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Abstract
Speculative execution attacks present an enormous secu-
rity threat, capable of reading arbitrary program data under 
malicious speculation, and later exfiltrating that data over 
microarchitectural covert channels. This paper proposes 
speculative taint tracking (STT), a high security and high 
performance hardware mechanism to block these attacks. 
The main idea is that it is safe to execute and selectively 
forward the results of speculative instructions that read 
secrets, as long as we can prove that the forwarded results 
do not reach potential covert channels. The technical core 
of the paper is a new abstraction to help identify all micro-
architectural covert channels, and an architecture to quickly 
identify when a covert channel is no longer a threat. We fur-
ther conduct a detailed formal analysis on the scheme in a 
companion document. When evaluated on SPEC06 work-
loads, STT incurs 8.5% or 14.5% performance overhead rela-
tive to an insecure machine.

1. INTRODUCTION
Speculative execution attacks such as Spectre15 have opened 
a new chapter in hardware security. In these attacks, mali-
cious speculative execution causes doomed-to-squash 
instructions to access and later transmit secrets over micro-
architectural covert channels such as the processor cache.26

Consider “Spectre V1” (Figure 1) as an example. On mod-
ern processors, branch directions are predicted early in 
the processor pipeline to enable subsequent instructions 
to be fetched before the branch’s predicate resolves. In a 
speculative execution attack, the attacker “mistrains” the 
branch predictor to predict “taken” even if the branch predi-
cate eventually resolves to “not taken.” This means that in 
between branch prediction and resolution, the program 
speculatively executes down the taken (incorrect) path: 
accessing a value secret potentially outside the bounds of 
array1 and passing that value as the address to a second 
load reading array2. For the remainder of the paper, we 
will consider such speculatively accessed data to be secret.

In the context of Figure 1, the second load forms a 
microarchitectural covert channel. Specifically, on modern 
processors, loads result in address-dependent (and by exten-
sion secret-dependent) hardware resource usage due to 
the presence of hardware structures such as cache. Thus, 
an attacker that can monitor the load’s hardware resource 
usage, or the program’s execution time, can use that infor-
mation to infer secret.

The original version of this paper was published in 
the Proceedings of the 52nd International Symposium on 
Microarchitecture (October 2019).

Making matters worse, an attacker that can freely control 
off can repeat the attack with different off to leak differ-
ent secret values in the victim’s memory. Further, although 
the above example covered Spectre V1, there are many other 
ways to leak secret data using similar principles. For exam-
ple, by accessing secret information through other types of 
processor misspeculation, or by exfiltrating those secrets 
through other microarchitectural covert channels.

1.1. This paper’s defense approach
A secure, but conservative, way to block all speculative exe-
cution attacks—regardless of source of misspeculation or 
choice of microarchitectural covert channel—is to delay 
executing all instructions that can access a secret until such 
instructions become nonspeculative. In nearly all attacks 
today, this would imply blocking all loads until they are non-
speculative, which would be tantamount to disabling specu-
lative execution.

This paper proposes a principled, high-performance 
mechanism that achieves the same security guarantee as the 
above conservative scheme. The key idea is that speculative 
execution is safe unless speculatively accessed data (secrets) 
reaches a covert channel. In many cases, speculative instruc-
tions either do not have access to secrets or do not form covert 
channels, and so can execute freely under speculation. For 
example, the first load in Spectre V1 (Figure 1) forms a covert 
channel, but that channel only leaks the attacker-selected 
address &array1[off]—not the secret data stored at that 
address. Thus, this load’s execution need not be protected. 
Likewise, many instructions (e.g., simple arithmetic) do  
not form covert channels even if their operands are secret 

1 if (off < array1_size) { // mispredicts
2 secret = array1[off]; // secret accessed
3 y = array2[64 * secret ]; } // secret transmitted

Figure 1. Spectre Variant 1 assuming a 64-byte cache line size. 
Variables carrying potentially secret data are colored green. If the if 
condition is predicted as true, then the cache line of array2 indexed 
by secret is loaded into the cache (Line 3) even though both loads 
are eventually squashed.
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channel. The paper shows how this enables existing predic-
tors to stay enabled without leaking privacy, dramatically 
improving performance. In the future, we expect the idea 
of safe prediction to enable further innovation, that is, by 
enabling the design of new predictors without fear of open-
ing new security holes. Indeed, our follow-on work uses this 
idea to safely improve the performance of instructions that 
create explicit channels.28

1.3. Mechanisms to quickly and  
safely disable protection
Once we have mechanisms to block secret data from reach-
ing covert channels, the next question is when and how to 
disable that protection, if speculation turns out to be cor-
rect. This is crucial for performance, as delaying data for-
warding longer than necessary increases the chance that 
later instructions are, themselves, delayed.

STT tackles this problem with a safe but aggressive 
approach, by re-enabling data forwarding as soon as data 
becomes a function of nonspeculative state. For example, in 
Figure 1, this corresponds to the moment when the branch 
predicate resolves. This represents the earliest safe point but 
is nontrivial to determine in hardware, in general. For exam-
ple, a delayed instruction’s operand(s) may be the result of 
a complex dependency chain across many control flow and 
speculative operations. Intuitively, determining that data is 
a function of nonspeculative state would require retracing a 
backward slice of the program’s execution, which is costly to 
do quickly.

Despite the above challenges, STT proposes a simple 
hardware mechanism that can disable protection/re-enable 
forwarding for an arbitrary instruction in a single cycle, 
using hardware similar to traditional instruction wake-up 
logic. The key idea is that to determine whether data is a 
function of nonspeculative state, it is sufficient to deter-
mine whether the youngest load, whose return value influ-
ences the data, has become nonspeculative. Checking this 
condition is akin to tracking a single extra dependency for 
each instruction, as opposed to performing complex back-
ward slice tracking.

1.4. Security guarantees and formal analysis
Alongside the main paper, we formally prove that STT 
enforces a novel form of noninterference9 with respect to 
speculatively accessed data. In a nutshell, we show that, 
with STT, hardware resource usage patterns over time are 
independent of data that eventually squashes. We released a 
companion technical report29 with detailed formal analysis 
and a security proof for this property on a processor model 
implementing STT.

1.5. PUTTING IT ALL TOGETHER
Putting everything together, STT provides both high security 
and high performance. It does not require partitioning or 
flushing microarchitectural resources, and does not require 
changes to the cache/memory subsystem or the software 
stack. When evaluated on SPEC06 workloads, STT incurs 
8.5% or 14.5% performance overhead (depending on the 
threat model) relative to an insecure machine.

values. It is only when the secret is passed to a covert chan-
nel (e.g., the second load in Figure 1) that protection must 
be applied.

To implement this idea, we present speculative taint 
tracking (STT), a framework that tracks the flow of specula-
tively accessed data through in-flight instructions (similar to 
dynamic information flow tracking/DIFT21) until it is about 
to reach an instruction that may form a covert channel. STT 
then delays the forwarding of the data until it becomes a 
function of nonspeculative state or the execution squashes 
due to misspeculation. To be secure and efficient, we 
address two key challenges.

• Identifying what is a covert channel. First, we develop 
an abstraction that indicates how and when instruc-
tions can form covert channels, so as to stall data for-
warding only when it becomes unsafe.

• Identifying what is a secret. Second, we develop a 
microarchitecture that determines the earliest time 
when data should no longer be considered secret, so as 
to re-enable data forwarding as soon as it becomes safe.

We now describe these two components in more detail.

1.2. New abstractions for describing 
microarchitectural covert channels
Covert channels come in different shapes and sizes. For 
example, attackers can monitor how loads interact with the 
cache,15 the timing of SIMD units,20 execution pipeline port 
contention,4 branch predictor state,1 and more. To compre-
hensively block information leakage through these differ-
ent channels, it is necessary to understand their common 
characteristics.

To address this challenge, the paper proposes a new 
abstraction through which the covert channels on specula-
tive microarchitectures can be viewed, discovers new points 
where instructions can create covert channels, and discovers 
a new class of covert channels. We find that all covert chan-
nels are one of two flavors, which we call explicit and implicit 
channels (related to explicit and implicit information flow,19, 22  
respectively). In an explicit channel, data is directly passed to 
an instruction whose execution creates operand-dependent 
hardware resource usage and that resource usage reveals the 
data. For example, how a load impacts the cache depends 
on the load address,15 as in Line 3 of Figure 1. In an implicit 
channel, data indirectly influences how (or whether) an 
instruction(s) execute, and these changes in resource usage 
reveal the data. For example, the instructions executed after 
a branch reveal the branch predicate.4, 20 The paper further 
defines subclasses of implicit channel, based on when 
the leakage occurs and based on the nature of the secret- 
dependent condition that forms the channel.

Key advance: safe prediction. Through its investigation of 
implicit channels, the paper makes a key advance by show-
ing how to use hardware predictors safely. Spectre attacks 
were born from attackers mistraining predictors to leak 
secrets. Through its abstraction for implicit channels, STT 
enforces a policy that prevents arbitrary predictor mistraining 
from leaking any secret data over any microarchitectural covert 
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2. BACKGROUND
We now provide additional details about processor microar-
chitecture. Also see Section 1 for basics on Spectre attacks.

Out-of-order execution. Dynamically scheduled proces-
sors execute instructions in parallel and out of program 
order to improve performance.11, 23 Instructions are fetched 
and decoded in the processor frontend, dispatched to reserva-
tion stations for scheduling, issued to execution (functional) 
units in the processor backend, and finally retired (at which 
point they update architected system state). Instructions 
proceed through the frontend, backend, and retirement 
stages in order, possibly out of order, and in order, respec-
tively. In-order retirement is implemented by queuing 
instructions in a hardware structure called the reorder buffer 
(ROB)13 in instruction-fetch order, and retiring a completed 
instruction when it reaches the ROB head. Instructions are 
referred to by their age in the ROB, that is, if I1 precedes I2 in 
fetch order, then I1 is older than I2.

Speculative execution. Speculative execution improves 
performance by executing instructions whose validity is 
uncertain instead of waiting to determine their validity. 
If such a speculative instruction turns out to be valid, it is 
eventually retired; otherwise, it is squashed and the proces-
sor’s state is rolled back to a valid state. (As a byproduct, all 
instructions younger than the point of misspeculation also 
get squashed.)

There are multiple types of speculation in modern pro-
cessors, associated with different instructions and events. 
For example, to enable immediate fetching of instruc-
tions after a branch, that is, before the branch’s predicate 
resolves, modern processors employ branch prediction. 
Branch predictors are (typically) stateful structures in the 
processor frontend that predict the direction of the branch 
based on information such as the branch’s program coun-
ter and whether the branch historically has been taken/not 
taken. If the processor backend later resolves the branch 
predicate and determines the prediction to be incorrect, all 
subsequently fetched instructions are squashed and control 
flow is diverted to the correct path.

3. ATTACKER MODEL AND PROTECTION SCOPE
Attacker model. STT assumes a powerful attacker that 
can monitor any microarchitectural covert channel from 
anywhere in the system and induce arbitrary speculative 
execution to access secrets and create covert channels. For 
example, the attacker can monitor covert channels through 
the cache/memory system,15 data-dependent arithmetic,10 
port contention,4 branch predictors,1 etc.

We note that the above attacker is very strong, perhaps 
even unrealistic. The goal is that through defending against 
such an attacker, we will by extension defend against weaker, 
more realistic attackers.

Scope: protecting speculatively accessed data. A specu-
lative execution attack consists of two components.14, 20 
First, an instruction that reads a potential secret into a reg-
ister, making it accessible to younger instructions. We call 
this instruction the access instruction.14 Second, a younger 
instruction or instructions that exfiltrate the secret over a 
microarchitectural covert channel. The access instruction is 

almost always a load,15, 24 but some attacks use a privileged 
register read.5

We distinguish attacks based on whether the access 
instruction is doomed-to-squash (transient) or bound to 
retire (nontransient). STT’s goal is to block attacks involv-
ing doomed-to-squash access instructions, as shown in 
Figure 2. These attacks can access data that a correct (not 
misspeculated) execution would never access, which often 
results in being able to read from any location in memory. 
Attacks involving bound-to-retire access instructions are 
out of scope. They can only leak retired (or bound-to-retire) 
register file state, not arbitrary memory, and their leak-
age can be reasoned about by programmers or compilers 
and blocked using complementary techniques (e.g., Data-
oblivious ISAs27).

4. ABSTRACTION FOR COVERT CHANNELS
STT proposes a novel abstraction for covert channels (Figure 3).  
In our abstraction, covert channels are broken into two 
classes: explicit and implicit channels. An explicit chan-
nel, related to explicit flow in information flow,19, 22 is one 
where data (e.g., a secret) is directly passed to an instruc-
tion whose execution creates operand-dependent hard-
ware resource usage and that resource usage reveals the 
data. An example is a load instruction’s changes to the 
cache state. An implicit channel, related to implicit flow,19, 

22 is one where data indirectly influences how (or whether) 
an instruction or several instructions execute, and these 
changes in resource usage reveal the data. An example 
is a branch instruction, whose outcome determines sub-
sequent instructions and thus whether some functional 
unit is used.

We further find new ways that implicit channels can 
leak, and find entirely new classes of implicit channels. 
Figure 4 gives examples of “traditional” (Figure 4(a)) and 
new (Figure 4(b) and (c)) channels. We denote the value being 
revealed through the channel as secret. The examples assume 
the attacker can monitor the cache-based covert channel, 
that is, the program's memory access pattern. We note that 
in many cases (e.g., Figure 4(a) and (b)), the load can be 
replaced by any instruction; in particular, not necessarily 

(Transient)
Covert channel

(Transient)
Access instruction

(Transient)
Covert channel

(Nontransient)
Access instruction

Start misspeculation

Start misspeculation

This paper

Instruction fetch order

Type 1:

Type 2:

Figure 2. STT’s scope is to protect speculatively accessed data from 
leaking over any microarchitectural covert channel. Protecting 
values that are accessed nonspeculatively is outside of scope.
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through different effects, for example, program timing or 
the fact that the load issues twice.

4.2. Explicit versus implicit branches
Second, we find that implicit channels can feature either an 
explicit or an implicit branch. For example, in Figure 4(c), 
there is no explicit control-flow instruction and the load 
address seemingly does not depend on secret data.

Yet, there may still be an implicit channel. For example, 
consider a machine that performs store-to-load forwarding. 
With this optimization, the processor can forward data (rX) 
directly from the older in-flight store to the younger load’s 
output register (rY), as opposed to waiting for the store to 
retire and accessing the cache, if the store/load addresses 
alias, that is, if secret==rZ. Store-to-load forwarding thus 
creates an implicit channel, as whether a cache access is per-
formed depends on the secret.

Another common technique with similar implications 
is memory-dependence speculation.18 This optimization 
allows a load to (speculatively) read from cache even if older 
in-flight stores have unresolved addresses, that is, it specu-
lates that store-to-load forwarding will not be needed. In our 
example, if the older store address later resolves and we have 
that secret==rZ, the load and younger instructions will 
squash, causing a similar pipeline disturbance as discussed 
in Section 4.1. (Note, this is not the already known Spectre 
Variant 4 (SSB) attack.12, 25 In that attack, an access instruction 
reads stale data through a store bypass. Our attack is con-
cerned with store bypass used as a covert channel.)

An important observation is that hardware optimizations 
such as those above can be modeled as implicit branches, 
whereas explicit control-flow instructions such as branches 
can be viewed as explicit branches. That is, the store-load pair 
in Figure 4(c) can be rewritten as shown in Figure 6, where 
the “implicit branch” direction is predicted if secret has not 
yet resolved. In this sense, implicit branches may also leak 
at prediction and/or resolution time (Section 4.1). For exam-
ple, memory-dependence speculation is sometimes imple-
mented with a stateful predictor called a store set predictor,6 
which tries to guess when store-load pairs will address alias, 
which can similarly “learn” functions of secret data.

4.3. Insights from analysis of implicit channels
Since it was proposed in the paper, the classification for 

one that forms an explicit channel. Case in point, secret 
is not passed directly as the load address in any of the exam-
ples, yet still leaks.

4.1. Prediction- versus resolution-based leakage
First, we find that implicit channels can leak at two 
points: when a control-flow prediction is made (if any) 
and when that prediction is resolved. Recall, branch pre-
diction and resolution occur in the processor frontend 
and backend, respectively (Section 2). This creates new 
types of leakage depending on the attacker’s capabil-
ity. In the following, consider a branch whose predicate 
depends on a secret.

At prediction time, the sequence of instructions fetched 
after this branch is fetched (after branch prediction but 
before resolution) leaks secrets if the predictor structures 
were updated based on secret information at some time in 
the past. For example, if an attacker runs repeated experi-
ments and the branch predictor is updated speculatively 
based on how the branch resolves, the branch predictor 
“learns” the secret and will make future predictions based 
on the secret.

At resolution time, the branch can also leak the secret 
even if the predictor state has not been updated based on 
secret data, because incorrect predictions will cause pipe-
line squashes. See the code snippet in Figure 4(b), whose 
timing is shown as a function of the secret in Figure 5. If 
the attacker knows the branch will predict not taken (e.g., 
by priming it beforehand15), a squash means the branch 
was actually taken. The attacker can observe the squash 

Explicit channel Implicit channel

Covert channel

Explicit branch Implicit branch

Prediction-based Resolution-based

a b means a is a 
subtype of b

New

Figure 3. STT’s new classification schema for microarchitectural 
covert channels.

(a) Control dependency: (b) Squash dep. (new): (c) Alias dep. (new):
if (secret) 
load rX <- (rY)

if (secret) 
rX += 64

load rY <- (rZ)

store rX -> (secret)  
load rY <- (rZ)    

Figure 4. Examples of implicit covert channels revealing secret. 
Assume an older speculative access instruction has already 
read secret into a register, for example, Line 2 in Figure 1. The 
attacker can see the sequence of load addresses sent to the 
memory system. For stores, we assume address translation and 
other address-dependent actions occur when the store retires. 
rX, rY, and rZ are registers. Each of these covert channels can be 
“plugged into” existing attacks as the “Covert channel” in Figure 
1. For example, we can replace Line 3 with one of (a)–(c) above. 

B predicts 
not taken

Load 
issues

B resolves 
not taken

B predicts 
not taken

Load 
issues

B resolves 
taken
Squash!

Load 
issues

secret
== 0

secret
== 1

Time

Figure 5. Resolution-based implicit channel for Figure 4(b) due to 
secret-dependent pipeline squashes. When the branch (B) resolves, 
it leaks the secret based on whether a squash occurs, as this causes 
the younger load to execute once or twice. There is an analogous 
case when the branch is predicted taken.
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for existing attacks and a variety of hardware optimizations. 
As we will see in the next sections, being able to represent 
different optimizations as predictions on implicit branches 
will enable STT to apply a uniform mechanism to block leak-
age through a variety of structures (e.g., branch, store set, 
etc., predictors).

5. STT: DESIGN
STT “taints” secret (speculatively accessed) data as it flows 
through the pipeline in a manner similar to dynamic 
information flow tracking (DIFT).7, 21 The STT framework 
(Section 5.1) defines which data should be tainted, which 
instructions might leak it and thus should be protected, 
and when protection can be disabled. STT tracks the flow 
of tainted data between instructions in the ROB and auto-
matically “untaints” data once the instruction that produces 
it becomes nonspeculative (Section 5.2), in contrast to con-
ventional DIFT schemes. Based on taint information, STT 
applies novel protection mechanisms to block both explicit 
and implicit covert channels (Section 5.3).

5.1. Framework and concepts
STT requires that the microarchitect defines what instruc-
tions write secrets into registers (access instructions, mainly 
loads), what instructions can form explicit channels (trans-
mitters), and what instructions form implicit channel 
branch predicates (for both explicit and implicit branches). 
Finally, the architect must define the Visibility Point, after 
which speculation is considered safe (e.g., at the point of the 
oldest unresolved branch, or at the head of the ROB). If the 
Visibility Point refers to an instruction older than an access 
instruction, we call the access instruction unsafe; otherwise, 
it is considered safe.

We provide guidelines for microarchitects to identify 
access and transmit instructions. An instruction should be 
classified as an access instruction if it has the potential to 
return a secret. Except for loads, there are only a handful of 
such instructions, which can be identified manually.

An instruction should be classified as a transmit instruc-
tion if its execution creates operand-dependent resource 
usage that can reveal the operand (partially or fully). 
Identifying implicit branches is similar: the architect must 
analyze whether the resource usage of some in-flight instruc-
tion changes as a function of some other instruction’s oper-
and. This definition can be formalized by analyzing (offline) 
how information flows in each functional unit at the SRAM-
bit and flip-flop levels to determine whether resource usage 
depends on the input value, in the style of the OISA27 or 
GLIFT22 formal frameworks. Automatically performing such 
analysis is important future work.

5.2. Taint and untaint propagation
Conceptually, in each clock cycle, STT applies the following 
taint rules to instructions in the ROB:

• The output register of an access instruction is tainted if 
and only if the access instruction is unsafe.

• The output register of a nonaccess instruction is tainted 
if and only if at least one of its input operands is tainted.

implicit channels has proven to be a robust and useful 
way to represent and pinpoint the root cause of micro-
architectural attack vulnerabilities. For example, in the 
NetSpectre attack,20 a secret branch predicate condition-
ally causes a SIMD instruction to be issued, which triggers 
a SIMD unit power-on event. A common misconception 
is that the attack root cause is SIMD unit power-on time. 
STT’s abstraction shows, however, that the root cause is an 
explicit branch and that “fixing” the SIMD unit does not 
prevent the attack.

Even more subtly, the abstraction demonstrates and pro-
vides cases where implicit flow and privacy leakage do occur 
despite not occurring according to program semantics. For 
example, at the software level, neither Figure 4(b) nor (c) 
would be flagged as creating covert channels. Figure 4(b) 
would not be considered a channel because the load is con-
trol-and data-independent of the branch. Likewise, Figure 
4(c) would not be considered a channel because, although 
there is possible information flow from rX to rY due to 
address aliasing, this information flow does not (seemingly) 
impact the memory access pattern. Generally speaking, the 
analysis shows that in advanced processors, subtle microar-
chitectural decisions that are orthogonal to program seman-
tics must be taken into account to reason about possible 
microarchitectural covert channels.

Finally, the abstraction applies to a large set of micro-
architectural optimizations. For example, the representa-
tion of store-to-load forwarding and memory-dependence 
speculation (Figure 6) also captures the behavior of memory 
consistency speculation,8 value prediction,16 and other opti-
mizations. For reference, Table 1 specifies the channel types 

store rX -> (secret) 
...
load rY <- (rZ)

implIf (secret!= rZ)
load rY <- (rZ) // lookup cache

implElse
rY <- rX // forward from st. Q 

Figure 6. Rewriting a store-load pair as an implicit branch. implIf 
reveals a potential covert channel as a function of memory aliasing 
to the older store. This occurs if the microarchitecture supports 
store-to-load forwarding or memory-dependence speculation.

Channel Spectre PoC? Type Branch type

Cache timing17, 26 Spectre V115 Exp –
Execution unit timing3, 10 – Exp –
SIMD utilization NetSpectre20 Imp Exp
Port contention2 SmotherSpectre4 Imp Exp
Store-load forwarding – Imp Imp
Mem. dep. prediction18 – Imp Imp
Mem. consist. speculation8 – Imp Imp
Value prediction16 – Imp Imp

Table 1. Classifying existing attacks and covert channel-creating 
hardware structures.

A channel’s Type can be either Explicit (Exp) or Implicit (Imp), c.f. Section 4.  
An implicit channel’s Branch Type is likewise Exp or Imp, c.f. Section 4.2. 
Attacks utilizing implicit channels may be either prediction- or resolu-
tion-time (Section 4.1); thus, we leave that field out.
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Conceptually, the protection mechanism does not need 
to reason about whether an implicit channel is caused by 
an explicit or implicit branch: both types have a predicate, 
and the policy with respect to the predicate is the same in 
both cases. The implementation, however, must identify the 
predicate. We illustrate this by showing how the STT micro-
architecture handles explicit branches.

Applying Principle #1 (prediction-based channels). STT 
requires that every frontend predictor structure be updated 
based only on untainted data. This makes the execution path 
fetched by the frontend unaffected by the output of unsafe 
access instructions. Specifically, STT passes a branch’s reso-
lution results to the direct/indirect branch predictors only 
after the branch’s predicate and target address become 
untainted; if the branch gets squashed before this, the pre-
dictor will not be updated.

Figure 7(c) demonstrates the effect of STT on a specula-
tive execution of the code snippet in Figure 7(a), in which the 
branch B0 is mispredicted as taken. No matter how many 
experiments the attacker runs, the predicted direction of the 
branch B will not be a function of secret, because the branch 
predictor is not updated when B resolves. As a result, the exe-
cution path does not depend on secret (top vs. bottom)—it 
only depends on the predicted branch direction (left vs. right).

Applying Principle #2 (resolution-based channels). STT 
delays squashing a branch that resolves as mispredicted 
until the branch’s predicate becomes untainted. As a result, 
a doomed-to-squash branch with a tainted predicate (such 
as the branch B in Figure 7(c)) will never be squashed and 
re-executed, preventing the implicit channel leak discussed 
in Section 4.3. As Figure 7(c) shows, the doomed-to-squash 
branch B is eventually squashed once an older (mispre-
dicted) branch with an untainted predicate squashes. Thus, 
the squash does not leak any information about the branch’s 
resolution. Importantly, it is safe to resolve a branch as soon 
as its predicate becomes untainted, even if an older branch 
with a tainted predicate has not yet resolved.

STT only increases the latency of recovering from a tainted 
branch misprediction. For example, in Figure 7(b), the load 
does not execute immediately after B resolves. Fortunately, 
tainted branch mispredictions are only a small fraction of 
overall branch mispredictions, which are infrequent in the 
first place because successful speculation requires accurate 
branch prediction.

Implicit branches. The paper applies STT’s principle to 
secure several common microarchitectural optimizations 

In the implementation, taint propagation is piggybacked 
on the existing register renaming logic in an out-of-order 
core. Tainting is therefore fast. By contrast, it is difficult to 
propagate “untaint,” to all dependencies of an access instruc-
tion that becomes safe, in a single cycle. We address this with 
a single-cycle implementation for untaint in Section 6.

Unlike prior DIFT schemes,21 STT does not require track-
ing taint in any part of the memory system or across store-
to-load forwarding. The reason is that because loads are 
access instructions, the taint of their output is determined 
only based on whether they have reached the Visibility Point. 
That is, the output of an unsafe load is always tainted.

5.3. Blocking covert channels
Given STT’s rules for tainting/untainting data and its 
abstraction for covert channels, STT blocks all covert chan-
nels by applying a uniform rule across each type.

Blocking explicit channels. STT blocks explicit chan-
nels by delaying the execution of any transmit instruction 
whose operands are tainted until they become untainted. 
This scheme imposes relatively low overhead because it only 
delays the execution of transmit instructions if they have 
tainted operands. For example, a load that only returns a 
secret but does not have (transmit) a secret operand—such 
as the load on Line 2 in Figure 1—executes without delay. 
The load on Line 3, however, will be delayed and eventually 
squashed, thereby defeating the attack.

Blocking implicit channels. STT blocks implicit channels 
by enforcing an invariant that the sequence of instructions 
fetched/executed/squashed never depends on tainted data. 
That is, STT makes the program counter independent of tainted 
data. To enforce this invariant efficiently, without need-
ing to delay execution of instructions following a tainted 
branch, we introduce two general principles to neutralize 
the sources of implicit channels:

• Prediction-based implicit channels are eliminated by 
preventing tainted data from affecting the state of any 
predictor structure.

• Resolution-based implicit channels are eliminated by 
delaying the effects of branch resolution until the (explicit 
or implicit) branch’s predicate becomes untainted.

The above principles can be applied to efficiently make 
any hardware predictor impossible to exploit as a covert 
channel for leaking speculatively accessed data.
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B0: if (rA < X_Size){ 

load secret <- (&X[0] + rA)
B:  if (secret) 
M: load rX <- (rY)

}
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Figure 7. STT executing the code in (a), which includes an untainted branch B0, an access instruction reading secret, and an implicit channel 
(due to branch B).
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instruction at ROB index 6 depends on index 5 and index 3, 
index 8 depends on 6, etc. Re-traversing this dataflow graph 
to propagate untaint, akin to tracing backwards slices, would 
be expensive. On the other hand, the YRoT dependency chain 
is relatively simple. Each instruction just tracks whichever is 
the youngest load that contributes to its dependency chain 
(e.g., load M2 for instructions 6, 8 and 9). When branches 
B1 and B2 resolve, the Visibility Point advances to point to 
branch B3 (ROB index 7). As 7 is greater than 5 (the YRoT for 
the transmit instruction M3), M3 is allowed to execute at this 
point. Note, the dependency chain could have been more 
complex, with additional branches and arithmetic depen-
dencies separating load M2 and load M3, but this would not 
change the moment that it is safe to execute load M3.

Importantly, the above scheme is only secure after apply-
ing STT’s mechanisms to block both explicit and implicit 
channels (Section 5). That is, the scheme requires that r8 
is not a function of speculative data at the exact moment 
load M2 becomes nonspeculative. This requires that branch 
B3 not be influenced by speculative data (achieved by pro-
tections for implicit channels) and that other intervening 
instructions that can cause explicit channels not execute 
until they are likewise safe (achieved by protections for 
explicit channels).

7. FORMAL ANALYSIS/SECURITY PROOF
We formally prove in a companion document29 that STT 
enforces a novel notion of noninterference: at each step 
of the execution, the value of a doomed register—a register 
written to by a bound-to-squash access instruction—does 

that can be formulated as implicit branches, namely: store-
to-load forwarding, memory-dependence speculation, 
and memory consistency speculation. In the process, the 
paper details various optimizations and cases which arise 
when dealing with implicit channels. In particular, whether 
the explicit/implicit branch has a prediction step can be 
resolved early or can be optimized in some other way. For 
example, because store-to-load forwarding can only result 
in two observable outcomes (issue the load or forward from 
a prior store), we hide which one occurs by unconditionally 
accessing the cache.

6. STT: IMPLEMENTATION
We previously assumed untaint information propagated 
along data dependencies instantly. This is difficult to imple-
ment in hardware because a word of tainted data may be a 
function of complex dependency chains involving many 
access instructions.

A tainted register needs to be untainted once all 
the access instructions on which it depends reach the 
Visibility Point, that is, become safe. Our key observation 
is that it suffices to track only when the youngest access 
instruction becomes safe, because instructions become 
nonspeculative in program order in the processor reorder 
buffer (ROB). We call this youngest access instruction the 
youngest root of taint (YRoT).

Determining the YRoT is done through modifications 
to rename logic in the processor frontend. Specifically, the 
YRoT for an instruction X being renamed is given by the  
max of (1) the YRoT(s) of the instruction(s) producing 
the arguments for X, if those instructions are not access 
instructions; or (2) the ROB index of the instruction(s) 
producing the arguments for X, otherwise. (By conven-
tion, we assume the ROB index increases from ROB head 
to tail.) After renaming, the YRoT is stored alongside the 
instruction in its reservation station and is conceptually an 
extra dependency for that instruction. When the Visibility 
Point changes, its new position is broadcast to in-flight 
instructions, akin to a normal writeback broadcast, and 
instructions whose YRoT is less than the Visibility Point’s 
new position are allowed to execute (assuming their 
other dependencies are satisfied). The entire architecture 
requires modest changes to the frontend rename logic, 
storage in reservation stations for the YRoT, and logic to 
compare the YRoT to the Visibility Point which is compa-
rable to normal instruction wakeup logic.

Figure 8 shows an example. Assume the Spectre attack 
model, that is, the Visibility Point will be set to the ROB 
index of the oldest unresolved branch. The ROB contains 
3 unresolved branches (B1–B3) and a transmit instruc-
tion (M3) whose operand/address r8 is a function of the 
return value of two access instructions (M1 and M2). M3 is 
a transmit instruction (because it is a load) and can poten-
tially leak secrets because misspeculations on branches B1 
and B2 can influence the data returned by loads M1 and M2, 
which in turn contribute to the address of M3 through data 
dependencies.

On the one hand, the data dependency chain from load 
M1 all the way to load M3 is quite complex. That is, the 

branch // B1

load r1 <- (r2) // M1

add  r3 <- r1 + r2

branch // B2

load r5 <- (r4) // M2

add  r6 <- r3 + r5

branch // B3

add  r8 <- r7 + r6

load r9 <- ( r8) // M3

ROB head, 
Visibility Point

ROB tail
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9 

Position in 
ROB
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-

-

2
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Figure 8. Example showing YRoT tracking showing a snapshot 
of ROB state. Addition (add) instructions are used to represent 
arithmetic (non-loads). If the YRoT is set to ‘-’, it means the 
instruction’s youngest dependent access instruction is a part of 
retired state.
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not influence future visible events in the execution. This 
applies to all microarchitectural timing and interference-
based attacks. For instance, the property ensures that the 
program’s completion time and hardware resource usage—
for all hardware structures such as cache, branch predictor, 
etc.—are completely independent of doomed values.

The key challenge in the analysis is how to avoid “looking 
into the future” to determine if an instruction is doomed to 
squash. We address this by running the STT machine along-
side a nonspeculative in-order processor, which allows us to 
verify the STT machine’s branch predictions and determine 
whether a prediction leads to misspeculation or not.

8. EVALUATION RESULTS
We evaluate STT on 21 SPEC and 9 PARSEC workloads. 
The results are shown in Figure 9. Relative to an insecure 
machine, STT adds only 13.0%/18.2% overhead (averaged 
across both SPEC and PARSEC benchmarks) depending 
on whether the attack model considers only control-flow 
speculation (Spectre) or all types of speculation (Futuristic). 
Compared to the baseline secure scheme (DelayExecute) 
described in Section 1, STT reduces overhead by 4.0× in the 
Spectre model and 10.5× in the Futuristic model, on average. 
This indicates that defending against stronger attack mod-
els is viable with STT without sacrificing much performance.
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