
DECEMBER 2021 | VOL. 64 | NO. 12 | COMMUNICATIONS OF THE ACM 105

Speculative Taint Tracking (STT):
A Comprehensive Protection
for Speculatively Accessed Data
By Jiyong Yu, Mengjia Yan, Artem Khyzha, Adam Morrison, Josep Torrellas, and Christopher W. Fletcher

DOI:10.1145/3491201

Abstract
Speculative execution attacks present an enormous secu-
rity threat, capable of reading arbitrary program data under
malicious speculation, and later exfiltrating that data over
microarchitectural covert channels. This paper proposes
speculative taint tracking (STT), a high security and high
performance hardware mechanism to block these attacks.
The main idea is that it is safe to execute and selectively
forward the results of speculative instructions that read
secrets, as long as we can prove that the forwarded results
do not reach potential covert channels. The technical core
of the paper is a new abstraction to help identify all micro-
architectural covert channels, and an architecture to quickly
identify when a covert channel is no longer a threat. We fur-
ther conduct a detailed formal analysis on the scheme in a
companion document. When evaluated on SPEC06 work-
loads, STT incurs 8.5% or 14.5% performance overhead rela-
tive to an insecure machine.

1. INTRODUCTION
Speculative execution attacks such as Spectre15 have opened
a new chapter in hardware security. In these attacks, mali-
cious speculative execution causes doomed-to-squash
instructions to access and later transmit secrets over micro-
architectural covert channels such as the processor cache.26

Consider “Spectre V1” (Figure 1) as an example. On mod-
ern processors, branch directions are predicted early in
the processor pipeline to enable subsequent instructions
to be fetched before the branch’s predicate resolves. In a
speculative execution attack, the attacker “mistrains” the
branch predictor to predict “taken” even if the branch predi-
cate eventually resolves to “not taken.” This means that in
between branch prediction and resolution, the program
speculatively executes down the taken (incorrect) path:
accessing a value secret potentially outside the bounds of
array1 and passing that value as the address to a second
load reading array2. For the remainder of the paper, we
will consider such speculatively accessed data to be secret.

In the context of Figure 1, the second load forms a
microarchitectural covert channel. Specifically, on modern
processors, loads result in address-dependent (and by exten-
sion secret-dependent) hardware resource usage due to
the presence of hardware structures such as cache. Thus,
an attacker that can monitor the load’s hardware resource
usage, or the program’s execution time, can use that infor-
mation to infer secret.

The original version of this paper was published in
the Proceedings of the 52nd International Symposium on
Microarchitecture (October 2019).

Making matters worse, an attacker that can freely control
off can repeat the attack with different off to leak differ-
ent secret values in the victim’s memory. Further, although
the above example covered Spectre V1, there are many other
ways to leak secret data using similar principles. For exam-
ple, by accessing secret information through other types of
processor misspeculation, or by exfiltrating those secrets
through other microarchitectural covert channels.

1.1. This paper’s defense approach
A secure, but conservative, way to block all speculative exe-
cution attacks—regardless of source of misspeculation or
choice of microarchitectural covert channel—is to delay
executing all instructions that can access a secret until such
instructions become nonspeculative. In nearly all attacks
today, this would imply blocking all loads until they are non-
speculative, which would be tantamount to disabling specu-
lative execution.

This paper proposes a principled, high-performance
mechanism that achieves the same security guarantee as the
above conservative scheme. The key idea is that speculative
execution is safe unless speculatively accessed data (secrets)
reaches a covert channel. In many cases, speculative instruc-
tions either do not have access to secrets or do not form covert
channels, and so can execute freely under speculation. For
example, the first load in Spectre V1 (Figure 1) forms a covert
channel, but that channel only leaks the attacker-selected
address &array1[off]—not the secret data stored at that
address. Thus, this load’s execution need not be protected.
Likewise, many instructions (e.g., simple arithmetic) do
not form covert channels even if their operands are secret

1 if (off < array1_size) { // mispredicts
2 secret = array1[off]; // secret accessed
3 y = array2[64 * secret]; } // secret transmitted

Figure 1. Spectre Variant 1 assuming a 64-byte cache line size.
Variables carrying potentially secret data are colored green. If the if
condition is predicted as true, then the cache line of array2 indexed
by secret is loaded into the cache (Line 3) even though both loads
are eventually squashed.

http://dx.doi.org/10.1145/3491201
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3491201&domain=pdf&date_stamp=2021-11-19

research highlights

106 COMMUNICATIONS OF THE ACM | DECEMBER 2021 | VOL. 64 | NO. 12

channel. The paper shows how this enables existing predic-
tors to stay enabled without leaking privacy, dramatically
improving performance. In the future, we expect the idea
of safe prediction to enable further innovation, that is, by
enabling the design of new predictors without fear of open-
ing new security holes. Indeed, our follow-on work uses this
idea to safely improve the performance of instructions that
create explicit channels.28

1.3. Mechanisms to quickly and
safely disable protection
Once we have mechanisms to block secret data from reach-
ing covert channels, the next question is when and how to
disable that protection, if speculation turns out to be cor-
rect. This is crucial for performance, as delaying data for-
warding longer than necessary increases the chance that
later instructions are, themselves, delayed.

STT tackles this problem with a safe but aggressive
approach, by re-enabling data forwarding as soon as data
becomes a function of nonspeculative state. For example, in
Figure 1, this corresponds to the moment when the branch
predicate resolves. This represents the earliest safe point but
is nontrivial to determine in hardware, in general. For exam-
ple, a delayed instruction’s operand(s) may be the result of
a complex dependency chain across many control flow and
speculative operations. Intuitively, determining that data is
a function of nonspeculative state would require retracing a
backward slice of the program’s execution, which is costly to
do quickly.

Despite the above challenges, STT proposes a simple
hardware mechanism that can disable protection/re-enable
forwarding for an arbitrary instruction in a single cycle,
using hardware similar to traditional instruction wake-up
logic. The key idea is that to determine whether data is a
function of nonspeculative state, it is sufficient to deter-
mine whether the youngest load, whose return value influ-
ences the data, has become nonspeculative. Checking this
condition is akin to tracking a single extra dependency for
each instruction, as opposed to performing complex back-
ward slice tracking.

1.4. Security guarantees and formal analysis
Alongside the main paper, we formally prove that STT
enforces a novel form of noninterference9 with respect to
speculatively accessed data. In a nutshell, we show that,
with STT, hardware resource usage patterns over time are
independent of data that eventually squashes. We released a
companion technical report29 with detailed formal analysis
and a security proof for this property on a processor model
implementing STT.

1.5. PUTTING IT ALL TOGETHER
Putting everything together, STT provides both high security
and high performance. It does not require partitioning or
flushing microarchitectural resources, and does not require
changes to the cache/memory subsystem or the software
stack. When evaluated on SPEC06 workloads, STT incurs
8.5% or 14.5% performance overhead (depending on the
threat model) relative to an insecure machine.

values. It is only when the secret is passed to a covert chan-
nel (e.g., the second load in Figure 1) that protection must
be applied.

To implement this idea, we present speculative taint
tracking (STT), a framework that tracks the flow of specula-
tively accessed data through in-flight instructions (similar to
dynamic information flow tracking/DIFT21) until it is about
to reach an instruction that may form a covert channel. STT
then delays the forwarding of the data until it becomes a
function of nonspeculative state or the execution squashes
due to misspeculation. To be secure and efficient, we
address two key challenges.

• Identifying what is a covert channel. First, we develop
an abstraction that indicates how and when instruc-
tions can form covert channels, so as to stall data for-
warding only when it becomes unsafe.

• Identifying what is a secret. Second, we develop a
microarchitecture that determines the earliest time
when data should no longer be considered secret, so as
to re-enable data forwarding as soon as it becomes safe.

We now describe these two components in more detail.

1.2. New abstractions for describing
microarchitectural covert channels
Covert channels come in different shapes and sizes. For
example, attackers can monitor how loads interact with the
cache,15 the timing of SIMD units,20 execution pipeline port
contention,4 branch predictor state,1 and more. To compre-
hensively block information leakage through these differ-
ent channels, it is necessary to understand their common
characteristics.

To address this challenge, the paper proposes a new
abstraction through which the covert channels on specula-
tive microarchitectures can be viewed, discovers new points
where instructions can create covert channels, and discovers
a new class of covert channels. We find that all covert chan-
nels are one of two flavors, which we call explicit and implicit
channels (related to explicit and implicit information flow,19, 22
respectively). In an explicit channel, data is directly passed to
an instruction whose execution creates operand-dependent
hardware resource usage and that resource usage reveals the
data. For example, how a load impacts the cache depends
on the load address,15 as in Line 3 of Figure 1. In an implicit
channel, data indirectly influences how (or whether) an
instruction(s) execute, and these changes in resource usage
reveal the data. For example, the instructions executed after
a branch reveal the branch predicate.4, 20 The paper further
defines subclasses of implicit channel, based on when
the leakage occurs and based on the nature of the secret-
dependent condition that forms the channel.

Key advance: safe prediction. Through its investigation of
implicit channels, the paper makes a key advance by show-
ing how to use hardware predictors safely. Spectre attacks
were born from attackers mistraining predictors to leak
secrets. Through its abstraction for implicit channels, STT
enforces a policy that prevents arbitrary predictor mistraining
from leaking any secret data over any microarchitectural covert

DECEMBER 2021 | VOL. 64 | NO. 12 | COMMUNICATIONS OF THE ACM 107

2. BACKGROUND
We now provide additional details about processor microar-
chitecture. Also see Section 1 for basics on Spectre attacks.

Out-of-order execution. Dynamically scheduled proces-
sors execute instructions in parallel and out of program
order to improve performance.11, 23 Instructions are fetched
and decoded in the processor frontend, dispatched to reserva-
tion stations for scheduling, issued to execution (functional)
units in the processor backend, and finally retired (at which
point they update architected system state). Instructions
proceed through the frontend, backend, and retirement
stages in order, possibly out of order, and in order, respec-
tively. In-order retirement is implemented by queuing
instructions in a hardware structure called the reorder buffer
(ROB)13 in instruction-fetch order, and retiring a completed
instruction when it reaches the ROB head. Instructions are
referred to by their age in the ROB, that is, if I1 precedes I2 in
fetch order, then I1 is older than I2.

Speculative execution. Speculative execution improves
performance by executing instructions whose validity is
uncertain instead of waiting to determine their validity.
If such a speculative instruction turns out to be valid, it is
eventually retired; otherwise, it is squashed and the proces-
sor’s state is rolled back to a valid state. (As a byproduct, all
instructions younger than the point of misspeculation also
get squashed.)

There are multiple types of speculation in modern pro-
cessors, associated with different instructions and events.
For example, to enable immediate fetching of instruc-
tions after a branch, that is, before the branch’s predicate
resolves, modern processors employ branch prediction.
Branch predictors are (typically) stateful structures in the
processor frontend that predict the direction of the branch
based on information such as the branch’s program coun-
ter and whether the branch historically has been taken/not
taken. If the processor backend later resolves the branch
predicate and determines the prediction to be incorrect, all
subsequently fetched instructions are squashed and control
flow is diverted to the correct path.

3. ATTACKER MODEL AND PROTECTION SCOPE
Attacker model. STT assumes a powerful attacker that
can monitor any microarchitectural covert channel from
anywhere in the system and induce arbitrary speculative
execution to access secrets and create covert channels. For
example, the attacker can monitor covert channels through
the cache/memory system,15 data-dependent arithmetic,10
port contention,4 branch predictors,1 etc.

We note that the above attacker is very strong, perhaps
even unrealistic. The goal is that through defending against
such an attacker, we will by extension defend against weaker,
more realistic attackers.

Scope: protecting speculatively accessed data. A specu-
lative execution attack consists of two components.14, 20
First, an instruction that reads a potential secret into a reg-
ister, making it accessible to younger instructions. We call
this instruction the access instruction.14 Second, a younger
instruction or instructions that exfiltrate the secret over a
microarchitectural covert channel. The access instruction is

almost always a load,15, 24 but some attacks use a privileged
register read.5

We distinguish attacks based on whether the access
instruction is doomed-to-squash (transient) or bound to
retire (nontransient). STT’s goal is to block attacks involv-
ing doomed-to-squash access instructions, as shown in
Figure 2. These attacks can access data that a correct (not
misspeculated) execution would never access, which often
results in being able to read from any location in memory.
Attacks involving bound-to-retire access instructions are
out of scope. They can only leak retired (or bound-to-retire)
register file state, not arbitrary memory, and their leak-
age can be reasoned about by programmers or compilers
and blocked using complementary techniques (e.g., Data-
oblivious ISAs27).

4. ABSTRACTION FOR COVERT CHANNELS
STT proposes a novel abstraction for covert channels (Figure 3).
In our abstraction, covert channels are broken into two
classes: explicit and implicit channels. An explicit chan-
nel, related to explicit flow in information flow,19, 22 is one
where data (e.g., a secret) is directly passed to an instruc-
tion whose execution creates operand-dependent hard-
ware resource usage and that resource usage reveals the
data. An example is a load instruction’s changes to the
cache state. An implicit channel, related to implicit flow,19,

22 is one where data indirectly influences how (or whether)
an instruction or several instructions execute, and these
changes in resource usage reveal the data. An example
is a branch instruction, whose outcome determines sub-
sequent instructions and thus whether some functional
unit is used.

We further find new ways that implicit channels can
leak, and find entirely new classes of implicit channels.
Figure 4 gives examples of “traditional” (Figure 4(a)) and
new (Figure 4(b) and (c)) channels. We denote the value being
revealed through the channel as secret. The examples assume
the attacker can monitor the cache-based covert channel,
that is, the program's memory access pattern. We note that
in many cases (e.g., Figure 4(a) and (b)), the load can be
replaced by any instruction; in particular, not necessarily

(Transient)
Covert channel

(Transient)
Access instruction

(Transient)
Covert channel

(Nontransient)
Access instruction

Start misspeculation

Start misspeculation

This paper

Instruction fetch order

Type 1:

Type 2:

Figure 2. STT’s scope is to protect speculatively accessed data from
leaking over any microarchitectural covert channel. Protecting
values that are accessed nonspeculatively is outside of scope.

research highlights

108 COMMUNICATIONS OF THE ACM | DECEMBER 2021 | VOL. 64 | NO. 12

through different effects, for example, program timing or
the fact that the load issues twice.

4.2. Explicit versus implicit branches
Second, we find that implicit channels can feature either an
explicit or an implicit branch. For example, in Figure 4(c),
there is no explicit control-flow instruction and the load
address seemingly does not depend on secret data.

Yet, there may still be an implicit channel. For example,
consider a machine that performs store-to-load forwarding.
With this optimization, the processor can forward data (rX)
directly from the older in-flight store to the younger load’s
output register (rY), as opposed to waiting for the store to
retire and accessing the cache, if the store/load addresses
alias, that is, if secret==rZ. Store-to-load forwarding thus
creates an implicit channel, as whether a cache access is per-
formed depends on the secret.

Another common technique with similar implications
is memory-dependence speculation.18 This optimization
allows a load to (speculatively) read from cache even if older
in-flight stores have unresolved addresses, that is, it specu-
lates that store-to-load forwarding will not be needed. In our
example, if the older store address later resolves and we have
that secret==rZ, the load and younger instructions will
squash, causing a similar pipeline disturbance as discussed
in Section 4.1. (Note, this is not the already known Spectre
Variant 4 (SSB) attack.12, 25 In that attack, an access instruction
reads stale data through a store bypass. Our attack is con-
cerned with store bypass used as a covert channel.)

An important observation is that hardware optimizations
such as those above can be modeled as implicit branches,
whereas explicit control-flow instructions such as branches
can be viewed as explicit branches. That is, the store-load pair
in Figure 4(c) can be rewritten as shown in Figure 6, where
the “implicit branch” direction is predicted if secret has not
yet resolved. In this sense, implicit branches may also leak
at prediction and/or resolution time (Section 4.1). For exam-
ple, memory-dependence speculation is sometimes imple-
mented with a stateful predictor called a store set predictor,6
which tries to guess when store-load pairs will address alias,
which can similarly “learn” functions of secret data.

4.3. Insights from analysis of implicit channels
Since it was proposed in the paper, the classification for

one that forms an explicit channel. Case in point, secret
is not passed directly as the load address in any of the exam-
ples, yet still leaks.

4.1. Prediction- versus resolution-based leakage
First, we find that implicit channels can leak at two
points: when a control-flow prediction is made (if any)
and when that prediction is resolved. Recall, branch pre-
diction and resolution occur in the processor frontend
and backend, respectively (Section 2). This creates new
types of leakage depending on the attacker’s capabil-
ity. In the following, consider a branch whose predicate
depends on a secret.

At prediction time, the sequence of instructions fetched
after this branch is fetched (after branch prediction but
before resolution) leaks secrets if the predictor structures
were updated based on secret information at some time in
the past. For example, if an attacker runs repeated experi-
ments and the branch predictor is updated speculatively
based on how the branch resolves, the branch predictor
“learns” the secret and will make future predictions based
on the secret.

At resolution time, the branch can also leak the secret
even if the predictor state has not been updated based on
secret data, because incorrect predictions will cause pipe-
line squashes. See the code snippet in Figure 4(b), whose
timing is shown as a function of the secret in Figure 5. If
the attacker knows the branch will predict not taken (e.g.,
by priming it beforehand15), a squash means the branch
was actually taken. The attacker can observe the squash

Explicit channel Implicit channel

Covert channel

Explicit branch Implicit branch

Prediction-based Resolution-based

a b means a is a
subtype of b

New

Figure 3. STT’s new classification schema for microarchitectural
covert channels.

(a) Control dependency: (b) Squash dep. (new): (c) Alias dep. (new):
if (secret)
load rX <- (rY)

if (secret)
rX += 64

load rY <- (rZ)

store rX -> (secret)
load rY <- (rZ)

Figure 4. Examples of implicit covert channels revealing secret.
Assume an older speculative access instruction has already
read secret into a register, for example, Line 2 in Figure 1. The
attacker can see the sequence of load addresses sent to the
memory system. For stores, we assume address translation and
other address-dependent actions occur when the store retires.
rX, rY, and rZ are registers. Each of these covert channels can be
“plugged into” existing attacks as the “Covert channel” in Figure
1. For example, we can replace Line 3 with one of (a)–(c) above.

B predicts
not taken

Load
issues

B resolves
not taken

B predicts
not taken

Load
issues

B resolves
taken
Squash!

Load
issues

secret
== 0

secret
== 1

Time

Figure 5. Resolution-based implicit channel for Figure 4(b) due to
secret-dependent pipeline squashes. When the branch (B) resolves,
it leaks the secret based on whether a squash occurs, as this causes
the younger load to execute once or twice. There is an analogous
case when the branch is predicted taken.

DECEMBER 2021 | VOL. 64 | NO. 12 | COMMUNICATIONS OF THE ACM 109

for existing attacks and a variety of hardware optimizations.
As we will see in the next sections, being able to represent
different optimizations as predictions on implicit branches
will enable STT to apply a uniform mechanism to block leak-
age through a variety of structures (e.g., branch, store set,
etc., predictors).

5. STT: DESIGN
STT “taints” secret (speculatively accessed) data as it flows
through the pipeline in a manner similar to dynamic
information flow tracking (DIFT).7, 21 The STT framework
(Section 5.1) defines which data should be tainted, which
instructions might leak it and thus should be protected,
and when protection can be disabled. STT tracks the flow
of tainted data between instructions in the ROB and auto-
matically “untaints” data once the instruction that produces
it becomes nonspeculative (Section 5.2), in contrast to con-
ventional DIFT schemes. Based on taint information, STT
applies novel protection mechanisms to block both explicit
and implicit covert channels (Section 5.3).

5.1. Framework and concepts
STT requires that the microarchitect defines what instruc-
tions write secrets into registers (access instructions, mainly
loads), what instructions can form explicit channels (trans-
mitters), and what instructions form implicit channel
branch predicates (for both explicit and implicit branches).
Finally, the architect must define the Visibility Point, after
which speculation is considered safe (e.g., at the point of the
oldest unresolved branch, or at the head of the ROB). If the
Visibility Point refers to an instruction older than an access
instruction, we call the access instruction unsafe; otherwise,
it is considered safe.

We provide guidelines for microarchitects to identify
access and transmit instructions. An instruction should be
classified as an access instruction if it has the potential to
return a secret. Except for loads, there are only a handful of
such instructions, which can be identified manually.

An instruction should be classified as a transmit instruc-
tion if its execution creates operand-dependent resource
usage that can reveal the operand (partially or fully).
Identifying implicit branches is similar: the architect must
analyze whether the resource usage of some in-flight instruc-
tion changes as a function of some other instruction’s oper-
and. This definition can be formalized by analyzing (offline)
how information flows in each functional unit at the SRAM-
bit and flip-flop levels to determine whether resource usage
depends on the input value, in the style of the OISA27 or
GLIFT22 formal frameworks. Automatically performing such
analysis is important future work.

5.2. Taint and untaint propagation
Conceptually, in each clock cycle, STT applies the following
taint rules to instructions in the ROB:

• The output register of an access instruction is tainted if
and only if the access instruction is unsafe.

• The output register of a nonaccess instruction is tainted
if and only if at least one of its input operands is tainted.

implicit channels has proven to be a robust and useful
way to represent and pinpoint the root cause of micro-
architectural attack vulnerabilities. For example, in the
NetSpectre attack,20 a secret branch predicate condition-
ally causes a SIMD instruction to be issued, which triggers
a SIMD unit power-on event. A common misconception
is that the attack root cause is SIMD unit power-on time.
STT’s abstraction shows, however, that the root cause is an
explicit branch and that “fixing” the SIMD unit does not
prevent the attack.

Even more subtly, the abstraction demonstrates and pro-
vides cases where implicit flow and privacy leakage do occur
despite not occurring according to program semantics. For
example, at the software level, neither Figure 4(b) nor (c)
would be flagged as creating covert channels. Figure 4(b)
would not be considered a channel because the load is con-
trol-and data-independent of the branch. Likewise, Figure
4(c) would not be considered a channel because, although
there is possible information flow from rX to rY due to
address aliasing, this information flow does not (seemingly)
impact the memory access pattern. Generally speaking, the
analysis shows that in advanced processors, subtle microar-
chitectural decisions that are orthogonal to program seman-
tics must be taken into account to reason about possible
microarchitectural covert channels.

Finally, the abstraction applies to a large set of micro-
architectural optimizations. For example, the representa-
tion of store-to-load forwarding and memory-dependence
speculation (Figure 6) also captures the behavior of memory
consistency speculation,8 value prediction,16 and other opti-
mizations. For reference, Table 1 specifies the channel types

store rX -> (secret)
...
load rY <- (rZ)

implIf (secret!= rZ)
load rY <- (rZ) // lookup cache

implElse
rY <- rX // forward from st. Q

Figure 6. Rewriting a store-load pair as an implicit branch. implIf
reveals a potential covert channel as a function of memory aliasing
to the older store. This occurs if the microarchitecture supports
store-to-load forwarding or memory-dependence speculation.

Channel Spectre PoC? Type Branch type

Cache timing17, 26 Spectre V115 Exp –
Execution unit timing3, 10 – Exp –
SIMD utilization NetSpectre20 Imp Exp
Port contention2 SmotherSpectre4 Imp Exp
Store-load forwarding – Imp Imp
Mem. dep. prediction18 – Imp Imp
Mem. consist. speculation8 – Imp Imp
Value prediction16 – Imp Imp

Table 1. Classifying existing attacks and covert channel-creating
hardware structures.

A channel’s Type can be either Explicit (Exp) or Implicit (Imp), c.f. Section 4.
An implicit channel’s Branch Type is likewise Exp or Imp, c.f. Section 4.2.
Attacks utilizing implicit channels may be either prediction- or resolu-
tion-time (Section 4.1); thus, we leave that field out.

research highlights

110 COMMUNICATIONS OF THE ACM | DECEMBER 2021 | VOL. 64 | NO. 12

Conceptually, the protection mechanism does not need
to reason about whether an implicit channel is caused by
an explicit or implicit branch: both types have a predicate,
and the policy with respect to the predicate is the same in
both cases. The implementation, however, must identify the
predicate. We illustrate this by showing how the STT micro-
architecture handles explicit branches.

Applying Principle #1 (prediction-based channels). STT
requires that every frontend predictor structure be updated
based only on untainted data. This makes the execution path
fetched by the frontend unaffected by the output of unsafe
access instructions. Specifically, STT passes a branch’s reso-
lution results to the direct/indirect branch predictors only
after the branch’s predicate and target address become
untainted; if the branch gets squashed before this, the pre-
dictor will not be updated.

Figure 7(c) demonstrates the effect of STT on a specula-
tive execution of the code snippet in Figure 7(a), in which the
branch B0 is mispredicted as taken. No matter how many
experiments the attacker runs, the predicted direction of the
branch B will not be a function of secret, because the branch
predictor is not updated when B resolves. As a result, the exe-
cution path does not depend on secret (top vs. bottom)—it
only depends on the predicted branch direction (left vs. right).

Applying Principle #2 (resolution-based channels). STT
delays squashing a branch that resolves as mispredicted
until the branch’s predicate becomes untainted. As a result,
a doomed-to-squash branch with a tainted predicate (such
as the branch B in Figure 7(c)) will never be squashed and
re-executed, preventing the implicit channel leak discussed
in Section 4.3. As Figure 7(c) shows, the doomed-to-squash
branch B is eventually squashed once an older (mispre-
dicted) branch with an untainted predicate squashes. Thus,
the squash does not leak any information about the branch’s
resolution. Importantly, it is safe to resolve a branch as soon
as its predicate becomes untainted, even if an older branch
with a tainted predicate has not yet resolved.

STT only increases the latency of recovering from a tainted
branch misprediction. For example, in Figure 7(b), the load
does not execute immediately after B resolves. Fortunately,
tainted branch mispredictions are only a small fraction of
overall branch mispredictions, which are infrequent in the
first place because successful speculation requires accurate
branch prediction.

Implicit branches. The paper applies STT’s principle to
secure several common microarchitectural optimizations

In the implementation, taint propagation is piggybacked
on the existing register renaming logic in an out-of-order
core. Tainting is therefore fast. By contrast, it is difficult to
propagate “untaint,” to all dependencies of an access instruc-
tion that becomes safe, in a single cycle. We address this with
a single-cycle implementation for untaint in Section 6.

Unlike prior DIFT schemes,21 STT does not require track-
ing taint in any part of the memory system or across store-
to-load forwarding. The reason is that because loads are
access instructions, the taint of their output is determined
only based on whether they have reached the Visibility Point.
That is, the output of an unsafe load is always tainted.

5.3. Blocking covert channels
Given STT’s rules for tainting/untainting data and its
abstraction for covert channels, STT blocks all covert chan-
nels by applying a uniform rule across each type.

Blocking explicit channels. STT blocks explicit chan-
nels by delaying the execution of any transmit instruction
whose operands are tainted until they become untainted.
This scheme imposes relatively low overhead because it only
delays the execution of transmit instructions if they have
tainted operands. For example, a load that only returns a
secret but does not have (transmit) a secret operand—such
as the load on Line 2 in Figure 1—executes without delay.
The load on Line 3, however, will be delayed and eventually
squashed, thereby defeating the attack.

Blocking implicit channels. STT blocks implicit channels
by enforcing an invariant that the sequence of instructions
fetched/executed/squashed never depends on tainted data.
That is, STT makes the program counter independent of tainted
data. To enforce this invariant efficiently, without need-
ing to delay execution of instructions following a tainted
branch, we introduce two general principles to neutralize
the sources of implicit channels:

• Prediction-based implicit channels are eliminated by
preventing tainted data from affecting the state of any
predictor structure.

• Resolution-based implicit channels are eliminated by
delaying the effects of branch resolution until the (explicit
or implicit) branch’s predicate becomes untainted.

The above principles can be applied to efficiently make
any hardware predictor impossible to exploit as a covert
channel for leaking speculatively accessed data.

== 0

B predicts
taken

Load M
issues

B resolves
taken== 1

Squash!

secret
== 0

B predicts
not taken

B resolves
taken

secret
== 1

Squash!

B predicts
not taken

B resolves
taken

secret
== 1

Squash!

B0
resolves

Load M
issues

B
squashes

(c) When earlier branch B0 mispredicts (left: B predicts taken, right: B predicts not taken)

(b) When earlier branch B0 correctly predicted

B0
resolves

B0
resolves

secret
== 0

B predicts
taken

B resolves
taken

secret
== 1

Time

== 0

B resolves
taken== 1

Time

B predicts
not taken

B resolves
taken

secret
== 1

Time

(a) Implicit covert channel (control/squash dep.)
B0: if (rA < X_Size){

load secret <- (&X[0] + rA)
B: if (secret)
M: load rX <- (rY)

}

B predicts
taken

Load M
issues

B resolves
not taken

Squash!

B0
resolves

B predicts
taken

Time

B predicts
not taken

B resolves
not taken

Squash!

B0
resolves

Time

branch predictor state not updated

branch predictor state not updated

Figure 7. STT executing the code in (a), which includes an untainted branch B0, an access instruction reading secret, and an implicit channel
(due to branch B).

DECEMBER 2021 | VOL. 64 | NO. 12 | COMMUNICATIONS OF THE ACM 111

instruction at ROB index 6 depends on index 5 and index 3,
index 8 depends on 6, etc. Re-traversing this dataflow graph
to propagate untaint, akin to tracing backwards slices, would
be expensive. On the other hand, the YRoT dependency chain
is relatively simple. Each instruction just tracks whichever is
the youngest load that contributes to its dependency chain
(e.g., load M2 for instructions 6, 8 and 9). When branches
B1 and B2 resolve, the Visibility Point advances to point to
branch B3 (ROB index 7). As 7 is greater than 5 (the YRoT for
the transmit instruction M3), M3 is allowed to execute at this
point. Note, the dependency chain could have been more
complex, with additional branches and arithmetic depen-
dencies separating load M2 and load M3, but this would not
change the moment that it is safe to execute load M3.

Importantly, the above scheme is only secure after apply-
ing STT’s mechanisms to block both explicit and implicit
channels (Section 5). That is, the scheme requires that r8
is not a function of speculative data at the exact moment
load M2 becomes nonspeculative. This requires that branch
B3 not be influenced by speculative data (achieved by pro-
tections for implicit channels) and that other intervening
instructions that can cause explicit channels not execute
until they are likewise safe (achieved by protections for
explicit channels).

7. FORMAL ANALYSIS/SECURITY PROOF
We formally prove in a companion document29 that STT
enforces a novel notion of noninterference: at each step
of the execution, the value of a doomed register—a register
written to by a bound-to-squash access instruction—does

that can be formulated as implicit branches, namely: store-
to-load forwarding, memory-dependence speculation,
and memory consistency speculation. In the process, the
paper details various optimizations and cases which arise
when dealing with implicit channels. In particular, whether
the explicit/implicit branch has a prediction step can be
resolved early or can be optimized in some other way. For
example, because store-to-load forwarding can only result
in two observable outcomes (issue the load or forward from
a prior store), we hide which one occurs by unconditionally
accessing the cache.

6. STT: IMPLEMENTATION
We previously assumed untaint information propagated
along data dependencies instantly. This is difficult to imple-
ment in hardware because a word of tainted data may be a
function of complex dependency chains involving many
access instructions.

A tainted register needs to be untainted once all
the access instructions on which it depends reach the
Visibility Point, that is, become safe. Our key observation
is that it suffices to track only when the youngest access
instruction becomes safe, because instructions become
nonspeculative in program order in the processor reorder
buffer (ROB). We call this youngest access instruction the
youngest root of taint (YRoT).

Determining the YRoT is done through modifications
to rename logic in the processor frontend. Specifically, the
YRoT for an instruction X being renamed is given by the
max of (1) the YRoT(s) of the instruction(s) producing
the arguments for X, if those instructions are not access
instructions; or (2) the ROB index of the instruction(s)
producing the arguments for X, otherwise. (By conven-
tion, we assume the ROB index increases from ROB head
to tail.) After renaming, the YRoT is stored alongside the
instruction in its reservation station and is conceptually an
extra dependency for that instruction. When the Visibility
Point changes, its new position is broadcast to in-flight
instructions, akin to a normal writeback broadcast, and
instructions whose YRoT is less than the Visibility Point’s
new position are allowed to execute (assuming their
other dependencies are satisfied). The entire architecture
requires modest changes to the frontend rename logic,
storage in reservation stations for the YRoT, and logic to
compare the YRoT to the Visibility Point which is compa-
rable to normal instruction wakeup logic.

Figure 8 shows an example. Assume the Spectre attack
model, that is, the Visibility Point will be set to the ROB
index of the oldest unresolved branch. The ROB contains
3 unresolved branches (B1–B3) and a transmit instruc-
tion (M3) whose operand/address r8 is a function of the
return value of two access instructions (M1 and M2). M3 is
a transmit instruction (because it is a load) and can poten-
tially leak secrets because misspeculations on branches B1
and B2 can influence the data returned by loads M1 and M2,
which in turn contribute to the address of M3 through data
dependencies.

On the one hand, the data dependency chain from load
M1 all the way to load M3 is quite complex. That is, the

branch // B1

load r1 <- (r2) // M1

add r3 <- r1 + r2

branch // B2

load r5 <- (r4) // M2

add r6 <- r3 + r5

branch // B3

add r8 <- r7 + r6

load r9 <- (r8) // M3

ROB head,
Visibility Point

ROB tail

1

2

3

4

5

6

7

8

9

Position in
ROB

YRoT

-

-

2

-

-

5

-

5

5

Transmit instruction

Figure 8. Example showing YRoT tracking showing a snapshot
of ROB state. Addition (add) instructions are used to represent
arithmetic (non-loads). If the YRoT is set to ‘-’, it means the
instruction’s youngest dependent access instruction is a part of
retired state.

research highlights

112 COMMUNICATIONS OF THE ACM | DECEMBER 2021 | VOL. 64 | NO. 12

SMoTherSpectre: Exploiting
speculative execution through port
contention. In CCS’19 (2019).

 5. Canella, C., Bulck, J.V., Schwarz,
M., Lipp, M., von Berg, B., Ortner, P.,
Piessens, F., Evtyushkin, D., Gruss, D.
A systematic evaluation of transient
execution attacks and defenses. In
USENIX Security’19 (2019).

 6. Chrysos, G.Z., Emer, J.S. Memory
dependence prediction using store
sets. In ISCA’98 (1998).

 7. Dalton, M., Kannan, H., Kozyrakis, C.
Raksha: A flexible information flow
architecture for software security. In
ISCA’07 (2007).

 8. Gharachorloo, K., Gupta, A., Hennessy, J.
Two techniques to enhance the
performance of memory consistency
models. In ICPP’91 (1991).

 9. Goguen, J.A., Meseguer, J. Security
policies and security models. In 1982
IEEE Symposium on Security and
Privacy (1982).

 10. Großschädl, J., Oswald, E., Page, D.,
Tunstall, M. Side-channel analysis
of cryptographic software via early-
terminating multiplications. In (2009).

 11. Hennessy, J.L., Patterson, D.A.
Computer Architecture: A Quantitative
Approach, 6th edn. Morgan Kaufmann
Publishers Inc., 2017.

 12. Intel. Q2 2018 speculative execution
side channel update, 2018. https://
www.intel.com/content/www/us/
en/ security-center/advisory/intel-
sa-00115.html.

 13. Johnson, M. Superscalar Microprocessor
Design. Prentice Hall Englewood Cliffs,
New Jersey, 1991.

 14. Kiriansky, V., Lebedev, I.A.,
Amarasinghe, S.P., Devadas, S., Emer,
J. DAWG: A defense against cache
timing attacks in speculative execution
processors. In MICRO’18 (2018).

 15. Kocher, P., Genkin, D., Gruss, D., Haas,
W., Hamburg, M., Lipp, M., Mangard,
S., Prescher, T., Schwarz, M., Yarom, Y.
Spectre attacks: Exploiting speculative
execution. In S&P’19 (2019).

 16. Lipasti, M.H., Wilkerson, C.B., Shen,
J.P. Value locality and load value
prediction. In ASPLOS’96 (1996).

 17. Percival, C. Cache missing for fun
and profit. In Proceedings of BSDCan
2005 (2005).

 18. Reinman, G., Calder, B. Predictive
techniques for aggressive load

speculation. In MICRO’98 (1998).
 19. Sabelfeld, A., Myers, A.C. Language-

based information-flow security. IEEE
J. Sel. Areas Commun. 21, 1 (Jan.
2003), 5–19.

 20. Schwarz, M., Schwarzl, M., Lipp, M.,
Gruss, D. Netspectre: Read
arbitrary memory over network. In
ESORICS’19 (2019).

 21. Suh, G.E., Lee, J.W., Zhang, D.,
Devadas, S. Secure program
execution via dynamic information
flow tracking. In ASPLOS’04 (2004).

 22. Tiwari, M., Wassel, H.M.,
Mazloom, B., Mysore, S., Chong, F.T.,
Sherwood, T. Complete information
flow tracking from the gates up. In
ASPLOS’09 (2009).

 23. Tomasulo, R.M. An efficient algorithm
for exploiting multiple arithmetic
units. IBM J. Res. Dev. 11, 1 (1967),
25–33.

 24. Van Bulck, J., Minkin, M., Weisse, O.,
Genkin, D., Kasikci, B., Piessens, F.,
Silberstein, M., Wenisch, T.F., Yarom, Y.,
Strackx, R. Foreshadow: Extracting
the keys to the Intel SGX kingdom
with transient out-of-order execution.
In USENIX Security’18 (2008).

 25. Yan, M., Choi, J., Skarlatos, D.,
Morrison, A., Fletcher, C.W., Torrellas, J.
InvisiSpec: Making speculative
execution invisible in the cache
hierarchy. In MICRO’18 (2018).

 26. Yarom, Y., Falkner, K. Flush+Reload:
A high resolution, low noise, L3 cache
side-channel attack. In USENIX
Security’14 (2014).

 27. Yu, J., Hsiung, L., Hajj, M.E., Fletcher,
C.W. Data oblivious ISA extensions
for side channel-resistant and high
performance computing. In NDSS’19.
https://eprint.iacr.org/2018/808.

 28. Yu, J., Mantri, N., Torrellas, J.,
Morrison, A., Fletcher, C.W. Speculative
data-oblivious execution: Mobilizing
safe prediction for safe and efficient
speculative execution. In ISCA’20.

 29. Yu, J., Yan, M., Khyzha, A.,
Morrison, A., Torrellas, J.,
Fletcher, C.W. Speculative Taint
Tracking (STT): A Formal Analysis.
Technical report, University of
Illinois at Urbana-Champaign and
Tel Aviv University, 2019. http://
cwfletcher.net/Content/Publications/
Academics/TechReport/stt-formal-
tr_micro19.pdf.

not influence future visible events in the execution. This
applies to all microarchitectural timing and interference-
based attacks. For instance, the property ensures that the
program’s completion time and hardware resource usage—
for all hardware structures such as cache, branch predictor,
etc.—are completely independent of doomed values.

The key challenge in the analysis is how to avoid “looking
into the future” to determine if an instruction is doomed to
squash. We address this by running the STT machine along-
side a nonspeculative in-order processor, which allows us to
verify the STT machine’s branch predictions and determine
whether a prediction leads to misspeculation or not.

8. EVALUATION RESULTS
We evaluate STT on 21 SPEC and 9 PARSEC workloads.
The results are shown in Figure 9. Relative to an insecure
machine, STT adds only 13.0%/18.2% overhead (averaged
across both SPEC and PARSEC benchmarks) depending
on whether the attack model considers only control-flow
speculation (Spectre) or all types of speculation (Futuristic).
Compared to the baseline secure scheme (DelayExecute)
described in Section 1, STT reduces overhead by 4.0× in the
Spectre model and 10.5× in the Futuristic model, on average.
This indicates that defending against stronger attack mod-
els is viable with STT without sacrificing much performance.

Acknowledgments
This work was funded in part by NSF under grant CNS-
1816226, Blavatnik ICRC at TAU, ISF under grant 2005/17,
and by an Intel Strategic Research Alliance (ISRA) grant.
We thank Joel Emer, Sarita Adve, and Shubu Mukherjee
for very helpful discussions. We would especially like to
thank our colleagues at Intel who contributed significant
feedback throughout the project’s development, in par-
ticular Fangfei Liu, Matthew Fernandez, Frank McKeen,
and Carlos Rozas.

DelayExecute

Spectre FuturisticSpectre Futuristic

PARSECSEPEC06

250.0%

200.0%

P
er

f O
ve

rh
ea

d
O

ve
r

In
se

cu
re

 B
as

el
in

e

150.0%

100.0%

50.0%

0.0%

181.6%

40.2%

8.5% 14.4%

78.2%

23.4% 27.2%

2117%

STT

Figure 9. Performance evaluation on SPEC06 and PARSEC
benchmark suites. STT outperforms the baseline secure scheme
(DelayExecute) with much smaller performance overhead, for both
Spectre and Futuristic attacker models.

References
 1. Aciicmez, O., Seifert, J.-P., Koc, C.K.

Predicting secret keys via branch
prediction. In IACR’06 (2006).

 2. Aldaya, A.C., Brumley, B.B., ul Hassan, S.,
García, C. P., Tuveri, N. Port contention
for fun and profit. In IACR’18 (2018).

 3. Andrysco, M., Kohlbrenner, D., Mowery,
K., Jhala, R., Lerner, S., Shacham,
H. On subnormal floating point and
abnormal timing. In S&P’15 (2015).

 4. Bhattacharyya, A., Sandulescu, A.,
Neugschwandtner, M., Sorniotti, A.,
Falsafi, B., Payer, M., Kurmus, A.

Jiyong Yu, Josep Torrellas, and
Christopher W. Fletcher, University of
Illinois at Urbana-Champaign, IL, USA.

Mengjia Yan, Massachusetts Institute of
Technology, Cambridge, MA, USA.

Artem Khyzha and Adam Morrison, Tel
Aviv University, Israel.

© 2021 ACM 0001-0782/21/12 $15.00

