect the search direction." Un-
like in Experiment2, participants stated that their search direction 
became meaningless because there were no prespecifed targets 
(P5, P7, P10, P20, and P21) in Experiment 3. Specifcally, the target 
search process using non-BIG in Experiment 3 was overwhelming 
to the participants (P5-P7, P10, P12, P14, P17, P18, P20, and P21). 
However, unlike in Experiment 2, the participants commented that 
BIGexplore (minimap and next view) assisted them to set the search 
direction. Thus, better satisfaction results were obtained for the 
BIGexplore than for the non-BIG in exploring the information space 
in detail (Satisfaction Q4: Meannon−BIG = 2.38, MeanBIGexplore = 
3.67, p < 0.001) and choosing the next target direction (satisfaction 
Q5: Meannon−BIG = 2.38, MeanBIGexplore = 3.62, p < 0.001). In the 
NASA-TLX (Figure 6), the BIG frameworks showed better results 
than the non-BIG frameworks; however, no signifcant diferences 
were observed except for mental demand in Experiment 2 (NASA-
TLX Q1: MeanBIGexplor e = 2.476, Meannon−BIG = 3.143, p < 0.05). 
This was also found in the responses of the participants (P2, P4-P5, 
P9, P12-P15, P18, and P21). "Unlike BIG frameworks, non-BIG let 
me freely explore and investigate the information space without the 
system loading time." 

Ultimately, from the user’s point of view, the impact of BIGex-
plore’s feedback is summarized as follows: 1) It signifcantly reduces 
the user’s input actions during the information exploration process. 
2) Although inconvenient owing to the loading time, it plays a role 
in reducing the user’s mental load when the information space is 
large. 3) Specifcally, the feedback of BIGexplore has a signifcant 
impact on the user experience in exploration processes with no 
prespecifed targets. 

4.2.5 Information Gain Analysis. The uncertainty of the informa-
tion space decreased when the intended target had a high prior 
value based on a BIG update. However, because the intended tar-
get frequently changed in the changing goal-oriented case, the 
uncertainty repeatedly increased and decreased. Based on the IG 
calculation of the BIG framework [19], negative IG was calculated 
when the uncertainty of the information space increased. To ensure 
that the BIG framework to efectively reduced uncertainty (= maxi-
mizing the IG) during each iteration, the framework was required 
to detect the point of change of the intended target. To evaluate 
how the BIG framework decreased the uncertainty in the chang-
ing goal-oriented case, we calculated the average IG value of each 
framework (Table 5). The iterations of BIGexplore’s initialization 
point were excluded when calculating the averaged IG. 

Semi-BIGexplore (Experiment 1) and BIGexplore (Experiments 
2 and 3) showed the highest IG average values. To explain this 
result more clearly, we illustrate the actual graphs of uncertainty 
and IG (Figure 11). As shown in Figure 11, in Experiment 1, semi-
BIGexplore reduces the uncertainty by converging to the answer 
image. However, in the case of BIGbase, the uncertainty does not 
change signifcantly during iterations 4–8 owing to a "stuck" status. 
Non-BIG without a specifc next view requires more iterations than 
the other two frameworks because the degree of freedom is high; 
however, there are many iterations for IG = 0. As mentioned in 
BIGnav [19], the user action in this iteration is invalid for updating 
the prior because the system is certain of what users would do. 
Consequently, to fnd one correct answer in Experiment 1, semi-
BIGexplore using the Sequential_Search algorithm most efectively 
reduces the uncertainty of the information space. 

In Experiments 2 and 3, the user’s intended target changed fre-
quently. Using the Initialize_Detect algorithm, BIGexplore initialized 
the information space by maximizing the uncertainty when the 
target change point was detected. Because of the initialization, BIG-
explore could avoid a stuck situation and signifcantly reduce the 
uncertainty. As shown in Figure 12, since BIGexplore initializes 
whenever the intended target changes, the framework can efec-
tively reduce the uncertainty in other iterations; therefore, it shows 
the highest average IG value (Table 5). BIGexplore also requires 
the smallest number of iterations with IG < 0, except for the ini-
tialization, compared with the other frameworks. However, in the 
semi-BIGexplore and non-BIG graphs, the target change point was 
not clearly distinguished. The semi-BIGexplore graphs in Figure 12 
show numerous IG < 0 iterations because semi-BIGexplore does not 
initialize the information space even if the user’s intended target 
changes. In Experiments 2 and 3, the ratio of iterations with IG > 0 
among the total iterations for BIGexplore averages 88% (SD = 7%) 
and 85% (SD = 6%), and for semi-BIGexplore, averages 70% (SD = 7%) 
and 66% (SD = 6%), respectively. The diferences between the BIGex-
plore and semi-BIGexplore groups were signifcant (p < 0.001). The 
uncertainty graphs of semi-BIGexplore exhibit an overall decreasing 
trend (Figure 12); however, as indicated by the target prediction 
in Table 3, there is a high possibility that semi-BIGexplore applies 
an incorrect BIG update in the information space. From the IG and 
uncertainty analysis results, we confrmed that the Initialize_Detect 
algorithm signifcantly contributes to lowering the uncertainty of 
the information space. 
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Table 5: Average IG of all iterations for each framework. 

Information Gain Ranking: Mean (SD) 

1st 2nd 3rd 
Experiment 1 semi-BIGexplore: 0.70 (0.82) BIGbase: 0.32 (0.14) non-BIG: 0.08 (0.04) 
Experiment 2 BIGexplore: 0.43 (0.08) semi-BIGexplore: 0.20 (0.10) non-BIG: 0.06 (0.02) 
Experiment 3 BIGexplore: 0.52 (0.10) semi-BIGexplore: 0.18 (0.07) non-BIG: 0.05 (0.02) 

Figure 11: Uncertainty and IG for each iteration in Experiment 1 for P5. 

Figure 12: Uncertainty and IG for each iteration in Experiments 2 and 3 for P13 and P19. 

4.2.6 BIGexplore for Real World Applications. The BIGexplore 
framework handles changing goal-oriented cases by incorporat-
ing the Sequential_Search and Initialize_Detect algorithms to detect 
the transition in the browsing behavior of the user. Although we 
proposed a new vanilla interface for BIGexplore, all participants 
(P1–P21) answered that the image exploration method used in BIG-
explore was similar to that of the general interface. The participants 
(P1–P21) also answered that "Zoom or panning actions are essential 
for image exploration." Some of the participants mentioned the ab-
sence of a sorting/saving function (P6, P11, P14, P16–P17, and P21) 
and grid arrangement (P6, P11, P14, P17, and P21) as diferences 
with the general interface. However, these participants also stated 

that the absence of this function did not afect the search strategy 
for a given task. They replied that, even with these functions, "I 
will zoom in and out of images with zoom actions and explore desired 
information areas with panning actions." Thus, the proposed BIGex-
plore can be applied to a general information exploration scenario 
in various domains as follows: 

First, BIGexplore can support the basic image exploration process 
in an image gallery. In addition to the image galleries of smart-
phones, BIGexplore is applicable to all image gallery interface sys-
tems. For example, Zhang and Banovis [28] proposed an explo-
ration method that can validate images generated by a generative 
adversarial network (GAN) in a gallery-type interface. By using 
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their method, evaluators select photo realistically generated images 
through the zoom-in, zoom-out, and panning actions on the inter-
face. Because this process belongs to the changing goal-oriented 
case, BIGexplore can be applied to this process to predict the target 
image of the evaluator. Second, BIGexplore can be implemented 
as an information exploration support system in Windows File Ex-
plorer, as well as for an image exploration. To apply BIGexplore to 
the fle explorer system, the current zoom actions can be replaced to 
moving to the upper/lower folder for the hierarchical information 
structure. Third, by adding an information similarity model to the 
user behavior modeling, BIGexplore can also support information 
exploration in an n-dimensional space with the current zoom and 
panning actions. In this case, the mapped information may be not 
only be an image data but also clustering or text data. Finally, by 
probabilistically modeling the zooming actions of the actual camera, 
BIGexplore can predict the target vision of the user in an augmented 
reality or thermal imaging environment. By appropriately abstract-
ing and modeling for the real world application, BIGexplore can 
efectively support various changing goal-oriented cases. 

5 CONCLUSION & FUTURE WORKS 
We introduced the BIGexplore framework for the information ex-
ploration process of changing goal-oriented cases. BIGexplore has 
three distinct advantages over user experiments. First, a signifcant 
decrease in the computational cost enables the retrieval process 
by the user in a large information space. Semi-BIGexplore with the 
Sequential_Search algorithm performs better than BIGbase in terms 
of speed and user interaction. Moreover, unlike the BIGbase frame-
work, which frequently causes the user to "get stuck" in a view with 
no images of interest, our proposed Sequential_Search algorithm 
provides a continuous view to the user. Second, the BIGexplore 
framework with the Initialize_Detect algorithm detects changes 
in the user’s intended target and initializes the prior for an ap-
propriate probability update. The BIGexplore framework showed a 
signifcant search performance in changing goal-oriented cases in 
comparison with other frameworks. Third, from the user’s point of 
view, the feedback of BIGexplore helps the user avoid unnecessary 
commands in the information exploration process and reduces the 
user’s mental load. We validated how the BIG framework helps 
users in a changing goal-oriented case, along with the contribution 
of the BIGexplore in this study. 

To ensure that BIGexplore supports more diverse changing goal-
oriented cases and maximize the user experience, the following 
three points should be further studied in the future. The frst point 
is the two hyperparameters α and β . These hyperparameters af-
fect the initialization timing of the information space when the 
user’s intended target changes. Therefore, the α and β should be 
interactively changed depending on the exploration situation and 
the user’s exploration behavior for more accurate target detection. 
Second, the user behavior modeling of the BIG framework should 
include an information similarity model for a better user experience. 
If the information similarity model is added, BIGexplore can be able 
to provide a next view feedback consisting of images similar to the 
user’s intended target images. Third, a soft initialization method 
of the information space should be further studied. Currently, the 

Initialize_Detect algorithm initializes the uncertainty of the informa-
tion space to its maximum value when the user’s intended target is 
changed. However, depending on the exploration situation, even if 
the intended target is changed, information with a high prior value 
can be used as feedback in future exploration processes. Therefore, 
how to initialize the information space and how to use it as feedback 
in the exploration process should be studied in the future. Although 
our research was focused on the provisioning of a sequential next 
view and the detecting the change point of the browsing behavior, 
BIGexplore is expected to support the exploration of the user more 
efciently. We expect the BIGexplore framework to become a vanilla 
framework that aids in the information exploration processes in 
various domains. 
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A APPENDIX 

A.1 Likelihood Modeling 
• Case 1 
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